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1. Introduction

In [vdH03, vdH99, vdH01a, vdH02], we have started to develop a fully effective complex
analysis. The aim of this theory is to evaluate constructible analytic functions to any
desired precision and to continue such functions analytically whenever possible. In order
to guarantee that the desired precision is indeed obtained, bound computations are an
important part of this program. A key tool for doing this is Cauchy-Kovalevskaya’s classical
technique of majorant equations [vK75, Pet50, Car61].

In this paper, we will study this technique in a quite detailed way. Although none of
the results is fundamentally new or involved, we nevertheless felt the necessity to write
this paper for several reasons:

• The need for a more abstract treatment in terms of “majorant relations” P.

• The need for explicit majorants which can be used in effective complex analysis.

• Our wish to extend the technique to singular differential equations.

• Our wish to obtain a better control over the precision of the majorants.

• The need for majorants in the contexts of integral transformations and convolution
equations.

The first two points are dealt with in sections 2, 3 and 4. In section 2.2, we isolate
a few abstract properties of “majorant relations” P . It might be interesting to pursue
this abstract study in more general contexts like the one from [vdH01b]. In sections 2.3
and 2.4, we also mention some simple, but useful explicit majorants. In sections 3 and 4
we give a detailed account of the Cauchy-Kovalevskaya theorem, with a strong emphasis
on “majorant-theoretic properties”. The obtained majorants are quite precise, so that they
can be applied to effective complex analysis.

We present some new results in section 5. In sections 5.1 and 5.2, we show how to
use the majorant technique in the case of regular singular equations. This improves the
treatment in [vdH01a]. In section 5.3 we consider the problem of finding “good” majorants
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for solutions to algebraic differential equations, in the sense that the radius of convergence
of the majorant should be close to the radius of convergence of the actual solution. This
problem admits a fully adequate solution in the linear case (see sections 3.4 and 3.5), but
becomes much harder in the non-linear setting:

Theorem 1.1. [DL89] Given a power series f =
∑

fn ζ
n with rational coefficients, which

is the unique solution of an algebraic differential equation

P (ζ , f ,� , f (l)) = 0,

with rational coefficients and rational initial conditions, one cannot in general decide
whether the radius of convergence ρ(f) of f is < 1 or > 1.

In section 5.3 we will nevertheless show how to compute majorants whose radii of
convergence approximate the radius of convergence of the actual solution up to any pre-
cision (see section 5.3), but without controlling this precision. This result is analogous to
theorem 11 in [vdH03].

Our final motivation for this paper was to publish some of the majorants we found
while developing a multivariate theory of resurgent functions. In this context, a central
problem is the resolution of convolution equations and the analytic continuation of the
solutions. At the moment, this study is still at a very embryonary stage, because there do
not exist natural isotropic equivalents for majors and minors, and we could not yet prove
all necessary bounds in order to construct a general multivariate resummation theory.

Nevertheless, in a fixed Cartesian system of coordinates, multivariate convolution prod-
ucts are naturally defined and in section 6 we prove several explicit majorants. If one does
not merely want to study convolution equations at the origin, but also wants to consider the
analytic continuation of the solutions, then it is useful to have uniform majorants on the
paths where the convolution integrals are computed. Such uniform majorants are studied in
section 7 and an application is given. We have also tried to consider convolution integrals in
other coordinate systems. In that setting, we rather recommend to study integral operators
of the form g� f ∗ g. Some majorants for such (and more general) operators are proved
in section 8.

2. Majorants

2.1. Notations

Throughout this paper, vectors and matrices will be written in bold. We will consider
vectors as column matrices or n-tuples and systematically use the following notations:

0 = (0,� , 0)

1 = (1,� , 1)

|α| = |α1|+� + |αn|

αk = α1
k1� αn

kn

k! = k1!� kn!
(

k

l

)

=
(

k1

l1

)� (kn

ln

)

α · β = α1 β1 +� +αnβn

α× β = (α1 β1,� , αnβn)

α÷ β = (α1/β1,� , αn/βn)

abs(α) = (|α1|,� , |αn|)

α6 β ⇔ α1 6 β1∧� ∧αn 6 βn
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We will denote by C[[ζ]]=C[[ζ1,� , ζn]] the set of power series in ζ1,� , ζn with coefficients
in C. We will sometimes consider other sets of coefficients, like R> = {x ∈ R: x > 0} or

R> = {x∈R:x> 0}. Given f ∈C[[ζ]], the coefficient of ζk in f will be denoted by fk. We

define ∂i =
∂

∂ζi
to be the partial derivation with respect to ζi and

∫

i
: f(ζ1,� , ζn)	 ∫

0

ζi

f(ζ1,� , ζi−1, ξi, ζi+1,� , ζn) d ξi

its distinguished right inverse (i=1,� , n).

2.2. Basic algebraic properties of majorants

Given f , f̄ ∈C[[ζ]], we say that f is majored by f̄ , and we write f P f̄ , if g ∈R>[[ζ]] and

|fk|6 f̄k

for all k ∈Nn. More generally, if f = (f1,� , fr) ∈C[[ζ]]r and f̄ = (f̄1,� , f̄r) ∈R>[[ζ]]r,
then we write f P f̄ if fi P f̄i for all i∈{1,� , r}.
Proposition 2.1. We have

−1 P 1 ; (2.1)

0 P λ 1 (λ∈R>). (2.2)

For all f , f̄ , f̄̄ ∈C[[ζ]]r:

f P f̄ � f̄ P f̄ ; (2.3)

f P f̄ ∧ f̄ P f̄̄ � f P f̄̄ ; (2.4)

f P f̄ ∧ f̄ P f � f = f̄ . (2.5)

Proposition 2.2. Let f , g , f̄ , ḡ ∈C[[ζ]]r. Then

f P f̄ ∧ gP ḡ � f + gP f̄ + ḡ ; (2.6)

f P f̄ ∧ gP ḡ � f × gP f̄ × ḡ ; (2.7)

f P f̄ � ∂if P ∂i f̄ (i=1,� , n) ; (2.8)

f P f̄ � ∫

i
f P

∫

i
f̄ (i=1,� , n). (2.9)

If f , f̄ ∈C[[ζ]]r and g , ḡ ∈C[[ξ]]s are such that g ◦ f and ḡ ◦ f̄ are defined (this is so if
ξ=(ξ1,� , ξr) and f0 = f̄0), then

f P f̄ ∧ gP ḡ � g ◦ f P ḡ ◦ f̄ . (2.10)

Proof. This is a direct consequence of the fact that the coefficients of f + g, f × g, ∂if ,
∫

i
f and f ◦ g can all be expressed as polynomials in the coefficients of f and g with

positive coefficients. �

2.3. Basic explicit majorants

We will often seek for majorations of the form f Pbα
p , where

bα =
1

1− zα
;

zα = α · ζ ,

α∈ (R>)n and p∈N>. For simplicity, we set b=b1 and z= z1.
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Proposition 2.3. For α∈ (R>)n, i∈{1,� , n} and p> 0, we have

ζibα
p

P
1
αi

bα
p
,

whence

f bα
p

P f(1÷α)bα
p

for every power series f with positive coefficients which converges at 1÷α.

Proof. This is a trivial consequence from the fact that the coefficients of b1 are
increasing. �

Proposition 2.4. Let α, β ∈Rn be such that β1<α1,� , βn<αn. Then

bβbα P (1− β÷α)−1bα.

Proof. For i, j ∈Nn we first notice that
(

i1 + j1
i1

)� ( in + jn
in

)

6

(

i1 + j1 +� + in + jn
i1 +� + in

)

.

Indeed, this inequality follows from the combinatorial fact that each tuple of n choices
of il persons among il + jl (l= 1,� , n), determines a unique choice of i1 +� + in persons
among i1 + j1 +� + in + jn. Hence

(bβbα)k =
∑

i+j=k

βiαj
(i1 +� + in)!
i1!� in!

(j1 +� + jn)!
j1!� jn!

6
∑

i+j=k

βiαj
(k1 +� + kn)!
k1!� kn!

6 (1− β÷α)−1αk
(k1 +� + kn)!
k1!� kn!

= ((1− β÷α)−1bα)k.

for all k∈Nn. �

Corollary 2.5. Let α, β ∈Rn and p, q ∈N> be such that β1<α1,� , βn<αn. Then

bβ
q
bα

p
P (1− β÷α)−q1bα

p
.

Proof. Apply the above proposition q times for p = 1. Next multiply the majoration

by bα
p−1 on both sides. �

2.4. Majorant spaces

For fixed p > 0 and α ∈ (R>)n, let C[[ζ]]α,p be the space of all analytic power series f ,

such that there exists a majoration f P cbα
p for some c> 0. We call An(U)α,p a majorant

space for the majorant norm ‖ · ‖α,p given by

‖f ‖α,p = min {c∈R>: f P cbα
p }

= sup

{

fk
(bα

p )k
:k∈Nn

}

.

Proposition 2.6.

a) For all f , g ∈C[[ζ]]α,p we have

‖f + g‖α,p 6 ‖f ‖α,p + ‖g‖α,p. (2.11)
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b) For all f ∈C[[ζ]]α,p and g ∈C[[ζ]]β,q with β1<α1,� , βn<αn we have

‖f g‖α,p 6 (1− β÷α)−q1 ‖f ‖α,p ‖g‖β,q. (2.12)

c) For all f ∈C[[ζ]]α,p and g ∈C[[ζ]]α,q we have

‖f g‖α,p+q 6 ‖f ‖α,p ‖g‖α,q. (2.13)

d) For all f ∈C[[ζ]]α,p and i∈{1,� , n} we have

‖∂i f ‖α,p+1 6 pαi ‖f ‖α,p. (2.14)

e) For all f ∈C[[ζ]]α,p and i∈{1,� , n}, such that p> 1, we have

‖
∫

i
f ‖α,p−1 6

1
(p− 1)αi

‖f ‖α,p. (2.15)

Proof. Part (b) follows from proposition 2.5. The other properties are easy. �

2.5. Majorants of Gevrey type

Divergent power series solutions to ordinary or partial differential equations usually admit
majorants of “Gevrey type”. In order to compute such majorants, it may be interesting
to consider more general majorant spaces as the ones from the previous section. Given
p∈Q>, α∈ (R>)n and τ ∈ (Q>)n, we define

dτ ,α,p =
∑

k∈Nn

((τ + 1) ·k+ p)!
k!

(α× ζ)k.

Then we notice that

∂idτ ,α,p = αidτ ,α,p+τi+1 ;
∫

i
dτ ,α,p P αi

−1dτ ,α,p−τi−1.

Furthermore, for all τ , α, p and q, there exist constants cp,q,τ and rp,q,τ with

dτ ,α,pdτ ,α,q P cp,q,τ dτ ,α,rp,q,τ
.

Since divergent power series will not be studied in the sequel of this paper, we will not
perform the actual computation of sharp values for cp,q,τ and rp,q,τ here.

3. Majorant equations and applications

3.1. Noetherian operators

Given coordinates ζ =(ζ1,� , ζn) and a subset R of {1,� , r}×Nn, we denote

C[[ζ]]R
r = {f ∈C[[ζ]]r: fi,k� 0⇒ (i,k)∈R}.

Let ξ=(ξ1,� , ξp) and S⊆{1,� , s}×Np. An operator Φ:C[[ζ]]R
r →C[[ξ]]S

s is said to be

Noetherian if for each (j, l) ∈ S, there exists a finite subset Fj ,l
Φ of R and a polynomial

Pj ,l
Φ ∈C[Fj ,l

Φ ], such that

Φ(f)j ,l=Pj,l
Φ (fi,k: (i,k)∈Fj ,l

Φ )

for every f ∈C[[ζ]]R
r .
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Remark 3.1. It can be checked that this notion of Noetherian operator coincides with
the one introduced in a more general setting in [vdH01b]. In fact, some of the results of
this paper can be generalized to this setting.

Given two Noetherian operators Φ, Φ̄: C[[ζ]]R
r → C[[ξ]]S

s , we say that Φ is majored
by Ψ, and we write ΦP Φ̄, if

f P f̄ � Φ(f) P Φ̄(f̄ )

for all f , f̄ ∈C[[ζ]]R
r . Notice that this implies in particular that 0P Φ̄. It also implies that

Φ̄ is real , i.e. Pj ,l
Φ̄ ∈R[Fj,l

Φ̄ ] for all (j, l)∈S. If ΦPΦ, then we say that Φ is a majorating
Noetherian operator. We say that Φ is strongly majored by Φ̄, and we write ΦP∗

Φ̄, if

Pj ,l
Φ

PPj,l
Φ̄

for all (j, l) ∈ S. For this majoration, we interpret Pj ,l
Φ and Pj,l

Φ̄ as a power series in

C[[Fj ,l
Φ ∪Fj ,l

Φ̄ ]]. Clearly, ΦP∗
Φ̄ implies ΦP Φ̄, as well as 0P∗

Φ̄ and Φ̄P∗
Φ̄.

Remark 3.2. In general, we do not have 0PΦ⇒0P∗
Φ. A counterexample is the operator

Φ:C[[z]]→C[[z]] with Φ(f) = (f0− f1)
2. For strongly linear operators Φ (see [vdH01b]),

we do have 0PΦ⇔0P∗
Φ.

The following proposition, which can be regarded as the operator analogue of proposi-
tion 2.2, is a again direct consequence of the classical formulas for the coefficients of f + g,
f × g, f ∗ g, ∂if ,

∫

i
f and f ◦ g:

Proposition 3.3.

a) The addition +:C[[ζ]]2r@ (C[[ζ]]r)2→C[[ζ]]r is a Noetherian operator and 0P∗+.

b) The componentwise multiplication ×:C[[ζ]]2r→C[[ζ]]r is Noetherian and 0P∗×.

c) The partial derivation ∂i:C[[ζ]]r→C[[ζ]]r is Noetherian for each i and 0P∗ ∂i.

d) The integration
∫

i
:C[[ζ]]r→C[[ζ]]r is Noetherian for each i and 0P∗

∫

i
.

e) The composition ◦: C[[ξ]]s × (C[[ζ]]↓)r → C[[ζ]]s is Noetherian and 0 P∗ ◦. Here

ξ=(ξ1,� , ξr) and C[[ζ]]↓ denotes the set of f ∈C[[ζ]] with f0 = 0.

The composition of two Noetherian operators is again Noetherian and we have:

Proposition 3.4. Let Φ,Φ̄:C[[ζ]]R
r →C[[ξ]]S

s and Ψ,Ψ̄:C[[ξ]]S
s →C[[χ]]T

t be Noetherian
operators. Then

ΦP Φ̄∧ΨP Ψ̄⇒Ψ ◦ΦP Ψ̄ ◦ Φ̄. (3.1)

3.2. Majorant equations

A fixed point operator is a Noetherian operator Φ:C[[ζ]]R
r →C[[ζ]]R

r , such that there exists
a well-ordering 6wo on R with

∀(j , l)∈R: ∀(i,k)∈Fj ,l
Φ : (i,k)<wo (j, l). (3.2)

In general, the i-th component of the total order 6wo will be compatible with the addition
on Nr for each i∈ {1,� , r}.
Proposition 3.5. Let Φ:C[[ζ]]R

r →C[[ζ]]R
r be a fixed point operator. Then the equation

f =Φ(f) (3.3)
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admits a unique solution f =FixΦ in C[[ζ]]R
r .

Proof. We claim that the sequence f 0 = 0, f 1 = Φ(f0), f2 = Φ(f1), � admits a limit,

which is a solution to the equation. Here a limit of a sequence f0, f 1,� is a series f such
that for all (i,k), we have fi,k= fi,k

p for all sufficiently large p.

Assume for contradiction that the sequence f0, f 1, � does not admit a limit and

let (j, l) be minimal for 6wo, such that fj ,l
0 , fj ,l

1 ,� is not ultimately constant. By (3.2),

the sequence fi,k
0 , fi,k

1 ,� is ultimately constant for every (i, k) ∈Fj,l
Φ . Consequently, the

sequence fj ,l
0 =Pj ,l

Φ (fi,k
0 : (i,k)∈Fj,l

Φ ), fj ,l
1 =Pj ,l

Φ (fi,k
1 : (i,k)∈Fj ,l

Φ ),� is ultimately constant.
This contradiction implies our claim.

Similarly, assume that there exists a second solution g � f and let (j , l) be minimal

for 6wo such that fj ,l � gj ,l. Then fi,k = gi,k for all (i, k) ∈ Fj,l
Φ , by (3.2). Therefore,

fj ,l=Pj ,l
Φ (fi,k: (i,k)∈Fj ,l

Φ )=Pj ,l
Φ (gi,k: (i,k)∈Fj ,l

Φ )= gj ,l, and this contraction proves that

f is the unique solution to (3.3). �

Let Φ, Φ̄:C[[ζ]]R
r →C[[ζ]]R

r be two Noetherian operators and assume that ΦP Φ̄. Then
the equation

f = Φ̄(f) (3.4)

is called a majorant equation of (3.3).

Proposition 3.6. Let Φ,Φ̄:C[[ζ]]R
r →C[[ζ]]R

r be two fixed point operators, such that (3.4)
is a majorant equation of (3.3). Then FixΦPFix Φ̄.

Proof. We have seen in the previous proof that Fix Φ = limp→∞ Φ
◦p(0) and Fix Φ̄ =

limp→∞ Φ̄
◦p

(0). Using induction on p, we observe that Φ P Φ̄ implies Φ
◦p(0) P Φ̄

◦p
(0).

Consequently, FixΦPFix Φ̄. �

For complicated equations, it can be hard to find an explicit solution to the majorant
equation (like (3.8)). In that case, one may use

Proposition 3.7. Let Φ,Φ̄:C[[ζ]]R
r →C[[ζ]]R

r be two fixed point operators, such that (3.4)
is a majorant equation of (3.3). Assume that f ∈C[[ζ]]R

r is such that

Φ̄(f) P f .

Then FixΦP f.

Proof. Since Φ̄ is real, we have δ = f − Φ̄(f) ∈ R>[[ζ]]R
r . The fixed point operator

Φ̄̄: g� Ψ(g) + δ therefore satisfies Φ̄P Φ̄̄. We conclude that FixΦP f =Fix Φ̄̄. �

3.3. A classical application of the majorant technique

In this section, we will prove the classical Cauchy-Kovalevskaya theorem in the case of
ordinary differential equations. We will consider partial differential equations in section 4.
Let g ∈C{{ξ}}r be a system of convergent power series with ξ= (ξ1,� , ξr) and consider
the equation

f ′= g ◦ f (3.5)

in f ∈C[[ζ]]r, with the initial condition f0 =0. This equation may be rewritten as a fixed
point equation

f =

∫

g ◦ f , (3.6)
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which has a unique solution f ∈ (C[[ζ]]↑)r. Since the gi are convergent, there existM ∈R>

and α∈ (R>)r with

gPM bα1. (3.7)

By propositions (3.3) and (3.4), the equation

f̄ =

∫

(M bα1) ◦ f̄ (3.8)

is a majorant equation for (3.6). But this equation is symmetric in the f̄i, so we have

(1− |α| f̄i) d f̄i =M d ζ

for each i∈{1,� , r}. The unique solution f̄ to (3.8) is therefore given by

f̄ =
1− 1− 2 |α|Mζ

√

|α|
1.

From proposition 3.6 we now deduce

Theorem 3.8. Let f be the unique solution to (3.5) with f0 =0 and assume (3.7). Then

f P
1− 1− 2 |α|Mζ

√

|α|
1.

Remark 3.9. Notice that many ordinary differential equations can be reduced to (3.5).
For instance, equations of the form f ′= g ◦ (f , z) can be solved by adding z as an unknown
to f , together with the equation z ′ = 1. Similarly, higher order equations can be dealt
with through the introduction of new unknowns for the derivatives of unknowns. Modulo
substitutions of the form f� ν+ f̃ with ν ∈Cr, one may also consider more general initial
conditions.

3.4. First order systems of linear differential equations

It is good not to treat linear differential equations as a special case of arbitrary linear
differential equations, because the radius of convergence of the computed solution may be
far from optimal. So let us study the system of linear differential equations

f ′=Mf , (3.9)

in f ∈C[[ζ]]r, with initial conditions f0=ν ∈Cr, whereM is an r by r matrix with entries
in C[[ζ]]. Assume that

M PK bαJ , (3.10)

where J denotes the matrix whose coefficients are all 1, and let C = max {|ν1|, � , |νr |}.
Then the equation

f̄ =C 1+

∫

K bαJ f̄ , (3.11)

is a majorant equation of

f =ν+

∫

Mf . (3.12)

Now the equation (3.11) is again symmetric in the f̄i, and the fixed point of the equation

f̄i =C +

∫

Krbα f̄i

8 Majorants for formal power series



is given by

f̄i =C

(

1
1−α ζ

)

Kr

α

.

Proposition 3.6 now implies

Theorem 3.10. Let f be the unique solution to (3.9) with f0=ν and assume (3.10). Then

f Pmax {|ν1|,� , |νr |}

(

1
1−α ζ

)

Kr

α

.

3.5. Higher order linear differential equations

The exponent
K r

α
in the majorant from theorem 3.10 is not always optimal. Assume for

instance that we have a linear differential equation

f (r) =Lr−1 f
(r−1) +� +L0 f , (3.13)

with initial conditions f(0)= ν0,� , f (r−1)(0)= νr−1, and where the Li satisfy

Li PM bα. (3.14)

It is not easy to find a closed form solution for (3.13). For this reason, we will apply the
technique from proposition 3.7.

The series f is the unique solution to the fixed point equation

f =

(

ν0 +

∫
)� (νr−1 +

∫
)

(

Lr−1 f
(r−1) +� +L0 f

)

. (3.15)

For all ν̄0,� , ν̄r−1∈R> and R∈R>[[z]], such that |ν0|6 ν̄0,� , |νr−1|6 ν̄r−1, the equation

f̄ =

(

ν̄0 +

∫
)� ( ν̄r−1 +

∫
)

(

M bα f̄
(r−1) +� +M bα f̄

)

+R (3.16)

is a majorant equation of (3.15). Let

h=bα
(M+1)/α

.

We take ν̂i =Ch
(i)

(0) for all i∈{0,� , r− 1}, where

C =max {|ν0|,� , |νr−1|}>max

{

|ν0|

h(0)(0)
,� , |νr−1|

h(r−1)(0)

}

.

We have

M bαh
(r−1) +� +M bαh

P M
[

(M +1)� (M +(r− 2)α+1)bα
(M+rα+1)/α

+� +bα
(M+α+1)/α

]

P (M + 1)� (M + (r− 1)α+ 1)bα
(M+rα+1)/α

= h(r)

Therefore, we may take

R=

(

ν̄0 +

∫
)� ( ν̄r−1 +

∫
)

(

M bαCh
(r−1) +� +M bαCh

)

−Ch∈R>[[z]].

This choice ensures that (3.16) has the particularly simple solution C h. Proposition 3.6
therefore implies:
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Theorem 3.11. Let f be the unique solution to (3.13) with f(0)= ν0,� , f (r−1)(0)= νr−1

and assume that we have (3.14) for i∈{0,� , r− 1}. Then

f Pmax {|ν0|,� , |νr−1|}

(

1
1−α ζ

)

M+1

α

.

4. Partial differential equations

4.1. Indirect majorant equations and reduction of dimension

In order to obtain majorants for solutions of partial differential equations, it is sometimes
possible to generalize Cauchy-Kovalevskaya’s technique from section 3.3. However, the
more the type of the original equation becomes complex, the harder the explicit resolution
of the corresponding majorant equation may become. For this reason, we will introduce a
technique, which allows the reduction of the majorant equation to an ordinary differential
equation.

Given f ∈C[[ζ]]r and α∈ (R>)r, the idea is to systematically search for majorants of

the form f P f̄ ◦ zα, where f̄ ∈C[[ξ]]. The choice of α depends on the region near the
origin where we want a bound for f . The ring monomorphism f � f ◦ zα satisfies the
following properties:

Proposition 4.1. Let α∈ (R>)r and f , f̄ ∈C[[ξ]]r. Then

f P f̄ ⇔ f ◦ zαP g ◦ zα (4.1)

∂i (f ◦ zα) = (αif
′) ◦ zα (i= 1,� , n) ; (4.2)

∫

i
(f ◦ zα) P (αi

−1 ∫

i
f) ◦ zα (i=1,� , n). (4.3)

The next idea is to extend the majorant technique as follows: given a majorating
mapping M: C[[ξ]]S

s → C[[ζ]]R
r , and two fixed point operators Φ̄: C[[ξ]]S

s → C[[ξ]]S
s and

Φ:C[[ζ]]R
r →C[[ζ]]R

r , we say that the equation

f̄ = Φ̄(f̄ ) (4.4)

is an indirect majorant equation of

f =Φ(f) (4.5)

if for all f ∈C[[ζ]]R
r and f̄ ∈C[[ξ]]S

s we have

f PM(g)� Φ(f) PM(Φ̄(g))

We will attempt to apply the following generalization of proposition 3.6 for M: f̂ � f̂ ◦zα.

Proposition 4.2. Let Φ and Φ̄ be two fixed point operators, such that (4.4) is an indirect
majorant equation of (4.5). Then FixΦPM(Fix Φ̄).

Proof. Similar to the proof of proposition 3.6. �

4.2. The Cauchy-Kovalevskaya theorem: equations in normal form

Consider the system of partial differential equations

∂n
p
f =ϕ ◦ ((∂kf)|k|<p, ζ) (4.6)
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with initial conditions










f(ζ1,� , ζn−1, 0) =0 ;

f (p−1)(ζ1,� , ζn−1, 0) = 0,

where ϕ∈C{{ξ}}r is a tuple of convergent power series in m= r
(

n + p

p

)

+n variables. We
may rewrite (4.6) as a fixed point equation

f =

∫

n

�p×∫
n

ϕ ◦ ((∂kf )|k|<p, ζ), (4.7)

Let M ∈R>, α∈ (R>)n and β ∈ (R>)m be such that ϕPM bβ1. Then

f̄ =Mαi
−p

∫ �p×∫ (bβ1) ◦ ((αk f̄ (|k|))|k|<p, (1÷α) ξ) (4.8)

with initial conditions f̄ (0) = � = f̄ (p−1) = 0 is an indirect majorant equation of (4.11).
This equation can be reinterpreted as an ordinary differential equation of the form (3.5)

in r p + 1 unknowns f̄ , � , f̄ (p−1), ξ. By theorem 3.8, the unique solution f̄ to (4.8) is
convergent. By theorem 4.2, the unique solution f to (4.6) is therefore convergent, since
f P f̄ ◦ zα. We have proved the following theorem:

Theorem 4.3. The system (4.6) admits a unique solution f in C[[ζ]]r and f is convergent.

Remark 4.4. Like in remark 3.9, we notice that many systems of partial differential
equations can be seen as variants of (4.6). For instance, modulo substitutions f� ν0+� +

νp−1 ζn
p−1 + f̃ with ν0,� , νp−1 ∈C{{ζ1,� , ζn−1}}

r, we may consider more general types
of convergent initial conditions. Also, if the fi are allowed to satisfy differential equations

∂n
pi fi = ϕi ◦ ((∂kf)|k|<pi

, ζ)

of different orders, then it suffices to differentiate these equations max{p1,� , pr}− pi times
and compute the corresponding initial conditions, in order to reduce this more general case
to the case when all equations have the same order.

4.3. Further generalizations of the majorant technique

We did not compute an explicit majorant for f , because theorem 4.3 is not the result
we are really after. In fact, the right-hand side of (4.6) may also depend on all partial

derivatives ∂k f with |k | = p, except for ∂n
p
f . However, the corresponding indirect

majorant equation would no longer be a fixed point equation in the sense of section 3.2.

Consider an operator Φ:R→S where R⊆C[[ζ]]r and S ⊆C[[ξ]]s. We say that Φ is
Noetherian in the generalized sense, if for each (j, l)∈{1,� , s}×Np, there exists a finite

subset Fj,l
Φ of R and a convergent power series gj,l

Φ ∈C{{Fj ,l
Φ }}, such that

Φ(f)j ,l= gj ,l
Φ ◦ (fi,k: (i,k)∈Fj ,l

Φ )

for every f ∈R. All previously defined concepts naturally generalize to this setting.

For instance, given two Noetherian operators Φ, Φ̄:R→S in the generalized sense, we
say that Φ is majored by Φ̄, and we write ΦP Φ̄, if

f P f̄ � Φ(f) P Φ̄(f̄ )
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for all f ∈R. This is in particular so, if gj ,l
Φ

P gj ,l
Φ̄ for all (j, l)∈ {1,� , s}×Np, in which

case we say that Φ is strongly majored by Φ̄. The concepts of majorating Noetherian
operators and indirect majorant equations can be generalized in a similar way.

Proposition 4.5. Let Φ be a fixed point operator in the usual sense and Φ̄ a Noetherian
operator in the generalized sense, such that (4.9) is an indirect majorant equation of (4.10).
If (4.9) admits a solution f̄ with 0P f, then FixΦPM(f̄ ).

Proof. By induction on p, we observe that Φ
◦p(0) PM(f̄ ) for all p∈N. Consequently,

FixΦ= limp→∞Φ
◦p(0) PM(f̄ ). �

Remark 4.6. Notice that we no longer require (4.9) to be a fixed point equation in
proposition 4.5. Nevertheless, it is possible to generalize proposition 3.5 to fixed point
operators in a more general sense. For instance, one may replace (3.2) by

∀(j, l): ∀(i,k)∈Fj ,l
Φ : (i,k) 6wo (j, l) (4.9)

and the requirement that gj ,l
Φ = αj ,l

Φ fj ,l+ g̃j ,l
Φ for all (j , l), where |αj ,l

Φ |< 1 and g̃j ,l
Φ does

not depend on fj ,l. This kind of fixed point operators will be encountered naturally in the
next section (modulo a change of variables). More generally, one may consider operators Φ,
whose “traces for truncated series to initial segments” are contracting.

4.4. The Cauchy-Kovalevskaya theorem: the general case

Consider the system of partial differential equations

∂n f =ϕ ◦ (∂1 f ,� , ∂n−1 f , f , ζ) (4.10)

with initial condition

f(ζ1,� , ζn−1, 0) =0,

where ϕ ∈C{{χ}}r is a tuple of convergent power series in m = n (r + 1) variables. We
may rewrite this equation as a fixed point equation

f =

∫

n

ϕ ◦ (∂1 f ,� , ∂n−1 f , f , ζ). (4.11)

Let α∈ (R>)n and β ∈ (R>)m be such that ϕPM bβ1 and define

A = α1 (β1 +� + βr) +� +αn−1 (β(n−2)r+1 +� + β(n−1)r) ;

B = β(n−1)r+1 +� + βnr ;

C = βnr+1/α1 +� + βnr+n/αn.

Choosing α1,� , αn−1 sufficiently small, we may assume that

4AM <αn. (4.12)

Then we claim that

f̄ =Mαn
−1

∫

(bβ1) ◦ (α1 f̄
′,� , αn−1 f̄

′, f̄ , (1÷α) ξ) (4.13)

is an indirect majorant equation of (4.11) for M= · ◦zα and the initial conditions f̄ (0)=0,
f̄ ′(0) = ν 1, where

ν=
1− 1−

4 M A

αn

√

2A
.
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Indeed, the majorant equation (4.13) is symmetric in the components of f̄ , so each f̄i

satisfies the equation

f̄i =Φ̄(fi) =Mαn
−1
∫

1

1−A f̄i
′−B f̄i −Cξ

(4.14)

with the initial conditions f̄i(0)=0, f̄i
′(0)=ν. The choice of ν now guarantees that Φ̄ maps

{f̄ ∈C[[ξ]]: f̄ (0) =0, f̄ ′(0) = ν} into itself.
The equation (4.14), which was obtained mechanically from (4.11) using reduction of

dimension, does not admit a simple closed form solution. Therefore, it is convenient to
major it a second time by the equation

f̄̄i =Mαn
−1
∫

1

1−A f̄̄i
′
−Bξ f̄̄i

′
−Cξ

(4.15)

with the same initial conditions. This latter equation can be rewritten as an equation

(1−A f̄̄i
′
−Bξ f̄̄i

′
−Cξ) f̄̄i

′
=Mαn

−1

of second degree in f̄̄i
′
. This leads to the simple closed form majorant for f̄̄i:

f̄̄i P ξ f̄̄i
′
=
ξ−Cξ2− ξ 1−

4 A M

αn
−

4 B M ξ

αn
− 2Cξ+C2 ξ2

√

2 (A+Bξ)
. (4.16)

We have proved:

Theorem 4.7. Let ϕ ∈ C[[ζ]]n(r+1) be such that ϕ P M bβ 1, for M ∈ R>, α ∈ (R>)n

and β ∈ (R>)m which satisfy (4.12). Then the system (4.10) admits a unique solution
f ∈C[[ζ]]r with f (ζ1,� , ζn−1, 0)= 0. Moreover, this solution satisfies

f P

zα−C zα
2 −zα 1−

4 A M

αn
−

4 B M zα

αn
− 2C zα+C2 zα

2
√

2 (A+B zα)
1.

Remark 4.8. The original Cauchy-Kovalevskaya theorem, which deals with equations of
arbitrary order, directly follows from the first order case. Indeed, consider a system











∂n
p
f1 = ϕ1 ◦ ((∂kf)|k|6p,k� pen

, ζ)

∂n

p
fr = ϕr ◦ ((∂kf)|k|6p,k� pen

, ζ)

(4.17)

Introduce the unknowns gi,k = ∂k fi for all i and k with |k | < p. We have equations
∂n gi,k= gi,k+en

for all k with |k|< p− 1. For each k� (p− 1)en with |k |= p− 1, we also
have ∂n gi,k= ∂m gi,k+en−em

for some m < n with km � 0. Finally, the equations (4.17)
express each ∂n gi,(p−1)en

in terms of the gi,k with |k | < p and ∂m gi,k with m < n and

|k| = p− 1. In a similar way as in remark 4.4, one may also deal with different orders pi

for each i.

5. Complements to the majorant technique

5.1. Regular singular systems of ordinary differential equations

Consider the first order system

δf =ϕ ◦ (f , ζ), (5.1)
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where δ =
ζ ∂

∂ζ
and ϕ is a tuple of convergent power series in r + 1 variables with ϕ0 = 0.

We search solutions f ∈C[[ζ]]r to this system with f0 = 0. Let Φi,j be the coefficient of

fj in ϕi. Then extraction of the coefficient of ζk in (5.1) leads to the relation

(k−Φ) fk =Pk(fk−1,� , f0), (5.2)

where P is a polynomial. The matrix k − Φ is invertible for all but a finite number of
values λ1,� ,λr of k, so that (5.2) is a recurrence relation for the coefficients of f whenever
k � {λ1, � , λr}. For k ∈ {λ1, � , λr} ∩ N, we may see fk as an initial condition and the
relation Pk(fk−1,� , f0) as an additional requirement on f0,� , fk−1.

Using the notations from (5.2), the original equation (5.1) can be rewritten as a fixed
point equation

f =(δ−Φ)−1 (ψ ◦ (f , ζ)), (5.3)

where ψ is a tuple of convergent power series in r+1 variables with ψ0=0 and such that
the coefficient of fj in ψi vanishes for all i and j. Given l ∈ N, let us now consider the
change of variables

f = f0 +� + fl−1 ζ
l−1 + f̃ ,

where f1, f2,� , fl−1 are computed by the recurrence relation (5.2). Then (5.3) transforms
into a new equation of the form

f̃ =(δ−Φ)−1 (ψ̃ ◦ (f̃ , ζ)), (5.4)

such that the coefficients of 1,� , ζ l−1 and f̃ in ψ̃ vanish.
Now choose l sufficiently large, such that l > Λ = max {|λ1|, � , |λn|}. Then we may

compute a κ> 0 with

max
16i,j6r

|((k−Φ)−1)i,j |6κ (5.5)

for all k> l. Choose a majorant for ψ̃ of the form

ψ̃ ◦ (f̃ , ζ) PM

(

1

(1−α · f̃ ) (1− β ζ)
−

1− (β ζ)l

1− β ζ
−α · f̃

)

1,

where α=α1. Then the equation

f̄ =Mκr

(

1

(1−α · f̄ ) (1− β ζ)
−

1− (β ζ)l

1− β ζ
−α · f̄

)

1. (5.6)

is a majorant equation of (5.3) for f̃ , f̄ ∈C[[ζ]]>l
r , where we denote

C[[ζ]]>l = {f ∈C[[ζ]]: f0 =� = fl−1 = 0}.

The equation (5.6) admits a rather long closed form solution. In order to simplify the
majorant, we notice that (5.6) is majored by the same equation with l= 1. This leads to
the majorant

f̄ P

1− 1− 4Mακr2 (1 +Mακr2)
β ζ

1− β ζ

√

2 rα (1 +Mακr2)
1.

We have proved:

Theorem 5.1. Let Φ be a matrix with coefficients in C, such that k−Φ is invertible for
all k> l and let κ> 0 be such that we have (5.5). Consider the equation

(δ−Φ) f =ϕ ◦ (f , ζ),

14 Majorants for formal power series



where ϕ satisfies the majoration

ϕ ◦ (f , ζ)PM

(

1

(1−α · f) (1− β ζ)
−

1− (β ζ)l

1− β ζ
−α · f

)

1,

for α=α1 and α, β,M > 0. Then this equation admits a unique solution f ∈C[[ζ]]>l
r and

we have

f P

1− 1− 4Mακr2 (1 +Mακr2)
β ζ

1− β ζ

√

2 r α (1 +Mακr2)
1. (5.7)

5.2. Regular singular linear differential equations

In the case of linear differential equations, the majorant (5.7) can be further improved.
Consider a regular singular system of linear differential equations

(δ−Φ)f =Lf + g , (5.8)

where Φ is an r × r matrix with coefficients in C, L an r × r matrix with coefficients
in ζC{{ζ}}, and g∈C{{ζ}}r. We observe that the form of the equation is invariant under
substitutions of the form f = ϕ + f̃ . Consequently, after the computation of the first l
coefficients of the solution (if such a solution exists), and modulo the change of variables

f = f0 +� + fl−1 ζ
l−1 + f̃ , we may assume without loss of generality that g ∈C[[ζ]]>l

r .

Now take l >Λ with the notations from the previous section. Let M,N > 0 and α> 0
be such that LPMζ bαJ and gPN bα 1. Here J denotes the matrix whose entries are
all 1. Then, for κ> 0 satisfying (5.5), the equation

f =(δ−Φ)−1 (Lf + g),

admits the majorant equation

f̄ = κ
(

Mζ bαJ f̄ +N bα 1
)

.

This latter equation has the unique solution

f̄ =
κN bα

1− r κM ζ bα
1=

κN

1− (α+ r κM) ζ
1= κN bα+rκM 1.

We have proved:

Theorem 5.2. Let Φ be a matrix with coefficients in C, such that k−Φ is invertible for
all k> l and let κ> 0 be such that we have (5.5). Consider the equation

(δ −Φ)f =Lf + g,

where L is a matrix with coefficients in C{{ζ}}>1 and g∈C{{ζ}}>l. This equation admits
a unique solution f ∈C[[ζ]]>l

r and, assuming that LPMζ bαJ and gPN bα 1, we have

f PκN bα+rκM 1.

Remark 5.3. Since substitutions of the form f = f0 +� + fl−1 ζ
l−1 + f̃ do not influence

the radius of convergence of g, it is important to notice that the constant κ may be chosen
arbitrarily small, when taking l large enough. Consequently, we may compute majorants
of the form f PK bβ 1, with β >α as close to α as we wish.
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5.3. Controlling the radius of convergence

When applying the majorant technique in a straightforward way, the convergence radius
of the solution of the majorant equation is usually strictly smaller than the convergence
radius of the actual solution. Theorem 1.1 implies that this cannot be avoided in general
in the case of non-linear differential equations. Nevertheless, if the radius of convergence
of the solution is empirically known, then arbitrarily good majorants can be obtained.

Consider an algebraic differential equation

f ′=P (f), (5.9)

with P ∈ C[f1, � , fr] and initial condition f0 = 0. Given k, let ϕ = f<k = f0 + � +
fk−1 ζ

k−1 and ε= f>k = f − f<k. We may rewrite (5.9) as an equation in f>k.

ε′=P+ϕ(ε),

where P+ϕ∈C[ζ][ε1,� , εr] and its coefficients are given by

(P+f)0 = P (ϕ)−ϕ′

(P+f)i =
1
i!

∂iP

(∂f)i
(ϕ) (i� 0)

For each α∈R>, let Mα∈R> be minimal such that

(P+ϕ)iP
Mα

1−αζ
1

for all i. The function α� logMα is piecewise linear. For each α, the equation

ε̄=
Mα ζ

k (1−α ζ) (1−1 · ε̄)
1 (5.10)

is a majorant equation for

ε=

∫

P+ϕ(ε)

on C[[ζ]]>k
r . The solution to (5.10) is given by

ε̄=
1− 1−

4 r Mα ζ

k (1−α ζ)

√

2 r
1.

This solution has radius of convergence

ρα,k =

(

α+
4 rMα

k

)−1

.

Let α be such that ρk = ρα,k is maximal. We claim that ρk tends to the radius of conver-
gence ρ of f when k→∞.

Theorem 5.4. With the above notations, the improved lower bounds ρk for the radius of
convergence ρ of f tend to ρ when k→∞.

Proof. Given ρ′< ρ and β= (ρ−1 +(ρ′)−1)/2, there exists a constant M with

f PM bβ 1.

In particular,

εPM bβ 1.
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Now the radius of convergence of (P+f)i is also > ρ for all i. Consequently, there exists
a constant N with

(P+f)iPN bβ 1

for all i. Since we also have

(P+ϕ)0 = P+f(−ε) + ε′

(P+ϕ)i =
1
i!

∂iP+f

(∂f)i
(−ε) (i� 0)

it follows that

(P+ϕ)iP

[

∑

16|j |6d

(

j

i

)

N bβ (M bβ)
|j |+ (M bβ)

′

]

1,

where d denotes the degree of P . In other words, for a suitable constant K, which does
not depend on k, we have

(P+ϕ)iPK bβ
d+1.

For β <α< (ρ′)−1, it follows that

Mα 6
K

(1− β/α)d+1
.

In particular, for all sufficiently large k, we have ρα,k
−1 =α+

4 r Mα

k
< (ρ′)−1. Consequently,

for all sufficiently large k, we have ρk> ρ
′. Since is true for all ρ′< ρ, we conclude that ρk

tends to ρ. �

6. Convolution products

6.1. Sharp power series

A sharp power series is a sum

f =
∑

ǫ∈{0,1}n

f;ǫ δ;ǫ,

where the f;ǫ∈C[[ζ]] are such that f;ǫ does not depend on ζi whenever ǫi=1 and where δ;ǫ
is the Dirac distribution on those ζi with ǫi=1. We denote byC[[ζ]]♯ the set of sharp power

series. The majorant relation P naturally extends to sharp power series f , g ∈C[[ζ]]♯, by
setting f P g if and only if f;ǫP g;ǫ for all ǫ∈{0, 1}n. Given α∈ (R>)n, we define

bα
♯ =

∑

ǫ∈{0,1}n

bǭ×αδ;ǫ ;

zα
♯ =

∑

ǫ∈{0,1}n

zǭ×αδ;ǫ.

We will also write b♯ =b1

♯ and z♯ =z1

♯ .

Let ǫ∈{0,1}n and denote ǭ=1−ǫ. Given f ∈C[[ζ]], we will denote by fǫ the result of
the substitution of 0 for each ζi with ǫi=0 in f . In particular, if f is a sharp power series,
then f;ǫ,ǫ∈C and f;ǫ,ǭ= f;ǫ. Given ζ ∈Cn and ǫ1,� ,ǫl∈{0,1}n such that ǫ1+� +ǫl=1,
we will often abbreviate ζi = ζ × ǫi and ζı̄ = ζ × ǫī for i= 1,� , l (if the ǫi are clear from
the context). In particular, ζ= ζ1 +� + ζl. One should be careful not confuse ζi with ζi.
If l=n and ǫ1 =e1,� , ǫn =en, then ζi = ζi ei for all i.
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6.2. Convolution products

For convergent power series f and g, the n-dimensional convolution product is defined by

(f ∗ g)(ζ) =

∫

0

ζ

f(ζ − ξ) g(ξ) dξ, (6.1)

where
∫

0

ζ

=

∫

0

ζ1 � ∫
0

ζn

.

In particular, for all k, l∈Nn we have

ζk∗ ζl=(k+ l+ 1)−1

(

k+ l
k

)−1
ζk+l+1.

This relation allows us to extend the definition of ∗ to C[[ζ]] in a coefficient-wise way:

(f ∗ g)m=
∑

k+l=m−1

fkglm
−1

(

m− 1

k

)−1
. (6.2)

Given a function which is analytic at a point χ, we denote by f+χ the translate of f
at χ, i.e. f+χ(ζ) = f(χ+ ζ). A convolution integral at a translated point χ+ ζ can be
decomposed in 2n parts:

(f ∗ g)(χ+ ζ) =
∑

ǫ1+ǫ2=1

∫

χ1

χ+ζ1

f(χ+ ζ − ξ) g(ξ) dξ

=
∑

ǫ1+ǫ2=1

(f+ζ2 ∗ g+χ1)(χ2 + ζ1). (6.3)

Remark 6.1. The formula (6.3) can be reinterpreted using shuffle products by interpreting
the n-dimensional vector ζ as a shuffle of ζ1 and ζ2 (and similarly for χ). Using “shuffle
notation”, the equation (6.3) becomes

(f ∗ g)(χ+ ζ) =
∑

(

χ1
ζ1

)

ø

(

χ2
ζ2

)

=
(

χ

ζ

)

(f+ζ2 ∗ g+χ1)(χ2 + ζ1).

More generally, given ǫ ∈ {0, 1} and taking ǫ1 = ǫ, ǫ2 = ǭ, we define the degenerated
convolution product ∗ǫ by

(f ∗ǫg)(ζ) =

∫

0

ζ1

f+ζ2(ζ1− ξ1) g+ζ2(ξ1) dξ1, (6.4)

where the integral is taken over the |ǫ|-dimensional block [0, ζ1]. In particular, ·= ∗0 and
∗ = ∗1. We have the following analogue for (6.3):

(f ∗ǫ g)(χ+ ζ) =
∑

ǫ1+ǫ2+ǫ3=1

ǫ1+ǫ2=ǫ

(f+ζ2 ∗ǫg+χ1)(χ2 + ζ1 + χ3 + ζ3). (6.5)

The definitions of the convolution product and degenerate convolution products extend
to the case when f ∈C[[ζ]]♯ and g ∈C[[ζ]]:

f ∗ g=
∑

ǫ∈{0,1}n

f;ǫ ∗ǭ gǭ. (6.6)

For ǫ∈ {0, 1}n:

f ∗ǫ g=
∑

ǫ26ǭ

[

∑

ǫ16ǫ

f;ǫ1+ǫ2 ∗ǫ−ǫ1 gǫ1̄

]

δǫ2. (6.7)
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6.3. Majorants for convolution products

Propositions 2.2 and 3.3 still hold if one replaces the componentwise product by any of the
componentwise convolution products ∗ǫ. More interesting explicit majorants follow below.

Proposition 6.2. Let f , g ∈R>[[ξ]] be two univariate power series. Then

(f ◦ z) ∗ (g ◦ z) P (ξn−1 (f ∗ g)) ◦ z. (6.8)

Proof. By strong bilinearity, it suffices to prove (6.8) in the case when f = ξp and g= ξq.
Then (6.2) implies that

(zp ∗ zq)k+1 =
∑

i+j=k
|i|=p∧|j |=q

p! q!
(k+1)!

.

We also have

(zp+q+n)k+1 =
(p+ q+n)!

(k+ 1)!
.

Since the cardinality of {(i, j): i+ j = k ∧ |i| = p ∧ |j | = q} is bounded by
(p + q + n)!

(p + q + 1)!
, it

follows that
(zp∗ zq)k+1

(zp+q+n)k+1

=
p! q!

(p+ q+1)!
.

Since ξp ∗ ξq =
p! q!

(p + q + 1)!
ξp+q+1, it follows that

zp ∗ zq P (ξn−1 (ξp ∗ ξq)) ◦ (z),

as desired. �

Proposition 6.3. For each p> 0 there exists a constant Kp such that

bα∗bα P
K1

α1
log (1− zα)−1, (6.9)

bα
p ∗bα

p
P

Kp

α1
bα

p−1 (p> 1) (6.10)

for all α∈ (R>)n.

Proof. We first observe that the general case reduces to the case when α= 1 using

[f ◦ (α1 ζ1,� , αn ζn)] ∗ [g ◦ (α1 ζ1,� , αn ζn)] =
1

α1
(f ∗ g) ◦ (α1 ζ1,� , αn ζn).

Furthermore, setting b[0] = log (1− ξ)−1, b[p] = 1/(1− ξ)p for p > 1 and letting k→∞, we
have

(b[p] ∗ b[p])k =
1

k+1

∑

i+j=k

(

k

i

)−1(i+ p− 1
i

)(

j+ p− 1
j

)

6
2

k+1

(

k+ p− 1
k

)

∑

i=0

⌈k/2⌉
(

k

i

)−1(i+ p− 1
i

)

= O(kp−2)

(

1 +
p

k
+
p (p+1)

k (k− 1)
+� +

p (p+ 1)� (p+ ⌈k/2⌉)

k (k− 1)� (k−⌈k/2⌉)

)

= O(kp−2).

Since (k−n+1)p−2∼kp−2, k−1∼ bk
[0]

and kp−2∼
1

(p− 2)!
bk
[p−1]

for all p> 1, it follows that

(ξn−1 b[p] ∗ b[p])k =O((b[p−1])k).
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We conclude by (6.8). �

Proposition 6.4. For all p, q > 0 and α∈ (R>)n we have

bα
p ∗bα

q
P

1

α1
bα

p+q−1 (6.11)

Proof. The final majoration (6.11) again only needs to be proved for α = 1. With the
notations from the previous proposition, we have

(b[p] ∗ b[q])k

bk
[p+q−1]

=
1

k+ 1

∑

i+j=k

(

k

i

)−1(i+ p− 1
i

)(

j + q− 1
j

)(

k+ p+ q− 2
k

)−1

=
1

k+ 1

∑

i+j=k

(

p+ q− 2
p− 1

)/(

k+ p+ q− 2
i+ p− 1

)

6 1

Hence

ξn−1 b[p] ∗ b[q] P ξn−1 b[p+q−1]
P b[p+q−1]

and the majoration again follows from (6.8). �

Proposition 6.5. Let ǫ1, ǫ2, ǫ3∈ {0, 1}n be such that ǫ1 + ǫ2 + ǫ3 = 1. Then for all p> 0
and α∈ (R>)n we have

bα3̄

p ∗ǫ1bα2̄

p
P

1
αǫ1

bα
p+q−1

.

Proof. We may write

bα3̄

p = (1−α1 · ζ −α2 · ζ)
−p =

∑

k=0

∞
(

k+ p− 1
k

)

bα1

k+p (α2 · ζ)
k ;

bα2̄

q = (1−α1 · ζ −α3 · ζ)−q =
∑

l=0

∞
(

l+ q− 1
l

)

bα1

l+q (α3 · ζ)l.

Hence

bα3̄

p ∗ǫ1bα2̄

q =
∑

k=0

∞
∑

l=0

∞
(

k+ p− 1
k

)(

l+ q− 1
l

)

(bα1

k+p ∗ǫ1bα1

l+q) (α2 · ζ)
k (α3 · ζ)

l

P
1
αǫ1

∑

k=0

∞
∑

l=0

∞
(

k+ p− 1
k

)(

l+ q− 1
l

)

bα1

k+l+p+q−1 (α2 · ζ)k (α3 · ζ)l

P
1
αǫ1

∑

k=0

∞
∑

l=0

∞
(

k+ l

k

)(

k+ l+ p+ q− 2
k+ l

)

bα1

k+l+p+q−1 (α2 · ζ)
k (α3 · ζ)

l

=
1
αǫ1

bα
p+q−1

,

using (6.11) and the fact that
(

p + q − 2
p− 1

)

6
(

k + l + p + q − 2
k + p− 1

)

. �

7. Uniform majorants

7.1. Uniform majorants

Consider a compact subset U of Cn such that [0, χ1]×� × [0, χn]⊆U for every χ∈U . Let
ρ= ρU be the multi-radius of U , so that each ρi is minimal with the property that |ξi|6 ρi

for all ξ ∈ U . Given g ∈R>[[ζ]], we say that f is uniformly majored by g on U , and we
write f PU g, if f+χP g for all χ∈U .

20 Majorants for formal power series



Remark 7.1. Uniform majorants can be seen as a special form of parametric majorants.
If U is a parameter space and f(ζ ,λ) and g(ζ ,λ) are analytic functions near 0×U , then

we write f Pλg, if f(ζ ,λ) P g(ζ ,λ) for all λ∈U . In the above case, we thus have

f(ζ) PU g(ζ) � f(χ+ ζ) Pχ g(ζ).

Proposition 7.2. For all analytic functions f and g on U and f̄ , ḡ ∈R>[[ζ]], we have

f PU f̄ ∧ gPU ḡ � f + gPU f̄ + ḡ ; (7.1)

f PU f̄ ∧ gPU ḡ � f gPU f̄ ḡ ; (7.2)

f PU f̄ � ∂i f PU ∂i f̄ (i= 1,� , n) ; (7.3)

ρi = 0∧ f PU f̄ � ∫

i
f PU

∫

i
f̄ (i= 1,� , n). (7.4)

Proof. The bounds apply pointwise. �

Proposition 7.3. For all analytic functions f and g on U, all f̄ , ḡ ∈ R>[[ζ]] and all
ǫ∈ {0, 1}n we have

f PU f̄ ∧ gPU ḡ � f ∗ǫgPU

∑

ǫ1+ǫ2=ǫ

ρǫ2 f̄ ∗ǫ1 ḡǫ2̄. (7.5)

In particular,

f PU bǫ×α∧ gPU bα
p � f ∗ǫgPU (1÷α+ ρ)ǫbα

p
. (7.6)

If f is a sharp analytic function on U, then we also have

f PU bα
♯ ∧ gPU bα

p � f ∗ gPU (1+1÷α+ ρ)1bα
p
. (7.7)

Proof. In the equation (6.5), let ǫ1, ǫ2, ǫ3 ∈ {0, 1}n be such that ǫ1 + ǫ2 + ǫ3 = 1 and
ǫ1 + ǫ2 = ǫ. Then we have

(f+ζ2 ∗ǫ g+χ1)(χ2 + ζ1 + χ3 + ζ3)

=

∫

0

χ2
∫

0

ζ1

f+ζ2+χ3+ζ3(χ2 + ζ1− ξ1− ξ2) g+χ1+χ3+ζ3(ξ1 + ξ2) dξ1 dξ2

=

∫

0

χ2
∫

0

ζ1

f+ζ2+χ2−ξ2+χ3+ζ3(ζ1− ξ1) g+χ1+ξ2+χ3+ζ3(ξ1) dξ1 dξ2

Now for fixed ξ2, the following majorations in ζ hold:

f+ζ2+χ2−ξ2+χ3+ζ3(ζ1) = f+χ2−ξ2+χ3(ζ1 + ζ2 + ζ3) P f̄ (ζ) ;

g+χ1+ξ2+χ3+ζ3(ζ1) = g+χ1+ξ2+χ3(ζ1 + ζ3) P ḡǫ2̄(ζ).

Consequently, (9.3) implies

∫

0

ζ1

f+ζ2+χ2−ξ2+χ3+ζ3(ζ1− ξ1) g+χ1+ξ2+χ3+ζ3(ξ1) P (f̄ ∗ǫ1 ḡǫ2̄)(ζ).

Since this bound holds for all ξ2∈ [0,χ2], we obtain

(f+ζ2 ∗ǫg+χ1)(χ2 + ζ1 + χ3 + ζ3) P (f̄ ∗ǫ1 ḡǫ2̄)(ζ) abs(χ)ǫ2.

Summing over all ǫ1 and ǫ2 with ǫ1 + ǫ2 = ǫ, this yields

(f ∗ǫ g)(χ+ ζ) P
∑

ǫ1+ǫ2=ǫ

(f̄ ∗ǫ1 ḡǫ2̄)(ζ) abs(χ)ǫ2.
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Since abs(ξ) 6 ρ for every χ∈U , we thus obtain

f ∗ǫg PU

∑

ǫ1+ǫ2=ǫ

ρǫ2 f̄ ∗ǫ1 ḡǫ2̄.

This proves (7.5). From proposition 6.5, it also follows that

f PU bǫ×α∧ gPU bα
p � f ∗ǫgPU

∑

ǫ1+ǫ2=ǫ

ρǫ2

αǫ1
bα

p =(1÷α+ ρ)ǫbα
p
.

This proves (7.6). We finally have

f ∗ g=
∑

ǫ∈{0,1}n

f;ǭ ∗ǫ gǫPU

∑

ǫ∈{0,1}n

(1÷α+ ρ)ǫbα
p = (1+ 1÷α+ ρ)1bα

p

for all f PU bα
♯ and gPU bα

p . �

Proposition 7.4. Let χ, δ ∈ Cn, let U = [0, δ] and let ǫ1, ǫ2 ∈ {0, 1}n be such that
ǫ1 + ǫ2 = 1. Assume that f and g are analytic functions on U + [0, χ2] resp. U1 + [χ1, χ],
such that

f+ξ2 PU f̄ ;

g+χ1+ξ2,ǫ1 PU ḡ ,

for all ξ2∈ [0,χ2]. Then the function

h(ζ)= (f+ζ2 ∗ g+χ1)(ζ1 + χ2)

is majored by

h PU abs(χ2)
ǫ2

∑

ǫ11+ǫ12=ǫ1

abs(δ)ǫ12 f̄ ∗ǫ11 ḡǫ11. (7.8)

In particular, if f̄ =bα and ḡ =bα
p , then

h P abs(χ2)
ǫ2 (1÷α+ abs(δ))ǫ1bα

p
. (7.9)

If f is a sharp analytic function, f̄ =bα
♯ and ḡ =bα

p , then we also have

h P (1+ abs(χ2))
ǫ1 (1+1÷α+ abs(δ))ǫ2bα

p
. (7.10)

Proof. We have

(f+ζ2 ∗ g+χ1)(ζ1 + χ2) =

∫

0

χ2
∫

0

ζ1

f+ζ2(ζ1− ξ1 + χ2− ξ2) g+χ1(ξ1 + ξ2) dχ1 dχ2

=

∫

0

χ2

(f+χ2−ξ2 ∗ǫ1 g+χ1+ξ2,ǫ1)(ζ) dχ2.

By our hypotheses and (7.5), the following uniform majoration holds for all ξ2∈ [0,χ2]:

f+χ2−ξ2 ∗ǫ1 g+χ1+ξ2,ǫ1 PU

∑

ǫ11+ǫ12=ǫ1

abs(δ)ǫ12 f̄ ∗ǫ11 (ḡǫ1)ǫ12.

Since (ḡǫ1)ǫ12 = ḡǫ1×ǫ12 = ḡǫ11, the majoration (7.8) follows by integration over ξ2. The
bound (7.9) follows from proposition 6.5 in a similar way as (7.6).

As to (7.10), let us fix an ǫ̂1, ǫ̂2∈{0, 1}n with ǫ̂1 + ǫ̂2 = 1. We first notice that

(f;ǫ̂1,+ζ2 δ;ǫ̂1 ∗ g+χ1)(ζ1 + χ2) = (f;ǫ̂1,+ζ2,ǫ̂2 ∗ǫ̂2 g+χ1,ǫ̂2)(ζ1 + χ2)

= (f;ǫ̂1,ǫ̂2,+ζ22̂
∗ǫ̂2 gǫ̂2,+χ12̂

)(ζ1 + χ2)

= (f;ǫ̂1,ǫ̂2,+ζ22̂
∗ǫ̂2 gǫ̂2,+χ12̂

)(ζ12̂ + χ22̂),
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where ζ12̂ = ζǫ1×ǫ̂2 and ζ22̂ = ζǫ2×ǫ̂2. Consequently, we may apply (7.9) to the lower
dimensional case of series in ζ2̂ = ζǫ̂2. This yields

(f;ǫ̂1,+ζ2 δ;ǫ̂1 ∗ g+χ1)(ζ1 + χ2) P abs(χ2)
ǫ22̂ (1÷α+ abs(δ))ǫ12̂bα

p
.

Summing over all ǫ̂1, ǫ̂2∈{0, 1}n with ǫ̂1 + ǫ̂2 =1, we obtain

h P
∑

ǫ̂1+ǫ̂2=1

abs(χ2)
ǫ22̂ (1÷α+ abs(δ))ǫ12̂bα

p

=
∑

ǫ̂216ǫ1

∑

ǫ̂226ǫ2

abs(χ2)
ǫ2×(ǫ̂21+ǫ̂22) (1÷α+ abs(δ))ǫ1×(ǫ̂21+ǫ̂22)bα

p

=
∑

ǫ̂216ǫ1

∑

ǫ̂226ǫ2

abs(χ2)
ǫ̂22 (1÷α+ abs(δ))ǫ̂21bα

p

= (1+ abs(χ2))
ǫ1 (1+1÷α+ abs(δ))ǫ2bα

p
.

This proves (7.10). �

7.2. Majorant spaces

For fixed p> 0 and α∈ (R>)n, let An(U)α,p be the space of all analytic functions f on U ,

such that there exists a majoration f PU cbα
p for some c>0. We call An(U)α,p a majorant

space for the majorant norm ‖ · ‖α,p = ‖ · ‖U ,α,p given by

‖f ‖α,p = min {c∈R>: f PU cbα
p }

= sup [fk/(bα
p )k:k∈Nn}.

This norm may be extended to An(U)α,p
♯ = {f ∈An(U):∀ǫ∈{0, 1}n: f;ǫ∈An(U)α,p} by

‖f ‖α,p =max {‖f;ǫ‖α,p: ǫ∈{0, 1}n}.

The following properties directly follow from the previous propositions:

Proposition 7.5.

a) For all f , g ∈An(U)α,p we have

‖f + g‖α,p 6 ‖f ‖α,p + ‖g‖α,p. (7.11)

b) For all f ∈An(U)α,p and g ∈An(U)β,1 with β1<α1,� , βn<αn we have

‖f g‖α,p 6 (1− β÷α)−1 ‖f ‖α,p ‖g‖β,1. (7.12)

c) For all f ∈An(U)α,p and g ∈An(U)α,q with q > 0 we have

‖f g‖α,p+q 6 ‖f ‖α,p ‖g‖α,q. (7.13)

d) For all f ∈An(U)α,p and i∈{1,� , n} we have

‖∂i f ‖α,p+1 6 pαi ‖f ‖α,p. (7.14)

e) For all f ∈An(U)α,p and i∈{1,� , n}, such that p> 0 and ρi =0, we have

‖
∫

i
f ‖α,p−1 6

1
(p− 1)αi

‖f ‖α,p. (7.15)

f ) For all f ∈An(U)α,1
♯ and g ∈An(U)α,p, we have

‖f ∗ g‖α,p 6 (1+1÷α+ ρ)1 ‖f ‖α,1 ‖g‖α,p. (7.16)
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Proposition 7.6. With the notations from proposition 7.4 and allowing f to be sharp,
assume that the suprema

F = sup
ξ2∈[0,χ2]

‖f+ξ2‖U ,α,1 ;

G = sup
ξ2∈[0,χ2]

‖g+χ1+ξ2,ǫ2̄‖U ,α,p

exist. Then h∈An(U)α,p and

‖h‖U ,α,p 6 (1+ abs(χ2))
ǫ2 (1+1÷α+ abs(δ))ǫ1FG. (7.17)

7.3. Local resolution of convolution p.d.e.s

Let U be a compact subset of the hyperplane ζn =0 and let ρ∈ (R>)n be its multi-radius
(so that ρn =0). We recall that An(U) denotes the set of analytic functions on U (so that
each such function is analytic on a small n-dimensional neighbourhood of U). We denote
by An(U)en

the subset of An(U) of functions which do not depend on ζn. For each ϕ and
i∈{1,� , n}, we also define ϕ ∗ ∂i to be the operator which sends f to ϕ ∗ (∂i f).

Consider the linear convolution p.d.e.

(ϕ1 ∂1 +� + ϕn ∂n + ψ1 ∗ ∂1 +� + ψn ∗ ∂n)f = g, (7.18)

where

• ϕ1,� , ϕn, ϕn
−1∈An(U)εα,1 for some 0<ε< 1.

• ψ1,� , ψn∈An(U)α,1
♯ and ψ1;1 =� = ψn;1= 0.

• g ∈An(U)α,1.

We will show that (7.18) admits a unique convergent solution in An(U)α,1 for any conver-
gent initial condition f0 ∈ An(U)en ,α,1 on U , provided that α is sufficiently large and ρ
sufficiently small. More precisely:

Theorem 7.7. Let Φi = ‖ϕi‖εα,1, Ψi = ‖ψi‖α,1 (i=1,� , n) and Υ = ‖ϕn
−1‖εα,1. Denote

κ1 = (1− ε)−n (α1 Φ1 +� +αn−1 Φn−1)

κ2 = ((1+ 1÷α+ ρ)1− 1) (α1 Ψ1 +� +αn Ψn)

κ = (1− ε)−n Υ(κ1 +κ2)

and assume that κ<αn. Then (29) admits a unique solution in An(U)α,1 for any initial
condition f0∈An(U)en ,α,1.

Proof. Consider the linear operator L on An(U)α,1 defined by

L= ϕn
−1 (ϕ1 ∂1 +� + ϕn−1 ∂n−1 + ψ1 ∗ ∂1 +� + ψn ∗ ∂n),

so that (7.18) can be rewritten as

∂n f = ϕn
−1 g−Lf.

Given f ∈An(U)α,1 with ‖f ‖α,1 =1, propositions 7.5(b) and 7.5(d) imply

(ϕ1 ∂1 +� + ϕn−1 ∂n−1)f P (Φ1bεα) (α1bα
2) +� +(Φn−1bεα) (αn−1bα

2)

P (1− ε)−n (α1 Φ1 +� +αn−1 Φn−1)bα
2

= κ1bα
2
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and proposition 7.5(f ) entails

(ψ1 ∗ ∂1 +� + ψn ∗ ∂n)f P ((1+1÷α+ ρ)1− 1) (α1 Ψ1 +� +αn Ψn)bα
2

= κ2bα
2 ,

so that

Lf P κbα
2 .

Given f ∈An(U)α,2 with ‖f ‖α,2 =1, we also have

∫

n
f P

1
αn

bα.

Consequently, for f ∈An(U)α,1 we obtain

‖
∫

n
Lf ‖α,1 6

κ

αn
‖f ‖α,1.

In other words, the operator
∫

n
L is contracting on An(U)α,1, since κ<αn.

Given an initial condition f0∈An(U)en ,α,1, let us now consider the operator

K:h	 f0 +
∫

n
ϕn
−1 g−

∫

n
Lh.

By what precedes, the operator K is again contracting, whence it admits a unique fixed
point f in An(U)α,1, which is the solution to (7.18), and which satisfies

‖f ‖α,1 6
1

1−
κ

αn

‖f0 +
∫

n
ϕn
−1 g‖α,1.

Since the coefficient (Kh)0 of ζn
0 in Kh equals f0 for any h∈An(U)α,1, the solution f also

satisfies the initial condition.

In order to see that f is the unique solution to (7.18) which satisfies the initial condition,

let f̃ be another such solution and assume that h= f̃ − f � 0. Let v be the lexicographic
valuation of h (i.e. vn > 0 is the valuation in ζn of h, and vn−1 the valuation in ζn−1 of
the coefficient hvn

of ζn
vn in h, and so on). Taking the coefficient of ζn

vn in the equation
∂nh+Lh= 0, we obtain

hvn
+ ϕn,0

−1 (ψn;>en,0 ∗en
hvn

)= 0,

where

ψn;>en
=
∑

ǫ>en

ψn;ǫ δ;ǫ.

But (hνn
)v−vnen

� 0 and (ϕn,0
−1 (ψn;>en,0 ∗en

hvn
))v−vnen

= 0, since ψn;1 = 0 and v is the

lexicographical valuation of h. This contradiction proves the uniqueness of the solution. �

8. Majorants for integral transforms

8.1. Majorants for parametric integrals

Let T be a compact subset of a real analytic variety and consider an analytic parameter-
ization

ϕ:Cn ×T → Cn

(ζ , t) � ϕ(ζ , t)
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which is linear in ζ. We may naturally associate a functional f � Iϕf to ϕ by

(Iϕf)(ζ) =

∫

t∈T

f(ϕ(ζ , t)) dt.

More precisely, this functional is defined coefficient-wise on C[[ζ]] by

(Iϕf)k=

∫

t∈T

(Iϕ,tf)kdt, (8.1)

where (Iϕ,tf)(ζ) = f(ϕ(ζ , t)). Let us study the growth rate of the coefficients of Iϕf as
a function of the growth rate of the coefficients of f . We will denote

Bα,r = {ζ ∈Cn:α · abs(ζ)<r} ;

B̄α,r = {ζ ∈Cn:α · abs(ζ) 6 r}

and

Bα = Bα,1 ;

B̄α = B̄α,1

for each α∈ (R>)n and r ∈R>.

Lemma 8.1. Let α be such that

{ϕ(ζ , t): ζ ∈ B̄α∧ t∈T }⊆ B̄α.

Then

f Pbα
p � Iϕf PVol(T )bα

p

for all f ∈C[[ζ]] and p∈N.

Proof. Let t∈T be fixed and let us show that

f Pbα
p � Iϕ,tf Pbα

p
. (8.2)

This will clearly imply the lemma, because of (8.1).
Since the mapping ϕ(ζ , t) is linear in ζ, there exists a matrix M with ϕ(ζ , t)=Mζ.

Now by the first condition of the lemma, we have

{Mζ: ζ ∈ B̄α}⊆ B̄α. (8.3)

We claim that this equation is equivalent to

α · (abs(M ) ei)6αi (i=1,� , n). (8.4)

Indeed, (8.3) ⇒ (8.4) follows by taking ζ = ei/αi (i = 1, � , n) and using the facts that

ζ ∈ B̄α,r⇔α · abs(ζ) 6 r and abs(Mei) = abs(M )ei. Inversely, if (8.4) and ζ ∈ B̄α, then

α · abs(Mζ) = α · abs(M (ζ1e1 +� + ζnen))

6 |ζ1|α · abs(Me1) +� + |ζn|α · abs(Men)

6 α1 |ζ1|+� +αn |ζn|6 1,

so that abs(Mζ) ∈ B̄α and Mζ ∈ B̄α. In particular, we notice that (8.4) whence (8.3) is
satisfied for M if and only if it is satisfied for abs(M ).

Notice also that the condition (8.4) is in it’s turn equivalent to the condition

α · (abs(M ) ζ) P α · ζ , (8.5)

26 Majorants for formal power series



when interpreting α ·(abs(M ) ζ) and α · ζ as (linear) series in ζ. Finally, when interpreting
abs(M )ζ as an element of C[[ζ]]n, this latter condition is equivalent to

bα◦ (abs(M ) ζ)Pbα, (8.6)

since bα◦ (abs(M ) ζ) = (1−α · (abs(M ) ζ))−1 and (1−α · ζ)−1 =bα.
Assume now that we have (8.6) and f Pbα

p . Then

Iϕ,tf = f(Mζ)

=
∑

k

fk (Mζ)k

P
∑

k

|fk| abs(Mζ)k

P
∑

k

(bα
p )kabs(Mζ)k

= bα
p ◦ (abs(M ) ζ)

P bα
p
.

This proves (8.2) and we completed the proof of the lemma. �

8.2. Majorants for integral transforms

More generally, consider two analytic parameterizations ϕ, ψ: Cn × T → Cn which are
linear in the first variable. Given two power series f , g ∈C[[ζ]], we define Jψ,ϕ(g, f) by

Jψ,ϕ(g, f)(ζ) =

∫

t∈T

g(ψ(ζ , t)) f(ϕ(ζ , t)) dt,

if f and g are convergent and coefficient-wise by

Jψ,ϕ(g, f)k=

∫

t∈T

Jψ,ϕ,t(g, f)kdt, (8.7)

in the general case, where (Jψ,ϕ,t(g, f)(ζ)= g(ψ(ζ , t) f(ϕ(ζ , t)). For fixed g, the mapping
f � Jψ,ϕ(g, f) is a linear integral transformation. We have

Lemma 8.2. Let α, β and γ be such that β1<α1,� , βn<αn and

{ψ(ζ , t): ζ ∈ B̄β∧ t∈T } ⊆ B̄γ ;

{ϕ(ζ , t): ζ ∈ B̄α∧ t∈T } ⊆ B̄α.

Then

gPbγ∧ f Pbα
p � Jψ,ϕ(g, f) P (1− β÷α)−1Vol(T )bα

p

for all f , g ∈C[[ζ]] and p∈N.

Proof. For fixed t∈T , we claim that

gPbγ∧ f Pbα
p � Jψ,ϕ(g, f)P (1− β÷α)−1bα

p
. (8.8)

This will clearly implies the lemma because of (8.7).
Let M and N be such that ϕ(ζ , t) =Mζ and ψ(ζ , t) =Nζ. In a similar way as in

the proof of lemma 8.1, we have

bα◦ (abs(M ) ζ) P bα ;

bγ ◦ (abs(N ) ζ) P bβ
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and, by lemma 2.4,

Jψ,ϕ,t(g, f) = g(Nζ) f(Mζ)

P [bγ ◦ (abs(N) ζ)] [bα
p ◦ (abs(M ) ζ)]

P bβbα
p

P (1− β÷α)−1bα
p
,

whenever f Pbα
p and gPbγ. �

8.3. Generalized convolution products

Given a compact subset M of a real affine subspace A of the set of all complex n × n

matrices, we define the corresponding generalized convolution product of convergent series
f and g in C[[ζ]] by

(g ∗Mf)(ζ) =

∫

Mζ

g(ζ − ξ) f(ξ) dξ. (8.9)

This definition extends to the whole of C[[ζ]]♯ in a similar way as in the case of standard
convolution. Notice that ∗D = ∗ if D is the set of diagonal matrices with entries in [0, 1].

Now choose a bijective affine parameterizationM :Rm→A; t�Mt of A and consider
the parameterizations ϕ,ψ:Cn ×T →Cn with T =M−1 A and

ϕ(ζ , t) = Mtζ ;

ψ(ζ , t) = ζ −Mtζ.

Then we have

(g ∗Mf)(ζ) =

∫

T

g(ψ(ζ , t)) f(ϕ(ζ , t)) d(Mtζ)

= ∆M(ζ)Jψ,ϕ(g, f)(ζ),

where ∆M(ζ) is the determinant of the Jacobian of the mapping t�Mtζ. This determi-
nant is a homogeneous polynomial in ζ of degree m, since t�Mt was chosen to be affine.
Notice that

Vol(Mζ) = ∆M(ζ)Vol(T ). (8.10)

Consequently, we have

Lemma 8.3. Let 0<ε< 1 and let α be such that

{Mζ:M ∈M∧ ζ ∈ B̄α}⊆ B̄α.

Then

gPbεα/2∧ f Pbα
p � g ∗Mf PVol(Mζ) (1− ε)

−n
bα

p

for all f , g ∈C[[ζ]] and p∈N.

Proof. Let β= εα and γ= εα/2. Then B̄β= B̄α/ε, so that

{Mζ:M ∈M∧ ζ ∈ B̄β}⊆ B̄β,

and B̄γ=2 B̄β so that

{ζ −Mζ:M ∈M∧ ζ ∈ B̄β}⊆ B̄γ.

The result now follows from lemma 8.2 and (8.10). �
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