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In previous papers, we have started to develop a fully effective complex analysis.
The aim of this theory is to evaluate constructible analytic functions to any desired
precision and to continue such functions analytically whenever possible. In order to
guarantee that the desired precision is indeed obtained, bound computations are an
important part of this program. In this paper we will recall or show how the classical
majorant technique can be used in order to obtain many such bounds.
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1. INTRODUCTION

In [vdHO3, vdH99, vdHO01a, vdH02|, we have started to develop a fully effective complex
analysis. The aim of this theory is to evaluate constructible analytic functions to any
desired precision and to continue such functions analytically whenever possible. In order
to guarantee that the desired precision is indeed obtained, bound computations are an
important part of this program. A key tool for doing this is Cauchy-Kovalevskaya’s classical
technique of majorant equations [vK75, Pet50, Car61].

In this paper, we will study this technique in a quite detailed way. Although none of
the results is fundamentally new or involved, we nevertheless felt the necessity to write
this paper for several reasons:

e The need for a more abstract treatment in terms of “majorant relations” <.

e The need for explicit majorants which can be used in effective complex analysis.
e Our wish to extend the technique to singular differential equations.

e Our wish to obtain a better control over the precision of the majorants.

e The need for majorants in the contexts of integral transformations and convolution
equations.

The first two points are dealt with in sections 2, 3 and 4. In section 2.2, we isolate
a few abstract properties of “majorant relations” <. It might be interesting to pursue
this abstract study in more general contexts like the one from [vdHO1b|. In sections 2.3
and 2.4, we also mention some simple, but useful explicit majorants. In sections 3 and 4
we give a detailed account of the Cauchy-Kovalevskaya theorem, with a strong emphasis
on “majorant-theoretic properties”. The obtained majorants are quite precise, so that they
can be applied to effective complex analysis.

We present some new results in section 5. In sections 5.1 and 5.2, we show how to
use the majorant technique in the case of regular singular equations. This improves the
treatment in [vdHO1la|. In section 5.3 we consider the problem of finding “good” majorants
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for solutions to algebraic differential equations, in the sense that the radius of convergence
of the majorant should be close to the radius of convergence of the actual solution. This
problem admits a fully adequate solution in the linear case (see sections 3.4 and 3.5), but
becomes much harder in the non-linear setting:

THEOREM 1.1. [DL89] Given a power series =3 fn (" with rational coefficients, which
is the unique solution of an algebraic differential equation

P(C? f?"'? f(l)) :07

with rational coefficients and rational initial conditions, one cannot in general decide
whether the radius of convergence p(f) of fis <1 or >1.

In section 5.3 we will nevertheless show how to compute majorants whose radii of
convergence approximate the radius of convergence of the actual solution up to any pre-
cision (see section 5.3), but without controlling this precision. This result is analogous to
theorem 11 in [vdHO3].

Our final motivation for this paper was to publish some of the majorants we found
while developing a multivariate theory of resurgent functions. In this context, a central
problem is the resolution of convolution equations and the analytic continuation of the
solutions. At the moment, this study is still at a very embryonary stage, because there do
not exist natural isotropic equivalents for majors and minors, and we could not yet prove
all necessary bounds in order to construct a general multivariate resummation theory.

Nevertheless, in a fixed Cartesian system of coordinates, multivariate convolution prod-
ucts are naturally defined and in section 6 we prove several explicit majorants. If one does
not merely want to study convolution equations at the origin, but also wants to consider the
analytic continuation of the solutions, then it is useful to have uniform majorants on the
paths where the convolution integrals are computed. Such uniform majorants are studied in
section 7 and an application is given. We have also tried to consider convolution integrals in
other coordinate systems. In that setting, we rather recommend to study integral operators
of the form g f* g. Some majorants for such (and more general) operators are proved
in section 8.

2. MAJORANTS

2.1. Notations

Throughout this paper, vectors and matrices will be written in bold. We will consider
vectors as column matrices or n-tuples and systematically use the following notations:

0 = (0,...,0)
1= (1,..,1)
] = o[+ + o]
ak = alfl.“afln

k! = ki!---k,

(1) = ()-()

a-B = a1t +anfy
axfB = (o181, 0n6n)
a+B = (a1/p1,...,an/Bn)
abs(a) = (Jai|,...,|anl)
aspB & a<HiNANapn< By
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We will denote by C[[{]] = C][(1, .., (n]] the set of power series in (i, ..., (, with coefficients
in C. We will sometimes consider other sets of coefficients, like R* = {z € R: 2 > 0} or
R>={xcR:2>0}. Given f € C[[¢]], the coefficient of ¢¥ in f will be denoted by fx. We

define 9; = aic to be the partial derivation with respect to (; and

Gi
fl' : f(Cla s Cn) '_)/0 f(Cla ceey Ci—la gia Ci-l—la XY Cn) dgl

its distinguished right inverse (i=1,...,n).

2.2. Basic algebraic properties of majorants
Given f, f € C[[¢]], we say that f is majored by f, and we write f < f, if g € RZ[[¢]] and
| frel < f

for all k € N™. More generally, if f=(f1,..., fr) € C[[¢]]" and f = (fi,..., f») € RZ[[C]]",
then we write f < f if f; < f; for all i€ {1,...,r}.

PROPOSITION 2.1. We have

-1 < 1; (2.1
0 < A1 (AeR?). (2.2
For all f, f, f e C[[¢€]]":

f<f = £<f; (2.3
FLFNFQF = FF; (2.4
FLFNFLf = f=F. (2.5

PROPOSITION 2.2. Let f,g, f,g <€ C[[C]]". Then
fLfrgdg = f+9<f+g; (2.6)
Fdfngdg = fxgdfxg; (2.7)
f<f = [.f<[f.f (i=1,..n). (2.9)

If f, f €C[¢]]" and g, g € C[[§])® are such that go f and g o f are defined (this is so if
S = (617 ERS) 57‘) and fOZ fO)} then

f<frg<g = gof<dgof. (2.10)
ProoF. This is a direct consequence of the fact that the coefficients of f+g, f x g, 0; f,

i ; f and f o g can all be expressed as polynomials in the coefficients of f and g with
positive coefficients. O

2.3. Basic explicit majorants

We will often seek for majorations of the form f<Ibf, where
1
ba = ;
[o" 1— 24 )
Za = «a-(,

a € (R?)™ and p € N>. For simplicity, we set b=y and z=zy.
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PROPOSITION 2.3. For a € (R”)", i€{1,....,n} and p>0, we have

(07}
whence
o< f(1+a)bg

for every power series f with positive coefficients which converges at 1+ .

Proor. This is a trivial consequence from the fact that the coefficients of by are
increasing. U

PROPOSITION 2.4. Let a, B € R™ be such that f1 < aq,..., Bn < ayn. Then
bgba < (1-8+a) ba.

ProOF. For 4, 5 € N™ we first notice that
i1 in /) i1+ i

Indeed, this inequality follows from the combinatorial fact that each tuple of n choices
of i; persons among i;+ j; (I=1,...,n), determines a unique choice of i; + --- + i, persons
among ¢1 + j1 + -+ + %, + jn. Hence

(bebalk = Y Ao u+ +zn) (31+ -+ jn)!

in

a7 |
itk Ty ]1 “Jn
i k‘1+ +kp)!
< ) Bla —kn!
i+j=k
(et Ey)!
<(1—ﬂfa)HﬂL%JTETL

= ((1—,6'+a)’1ﬂoa)k.
for all k € N™. O

COROLLARY 2.5. Let o, B€R™ and p,q € N~ be such that 1 < oy, ..., Bn < ay. Then
bbbl < (1-8+a) ' bh,

PRrOOF. Apply the above proposition ¢ times for p = 1. Next multiply the majoration
by b2~! on both sides. O

2.4. Majorant spaces

For fixed p > 0 and a € (R”)", let C[[¢]]a,p be the space of all analytic power series f,
such that there exists a majoration f <cb? for some ¢>0. We call An(U)q,p a majorant
space for the majorant norm |- ||a,p given by

I/llop = min{ceR> fQebh)

= sup { (b%)k: ke N"}.

PROPOSITION 2.6.
a) Forall f, g€ C[[{]]a,p we have

1f +9llep < [l + 19 lle,p- (2.11)
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b) For all f € C[[¢]]a,p and g € C[[{]]8,q with /1 < au, ..., Bn < oy, we have
1fgllar < A =B+a) | flap gl (2.12)
c¢) For all f € C[[(]]a,p and g € C[[{]]a,q we have
1£9lle.pta < 1f llap 19 ]ler.q (2.13)
d) For all f € C[[¢]]la,p and i€ {l,...,n} we have
10i flle.p+1 < P || fllexp- (2.14)
e) For all f € C[[{]]a,p and i€ {l,...,n}, such that p>1, we have
1
Slap-1 S 77— a,p: .
1 it € o s (2.15)
PROOF. Part (b) follows from proposition 2.5. The other properties are easy. O

2.5. Majorants of Gevrey type

Divergent power series solutions to ordinary or partial differential equations usually admit
majorants of “Gevrey type”. In order to compute such majorants, it may be interesting
to consider more general majorant spaces as the ones from the previous section. Given

p€Q? ac(R>)" and T € (Q*)", we define

P ((T—i-l;g-!k—i-p)! (o x OO
keNn

Then we notice that

87‘ d‘r,a,p = o4 dT7a7p+7—i+1 ;

-1
fi drap < @ drap-n-1-
Furthermore, for all 7, a, p and g, there exist constants ¢, ¢,+ and 7, 4 » With

d‘rvavp d‘rvavq g CP?QvT dT7a7rp,‘I7T.

Since divergent power series will not be studied in the sequel of this paper, we will not

perform the actual computation of sharp values for ¢, 4.~ and 7, 4 + here.

3. MAJORANT EQUATIONS AND APPLICATIONS

3.1. Noetherian operators

Given coordinates ¢ =((i, ..., (») and a subset R of {1,...,r} x N™, we denote

Cll¢llm={f e CI[CII": fie#0= (i, k) € R}.

Let £€=(&1,...,&p) and S C{1,...,s} x NP. An operator ®: C[[(]]r — C[[£]]& is said to be
Noetherian if for each (j,1) € &, there exists a finite subset .7-';1: ; of R and a polynomial

PP e C[F), such that
®(f)ja=Ph(fi (i, k) eFD)
for every f € C[[(]|k.
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REMARK 3.1. It can be checked that this notion of Noetherian operator coincides with
the one introduced in a more general setting in [vdHO1b]. In fact, some of the results of
this paper can be generalized to this setting.

Given two Noetherian operators ®, ®: C[[¢]]x — CJ[€]]&, we say that ® is majored

by ¥, and we write ® I P, if
F<f = ®(f)<e(f)
for all f, f € C[[¢]] Notice that this implies in particular that 0 < ®. It also implies that
® is real, i.e. ;I?l eR[]—"ffl] for all (j,1) € &. If & <P, then we say that ® is a majorating
Noetherian operator. We say that ® is strongly majored by ®, and we write ® <* ®, if
P Ph

for all (j, 1) € &. For this majoration, we interpret Pﬁ'l and Pf’l as a power series in

@[[J—“;Ifluffl]]. Clearly, ® <* ® implies & <P, as well as 0 <I* @ and & <* P.

REMARK 3.2. In general, we do not have 0 < ® = 0<*®. A counterexample is the operator
®: C[[2]] — C[[2]] with ®(f) = (fo— f1)?. For strongly linear operators @ (see [vdHO01b]),
we do have 0 <P < 0 * .

The following proposition, which can be regarded as the operator analogue of proposi-
tion 2.2, is a again direct consequence of the classical formulas for the coefficients of f + g,

fxg, fxg,0if, [, fand fog:
PROPOSITION 3.3.

a) The addition +: C[[¢]]?" = (C[[¢]]")? — C[[¢]]" is a Noetherian operator and 0 <* +.
The componentwise multiplication x:C[[¢]]?" — C[[¢]]" is Noetherian and 0 <* x.
The partial derivation 0;: C[[C]]" — C][C]]" is Noetherian for each i and 0 <*0;.
The integration [ :: C[[¢]]"— CJ[[¢]]" is Noetherian for each i and 0 <* [ .

The composition o: C[[€]]* x (C[[¢]]})" — C[[¢]]* is Noetherian and 0 <* o. Here
£=(&1,...,&) and C[[C]]} denotes the set of f € C[[¢]] with fo=0.

The composition of two Noetherian operators is again Noetherian and we have:

PROPOSITION 3.4. Let ®,®: C[[¢]]n— C[[£]]s and ¥, ¥: C[[£]]s— C|[x]]k be Noetherian
operators. Then

PLONT LU =TodPIPod. (3.1)

3.2. Majorant equations

A fized point operator is a Noetherian operator ®: C[[{]]5z — C[[{]]%, such that there exists
a well-ordering <™° on R with

V(j,1) eR:V(i, k) € Frp: (i, k) <V (5,1). (3.2)

In general, the i-th component of the total order <%° will be compatible with the addition
on N” for each i €{1,...,7}.

PRrOPOSITION 3.5. Let ®: C[[¢]]z— C[[C]]r be a fized point operator. Then the equation
f=2(f) (3.3)
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admits a unique solution f=Fix ® in C[[{]]r.

PROOF. We claim that the sequence f°=0, f! = ®(f°), f2=®(f!),... admits a limit,
which is a solution to the equation. Here a limit of a sequence fO, f1,... is a series f such
that for all (7, k), we have f; = fff i for all sufficiently large p.

Assume for contradiction that the sequence f°, f!, ... does not admit a limit and
let (j,1) be minimal for <%, such that fgb f]{l, ... i1s not ultimately constant. By (3.2),
the sequence fi07 k> fl1 k; --- is ultimately constant for every (i, k) € F ;I? ;- Consequently, the
sequence f]({l = Pﬁ’l(fffk: (i,k) € ffl), f]{l = Pﬁ'l(fil?k: (i,k) e ffl), ... is ultimately constant.
This contradiction implies our claim.

Similarly, assume that there exists a second solution g # f and let (j,1) be minimal
for <"° such that fj;# gj1. Then f; = g;x for all (i, k) € .7-";17)[, by (3.2). Therefore,
fia= Pfl(fi7k: (i,k)e fﬁl) = P;I?l(gl-,k: (i, k)€ .7:;{)[) = g; .1, and this contraction proves that
f is the unique solution to (3.3). O

Let &, ®: C[[¢]]%x — C[[¢]]% be two Noetherian operators and assume that & < ®. Then
the equation

f=2(f) (3.4)
is called a majorant equation of (3.3).

PROPOSITION 3.6. Let ®,®: C[[¢]]ir— C[[¢]] be two fized point operators, such that (3.4)
is a magjorant equation of (3.3). Then Fix ® IFix ®.

PROOF. We have seen in the previous proof that Fix ® = lim,_ o, ®°P(0) and Fix ® =
lim,_.oc ®°7(0). Using induction on p, we observe that ® < @ implies $°7(0) < ®°7(0).
Consequently, Fix & JFix ®. O

For complicated equations, it can be hard to find an explicit solution to the majorant
equation (like (3.8)). In that case, one may use

PROPOSITION 3.7. Let ®,®: C[[¢]]— C[[¢]] be two fived point operators, such that (3.4)
is a majorant equation of (3.3). Assume that f € C[[(]]r is such that

®(f)< f.
Then Fix ® < .

PROOF. Since ® is real, we have § = f — ®(f) € RZ[[¢]]&. The fixed point operator
®: g— P(g) + 6 therefore satisfies & <P. We conclude that Fix ® < f =Fix ®. O

3.3. A classical application of the majorant technique

In this section, we will prove the classical Cauchy-Kovalevskaya theorem in the case of
ordinary differential equations. We will consider partial differential equations in section 4.
Let g € C{{&}}" be a system of convergent power series with & = (&1, ..., &) and consider
the equation

f'=gof (3.5)

in f € C[[C]]", with the initial condition fp=0. This equation may be rewritten as a fixed
point equation

F=|gof, (3.6)



8 MAJORANTS FOR FORMAL POWER SERIES

which has a unique solution f € (C[[¢]]T)". Since the g; are convergent, there exist M € R
and a € (R?)" with
g<Mbqal. (3.7)

By propositions (3.3) and (3.4), the equation

f:/ (Mbal)of (3.8)
is a majorant equation for (3.6). But this equation is symmetric in the f;, so we have
(1—le| fi)d fi=Md¢

for each i € {1,...,7}. The unique solution f to (3.8) is therefore given by

From proposition 3.6 we now deduce

THEOREM 3.8. Let f be the unique solution to (3.5) with fo=0 and assume (3.7). Then

ERAREICIET

[

J<

REMARK 3.9. Notice that many ordinary differential equations can be reduced to (3.5).
For instance, equations of the form f'=go(f,z) can be solved by adding z as an unknown
to f, together with the equation 2’ = 1. Similarly, higher order equations can be dealt
with through the introduction of new unknowns for the derivatives of unknowns. Modulo
substitutions of the form f+— v+ f with v € €, one may also consider more general initial
conditions.

3.4. First order systems of linear differential equations

It is good not to treat linear differential equations as a special case of arbitrary linear
differential equations, because the radius of convergence of the computed solution may be
far from optimal. So let us study the system of linear differential equations

f'=Mf, (3.9)

in f e C[[¢]]", with initial conditions fo=v € C", where M is an r by r matrix with entries
in C[[¢]]. Assume that

M<K b,dJ, (3.10)
where J denotes the matrix whose coefficients are all 1, and let C' = max {|v1], ..., |vr|}.
Then the equation

f:C’1+/KanJf, (3.11)
is a majorant equation of

fzu—l—/Mf. (3.12)

Now the equation (3.11) is again symmetric in the f;, and the fixed point of the equation

ﬁ:C+/Konaﬁ
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is given by
Kr

_ 1 e
fi:C(l—ozC) '

THEOREM 3.10. Let f be the unique solution to (3.9) with fo=v and assume (3.10). Then

Proposition 3.6 now implies

Kr

f <max{|v1],..., |vr|} < 1 —104C>a'

3.5. Higher order linear differential equations

The exponent % in the majorant from theorem 3.10 is not always optimal. Assume for
instance that we have a linear differential equation

FO=Lig O+t Lo f, (3.13)
with initial conditions f(0) =y, ..., f(r_l)(O) =1, _1, and where the L; satisfy
Li <M b, (3.14)

It is not easy to find a closed form solution for (3.13). For this reason, we will apply the
technique from proposition 3.7.
The series f is the unique solution to the fixed point equation

f=<l/o+/ >---<Vr—1+/ ><L7"—1 f(rfl)+---+Lof)- (3.15)

For all %, ..., 7,1 € RZ and R € R>[[z]], such that |vg| < 7, ..., [Vp_1| < 7r_1, the equation

f=<uo+/ )---(ur_ﬁ/ )(Mﬂoaf(”)+---+Mﬂoaf)+R (3.16)

is a majorant equation of (3.15). Let

h= ]b(MJrl)/a.

We take I)i:Ch(i)(O) for all i € {0,...,r — 1}, where

— |vol |vr 1]
C—max{luol,...,]w1\}>max{h(0)(o),...,h(T_l)(O)}.
We have
Mbah" ™D 4.t M by h
<M (M+1)---(M+(r72)a+1)uo§yM+m“)/“+---+bgM+“+1)/“]

9 (M+1) (M+(r—1)a+1)bMreth/e
- A

Therefore, we may take

R:(170+/ )---(ﬁr_1+/ )(Mba0h<f—1>+---+Muoa0h)CheR>[[z]].

This choice ensures that (3.16) has the particularly simple solution C h. Proposition 3.6
therefore implies:
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THEOREM 3.11. Let f be the unique solution to (3.13) with f(0)=1y,..., f(rfl)(()) =V
and assume that we have (3.14) for i €{0,...,r —1}. Then
MA+1

£ <max {|vg|, ..., [r—1|} < 1 1ag> “

4. PARTIAL DIFFERENTIAL EQUATIONS

4.1. Indirect majorant equations and reduction of dimension

In order to obtain majorants for solutions of partial differential equations, it is sometimes
possible to generalize Cauchy-Kovalevskaya’s technique from section 3.3. However, the
more the type of the original equation becomes complex, the harder the explicit resolution
of the corresponding majorant equation may become. For this reason, we will introduce a
technique, which allows the reduction of the majorant equation to an ordinary differential
equation.

Given f € C[[¢]]" and a € (R”)", the idea is to systematically search for majorants of
the form f < f o zq, where f € C[[€]]. The choice of a depends on the region near the
origin where we want a bound for f. The ring monomorphism f — f o zq satisfies the
following properties:

PROPOSITION 4.1. Let a € (R™)" and f, f € C[[€]]". Then

f<df & fozadgoza (4.1)
0i(foza) = (if)oza (i=1,....n); (4.2)
[ (foza) < (0i' [, f)oza (i=1,..,n). (4.3)

The next idea is to extend the majorant technique as follows: given a majorating
mapping M: C[[€]]& — C[[¢]]%, and two fixed point operators ®: C[[£]]& — C[[¢]]& and
®: C[[¢]]r— C][¢]]5, we say that the equation

f=2(f) (4.4)
is an indirect majorant equation of

f=2(f) (4.5)
if for all f € C[[¢]]x and f € C[[€]]& we have

F<IM(g) = @(f) <M(®(g))

We will attempt to apply the following generalization of proposition 3.6 for M: f' — f' 0Ze-

PROPOSITION 4.2. Let ® and ® be two fized point operators, such that (4.4) is an indirect
magorant equation of (4.5). Then Fix ® < M(Fix ®).

PROOF. Similar to the proof of proposition 3.6. O

4.2. The Cauchy-Kovalevskaya theorem: equations in normal form

Consider the system of partial differential equations

O f=00((8%F)k<p: €) (4.6)
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with initial conditions

f(Cla XY CN—lﬂ 0) =0;

f(pil)(Ch SRY) Cnfla 0) =0,

where ¢ € C{{£€}}" is a tuple of convergent power series in m=r (";p ) + n variables. We
may rewrite (4.6) as a fixed point equation

= / / 20 (8% £ <p ©): (4.7)

Let M € R?, a € (R>)" and B € (R>)™ be such that ¢ <M bgl. Then
f=rar? [ [ anyo (@ )y (1+0) ) (19

with initial conditions f(0)=---= fP~Y =0 is an indirect majorant equation of (4.11).
This equation can be reinterpreted as an ordinary differential equation of the form (3.5)
in 7 p+ 1 unknowns f, ..., fP~1 ¢ By theorem 3.8, the unique solution f to (4.8) is
convergent. By theorem 4.2, the unique solution f to (4.6) is therefore convergent, since
f < f 0 za. We have proved the following theorem:

THEOREM 4.3. The system (4.6) admits a unique solution f in C[[C]]" and f is convergent.

REMARK 4.4. Like in remark 3.9, we notice that many systems of partial differential
equations can be seen as variants of (4.6). For instance, modulo substitutions f—vg+---+
Vp_1 ij_l + f with v, ..., vp—1€ C{(1, ..., (n—1}}", we may consider more general types
of convergent initial conditions. Also, if the f; are allowed to satisfy differential equations

' fi=io (8% f) k| <pi» €)

of different orders, then it suffices to differentiate these equations max {pj, ..., pr } — p; times
and compute the corresponding initial conditions, in order to reduce this more general case
to the case when all equations have the same order.

4.3. Further generalizations of the majorant technique

We did not compute an explicit majorant for f, because theorem 4.3 is not the result
we are really after. In fact, the right-hand side of (4.6) may also depend on all partial
derivatives 8% f with |k| = p, except for 9 f. However, the corresponding indirect
majorant equation would no longer be a fixed point equation in the sense of section 3.2.

Consider an operator ®: R — S where R C C[[¢]]" and S C C[[¢]]°. We say that ® is
Noetherian in the generalized sense, if for each (j,1) € {1,...,s} x NP, there exists a finite
subset F. ]? ; of R and a convergent power series g}%l e C{F ;»I? 11}, such that

®(f)ju=g510 (fis (i,k)€FE)

for every f €R. All previously defined concepts naturally generalize to this setting.
For instance, given two Noetherian operators ®, ®: R — S in the generalized sense, we
say that ® is majored by ®, and we write ® P, if

F<f = @(f)<2(f)
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for all f € R. This is in particular so, if g;»Ifl d g;»ifl for all (7,1)€{1,...,s} x NP, in which
case we say that ® is strongly majored by ®. The concepts of majorating Noetherian
operators and indirect majorant equations can be generalized in a similar way.

PROPOSITION 4.5. Let ® be a fived point operator in the usual sense and ® a Noetherian
operator in the generalized sense, such that (4.9) is an indirect majorant equation of (4.10).

If (4.9) admits a solution f with 0 < f, then Fix ® <M(f).

PROOF. By induction on p, we observe that ®°P(0) <M(f) for all p € N. Consequently,

Fix ® =lim,_.., ®°7(0) < M( f). O

REMARK 4.6. Notice that we no longer require (4.9) to be a fixed point equation in
proposition 4.5. Nevertheless, it is possible to generalize proposition 3.5 to fixed point
operators in a more general sense. For instance, one may replace (3.2) by

V(5. 0):Y(i, k) € Firp (i, k) <™ (4,1) (4.9)
and the requirement that g;»Itl = afl fia+ g]‘{’l for all (j,1), where ]afll <1 and g;{’l does
not depend on f; ;. This kind of fixed point operators will be encountered naturally in the

next section (modulo a change of variables). More generally, one may consider operators ®,
whose “traces for truncated series to initial segments” are contracting.

4.4. The Cauchy-Kovalevskaya theorem: the general case
Consider the system of partial differential equations

anf:(ioo(alfa"'aan—lfafaC) (410)

with initial condition
f(Ch ceey Cnfla 0) = 07

where ¢ € C{{x}}" is a tuple of convergent power series in m =n (r + 1) variables. We
may rewrite this equation as a fixed point equation

f=/ 001 f e O . £, 0). (4.11)

Let € (R”)™ and B € (R”)™ be such that ¢ <M bg1l and define

A= a1 (fit+Br)+ - Fan-1(Bu-2yrt1+ -+ Bn-1)r);
B = 6(n71)r+1+"'+ﬁnr;
C = ﬂnr—l—l/alTL"'TLﬂnr-‘rn/an-

Choosing i, ..., ay,—1 sufficiently small, we may assume that

4AM <o, (4.12)

Then we claim that
f= Man‘l/ (bgl)o(ar f',yan—1 F', f,(1+ )€ (4.13)
is an indirect majorant equation of (4.11) for M = - 0 z4 and the initial conditions £(0)=0,

F'(0)=v 1, where
1— /1_4MA
Qn

2A

V=
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Indeed, the majorant equation (4.13) is symmetric in the components of f, so each f;
satisfies the equation

7= N afl 1
fo=a() = Moy [t (1.14)

with the initial conditions f;(0)=0, f{(0)=v. The choice of ¥ now guarantees that ® maps
{feC[€]): f(0)=0, f'(0)=v} into itself.

The equation (4.14), which was obtained mechanically from (4.11) using reduction of
dimension, does not admit a simple closed form solution. Therefore, it is convenient to
major it a second time by the equation

F— Ma-t 1
fi=dan /1Aﬁ-’35ﬁ’05

with the same initial conditions. This latter equation can be rewritten as an equation

(4.15)

(—Af —Bef —0¢) fl=May!

of second degree in ﬁ/. This leads to the simple closed form majorant for ﬁ

e-cg-g 1-2H L _o0eq 2

fi<efi= e

3 (A1 BE) (4.16)

We have proved:

THEOREM 4.7. Let @ € C[[¢]]""+V be such that ¢ < M bg1, for M € RZ, a € (R>)"
and B € (R”)™ which satisfy (4.12). Then the system (4.10) admits a unique solution
feC[¢]]" with f((iy--., Cn—1,0)=0. Moreover, this solution satisfies

ZQ—CZ?X—ZQ\/1—414;]\/[—%—20%&—1—0223
1.

REMARK 4.8. The original Cauchy-Kovalevskaya theorem, which deals with equations of
arbitrary order, directly follows from the first order case. Indeed, consider a system

65-]01 = @10((8kf)|k‘<p7k:#pen,C)
: (4.17)

O o = 010 ((OF F)ii<piten C)

Introduce the unknowns g; , = 8% f; for all i and k with |k| < p. We have equations
On 9i k= Yi.k+e, for all k with |k|<p—1. For each k# (p—1) e, with |k|=p— 1, we also
have 0y, gi.k = Om i k+e,—e,, for some m < n with k,, # 0. Finally, the equations (4.17)
express each Jy g; (p—1)e, in terms of the g; x with |k| < p and Oy, g; k With m < n and
|k| =p—1. In a similar way as in remark 4.4, one may also deal with different orders p;
for each 1.

5. COMPLEMENTS TO THE MAJORANT TECHNIQUE

5.1. Regular singular systems of ordinary differential equations

Consider the first order system

6f =¢o(f,0) (5.1)
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where 0 = g—? and ¢ is a tuple of convergent power series in r + 1 variables with ¢ = 0.

We search solutions f € CJ[[(]]" to this system with fo=0. Let ®; ; be the coefficient of
fj in ;. Then extraction of the coefficient of ¢* in (5.1) leads to the relation

(k—®) fr=Pi(fr-1,..., fo), (5.2)

where P is a polynomial. The matrix £ — ® is invertible for all but a finite number of
values A1, ..., A, of k, so that (5.2) is a recurrence relation for the coefficients of f whenever
k¢ {1, ..., \v}. For k€ {\1, ..., \r} NN, we may see f; as an initial condition and the
relation Py(fx—1,..., fo) as an additional requirement on fy,..., fr—1.

Using the notations from (5.2), the original equation (5.1) can be rewritten as a fixed
point equation

f=0-2)" (yo(f,0) (5.3)

where 1) is a tuple of convergent power series in r 4 1 variables with 19 =0 and such that
the coefficient of f; in ); vanishes for all 7 and j. Given [ € N, let us now consider the
change of variables

f=fo+t+f1¢ 1+ F,

where f1, fa,..., fi—1 are computed by the recurrence relation (5.2). Then (5.3) transforms
into a new equation of the form

F=0-2)" (Po(f.0), (5.4)
such that the coefficients of 1, ..., ¢!~1 and f' in 1,5 vanish.
Now choose [ sufficiently large, such that [ > A = max {|\i], ..., |[A\n|}. Then we may
compute a k>0 with
E—®) Y, < 5.5
max|((k = ®) ] < (5.5

for all k>1. Choose a majorant for ¢ of the form

T ! _1-(80'_ 2
¢(f’€)<]M<(1—a-f)(1—ﬁg) T f)l,

where a« =« 1. Then the equation
5 1 180" ,-)
f_MKr<(1a-f)(1ﬂC) =3¢ a-f |1 (5.6)
is a majorant equation of (5.3) for f.fe CI[¢]]%1, where we denote
Clicz1=A{f € Cl[¢]]: fo=+-= fi-1=0}.

The equation (5.6) admits a rather long closed form solution. In order to simplify the
majorant, we notice that (5.6) is majored by the same equation with [ =1. This leads to
the majorant

17\/174MO(I{T2(1+MOHQ’I“2) IS

r3 1-8¢
N 1.
f 2ra(l+ Makr?)

We have proved:

THEOREM 5.1. Let ® be a matrix with coefficients in C, such that k — ® is invertible for
all k=1 and let k>0 be such that we have (5.5). Consider the equation

(6—®@) f=po(f,0),
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where @ satisfies the majoration

| 1 (5)!
"’O(f’O@M<<1a-f><1ﬁ<> T “'f)l’

fora=al and o, 3, M >0. Then this equation admits a unique solution f € C[[C]]S; and
we have

17\/174Ma/<r2(1+Ma/m“2) IS

1-58¢
d . .
F< 2ra(l1+ Markr?) 1 (5.7)

5.2. Regular singular linear differential equations

In the case of linear differential equations, the majorant (5.7) can be further improved.
Consider a regular singular system of linear differential equations

(6-®)f=Lf+g, (5.8)

where ® is an r X r matrix with coefficients in C, L an r X r matrix with coeflicients
in ¢ C{{(}}, and g € C{{{}}". We observe that the form of the equation is invariant under
substitutions of the form f = ¢ + f’ Consequently, after the computation of the first [
coefficients of the solution (if such a solution exists), and modulo the change of variables
f=Ffot+ fici "1+ f, we may assume without loss of generality that g € Cl[¢l)5-

Now take [ > A with the notations from the previous section. Let M, N >0 and a>0
be such that LI M b, J and g <N b, 1. Here J denotes the matrix whose entries are
all 1. Then, for x> 0 satisfying (5.5), the equation

f=0-2)"'(Lf+g),
admits the majorant equation
f=k(M_boJf+Nbu1).
This latter equation has the unique solution

& N b, 1 kN

f= I—reM(by  1—(a+rrM)C

1= I’u‘Nlba_FrﬁM 1.
We have proved:

THEOREM 5.2. Let ® be a matrix with coefficients in C, such that k — ® is invertible for
all k=1 and let k>0 be such that we have (5.5). Consider the equation

(6—®)f=Lf+g,

where L is a matriz with coefficients in C{{(}}>1 and g € C{(}}>1. This equation admits
a unique solution f € C[[(]]%; and, assuming that L LM (bo J and g <N b, 1, we have

f Ik N batrem 1.

REMARK 5.3. Since substitutions of the form f= fo+-+ fi_1 ¢!~ 1+ f do not influence
the radius of convergence of g, it is important to notice that the constant x may be chosen
arbitrarily small, when taking [ large enough. Consequently, we may compute majorants
of the form f <K bgl, with 8>« as close to a as we wish.
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5.3. Controlling the radius of convergence

When applying the majorant technique in a straightforward way, the convergence radius

of the solution of the majorant equation is usually strictly smaller than the convergence

radius of the actual solution. Theorem 1.1 implies that this cannot be avoided in general

in the case of non-linear differential equations. Nevertheless, if the radius of convergence

of the solution is empirically known, then arbitrarily good majorants can be obtained.
Consider an algebraic differential equation

f'=P(f), (5.9)

with P € C|f1, ..., fr] and initial condition fo = 0. Given k, let ¢ = fop = fo+ - +
Fio1¢Ftand e= for,= f — f<r. We may rewrite (5.9) as an equation in fsy.

g'= P+S0(€)>
where P, , € C[(][e1, ...,&,] and its coefficients are given by

(Pifo = P(o)—¢'

1 0P :
P = 5 OP0) G20)
For each o € R”, let M, € R be minimal such that
M,
;<
(P-HP)'L\ 1—04C1

for all 4. The function o log M, is piecewise linear. For each «, the equation

My ¢

= ri-a00-12a"

(5.10)

is a majorant equation for
€= / P, 4(e)

on C[[(]]5k. The solution to (5.10) is given by

IrMaC
1- \ 1= E(I—al) 1

€= 2r

This solution has radius of convergence

—1
4r M,
pa,k:<a+ Tk a) .

Let o be such that pi = p, i is maximal. We claim that pj tends to the radius of conver-
gence p of f when k— oo.

THEOREM 5.4. With the above notations, the improved lower bounds py for the radius of
convergence p of f tend to p when k— oo.

PROOF. Given p'< p and 3= (p~'+ (p')~1)/2, there exists a constant M with
fF<Mbgl.

In particular,
ed M bﬁ 1.
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Now the radius of convergence of (P4 ¢); is also > p for all 7. Consequently, there exists
a constant N with

(P f)i<NDbgl
for all 2. Since we also have
(Piolo = Pyg(—e)+e
1 0 P,y .
(P+<p)z' = 5@(*5) (i#0)
it follows that

<P+¢>§[ > (3) N by (b9l by |1,
1<l7|<d

where d denotes the degree of P. In other words, for a suitable constant K, which does
not depend on k, we have

d+1
(Piy)i KUOBJF :
For B <a < (p')71, it follows that
K
My <——7———.
(1= /)t
In particular, for all sufficiently large k, we have p;}k =a+ 4r,3/[ @ < (p")~L. Consequently,
for all sufficiently large k, we have py > p’. Since is true for all p’ < p, we conclude that py
tends to p. O

6. CONVOLUTION PRODUCTS

6.1. Sharp power series

A sharp power series is a sum

f= Y febe

ec{0,1}n

where the f.c € C[[(]] are such that f.c does not depend on (; whenever ¢;=1 and where J.¢
is the Dirac distribution on those ¢; with ¢;=1. We denote by C[[¢]]* the set of sharp power
series. The majorant relation < naturally extends to sharp power series f, g € C[[¢]]*, by
setting f < g if and only if f.c<g.c for all e €{0,1}". Given ac € (R”)", we define

UO& = Z béxa5;63
ec{0,1}n

Zi = Z Zex o Ose-
ec{0,1}n

We will also write bf = Ib% and z! = Z%.

Let e € {0,1}" and denote € =1 — €. Given f € C][(]], we will denote by fe the result of
the substitution of 0 for each (; with ¢,=0 in f. In particular, if f is a sharp power series,
then f.e € C and f.ee= f.e. Given { € C" and €y,..., €€ {0,1}" such that €; +---+¢,=1,
we will often abbreviate (;=( x €; and ;= x € for i =1,...,1 (if the €; are clear from
the context). In particular, { = {1+ --- 4+ ;. One should be careful not confuse {; with (.
If I=n and €e;=ey,...,€e,=e€,, then ;= (;e; for all i.
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6.2. Convolution products

For convergent power series f and g, the n-dimensional convolution product is defined by

¢
(f*g><<>=/0 (¢ - €) g)de, (6.1)

/0@‘: /0@ /OC".

In particular, for all k,1 € N™ we have

CFrgl=(k+1+1)7! (k;l)*l Sazans

where

This relation allows us to extend the definition of * to C][[{]] in a coeflicient-wise way:

(F*9m= Y fkglm_l(mk_l)_l. (6.2)

k+l=m—1

Given a function which is analytic at a point x, we denote by f, the translate of f
at x, i.e. frx(¢)= f(x+ ¢). A convolution integral at a translated point x + ¢ can be
decomposed in 2" parts:

¢
(fro)x+Q) = 3 /X+ Fx+¢—€) g(€)dé
e1te=1 "Xl
- Z (f+¢* gx) (X2 + C). (6.3)
€1+ex=1

REMARK 6.1. The formula (6.3) can be reinterpreted using shuffle products by interpreting
the n-dimensional vector ¢ as a shuffle of {; and {2 (and similarly for x). Using “shuffle
notation”, the equation (6.3) becomes

(Fx)x+O= > (fre*rgix)xe+¢)
(5)m(e)=3)

More generally, given € € {0, 1} and taking €; = €, €2 = €, we define the degenerated
convolution product *¢ by

<
(Frea)€)= [ Fra6i— ) sl e (64
where the integral is taken over the |€|-dimensional block [0, {1]. In particular, - = %o and
* = 1. We have the following analogue for (6.3):
(Fre@)(x+C) = D (fra*edix) e+ +x3+ ). (6.5)
e1textes=1
€1t+ex=€

The definitions of the convolution product and degenerate convolution products extend
to the case when f € C[[¢]]* and g € C[[]]:

[xg= E Jie *e ge. (6.6)
ec{0,1}"
For e € {0,1}™

[*eg= Z Z fierter ¥e—e & | Oey- (6.7)

e2<€ | e1<e
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6.3. Majorants for convolution products

Propositions 2.2 and 3.3 still hold if one replaces the componentwise product by any of the
componentwise convolution products *.. More interesting explicit majorants follow below.

PROPOSITION 6.2. Let f, g€ R>[[€]] be two univariate power series. Then
(foz)x(goz) < (&' (f*yg))oz. (6.8)

PROOF. By strong bilinearity, it suffices to prove (6.8) in the case when f=¢&P and g= &9,
Then (6.2) implies that

_ plq!
Ereaen= DL g
i+j=k
li|=pAlil=q
We also have

(Zp+q+n) N (p+q+n) )

T T k1)
Since the cardinality of {(¢,5):t1+ 7=k Al|i|=pA|j| = q} is bounded by %, it
follows that
(zP*zY)s1  plg!
(# T M (P + 1l
. ! q! .
Since &P x 9= m gptatl it follows that
2Pzl L(E" 1 (EP+£9)) o (z),
as desired. 0
PROPOSITION 6.3. For each p>0 there exists a constant K, such that
ba*ba %log(lfza)_l, (6.9)
Ky,
boxbg < —Tby L (p>1) (6.10)

for all a € (R™)™.
PRrROOF. We first observe that the general case reduces to the case when a=1 using
1
[f © (Oél Cla ooy Oy Cn)] * [g o (Oél Cla ooy Oy Cn)] = ? (f * g) © (Oél Cla ey Oy Cn)

Furthermore, setting b”) =log (1 — &)1, blP! =1/(1 — £)? for p> 1 and letting k — oo, we

have
) </?)‘1<i+p—1) (j+p—1)

k+1 &= \i ! /
e [k/21
2 (k+p-1 Hitp—1
N P TONG
_ Ok~ (p+1) (1) (pt[F/2])
— Ok 2)<1+%+Z(Z_1)+"'+Z(§—1)---(Z—[k/21>>

1
(p—2)!

(en—1 plP! & b[”})k — 0(((,[}2—1]),6)‘

Since (k—n+1)P~2~kP=2 k=1~ bl and kP =2~ bl? Y for all p> 1, it follows that
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We conclude by (6.8). O
PROPOSITION 6.4. For all p,q>0 and a € (R”)™ we have
1 ~1
bE bl < aTbZW (6.11)

PrOOF. The final majoration (6.11) again only needs to be proved for o =1. With the
notations from the previous proposition, we have

e e I ) I G [ [C s i

_ 1 <p+q—2)/<k+p+q—2>
E+1 4 p—1 i+p—1
i+j=k

N
—_

Hence
gn—1plrly plad g gn—1plrta-1] gplpta—1]

and the majoration again follows from (6.8). O

PROPOSITION 6.5. Let €1, €2, €3€ {0,1}" be such that €1+ €2+ €3=1. Then for all p>0
and o € (R”)"™ we have

1 _
P p ptrqg—1
Do ke ba, € — by .

ProOOF. We may write

uof;g = l-ap-C—az- )P Z(k+]k3—1>bZTp(a2_C)k;

k=0
e = (l+g—1
b, = (—ar-C—az-Q)77=3 ("9 )i (as- )"
1=0
Hence
N = kA p—1\ I+ qg—1Y\ . & .
Doy *e1 oy, = ZZ( ];z )( ql )(bo:p*elb;lq) (a2 ) (a3 )’
k=0 1=0
1 = — k+p—1\/l4+qg—1\, k+i 1
< a€122< z )( % >U3aJ1r Trta (QQ'C)k(a?;'C)l
k=0 1=0
1~ o (kD (Rl p+q =2\ btiprgt k !
S a€122< k )( k+1 )”Oal T (- Q) (a3 €)
k=0 1=0
— 1 bPTa—1
af o )
using (6.11) and the fact that (p;EIQ) < (k+éiit§_2>. O

7. UNIFORM MAJORANTS

7.1. Uniform majorants

Consider a compact subset U of C" such that [0, x1] X --- X [0, xn] CU for every x €U. Let
p = pu be the multi-radius of U, so that each p; is minimal with the property that |£;| < p;
for all £ €U. Given g € R?[[{]], we say that f is uniformly majored by g on U, and we
write f <yg,if fix g forall xcld.
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REMARK 7.1. Uniform majorants can be seen as a special form of parametric majorants.
If U is a parameter space and f(¢,A) and g(¢,A) are analytic functions near 0 x U, then
we write f <*g, if £(¢,A) < g(¢,A) for all A€U. In the above case, we thus have

f(Q) du 9(Q) = flx+¢) X g(Q).

PROPOSITION 7.2. For all analytic functions f and g onU and f, g€ R>[[(]], we have

Fufrngug = F+9<uf+g; (7.1)
f<ufNg<ug = fa<ufg; (7.2)

f<uf = 0, f<woif (i=1,...n); (7.3)

PRrOOF. The bounds apply pointwise. O

PROPOSITION 7.3. For all analytic functions f and g on U, all f, g € RZ[[¢]] and all
€€ {0,1}" we have

f@uf/\gﬁug = fregy Z p€2f*e1 Jé& (75)
€1+ €ex=€
In particular,
f<Ubexag<ubl = freg<y(1+a+p)bh,. (7.6)

If f is a sharp analytic function on U, then we also have
FUbi Ag<ubl, = frg<u(l+1+a+p)lbL, (7.7)

PROOF. In the equation (6.5), let €1, €2, €3 € {0, 1}" be such that €; + €3 + €3 =1 and
€1+ €3 = €. Then we have

(erCQ *ecg+x1)(x2 +¢1+x3+ C3)
X2 1
= /0 ; freorxstre(Xa+C1— &1 —&2) grxitxa+ (€1 + &2) d&rd &

x2 ¢
= /O | frorxa—tarxs+¢(C1— €1) G+ &t xatca(§1) d&1d e
Now for fixed &, the following majorations in ¢ hold:

f+C2+X2*£2+X3+C3(C1) = f+X2*£2+X3(C1 + ¢+ ¢3) f(c
e (

< f(Q);
g+X1+§2+X3+C3(C1) = g+X1+£2+X3(C1 +¢3) < & <)
Consequently, (9.3) implies

<1 _
f+C2+X2*£2+X3+C3(C1 —&1) 9+X1+€2+X3+C3(£1) L (f *¢ ggg)(C)

Since this bound holds for all & € [0, x2|, we obtain
(frea*egix)(xa+ i+ X3+ C3) < (f *e Ge)(€) abs(x) .

Summing over all €; and €2 with €1 4+ €2 =€, this yields

(Freg)(x+C) < > (F*e 9a)(€) abs(x).

€1+ €ex=¢€
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Since abs(&) < p for every x €U, we thus obtain
f*Eg <]Z/l Z PEQ.]?*el ggg-
€1+ex=€

This proves (7.5). From proposition 6.5, it also follows that
P
aft

f<]Z/IU36><0¢/\gglxllbf;:> f*egﬂu Z

€1+ €x=¢€

bl =(1+a+ p)bk.
This proves (7.6). We finally have

f*g: Z f;é*egegu Z (1+a+p)6]blo)¢:(1+1+a+p)lblo)¢
ec{0,1}n ec{0,1}n

for all f<ybf, and g <y bP. O

PROPOSITION 7.4. Let x, & € C", let U = [0, 8] and let €1, €2 € {0, 1}" be such that
€1+ e€y=1. Assume that f and g are analytic functions on U + [0, x| resp. U + [x1, X,
such that

f+§2 <]Z/{ f7
J+x1+€2,€1 u g,
for all &€ [0, x2]. Then the function
h(€) = (f+¢* 9+x:) (€1 + x2)

1s majored by

houabs(x2)® S abs(8)9? [ rey, g (7.8)

€11+€12=¢€1
In particular, if f =ba and §=DbL, then

(o7

h < abs(x2)€(1+a+abs(d))1 bh. (7.9)
If f is a sharp analytic function, lebi and g =bl, then we also have
h < (1+abs(x2))¢ (14 1+ a+abs(d))2bh. (7.10)
PRrOOF. We have

X2 ¢1
(freax g+x)(C1+Xx2) = /0 A fre(Ci—&1+x2—82) grxa(§1+&2) dxidxe
X2

= /0 (f+X2—£2 *e g+X1+527€1)(C)dX2-

By our hypotheses and (7.5), the following uniform majoration holds for all &; € [0, x2]:

fixe—ta*e Srxatere W Z abs(8)12 f xe,, (Gey)ers-

€11+€12=¢€1

Since (Je,)es = Jeyxes = Jeyy» the majoration (7.8) follows by integration over &». The
bound (7.9) follows from proposition 6.5 in a similar way as (7.6).
As to (7.10), let us fix an €1, é2€ {0,1}" with é; + é2=1. We first notice that

(f;é1,+C2 5;é1 * g+X1)(C1 + X2) = (f;é1,+C27é2 *éy g+X17é2)(C1 + X2)
= (f;é1,é2,+C2g *éy gé2,+x1g)(<1 + X2)
= (f;él,éz-i—ng *éy 9é27+x12)(C1i + X2§)7
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where (5 = Ceyxe, and (55 = Ceyxe,- Consequently, we may apply (7.9) to the lower
dimensional case of series in (5= (e, This yields

(frer 46060 % Goxa) (€14 X2) < abs(x2)®? (1+ a +abs(8)) 12 bE.
Summing over all €1, é2 € {0, 1}" with €, + €2 =1, we obtain
h Q) abs(x2)%?(1+ o+ abs(d)) 2 bk,
€1+éx=1
= Z Z abS(XQ)GQX(é21+é22) 1+oa+ abs(a))elx(éerézz) b?

€21<€1 €22K €2

= Z Z abs(x2)€2 (1 + a+ abs(d))€21 bE,

€21<€1 €22K €

= (1+4abs(x2))® (L +1=+ a+abs(d))2bL.
This proves (7.10). O

7.2. Majorant spaces

For fixed p>0 and a € (R”)", let An(U)aq,p be the space of all analytic functions f on U,
such that there exists a majoration f <ycbk, for some ¢ >0. We call An(U)q,p, & majorant
space for the majorant norm |- ||la,p=| - llt,c,p given by

| flle,p = min{c€R>: [ <yebl}
= sup|fe/(bL)k: ke N"}.

This norm may be extended to An(L{)Lp: {feAn(U):Veec{0,1}" f.e€ An(U)a,p} by

1/ le.p = max {[| fell o, p € € {0, 1}" }.

The following properties directly follow from the previous propositions:

PROPOSITION 7.5.
a) Forall f,g€ An(U)q,p we have

1f+ 9llep <1 fllop+ l[9lep (7.11)
b) For all f e An(U)a,p and g € An(U)p,1 with B <, ..., Bn < o we have
Ifgllap < (1=B+a) | fllaplgls. (7.12)
c) Forall f € An(U)a,p and g € An(U)a,q with ¢ >0 we have
1 9lle.pta < I1f llap 19 ller,q (7.13)
d) For all fe An(U)a,p and i €{1,...,n} we have
10i fllept1 < pvi || fllevp (7.14)

e) For all fe An(U)a,p andic{1,...,n}, such that p>0 and p;=0, we have

1 Flepr < =gra |l (7.15)

f) For all feAn(U)?, | and g€ An(U),p, we have

ol

If#glap < A+1+a+p) [ fllarllgler (7.16)
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PROPOSITION 7.6. With the notations from proposition 7.4 and allowing f to be sharp,
assume that the suprema

F= suwp [fieluoer;
&26[07)(2]
= sup ‘|g+X1+£27€2HU,Ot7P
£2€10,x2]
exist. Then h€ An(U)a,p and
Pt op < (1 +abs(x2))® (1 +1+ a+abs(d)) FG. (7.17)

7.3. Local resolution of convolution p.d.e.s

Let U be a compact subset of the hyperplane ¢, =0 and let p € (R*)" be its multi-radius

(so that p,=0). We recall that An({/) denotes the set of analytic functions on ¢ (so that

each such function is analytic on a small n-dimensional neighbourhood of ¢/). We denote

by An(U)e; the subset of An(U) of functions which do not depend on (,. For each ¢ and

i€{l,...,n}, we also define ¢ *9; to be the operator which sends f to ¢ (9; f).
Consider the linear convolution p.d.e.

where
e  ©V1,..., Pn, gpgl € An(U)ea 1 for some 0 <e < 1.
o Y1 Yn €ANU), ; and Prq =+ =11 =0.
o gcAnU)q,1-

We will show that (7.18) admits a unique convergent solution in An(i)q,1 for any conver-
gent initial condition fy € An(U)er,a,1 on U, provided that a is sufficiently large and p
sufficiently small. More precisely:

THEOREM 7.7. Let ®;=||¢illcat, ¥i=||Villa (i=1,....,n) and T = ||, |lca.1. Denote

k1 = (1—=e) (a1 @1+ +an_1Pn1)
ke = (I+1l+a+p)t—1) (a1 ¥+ +a, V)
k= (1—¢) 7Y (k1+ K2)

and assume that kK < ay,. Then (29) admits a unique solution in An(U)a,1 for any initial
condition fo€ An(U)er a,1-

PrOOF. Consider the linear operator L on An(i)q,1 defined by
L=, (101 + Pn1On1+ 0101+ + U D),
so that (7.18) can be rewritten as
Onf=¢n'g-Lf.
Given f € An(U)q,1 with || f||a,1 =1, propositions 7.5(b) and 7.5(d) imply

(@161+"‘+S@n716n71)f d ((I)lbsa)(al]bgz)"i_”'"i_((bn*llbea)(anfl]bgé)
4 (1-e) (a1 @1+ +an_1P,_1) b2

= k1 b2
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and proposition 7.5(f) entails

(1% ++Ppx0n) f < (L+1+a+p)t—1) (a1 U1+ -+, ¥,) b
= kab?,
so that
Lf<kb?.

Given f € An(U)q,2 with || f|la,2=1, we also have
1
[NEEn
Consequently, for f € An(i)q,1 we obtain

K
1 LS let < —— 11 flla,1-
om

In other words, the operator [ ,, L is contracting on An(U)a,1, since k < ay,.
Given an initial condition fy€ An(U)er a,1, let us now consider the operator

K:h— fo+ [ o, g— [ Lh.

By what precedes, the operator K is again contracting, whence it admits a unique fixed
point f in An(U)q,1, which is the solution to (7.18), and which satisfies

1 —
I ler < 7= [lfo+ Joent gl

Qn

Since the coefficient (Kh)g of (% in Kh equals fo for any h € An(U)a,1, the solution f also
satisfies the initial condition.
In order to see that f is the unique solution to (7.18) which satisfies the initial condition,

let f be another such solution and assume that h = f — f#0. Let v be the lexicographic
valuation of h (i.e. v, > 0 is the valuation in (, of h, and v,_1 the valuation in (,_; of
the coefficient h,,, of (" in h, and so on). Taking the coefficient of (" in the equation
Onh+ Lh =0, we obtain

hy, + ‘P;}) (Yni>en,0 *e7 hw,) =0,
where

¢n;>en = Z ¢n;€ 5;(—:-

€ezey,

But (hy,)v—wv,e, # 0 and (cp;}) (Yn:>e,.0 *& hu,))v—vne, =0, since 1.1 =0 and v is the
lexicographical valuation of h. This contradiction proves the uniqueness of the solution. [J

8. MAJORANTS FOR INTEGRAL TRANSFORMS

8.1. Majorants for parametric integrals

Let 7 be a compact subset of a real analytic variety and consider an analytic parameter-
ization
p:C"xT — C"
(€:t) — »(¢,t)
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which is linear in ¢. We may naturally associate a functional f+— I, f to ¢ by

(Lo F)(C) = f(e(¢,t)) dt.

teT

More precisely, this functional is defined coefficient-wise on C[[{]] by

(Tp = /  Upelat, (8.1)

where (Ip¢ f)(C) = f(¥({,t)). Let us study the growth rate of the coefficients of I, f as
a function of the growth rate of the coefficients of f. We will denote

Bar = {(€Ca-abs(¢)<r};
Bor = {¢€C™a abs(¢)<r}

and
Ba - Ba 1
Ba = Ba 1

for each a € (R?)" and r € R”.

LEMMA 8.1. Let o be such that

{p(¢,t): CEBLNALET } C By
Then

FLBE, = I, f<Vol(T) b
for all f € C[[C]] and pe N.

PROOF. Let t €T be fixed and let us show that

FAbBY, = I, f <DL (8.2)

This will clearly imply the lemma, because of (8.1).
Since the mapping ¢((,t) is linear in ¢, there exists a matrix M with ¢({,t) = M(¢.
Now by the first condition of the lemma, we have

{M¢: ¢ € By} C Ba. (8.3)
We claim that this equation is equivalent to
a-(abs(M)e;)<a; (i=1,...,n). (8.4)

Indeed, (8.3) = (8.4) follows by taking ¢ = e;/a; (i =1, ..., n) and using the facts that
¢ €Bqa e a-abs(¢) <r and abs(Me;) =abs(M) e;. Inversely, if (8.4) and ¢ € B, then

a-abs(M¢) = a-abs(M(Giei+-+ (hen))
< |G| a-abs(Meq) + -+ +|(n| o - abs(Mey,)
< o |<1| + -t oy |Cn| < 1;
so that abs(M¢) € B, and M( € Bg. In particular, we notice that (8.4) whence (8.3) is

satisfied for M if and only if it is satisfied for abs(M).
Notice also that the condition (8.4) is in it’s turn equivalent to the condition

a-(abs(M)¢) < a- ¢, (8.5)
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when interpreting - (abs(M) ¢) and - ¢ as (linear) series in ¢. Finally, when interpreting
abs(M) ¢ as an element of C[[{]]", this latter condition is equivalent to

ba o (abs(M) ¢) <ba, (8.6)
since by o (abs(M) ¢) = (1 —a-(abs(M) ¢)) ! and (1 —a-¢) ' =Dhqa.
Assume now that we have (8.6) and f <<b?. Then
Icp,tf = f(MC)
= > fe(MQ)*
k
< > | fulabs(ME)*
k
< Y (bp)rabs(MC)*
= bio (abs(M) C)
< bh.
This proves (8.2) and we completed the proof of the lemma. O

8.2. Majorants for integral transforms

More generally, consider two analytic parameterizations ¢, ¥: C" x T — C" which are
linear in the first variable. Given two power series f, g € C[[¢]], we define Jy (g, f) by

T o9, F)(C) = / _IH(C D) Fo(C 1) dt

if f and g are convergent and coefficient-wise by

J¢,<P(gaf)k:/tETJ¢,¢,t(gaf)kdt7 (8.7)

in the general case, where (Jy, ,¢(g, f)()=9(¥ (¢, t) f(@(¢,1)). For fixed g, the mapping
f—=Jy o9, f) is a linear integral transformation. We have

LEMMA 8.2. Let o, B3 and ~ be such that 81 < a, ..., Bp < ayn and
[(C.t):CeBanteT) C
{p(¢t): CeBanteT} C
Then
g<by A fLDE, = Ty (g, [) <(1— B+ a) ' Vol(T) bh,
for all f, g€ C[[¢]] and p€N.

PROOF. For fixed t € T, we claim that
gLby A fUBE = Tyl f) (1 —B+a) T b (8-8)

This will clearly implies the lemma because of (8.7).
Let M and N be such that ¢(¢,t) = M(¢ and (¢, t) = N¢. In a similar way as in
the proof of lemma 8.1, we have

bao (abs(M) ) < bq;
byo (abs(IN)¢) < bg
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and, by lemma 2.4,

Jyp.ot(g, f) = g(INQ) f(MQ)

[byo (abs(IN) )] [bh, o (abs(M) ¢)]
bgbg

(1-B+a) 1B,

V/ANRV/ANI/AN

whenever f<b? and g <b,. O

8.3. Generalized convolution products

Given a compact subset M of a real affine subspace A of the set of all complex n x n
matrices, we define the corresponding generalized convolution product of convergent series

f and g in C[[¢]] by
(g an f)(C) = /MC g(¢C— ) f(&)dE. (8.9)

This definition extends to the whole of C[[¢]]* in a similar way as in the case of standard
convolution. Notice that xp = if D is the set of diagonal matrices with entries in [0, 1].

Now choose a bijective affine parameterization M: R™— A;t+— My of A and consider
the parameterizations ¢, 9: C" x T — C" with T =M ' A and

SO(Cat) = M(;
’lb(c,t) = C_Mtc-

Then we have

(grf)(C) = [f 9(1(¢. 1) F((C. 1) d(My )
= AmM(C) Sy, (g, £)(C),

where Apz(¢) is the determinant of the Jacobian of the mapping ¢t+— M. This determi-
nant is a homogeneous polynomial in ¢ of degree m, since t+— My was chosen to be affine.
Notice that

Vol(M ) = Ang(¢) Vol(T). (8.10)
Consequently, we have
LEMMA 8.3. Let 0<e <1 and let o be such that
{M¢: M eMACEBL} CBa.
Then
9o A f ALY, = gxam fIVOI(ME) (1-€) "B,
for all f, g€ C[[¢]] and pe N.
PROOF. Let B=ca and v =c /2. Then Bg=Bqa/c, so that

{MC:MEM/\CEB,@}QBB,
and 37:235 so that
{(-M¢McecMACEBg)CB,.

The result now follows from lemma 8.2 and (8.10). O



JORIS VAN DER HOEVEN 29

BIBLIOGRAPHY

[Car61] H. Cartan. Théorie élémentaire des fonctions analytiques d’une et plusieurs variables. Her-
mann, 1961.

[DL89] J. Denef and L. Lipshitz. Decision problems for differential equations. The Journ. of Symb.
Logic, 54(3):941-950, 1989.

[Pet50] I.G. Petrovsky. Lectures on Partial Differential Equations. Interscience Publishers, 1950.
[vdH99] J. van der Hoeven. Fast evaluation of holonomic functions. T'CS, 210:199-215, 1999.

[vdHO1a] J. van der Hoeven. Fast evaluation of holonomic functions near and in singularities. JSC,
31:717-743, 2001.

[vdHO1b] Joris van der Hoeven. Operators on generalized power series. Journal of the Univ. of
Nllinois, 45(4):1161-1190, 2001.

[vdHO02] Joris van der Hoeven. Relax, but don’t be too lazy. JSC, 34:479-542, 2002.

[vdHO03] J. van der Hoeven. Effective complex analysis. In G.-M. Greuel A. Cohen and M.-F. Roy,
editors, Proceedings of MEGA 2003, Kaiserslautern, 2003. To appear.

[VK75] S. von Kowalevsky. Zur theorie der partiellen differentialgleichungen. J. Reine und Angew.
Math., 80:1-32, 1875.



