
Static bounds for straight-line programs∗

JORIS VAN DER HOEVENa, GRÉGOIRE LECERFb, ARNAUD MINONDOc

Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161 CNRS)
CNRS, École polytechnique, Institut Polytechnique de Paris

Bâtiment Alan Turing, CS35003
1, rue Honoré d'Estienne d'Orves

91120 Palaiseau, France
a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr
c. Email: minondo@lix.polytechnique.fr

Preliminary version of June 10, 2025

How to automatically determine reliable error bounds for a numerical computation?
One traditional approach is to systematically replace floating point approximations
by intervals or balls that are guaranteed to contain the exact numbers one is interested
in. However, operations on intervals or balls are more expensive than operations on
floating point numbers, so this approach involves a non-trivial overhead.

In this paper, we present several approaches to remove this overhead, under the
assumption that the function f that we wish to evaluate is given as a straight-line pro-
gram (SLP). We will first study the case when the arguments of our function lie in
fixed balls. For polynomial SLPs, we next consider the “global” case where this restric-
tion on the arguments is removed. We will also investigate the computation of bounds
for first and higher order derivatives of f .

KEYWORDS: straight-line program, ball arithmetic, error bound, reliable computing

1. INTRODUCTION

Interval arithmetic is a popular technique to calculate guaranteed error bounds for
approximate results of numerical computations [2, 13, 16–21]. The idea is to systemat-
ically replace floating point approximations by small intervals around the exact numbers
that we are interested in. Basic arithmetic operations on floating point numbers are
replaced accordingly with the corresponding operations on intervals. When computing
with complex numbers or when working with multiple precision, it is more convenient
to use balls instead of intervals. In this paper, we will always do so and this variant
of interval arithmetic is called ball arithmetic [8, 14].

Unfortunately, ball arithmetic suffers from a non-trivial overhead: floating point balls
take twice the space of floating point numbers and basic arithmetic operations are between
two and approximately ten times more expensive. For certain applications, it may there-
fore be preferable to avoid the systematic use of balls for individual operations. Instead,

∗. Grégoire Lecerf and ArnaudMinondo have been supported by the French ANR-22-CE48-0016NODE project. Joris
van der Hoeven has been supported by an ERC-2023-ADG grant for the ODELIX project (number 101142171).
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held responsible for them.

1

https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016
https://anr.fr/Project-ANR-22-CE48-0016

one may analyze the error for larger groups of operations. For instance, when naively
multiplying two double precision n×n matrices whose coefficients are all bounded by 1
in norm (say), then it is guaranteed that the maximum error of an entry of the result
is bounded by n22−51, without having to do any individual operations on balls.

The goal of this paper is to compute reliable error bounds in a systematic fashion,
while avoiding the overhead of ball arithmetic. We will focus on the case when the func-
tion f that we wish to evaluate is given by a straight-line program (SLP). Such a program
is essentially a sequence of basic arithmetic instructions like additions, subtractions, mul-
tiplications, and possibly divisions [5]. For instance, n×n matrix multiplication can be
computed using an SLP. The SLP framework is actually surprisingly general: at least
conceptually, the trace of the execution of a more general program that involves loops or
subroutines can often be regarded as an SLP [11, section 3].

So consider a function f :𝕂m→𝕂n that can be computed using an SLP, where𝕂=ℝ
orℝ=ℂ. Given a∈𝕂 and r∈ℝ⩾, letℬ(a, r) denote the ball with center a and radius r.
We will consider several problems:
Q1. Given an approximate evaluation b=(b1, . . . ,bn)≈ f (a1, . . . ,am)= f (a) using floating

point arithmetic, can we efficiently compute a bound for the error?
Q2. Given b≈ f (a) and r1, . . . , rm∈ℝ⩾, can we efficiently compute s1, . . . , sn∈ℝ⩾ such

that f (ℬ(x1, r1)× ⋅ ⋅ ⋅ ×ℬ(xm, rm))⊆ℬ(b1, s1)× ⋅ ⋅ ⋅ ×ℬ(bn, sn)?
Q3. Given balls ℬ(a1, r1), . . . ,ℬ(am, rm), an index i∈{1, . . . ,n}, and k1, . . . ,kℓ∈{1, . . . ,m},

can we efficiently compute a bound for � ∂r fi
∂ak1 ⋅ ⋅ ⋅ ∂akℓ

� onℬ(a1, r1)× ⋅ ⋅ ⋅ ×ℬ(am, rm)?

Here “efficiently” means that the cost of the bound computation should not exceed
O(m+n), ideally speaking. In particular, the cost should not depend on the length of
the SLP, but we do allow ourselves to perform precomputations with such a higher cost.
We may regard Q1 as a special case of Q2 by taking r1= ⋅ ⋅ ⋅ = rm=0. If ℓ=0, then Q3
becomes essentially a special case ofQ2, since we may use |bi|+ si as the required bound.

Of course, there is a trade-off between the cost of bound computations and the sharp-
ness of the obtained bounds. We will allow our bounds to be less sharp than those
obtained using traditional ball arithmetic. But we still wish them to be as tight as pos-
sible under the constraint that the cost of the bound computations should remain small.

We start with the special case when the centers a1, . . . ,am lie in some fixed balls B1, . . . ,
Bm. For this purpose we introduce a special variant of ball arithmetic, called matryoshka
arithmetic: see section 2. A matryoshka is a ball whose center is itself a ball and its radius
is a number inℝ⩾. Intuitively speaking, a matryoshka allows us to compute enclosures
for “balls inside balls”. By evaluating f at matryoshki with centers B1, . . . ,Bm and zero
radii, we will be able to answer questionQ1: see section 3. Using this to compute bounds
for the gradient of f on B1× ⋅ ⋅ ⋅ ×Bm, we will also be able to answer question Q2 in the
case whenℬ(a1, r1)⊆B1, . . . ,ℬ(am, rm)⊆Bm.

In section 3, we will actually describe a particularly efficient way to evaluate SLPs at
matryoshki. For this, we will adapt transient ball arithmetic from [10]. This variant of
ball arithmetic has the advantage that, during the computations of error bounds for indi-
vidual operations, no adjustments are necessary to take rounding errors into account.
We originally developed this technique for SLPs that only use ring operations. In sec-
tion 4, we will extend it to SLPs that may also involve divisions.

For polynomial SLPs that do not involve any divisions, we will show in section 5 that
it is actually possible to release the condition that a1, . . . , am must be contained in fixed

2 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

balls B1,...,Bm. The idea is to first reduce to the case when the components fi:𝕂n→𝕂with
i=1,...,n are homogeneous. Then fi(𝜆a)=𝜆di f (a) for some di, so wemay always rescale a
such that it fits into the unit poly-ball ℬ(0, 1)m. We may then apply the theory from
sections 2 and 3. Reliable numeric homotopy continuation [4, 6, 7, 9, 15] is a typical appli-
cation for which it is important to efficiently evaluate polynomial SLPs at arbitrary balls.

Our final section 6 is devoted to question Q3. The main idea is to compute bounds
for the | fi| on ballsℬ(a1,r1+𝛿1), . . .,ℬ(am, rm+𝛿m)with the same centers but larger radii.
We will then use Cauchy's formula to obtain bounds for the derivatives of f without
having to explicitly compute these derivatives. Bounds for the derivatives of f are in
particular useful when developing reliable counterparts of Runge–Kutta methods for
the integration of systems of ordinary differential equations. We intend to provide more
details about this application in an upcoming paper.

2. DIFFERENT TYPES OF BALL ARITHMETIC

2.1. IEEE floating point arithmetic and notation
Throughout this paper, we assume that we work with a fixed floating point format that
conforms to the IEEE 754 standard. We write p for the bit precision, i.e. the number
of fractional bits of the mantissa plus one. We also denote the minimal and maximal
allowed exponents by Emin and Emax. For IEEE 754 double precision numbers, this means
that p=53, Emin=−1022 and Emax=1023. We denote the set of hardware floating point
numbers byℝp. Given anℝ-algebra𝔸, we will also denote the corresponding approxi-
mate version by𝔸p. For instance, if𝔸=ℂ=ℝ[i], then we have𝔸p=ℝp[i].

The IEEE 754 standard imposes correct rounding of all basic arithmetic operations.
In this paper we will systematically use the rounding to nearest mode. We denote by x∘
the result of rounding x∈ℝ according to this mode. The quantity 𝜀∘(x)≔ |x∘−x| stands
for the corresponding rounding error, which may be +∞. Given a single operation
∗∈{+,−, ⋅, . . . }, it will be convenient to write x∗∘ y for (x∗ y)∘. For compound expres-
sions 𝜑, we will also write ∘[𝜑] for the full evaluation of 𝜑 using the rounding mode ∘.
For instance, ∘[xy+a2b]=x∘ ⋅∘y∘+∘(a∘ ⋅∘a∘) ⋅∘b∘.

We denote by 𝜀∘ any upper bound function for 𝜀∘ that is easy to compute. In absence
of underflow, one may take 𝜀∘(x)= |x∘| 2−p. If we want to allow for underflows during
computations, then we can take 𝜀∘(x)= |x∘| 2−p+2Emin−p+1 instead, where 2Emin−p+1 is the
smallest positive subnormal number inℝp. If x,y∈ℝp, then we may still take 𝜀∘(x±y)=
|x±∘ y| 𝜖∘ since no underflow occurs in that special case. See [10, section 2.1] for more
details about these facts.

For bounds on rounding errors, the following lemma will be useful.

LEMMA 2.1. Let q∈ℝ and 𝜖>0 be such that q2⩽𝜖−1. Then (1+𝜖)q⩽1+(q+1)𝜖.

Proof. Let �qk�≔∏i=0
q−1 (q− i)

i+1 for all k∈ℕ. Since 𝜖<1, we have

(1+𝜖)q = 1+q𝜖+ q(q−1)
2 𝜖2+�

k⩾3
�qk�𝜖

k

⩽ 1+q𝜖+ q2𝜖2
2 + |q|3𝜖3

6 e|q|𝜖

⩽ 1+q𝜖+�12 +
e
6�𝜖

⩽ 1+(q+1)𝜖. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 3

2.2. Ball arithmetic
Let𝔸 be anℝ-algebra and let |⋅| be a norm on𝔸. We will typically take𝔸=ℝ or𝔸=ℂ,
but more general normed algebras are also allowed. Given c∈𝔸 and r∈ℝ, letℬ(c,r)≔
{z∈𝔸,|z−c|⩽r} be the closed ball with center c and radius r. We denote byℬ(𝔸,ℝ) the
set of all such balls.

The aim of ball arithmetic is to provide a systematicway to bound the errors of numer-
ical computations. The idea is to systematically replace numerical approximations of
elements in 𝔸 by balls that are guaranteed to contain the true mathematical values. It
will be useful to introduce a separate notation ⊸→← for this type of semantics: given a ball
𝒙∈ℬ(𝔸,ℝ) and a number, we say that 𝒙 encloses x if 𝒙∋x, i.e.

𝒙 ⊸→← x ⟺ x∈𝒙.
We also introduce poly-balls, which are vectors of balls, for situationswhere it is required
to reason “coordinate wise”. For all a≔(a1, . . . , am)∈𝔸m and all r≔(r1, . . . , rm)∈ℝm,
we denote the poly-ball ℬ(a, r)≔(ℬ(a1, r1), . . . ,ℬ(am, rm))∈ℬ(𝔸,ℝ)m. We extend this
enclosure relation to poly-balls 𝒙∈ℬ(𝔸,ℝ)m and x∈ℝm as follows:

𝒙 ⊸→← x ⟺ 𝒙1 ⊸→← x1∧ ⋅ ⋅ ⋅ ∧𝒙m ⊸→← xm. (2.1)

In the sequel, we will use a bold font for ball enclosures and a normal font for values at
actual points. Note that the smallest enclosure of x∈𝔸 is the “exact” ball ℬ(x, 0), and
we will regard𝔸 as being embedded intoℬ(𝔸,ℝ) in this way.

Let us now recall how to perform arithmetic operations in a way that is compatible
with the “enclosure semantics”. Given a function f :𝔸m↦𝔸n, a ball lift of f is a function
f :ℬ(𝔸,ℝ)m↦ℬ(𝔸,ℝ)n that satisfies the inclusion property

𝒙 ⊸→← x ⟹ f (𝒙) ⊸→← f (x)

for all 𝒙∈ℬ(𝔸,ℝ)m and x∈𝔸m. (Note that we voluntarily used the same name f for the
function and its lift.) For instance, the basic arithmetic operations admit the following
ball lifts:

ℬ(a, r)±ℬ(b, s) ≔ ℬ(a±b, r+ s) (2.2)
ℬ(a, r) ⋅ℬ(b, s) ≔ ℬ(ab, (|a|+ r) s+|b| r). (2.3)

Other operations can be lifted in a similar way (in section 4 below, we will in particular
study division). We can also extend the norm from𝔸 toℬ(𝔸,ℝ) via

|⋅| :ℬ(𝔸,ℝ) ⟶ ℝ
ℬ(c, r) ⟼ |c|+ r. (2.4)

The extended norm is sub-additive, sub-multiplicative, and positive definite.

2.3. Matryoshka arithmetic
For any ball 𝒙=ℬ(c,r), we have 𝒙+(−𝒙)=ℬ(c,r)+ℬ(−c,r)=ℬ(0,2r)≠0, soℬ(𝔸,ℝ) is
clearly not an additive group in the mathematical sense. Nonetheless, we may consider
ℬ(𝔸,ℝ) to be a normedℝ-algebra from a computer science perspective, because all the
relevant operations +,−, ⋅, and |⋅| are “implemented”. Allowing ourselves this shortcut,
we may apply the theory from the previous subsection and formally obtain a ball arith-
metic on ℬ(ℬ(𝔸,ℝ),ℝ). It turns out that this construction actually makes sense from
a mathematical perspective, provided that we appropriately adapt the semantics for the
notion of “enclosure”.

4 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

R

A
a s

r

Figure 2.1. Representation of an embedded ball inside a matryoshka.

Let ℬ(𝔸,ℝ,ℝ)≔ℬ(ℬ(𝔸,ℝ),ℝ). An element ℬ(A,R, r)≔ℬ(ℬ(A,R), r) of ℬ(𝔸,
ℝ,ℝ)will be called amatryoshka. Given a matryoshka 𝑨=ℬ(A,R,r), we call A its center,
R its large radius, and r its small radius. The appropriate enclosure relation for matryoshki
is defined as follows: given a matryoshka 𝑨=ℬ(A,R, r) and a ball 𝒂=ℬ(a, s), we define

𝑨 ⊸→←𝒂 ⟺ ℬ(A,R) ⊸→← a and s⩽ r.

Conceptually, the “small embedded ball” 𝒂 is contained in the matryoshka, which cor-
responds to the “big ball” ℬ(A,R+ r): see Figure 2.1. The enclosure relation naturally
extends to vectors as in (2.1).

We use the abbreviation ℬ(𝔸,ℝ,ℝ)≔ℬ(ℬ(𝔸,ℝ),ℝ) for the set of matryoshki.
A function f :ℬ(𝔸,ℝ)m→ℬ(𝔸,ℝ)n is said to lift to f :ℬ(𝔸,ℝ,ℝ)m→ℬ(𝔸,ℝ,ℝ)n if it
satisfies the inclusion principle:

𝑨 ⊸→←𝒂 ⟹ f (𝑨) ⊸→← f (𝒂)

for all𝑨∈ℬ(𝔸,ℝ,ℝ)m and 𝒂∈ℬ(𝔸,ℝ)n. Exactly the same formulas (2.2) and (2.3) can
be used in order to lift the basic arithmetic operations:

ℬ(𝑨, r)±ℬ(𝑩, s) ≔ ℬ(𝑨±𝑩, r+ s)
ℬ(𝑨, r) ⋅ℬ(𝑩, s) ≔ ℬ(𝑨⋅𝑩, (|𝑨|+ r) s+|𝑩| r),

for allℬ(𝑨,r),ℬ(𝑩,s)∈ℬ(𝔸,ℝ,ℝ). (Note that it was this time convenient to use𝑨,𝑩 as
a notation for the centers of our matryoshki.) We may also extend the norm onℬ(𝔸,ℝ)
to matryoshki via

|⋅| :ℬ(𝔸,ℝ,ℝ) ⟶ ℝ
ℬ(𝑨, r) ⟼ |𝑨|+ r

which again remains sub-additive, sub-multiplicative, and positive definite.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 5

Remark 2.2. In principle, we could repeat the process and recursively considermatryoshki
as centers of even larger matryoshki. While attractive from a folkloric perspective, it
turns out that the basic matryoshki are more efficient for the applications we know of.

2.4. Rounded and transient ball arithmetic

We will write ℬ(𝔸p,ℝp) and ℬ(𝔸p,ℝp,ℝp) for the approximate versions of ℬ(𝔸,ℝ)
and ℬ(𝔸,ℝ,ℝ) when working with machine floating point numbers in ℝp instead of
exact real numbers in ℝ. In that case, the formulas from section 2.2 and 2.3 need to be
adjusted in order to take into account rounding errors. For instance, if 𝔸=ℝ, then one
may replace the formulas (2.2), (2.3), and (2.4) by

ℬ(a, r)±∘ℬ(b, s) ≔ ℬ(a±∘b, ∘[(r+ s+𝜀∘(a±b))(1+4 ⋅2−p)])
ℬ(a, r) ⋅∘ℬ(b, s) ≔ ℬ(a ⋅∘b, ∘[((|a|+ r) s+|b| r+𝜀∘(a ⋅b))(1+6 ⋅2−p)])

|ℬ(a, r)|∘ ≔ ∘[(|a|+ r)(1+2 ⋅2−p)].
(2.5)

See, e.g., [10]. We will call this rounded ball arithmetic.
Unfortunately, these formulas are far more complicated than (2.2), (2.3), and (2.4),

so bounding the rounding errors in this way gives rise to a significant additional com-
putational overhead. An alternative approach is to continue to use the non-adjusted
formulas

ℬ(a, r)±∘ℬ(b, s) ≔ ℬ(a±∘b, ∘[r+ s])
ℬ(a, r) ⋅∘ℬ(b, s) ≔ ℬ(a ⋅∘b, ∘[(|a|+ r) s+|b| r])

|ℬ(a, r)|∘ ≔ ∘[|a|+ r].
(2.6)

This type of arithmetic was called transient ball arithmetic in [10]. This arithmetic is not
a ball lift, but we will see below how to take advantage of it by inflating the radii of the
input balls of a given SLP.

Of course, we need to carefully examine the amount of inflation that is required to
ensure the correctness of our final bounds. This will be the purpose of the next section in
the case where we evaluate an entire SLP using transient ball arithmetic. We denote by
𝜖𝔸p∈ℝp∩(ℕ2−p) a quantity that satisfies 𝜖𝔸p⩽ /1 16 and

|a∗∘b−a∗b| ⩽ |a∗∘b| 𝜖𝔸p

||a|∘− |a|| ⩽ |a|∘𝜖𝔸p,
(2.7)

for all a, b∈𝔸p and ∗∈{+,−, ⋅}, in absence of underflows and overflows. One may for
instance take 𝜖ℝp≔2−p and 𝜖ℂp≔4 ⋅ 2−p, whenever p⩾16; see [10, Appendix A of the
preprint version].

We recall the following lemma, which provides a useful error estimate for the radius
of a transient ball product.

LEMMA 2.3. [10, Lemma 3] For all a,b∈𝔸p and r, s∈ℝp such that the computation of

R=∘[(|a|+ r) s+|b| r]

involves no underflows or overflows, we have (|a|+ r) s+|b| r⩽R(1+𝜖𝔸p)4.

6 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

In the presence of overflows or underflows, additional adjustments are required.
Overflows actually cause no problems, because the IEEE 754 standard rounds every
number beyond the largest representable floating point number to infinity, so the radii
of balls automatically become infinite whenever an overflow occurs. In order to pro-
tect ourselves against underflows, the requirements (2.7) need to be changed into

|(a±∘b)− (a±b)| ⩽ |a±∘b| 𝜖𝔸p

|a ⋅∘b−a ⋅b| ⩽ |a ⋅∘b| 𝜖𝔸p+𝜂𝔸p

||a|∘− |a|| ⩽ |a|∘𝜖𝔸p+𝜂𝔸p.
(2.8)

Here we recall that additions and subtractions never lead to underflows. If𝔸p=ℝp, then
we may take 𝜂ℝp≔2Emin+1. If 𝔸p=ℂp, then a safe choice is 𝜂ℂp≔8 ⋅ 2(Emin+1)/2 (in fact,
𝜂ℂp≔5⋅2Emin+1 is sufficient for multiplication). We refer to [10, section 3.3] for details.

2.5. Transient matryoshka arithmetic
Taking ℬ(𝔸p,ℝp) instead of 𝔸p for our center space, the formulas (2.6) naturally give
rise to transient matryoshka arithmetic:

ℬ(𝑨, r)±∘ℬ(𝑩, s) ≔ ℬ(𝑨±∘𝑩,∘[r+ s])
ℬ(𝑨, r) ⋅∘ℬ(𝑩, s) ≔ ℬ(𝑨⋅∘𝑩,∘[(|𝑨|+ r) s+|𝑩| r])

|ℬ(𝑨, r)|∘ ≔ ∘[|𝑨|+ r].

Here we understand the operations ±∘, ⋅∘, and |⋅|∘ on the centers are done use transient
ball arithmetic.

We will need an analogue of Lemma 2.3 for matryoshki. Given balls 𝒂=ℬ(a, r) and
𝒃=ℬ(b,s) inℬ(𝔸,ℝ), we define 𝒂−vec𝒃≔ℬ(𝒂−𝒃, |r−s|). Inwhat follows, let 𝜖ℬ(𝔸p,ℝp)∈
ℝp∩(ℕ2−p) be such that 𝜖ℬ(𝔸p,ℝp)⩽ /1 16 and

|𝒂∗∘𝒃−vec𝒂∗𝒃| ⩽ |𝒂∗∘𝒃|𝜖ℬ(𝔸p,ℝp)
||𝒂|∘− |𝒂|| ⩽ |𝒂|∘𝜖ℬ(𝔸p,ℝp),

(2.9)

for all 𝒂,𝒃∈ℬ(𝔸p,ℝp) and ∗∈{+,−, ⋅}, in absence of underflows and overflows.
Let 𝜖≔max (𝜖𝔸p, 𝜖ℝp). Given 𝒂≔ℬ(a, r)∈ℬ(𝔸p,ℝp) and 𝒃≔ℬ(b, s)∈ℬ(𝔸p,ℝp),

Lemma 2.3 gives (|a|+ r) s+|b| r⩽∘[(|a|+ r) s+|b| r] (1+𝜖)4; similarly we have

∘[(|a|+ r) s+|b| r] (1−𝜖)4⩽(|a|+ r) s+|b| r.
This implies

|𝒂 ⋅∘𝒃−vec𝒂 ⋅𝒃| ⩽ |𝒂 ⋅∘𝒃|max((1+𝜖)4−1,1− (1−𝜖)4)
⩽ |𝒂 ⋅∘𝒃| (5𝜖).

It thus suffices to take 𝜖ℬ(𝔸p,ℝp)≔5max (𝜖𝔸p, 𝜖ℝp) for (2.9) to hold in the case of mul-
tiplication. Simpler similar computations show that this is also sufficient for the other
operations. We can now state the analogue of Lemma 2.3.

LEMMA 2.4. For all 𝒂,𝒃∈ℬ(𝔸p,ℝp) and r, s∈ℝp such that the computation of

R=∘[(|𝒂|+ r) s+|𝒃| r]

involves no underflows or overflows, we have (|𝒂|+ r) s+|𝒃| r⩽R(1+𝜖ℬ(𝔸p,ℝp))4.

Proof. The same as the proof of [10, Lemma 1], mutatis mutandis. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 7

3. EVALUATING STRAIGHT LINE PROGRAMS

3.1. Straight-line programs
A straight-line program Γ over a ring𝔸 is a sequence Γ1, . . . , Γl of instructions of the form

Γk ≡ Xk≔Ck or
Γk ≡ Xk≔Yk∗Zk,

where Xk,Yk,Zk are variables in a finite ordered set 𝒱, Ck constants in𝔸, and ∗∈{+,−, ⋅}.
Variables that appear for the first time in the sequence in the right-hand side of an instruc-
tion are called input variables. A distinguished subset of the set of all variables occurring
at the left-hand side of instructions is called the set of output variables. Variables which
are not used for input or output are called temporary variables and determine the amount
of auxiliary memory needed to evaluate the program. The length lΓ= l of the sequence
is called the length of Γ.

Let I1, . . . , Im be the input variables of Γ and O1, . . . ,On the output variables, listed in
increasing order. Then we associate an evaluation function EΓ:𝔸m→𝔸n to Γ as follows:
given (a1, . . . ,am)∈𝔸m, we assign ai to Ii for i=1, . . . ,m, then evaluate the instructions of
Γ in sequence, and finally read off the values of O1, . . .,On, which determine EΓ(a1, . . .,am).

To each instruction Γk, one may associate the remaining path lengths qk as follows. Let
ql=1, and assume that qk+1, . . . ,ql have been defined for some k∈{1, . . . , l}. Then we take
qk=max (qi1, . . .,qin)+1, where i1>⋅⋅ ⋅> in are those indices i>k such that Γi is of the form
Xi≔Yi∗ZiwithXk∈{Yi,Zi}, ∗∈{+,−, ⋅}, andXk∉{Xk+1,...,Xi−1}. If no such indices i exist,
then we set qk=1. Similarly, for each input variable Ik we define qIk=max (qi1, . . . ,qin)+
1, where i1>⋅⋅⋅> in are those indices such that Γi is of the formXi≔Yi∗Zi with Ik∈{Yi,Zi},
∗∈{+,−, ⋅}, and Ik∉{X1, . . . ,Xi−1}. We also define qΓ=max (qI1, . . . ,qIm,qi1, . . . ,qin), where
I1,...,Im are the input variables of Γ and i1,..., in all indices i such that Γi is of the formXi≔Ci.

Example 3.1. Let us consider Γ=(x1≔5,x2≔a1 ⋅a2,x1≔x1 ⋅x2,x3≔x1+a1), of length l=4.
The input variables are a1 and a2, and we distinguish x3 as the sole output variable. This
SLP thus computes the function 5a1a2+a1. The associated computation graph, together
with remaining path lengths are as pictured:

a1

a2
× ×

+

5
q2=3

q1=3

q3=2

q4=1

3.2. Transient ball evaluations
Our goal is to evaluate SLPs using transient ball arithmetic from section 2.4 instead of
rounded ball arithmetic. Transient arithmetic is faster, but some adjustments are required
in order to guarantee the correctness of the end-results. In order to describe and ana-
lyze the correctness of these adjustments, it is useful to introduce one more variant of
ball arithmetic.

8 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

In semi-exact ball arithmetic, the operations on centers are approximate, but correctly
rounded, whereas operations on radii are exact and certified:

ℬ(a, r∗)±∗ℬ(b, s∗) ≔ ℬ(∘[a±b], r∗+ s∗+𝜀∘(a±b))
ℬ(a, r∗) ⋅∗ℬ(b, s∗) ≔ ℬ(∘[a ⋅b], (|a|+ r∗) s∗+|b| r∗+𝜀∘(a ⋅b)),

where a, b∈𝔸p and r∗, s∗∈ℝp. The extra terms 𝜀∘(a∗ b) in the radius ensure that these
definitions satisfy the inclusion principle.

In order tomeasure how far transient arithmetic can deviate from this idealized semi-
exact arithmetic, let Hk≔

1
1 + ⋅ ⋅ ⋅ + 1

k be the k-th harmonic number and let Hk,l≔Hl−Hk
for all l⩾k. The following theorem shows how to certify transient ball evaluations:

THEOREM 3.2. [10, Theorem 5] Let Γ be an SLP of length l as above and let 𝛼>0 be an arbitrary
parameter such that 1+𝛼>(1+𝜖)4qΓ, where 𝜖=𝜖𝔸p is as in (2.7). Consider two evaluations of Γ
for different types of ball arithmetic. For the first evaluation, we use semi-exact ball arithmetic
with 𝜀∘(x)=|x∘|𝜖. For the second evaluation, we use transient ball arithmetic with the additional
property that any input or constant ballℬ(a, r∗) is replaced by a larger ballℬ(a, r) with

r⩾max(|a| ((1+𝜖)𝛽qΓ−1), (1+𝛼) r∗),
where

𝛽⩾max�3, 1+𝛼
𝛼 𝛾�, 𝛾⩾HqΓ(1+𝜖)4qΓ 𝛼

1+𝛼 ((((((((((((((1− (1+𝜖)4qΓ
1+𝛼))))))))))))))

−1
.

Assume that no underflow or overflow occurs during the second evaluation. For any corre-
sponding outputsℬ(c, t∗) andℬ(c, t) for the first and second evaluations, we then have t∗⩽ t.

Given a fixed 𝛼 and qΓ=O(𝜖−1), we note that we may take 𝛽 and 𝛾 such that (1+
𝜖)𝛽qΓ−1=O(𝜖qΓ log qΓ). The value of the parameter 𝛼may be optimized as a function of
the SLP and the input. Without entering details, 𝛼 should be taken large when the input
radii are small, and small when these radii are large. The latter case occurs typically
within subdivision algorithms. For ourmain applicationwhenwewant to compute error
bounds, the input radii are typically small or even zero.

For our implementations in MATHEMAGIX [12] and JIL [1], we found it useful to fur-
ther simplify the bounds from Theorem 3.2, assuming that 𝜖 is “sufficiently small”.

COROLLARY 3.3. With the notation from Theorem 3.2, assume that (4 qΓ)2⩽𝜖−1. In order to
apply Theorem 3.2, it is sufficient to take 𝛼>𝜂≔(4qΓ+1)𝜖 and

𝛽⩾max((((((((((3, (ln qΓ+1) (1+𝜂)(1+𝛼)
𝛼−𝜂)))))))))).

Proof. The harmonic series satisfies the well-known inequality ln qΓ⩽HqΓ⩽ ln qΓ+ 1,
of which we only use the right-hand part. Lemma 2.1 also yields (1+𝜖)4qΓ⩽1+𝜂. Given
that 𝛼>𝜂, it follows that

((((((((((((((1− (1+𝜖)4qΓ
1+𝛼))))))))))))))

−1
= 1+𝛼
1+𝛼− (1+𝜖)4qΓ

⩽ 1+𝛼
𝛼−𝜂.

Therefore,

HqΓ(1+𝜖)4qΓ((((((((((((((1− (1+𝜖)4qΓ
1+𝛼))))))))))))))

−1
⩽ (ln(qΓ)+1) (1+𝜂)(1+𝛼)

𝛼−𝜂 . □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 9

3.3. From balls to matryoshki
The semi-exact ball arithmetic from the previous subsection naturally adapts to
matryoshki as follows: given 𝑨,𝑩∈ℬ(𝔸p,ℝ) and r∗, s∗∈ℝ, we define

ℬ(𝑨, r∗)±∗ℬ(𝑩, s∗) ≔ ℬ(𝑨±∗𝑩, r∗+ s∗+𝜀∘(𝑨±𝑩)),
ℬ(𝑨, r∗) ⋅∗ℬ(𝑩, s∗) ≔ ℬ(𝑨⋅∗𝑩,(|𝑨|+ r∗) s∗+|𝑩| r∗+𝜀∘(𝑨⋅𝑩)),

where 𝜀∘ is extended to balls via

𝜀∘(𝑨) ≔ 𝜀∘(|𝑨|).

Recall that 𝜀∘(|𝑨|) denotes an upper bound on the rounding errors involved in the com-
putation of the norm of 𝑨. Operations on centers use the semi-exact arithmetic from
the previous subsection. This arithmetic is therefore a matryoshka lift of the elementary
operations. The following theorem specifies the amount of inflation that is required in
order to certify SLP evaluations using “transient matryoshka arithmetic”.

THEOREM 3.4. Let 𝜖= 𝜖𝔸p,ℝp, and let 𝛼, 𝛽, 𝛾 be as in Theorem 3.2. Consider two evaluations
of Γ for two different types of arithmetic. For the first evaluation, we use semi-exact matryoshka
arithmetic with 𝜀∘(x)=|x∘| 𝜖. For the second evaluation, we use transient matryoshka arithmetic
with the additional property that any input or constant ballℬ(A,R∗, r∗) is replaced by a larger
ballℬ(A,R, r)=ℬ(𝑨, r) with

R ⩾ max(|A| ((1+𝜖)𝛽qΓ−1), (1+𝛼)R∗),
r ⩾ max(|𝑨| ((1+𝜖)𝛽qΓ−1), (1+𝛼) r∗).

Assume that no underflow or overflow occurs during the second evaluation. For any corre-
sponding outputs ℬ(C, T∗, t∗) and ℬ(C, T, t) for the first and second evaluations, we then
have T∗⩽T and t∗⩽ t.

Proof. The theorem essentially follows by applying Theorem 3.2 twice: once for the big
and once for the small radii. This is clear for the big radii T∗ and T since the formulas
for the big radii of matryoshki correspond with the formula for the radii of the corre-
sponding ball arithmetic. For the small radii, we use essentially the same proof as in [10].
For convenience of the reader, we reproduce it here with the requiredminor adaptations.

Let ℬ(Ck, Tk, tk) =ℬ(𝑪k, tk) be the value of the variable Xk after the evaluation of
Γ1, . . . , Γk using transient matryoshki arithmetic. It will be convenient to systematically
use star superscripts for the corresponding value ℬ(Ck,Tk∗, tk∗)=ℬ(𝑪k

∗, tk∗) when using
semi-exact matryoshka arithmetic. Let us show by induction on k that:

tk⩾|𝑪k| ((1+𝜖)𝛽qk−1). (3.1)

If Γk is of the form Xk≔ℬ(𝑪k, tk), then we are done since qk⩽qΓ. Otherwise, Γk is of the
form Xk≔Yk∗Zk. Writing Yk=ℬ(𝑨, r), we claim that

r⩾|𝑨| ((1+𝜖)𝛽(qk+1)−1).

This holds by assumption if Yk is an input variable. Otherwise, let i<k be the largest index
such that Yk=Xi. Then qi⩾qk+1 by construction of qi, whence our claim follows from the
induction hypothesis. Similarly, writing Zk=ℬ(𝑩, s), we have s⩾|𝑩| ((1+𝜖)𝛽(qk+1)−1).

10 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

Having shown our claim, let us first consider the case where ∗∈{+,−}. In this case
we obtain

r+ s ⩾ (|𝑨|+ |𝑩|) ((1+𝜖)𝛽(qk+1)−1)
⩾ |𝑨∗𝑩|((1+𝜖)𝛽(qk+1)−1).

Combined with (2.9) and the inequalities

1−𝜖 ⩾ (1+𝜖)−2

((1+𝜖)A−1)(1+𝜖)−1 ⩾ (1+𝜖)A−1−1,
(3.2)

we deduce:

tk = ∘[r+ s]
⩾ (r+ s)(1+𝜖)−1

⩾ |𝑨∗𝑩|((1+𝜖)𝛽(qk+1)−1)(1+𝜖)−1

⩾ |𝑨∗∘𝑩|((1+𝜖)𝛽(qk+1)−1)(1+𝜖)−1(1−𝜖)
⩾ |𝑨∗∘𝑩|((1+𝜖)𝛽(qk+1)−1)(1+𝜖)−3

⩾ |𝑨∗∘𝑩|((1+𝜖)𝛽qk−1).

In case when ∗=⋅, we obtain

|𝑨| s+|𝑩| r+ r s ⩾ |𝑨| s+|𝑩| r
⩾ 2 |𝑨⋅𝑩| ((1+𝜖)𝛽(qk+1)−1).

Combined with Lemma 2.4, the inequalities (3.2), (2.9), and 2 (1+𝜖)−4>(1+𝜖)−1 suc-
cessively imply

tk = ∘[(|𝑨|+ r) s+|𝑩| r]
⩾ (|𝑨| s+|𝑩| r+ r s)(1+𝜖)−4

⩾ 2 |𝑨⋅𝑩| ((1+𝜖)𝛽(qk+1)−1)(1+𝜖)−4

⩾ |𝑨⋅∘𝑩|((1+𝜖)𝛽(qk+1)−1)(1−𝜖)(1+𝜖)−1

⩾ |𝑨⋅∘𝑩|((1+𝜖)𝛽qk−1),

which achieves the induction. Then, for all k∈{1, . . . , l}, we define

𝛾k≔(((((((1
1+𝛼 +

𝛼
𝛾 (1+𝛼)Hqk,qΓ))))))) (1+𝜖)4(qΓ−qk)

so that (1+ 𝛼)−1⩽𝛾k. By the inequality that we imposed on 𝛾, we have 𝛾k⩽1. Using
a second induction over k, let us next prove that

tk∗⩽𝛾k tk. (3.3)

Assume that this inequality holds up until order k−1. If Γk is of the form Xk≔ℬ(𝑪k, tk)
then we are done by the fact that 𝛾k⩾(1+𝛼)−1. If Γk is of the form Xk≔Yk±Zk, then let i,
j<k be the largest integers so that Xi=Yk and Xj=Zk, so we havemin(qi,qj)⩾qk+1,

max(𝛾i, 𝛾j)⩽(((((((1
1+𝛼 +

𝛼
𝛾 (1+𝛼)Hqk+1,qΓ)))))))(1+𝜖)4(qΓ−(qk+1)),

and

𝜂k≔
|𝑪k| 𝜖
tk

⩽ 𝜖
((1+𝜖)𝛽qk−1)

⩽ 1
𝛽qk

⩽ 𝛼
qk𝛾 (1+𝛼),

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 11

using (3.1). In particular, we obtain (max(𝛾i, 𝛾j)+𝜂k)(1+𝜖)4⩽𝛾k. We denote byℬ(𝑨∗,
r∗) (resp. ℬ(𝑩∗, s∗)) the matryoshka corresponding to the value of Yk (resp. Zk) in
the semi-exact evaluation. Their corresponding values for the transient evaluation are
denoted without the star superscript. Thanks to Theorem 3.2, we know that Tk∗⩽ Tk,
whence |𝑪k

∗|⩽ |𝑪k| since Ck
∗=Ck. With r and s as above, using (3.3) and (2.9), it follows

that

tk∗ = r∗+ s∗+|𝑪k
∗| 𝜖

⩽ r∗+ s∗+|𝑪k| 𝜖
⩽ ((r+ s)max(𝛾i, 𝛾j)+𝜂k tk)
⩽ (max(𝛾i, 𝛾j)+𝜂k) tk (1+𝜖)
⩽ 𝛾k tk.

If Γk is of the form Xk≔Yk ⋅Zk, then, thanks to Lemmas 2.3, 2.4, and inequality (3.3) a
similar calculation yields

tk∗ = |𝑨∗| s∗+(|𝑩∗|+ s∗) r∗+|𝑪k
∗| 𝜖

⩽ |𝑨| s∗+(|𝑩|+ s) r∗+𝜂k tk
⩽ (|𝑨| s+(|𝑩|+ s) r)max(𝛾i, 𝛾j)+𝜂k tk
⩽ (max(𝛾i, 𝛾j)+𝜂k) tk (1+𝜖)4

⩽ 𝛾k tk,

which completes the second induction and the proof of this theorem. □

Remark 3.5. In [10, section III.C], it is discussed how to manage underflows and over-
flows in Theorem 3.2. A similar discussion applies to Theorem 3.4.

3.4. Applications
Let us now give two direct applications of matryoshka arithmetic. Assume that we are
given an SLP Γ that computes a function f =EΓ:𝔸m→𝔸n and denote by f∘:𝔸p

m→𝔸p
n the

function obtained by evaluating Γ using approximate floating point arithmetic over𝔸p.
Matryoshki yield an efficient way to statically bound the error f∘(a)− f (a) for a inside
some fixed poly-ball, as follows:

PROPOSITION 3.6. Let 𝑨= (𝑨1, . . . , 𝑨m) ∈ℬ(𝔸p, ℝp)m be a fixed poly-ball and ℬ(𝑨, 0)≔
(ℬ(𝑨1, 0), . . . , ℬ(𝑨m, 0))∈ℬ(𝔸p, ℝp, ℝp)m. Let 𝑭: ℬ(𝔸p, ℝp, ℝp)m→ (𝔸p, ℝp, ℝp)n be
a poly-matryoshka lift of f and ℬ(𝑩, E)≔ (ℬ(𝑩1, E1), . . . , ℬ(𝑩n, En))≔ 𝑭(ℬ(𝑨, 0)). Then
for all a∈𝔸p

m with a1∈𝑨1, . . . ,am∈𝑨m and i=1, . . . ,n, we have

| f∘,i(a)− fi(a)|⩽Ei.

Proof. Let 𝒇 :ℬ(𝔸p,ℝp)m→ℬ(𝔸p,ℝp)n be a ball lift for which 𝑭 satisfies the matryoshka
lift property. Since 𝑨 ⊸→← a by assumption, we have

𝑭(ℬ(𝑨,0))=ℬ(𝑩,E) ⊸→←𝒇(ℬ(a, 0))=ℬ(f∘(a), r),

for some r∈ℝp
n. The ball lift property also yields

ℬ(f∘(a), r) ⊸→← f (a),
so | f∘,i(a)− fi(a)|⩽ ri⩽Ei for i=1, . . . ,n. □

12 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

As our second application, we wish to construct a ball lift of f that is almost as effi-
cient to compute as f itself, provided that the input balls are included into fixed large
balls 𝑨1, . . .,𝑨m∈ℬ(𝔸p,ℝp) as above. For this, we first compute bounds Bi, j∈ℝp

⩾ for the
Jacobian matrix of f :

sup
𝑨 ⊸→←a

� ∂ fi
∂xj

(a)� ⩽ Bi, j. (3.4)

For this, it suffices to evaluate a ball lift of the Jacobian of f at𝑨, which yields amatrix 𝑱∈
ℬ(𝔸p,ℝp)n×m, after which we take Bi, j≔|𝑱i, j|. We recall that an SLP for the computation
of the Jacobian can be constructed using the algorithm by Baur and Strassen [3].

PROPOSITION 3.7. Let lg k≔⌈log2 k⌉ for all integers k⩾1 and 𝜂≔𝜂𝔸p. With the above nota-
tion, assume that (lgm+5)2⩽𝜖−1, and let E be as in Proposition 3.6. For every 𝒂=ℬ(a, r)∈
ℬ(𝔸p,ℝp)m with 𝒂1⊆𝑨1, . . . , 𝒂m⊆𝑨m, let

𝒇∗(𝒂)≔ℬ(f∘(a), ∘[(E+Br)(1+(lgm+6)𝜖)+3𝜂]).

Then 𝒇∗ is a ball lift of f. (Note that this lift is only defined on the set of 𝒂∈ℬ(𝔸p,ℝp)m such
that 𝒂1⊆𝑨1, . . . , 𝒂m⊆𝑨m.)

Proof. Let b1∈𝒂1, . . . ,bm∈𝒂m. Then, for i=1, . . . ,n, we have

| fi(b)− fi(a)|⩽Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm,

by (3.4) and the mean value theorem. In other words,

ℬ(f (a),Br) ⊸→← f (b).

Applying Proposition 3.6, it follows that
ℬ(f∘(a),E+Br) ⊸→← f (b).

By computing the sum Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm via a balanced binary tree and using (2.8),
we obtain

Ei+Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm ⩽ (∘[(Ei+Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm)] (1+𝜖)+𝜂𝔸p)(1+𝜖)lgm

⩽ ∘[(Ei+Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm)] (1+𝜖)lgm+1+2𝜂
⩽ (∘[Ei+Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm] (1+(lgm+6)𝜖)+3𝜂)(1+𝜖)−4

⩽ ∘[(Ei+Bi,1 r1+ ⋅ ⋅ ⋅ +Bi,m rm)(1+(lgm+6)𝜖)+3𝜂],

where we also used Lemma 2.1 and the fact that the computation of lgm+6 is exact. □

4. DIVISION

It is classical to extend ball arithmetic to other operations like division, exponentiation,
logarithm, trigonometric functions, etc. In this section, we will focus on the particular
case of division. It will actually suffice to study reciprocals 𝜄(x)≔x−1, since x/y=x 𝜄(y).

Divisions and reciprocals raise the new difficulty of divisions by zero. We recall
that the IEEE 754 provides a special not-a-number element NaN inℝp that corresponds
to undefined results. All arithmetic operations on NaN return NaN, so we may check
whether some error occurred during a computation, simply by checking whether one
of the return values is NaN. For exact arithmetic, we will assume that ℝ is extended
in a similar way with an element NaN such that 𝜄(0)≔NaN.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 13

4.1. Reciprocals of balls
In the remainder of this section, assume that 𝔸=ℝ or𝔸=ℂ. In order to extend recip-
rocals to balls, it is convenient to introduce the function

𝜄(x)≔{{{{{{{{{{{{{{{{{{{{ 𝜄(x), if x>0
NaN, if x⩽0

Then the exact reciprocal of a ballℬ(a, r)∈ℬ(𝔸,ℝ) can be defined as follows:

𝜄(ℬ(a, r)) ≔ ℬ(𝜄(a), r 𝜄((|a|− r) |a|)), (4.1)

where we note that
r 𝜄((|a|− r) |a|)= r

(|a|− r) |a| =
1

|a|− r−
1
|a| .

Ifℬ(a, r)∈ℬ(𝔸p,ℝp) then we may also use the following formula

𝜄∘(ℬ(a, r)) ≔ ℬ(𝜄∘(a), ∘[r 𝜄((|a|− r) |a|)]) (4.2)

for transient ball arithmetic and

𝜄∗(ℬ(a, r∗)) ≔ ℬ(𝜄∘(a), r 𝜄((|a|− r) |a|)+𝜀∘(𝜄(a))). (4.3)

for semi-exact ball arithmetic.
We assume that the rounded counterpart of the reciprocal verifies the condition

|𝜄∘(a)− 𝜄(a)|⩽ |𝜄∘(a)| 𝜖𝔸p, (4.4)

for all invertible a in 𝔸p. For IEEE 754 arithmetic, this condition is naturally satisfied
for 𝜖ℝp⩾2−p when𝔸p=ℝp, and in absence of overflows and underflows. If𝔸p=ℂp and
a,b∈ℝp, then we compute reciprocals using the formula

𝜄∘(a+ib) ≔ ∘[(a− ib) 𝜄(a2+b2)].

For this definition, we have

|𝜄∘(a+ib)− 𝜄(a+ib)| ⩽ |a− ib| |∘[𝜄(a2+b2)]− 𝜄(a2+b2)|+ |𝜄∘(a+ib)| 𝜖ℝp.

Now
a2+b2 ⩽ (a ⋅∘a+b ⋅∘b)(1+𝜖ℝp) ⩽ ∘[a2+b2] (1+𝜖ℝp)2

a2+b2 ⩾ (a ⋅∘a+b ⋅∘b)(1−𝜖ℝp) ⩾ ∘[a2+b2] (1−𝜖ℝp)2,
whence

𝜄(a2+b2) ⩾ 𝜄(∘[a2+b2]) (1+𝜖ℝp)−2 ⩾ ∘[𝜄(a2+b2)] (1+𝜖ℝp)−2(1−𝜖ℝp)
𝜄(a2+b2) ⩽ 𝜄(∘[a2+b2]) (1−𝜖ℝp)−2 ⩽ ∘[𝜄(a2+b2)] (1−𝜖ℝp)−2(1+𝜖ℝp).

For 𝜖ℝp⩽ /1 16, it follows that

|a− ib| |∘[𝜄(a2+b2)]− 𝜄(a2+b2)| ⩽ |a− ib| (∘[𝜄(a2+b2)] (3𝜖ℝp+6𝜖ℝp
2))

⩽ |∘[(a− ib) 𝜄(a2+b2)]| (3𝜖ℝp+10𝜖ℝp
2)

= |𝜄∘(a+ib)| (3𝜖ℝp+10𝜖ℝp
2)

⩽ |𝜄∘(a+ib)| (4𝜖ℝp).

Consequently,

|𝜄∘(a+ib)− 𝜄(a+ib)| ⩽ |𝜄∘(a+ib)| (5𝜖ℝp).

This shows that we may take 𝜖ℂp≔5𝜖ℝp.

14 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

Let us denote 𝜖≔max(𝜖𝔸p, 𝜖ℝp) and assume that 𝜖⩽ /1 16. We are now in a position to
prove a counterpart of Lemma 2.3 for division.

LEMMA 4.1. Let ℬ(a, r)∈ℬ(𝔸p,ℝp) and 𝜅∈ℝp
⩾ be such that 0⩽ r

|a|− r ⩽𝜅. Assume that the
computation of

R ≔ ∘[r 𝜄((|a|− r) |a|)]

involves no overflows and no underflows. Then r 𝜄((|a|− r) |a|)⩽R(1+𝜖)𝜅+7.

Proof. We have

|a|∘− r ⩽ |a| (1−𝜖)−1− r
= (|a|− r+ r𝜖)(1−𝜖)−1

⩽ (|a|− r)(1+𝜅𝜖)(1−𝜖)−1,

whence

(|a|− r) |a| ⩾ (|a|∘− r) |a| (1−𝜖)(1+𝜅𝜖)−1

⩾ (|a|∘− r) |a|∘(1−𝜖)2(1+𝜅𝜖)−1

⩾ (|a|∘−∘ r) |a|∘(1−𝜖)3(1+𝜅𝜖)−1

⩾ (|a|∘−∘ r) ⋅∘ |a|∘(1−𝜖)4(1+𝜅𝜖)−1,

whence

r 𝜄((|a|− r) |a|) ⩽ r 𝜄((|a|∘−∘ r) ⋅∘ |a|∘)(1−𝜖)−4(1+𝜅𝜖)
⩽ r 𝜄∘((|a|∘−∘ r) ⋅∘ |a|∘)(1−𝜖)−4(1+𝜅𝜖)(1+𝜖)
⩽ ∘[r 𝜄((|a|− r) |a|)] (1−𝜖)−4(1+𝜅𝜖)(1+𝜖)2.

We conclude by observing that (1−𝜖)−4(1+𝜅𝜖)(1+𝜖)2⩽(1+𝜖)𝜅+7, since 𝜖⩽ /1 16. □

4.2. Transient evaluation
We adapt the definition of the remaining path length to our extended notion of SLPswith
reciprocals. We now take qk=max (qi1, . . .,qin)+1, where i1>⋅⋅⋅> in are those indices i>k
such that Γi is of the form Xi≔Yi ∗Zi with Xk∈{Yi,Zi}, ∗∈{+,−, ⋅}, and Xk∉{Xk+1, . . . ,
Xi−1}, or Γi is of the form Xi≔𝜄(Xk) and Xk∉{Xk+1, . . . ,Xi−1}. Lemma 4.1 allows us to
extend Theorem 3.2 as follows.

THEOREM 4.2. With the setup from Theorem 3.2, assume that 1+𝛼⩾(1+𝜖)(𝜅+7)qΓ and that Γmay
also contain reciprocals. During the second evaluation, assume that no underflow or overflow
occurs and that 0⩽ r

|a|− r ⩽𝜅 for every computation of a reciprocal of ℬ(a, r), where 𝜅∈ℝp
⩾.

Assume in addition that (𝛽qΓ)2⩽𝜖−1 and that the following two inequalities hold:

𝛾⩾HqΓ(1+𝜖)(𝜅+7)qΓ 𝛼
1+𝛼 ((((((((((((((1− (1+𝜖)(𝜅+7)qΓ

1+𝛼))))))))))))))
−1
, 𝛽⩾max�𝜅+9

2 , 1+𝛼
𝛼 𝛾�.

Then t∗⩽ t for any corresponding outputsℬ(c, t∗) andℬ(c, t) for the two evaluations.

Proof. We adapt the proof of [10, Theorem 5], by showing that the two inductions still
go through in the case of reciprocals. For the first induction, consider an instructionXk≔
𝜄(Yk), where Yk=ℬ(a, r) and 0⩽ r

|a|− r⩽𝜅. Recall that

r⩾|a| ((1+𝜖)𝛽(qk+1)−1).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 15

Using 𝛽⩾4, (𝛽qΓ)2⩽𝜖−1, and Lemma 2.1, we note that

(1+𝜖)𝛽−2(1−𝛽𝜖) ⩽ (1+(𝛽−1)𝜖)(1−𝛽𝜖)
= 1−𝜖−𝛽(𝛽−1)𝜖2

⩽ 1−𝜖. (4.5)

Combined with Lemmas 4.1 and 2.1, we deduce that

tk = ∘[r 𝜄((|a|− r) |a|)]
⩾ r

|a| (|a|− r) (1+𝜖)−(𝜅+7)

= |𝜄(a)| 1
|a|/r−1 (1+𝜖)−(𝜅+7)

⩾ |𝜄(a)| ((1+𝜖)𝛽(qk+1)−1)
2− (1+𝜖)𝛽(qk+1)

(1+𝜖)−(𝜅+7)

⩾ |𝜄∘(a)| (1−𝜖) ((1+𝜖)𝛽(qk+1)−1)
2− (1+𝛽𝜖) (1+𝜖)−(𝜅+7)

⩾ |𝜄∘(a)| (1−𝜖) ((1+𝜖)𝛽qk−1)(1+𝜖)𝛽
2− (1+𝛽𝜖) (1+𝜖)−(𝜅+7)

⩾ |𝜄∘(a)| ((1+𝜖)𝛽qk−1)(1+𝜖)2𝛽−(𝜅+9).
⩾ |𝜄∘(a)| ((1+𝜖)𝛽qk−1).

For the second induction, we redefine

𝛾k≔(((((((1
1+𝛼 +

𝛼
𝛾 (1+𝛼)Hqk,qΓ)))))))(1+𝜖)(𝜅+7)(qΓ−qk).

Assume Xk≔𝜄(Yk), letℬ(a, r∗) (resp. ℬ(a, r)) be the value of Yk in the semi-exact evalu-
ation (resp. transient evaluation), and let i be the biggest index so that Yk=Xi. Then

tk∗ = r∗ 𝜄((|a|− r∗) |a|)+𝜀∘(𝜄(a))
⩽ r∗ 𝜄((|a|− r∗) |a|)+𝜂k tk
⩽ 𝛾i r 𝜄((|a|− r) |a|)+𝜂k tk
⩽ 𝛾i (1+𝜖)𝜅+7 tk+𝜂k tk
⩽ 𝛾k tk.

The two inductions still hold for the other operations since we increased 𝛽 and 𝛾. □

If the conditions of the theorem are all satisfied for a given input poly-ball ℬ(b, s),
then we note that the numeric evaluation of the SLP at any point b̃ with ℬ(b, s) ⊸→← b̃
never results in a division by zero. Conversely however, even when all these numerical
evaluations are legit, it may happen that the condition that r

|a|− r ⩽𝜅 is violated for the
computation of some reciprocal 𝜄(ℬ(a, r)). This can either be due to an overly optimistic
choice of 𝜅 or to the classical phenomenon of overestimation.

Intuitively speaking, a low choice of 𝜅means that balls that need to be inverted should
neatly steer away from zero, even when inflating the radius by a small constant factor.
In fact, this is often a reasonable requirement, in which case one may simply take 𝜅≔1.
A somewhat larger choice like 𝜅≔ 10 remains appropriate and has the advantage of
increasing the resilience of reciprocal computations (the condition r

|a|− r ⩽𝜅 being easier
to satisfy). Large values of 𝜅 deteriorate the quality of the obtained bounds for a dubious
further gain in resilience.

16 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

4.3. Reciprocals of matryoshki

The formulas (4.1), (4.2), and (4.3) for reciprocals can again be specialized tomatryoshki
modulo the precaution that we should interpret |a| as a lower bound for the norm. For
𝑨≔ℬ(a,R) and 𝑨∗≔ℬ(a,R∗), this leads to the definitions

𝜄(ℬ(𝑨, r)) ≔ ℬ(𝜄(𝑨), r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋))
𝜄∘(ℬ(𝑨, r)) ≔ ℬ(𝜄∘(𝑨),∘[r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)])

𝜄∗(ℬ(𝑨∗, r∗)) ≔ ℬ(𝜄∘(𝑨∗), r∗ 𝜄((⌊𝑨∗⌋− r∗) ⌊𝑨∗⌋)+𝜀∘(𝜄(𝑨∗))),

where we use the lower bound notation ⌊𝑨⌋≔|a|−R. In addition to (2.9), wewill assume
that the rounded counterpart of the reciprocals also verifies the condition

|𝜄(𝒂)−vec 𝜄∘(𝒂)| ⩽ |𝜄∘(𝒂)| 𝜖ℬ(𝔸p,ℝp) (4.6)

for all invertible balls 𝒂 inℬ(𝔸p,ℝp). For what follows, let 𝜖≔𝜖ℬ(𝔸p,ℝp).

LEMMA 4.3. Let Κ, 𝜅∈ℝp
⩾ be such that Ε≔ 1− (1 +Κ 𝜖)−1 (1− 𝜖)2⩽ /1 16. Let ℬ(𝑨, r) =

ℬ(A,R, r)∈ℬ(𝔸p,ℝp,ℝp) be such that 0⩽ R
⌊𝑨⌋⩽Κ and 0⩽ r

⌊𝑨⌋− r⩽𝜅. If the computation of

R ≔ ∘[r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)]

involves no overflows and no underflows, then r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)⩽R(1+𝜖)(Κ+3)(𝜅+2)+5.

Proof. From

⌊𝑨⌋∘ ≔ |A|∘−∘R
⩽ (|A| (1−𝜖)−1−R)(1−𝜖)−1

= (|A|−R+R𝜖)(1−𝜖)−2

⩽ (|A|−R)(1+Κ𝜖)(1−𝜖)−2

= ⌊𝑨⌋(1−Ε)−1

and

⌊𝑨⌋∘− r ⩽ ⌊𝑨⌋(1−Ε)−1− r
= (⌊𝑨⌋− r+ rΕ)(1−Ε)−1

⩽ (⌊𝑨⌋− r)(1+𝜅Ε)(1−Ε)−1,

we obtain

(⌊𝑨⌋− r) ⌊𝑨⌋ ⩾ (⌊𝑨⌋∘− r) ⌊𝑨⌋∘(1+𝜅Ε)−1(1−Ε)2

⩾ (⌊𝑨⌋∘−∘ r) ⌊𝑨⌋∘(1+𝜅Ε)−1(1−Ε)2(1−𝜖)
⩾ (⌊𝑨⌋∘−∘ r) ⋅∘ ⌊𝑨⌋∘(1+𝜅Ε)−1(1−Ε)2(1−𝜖)2.

It follows that

r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋) ⩽ r 𝜄((⌊𝑨⌋∘−∘ r) ⋅∘ ⌊𝑨⌋∘)(1+𝜅Ε)(1−Ε)−2(1−𝜖)−2

⩽ r 𝜄∘((⌊𝑨⌋∘−∘ r) ⋅∘ ⌊𝑨⌋∘)(1+𝜅Ε)(1−Ε)−2(1−𝜖)−2(1+𝜖)
⩽ ∘[r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)] (1+𝜅Ε)(1−Ε)−2(1−𝜖)−2(1+𝜖)2.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 17

Using 𝜖⩽ /1 16 and Ε⩽ /1 16, we have

(1−Ε)−1 = (1+Κ𝜖)(1−𝜖)−2 ⩽ (1+𝜖)Κ+3

and then

(1+𝜅Ε)(1−Ε)−2(1−𝜖)−2(1+𝜖)2 ⩽ (1−Ε)−(𝜅+2)(1+𝜖)5 ⩽ (1+𝜖)(Κ+3)(𝜅+2)+5. □

We are now ready to extend Theorem 3.4 to SLPs with reciprocals.

THEOREM 4.4. Let Κ, 𝜅∈ℝp
⩾ be such that Ε≔ 1− (1 +Κ 𝜖)−1 (1− 𝜖)2⩽ /1 16 and let M≔

(Κ+3) (𝜅+2)+5. With the setup from Theorem 3.4, assume that 1+𝛼⩾(1+𝜖)MqΓ and that
Γmay also contain reciprocals. During the second evaluation, assume that no underflow or over-
flow occurs and that 0⩽ R

⌊𝑨⌋ ⩽Κ and 0⩽ r
⌊𝑨⌋− r ⩽𝜅 hold for every computation of a reciprocal of

ℬ(𝑨,r)=ℬ(A,R,r). Assume in addition that (𝛽qΓ)2<𝜖−1 and that the following two inequal-
ities hold:

𝛾 ⩾ HqΓ(1+𝜖)MqΓ 𝛼
1+𝛼 ((((((((((((((1− (1+𝜖)MqΓ

1+𝛼))))))))))))))
−1

𝛽 ⩾ max�M+2
2 , 1+𝛼

𝛼 𝛾�.

Then t∗⩽ t and T∗⩽T for any corresponding outputs ℬ(C,T∗, t∗) and ℬ(C,T, t) for the first
and second evaluations.

Proof. We adapt the proof of Theorem 3.4 by showing that the two inductions still go
through in the case of reciprocals. For the first induction, consider an instruction Xk≔
𝜄(Yk), where Yk=ℬ(A,R, r)=ℬ(𝑨, r), with 0⩽ R

⌊𝑨⌋⩽Κ and 0⩽ r
⌊𝑨⌋− r⩽𝜅. Recall that

r ⩾ |𝑨| ((1+𝜖)𝛽(qk+1)−1).

Using Lemma 4.3, the identity |𝜄(𝑨)|= 1
⌊𝑨⌋ , as well as (4.5) and (3.2), we obtain

tk = ∘[r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)]
⩾ r

(⌊𝑨⌋− r) ⌊𝑨⌋ (1+𝜖)−M

= |𝜄(𝑨)| r
⌊𝑨⌋− r (1+𝜖)−M

= |𝜄(𝑨)| 1
⌊𝑨⌋/r−1 (1+𝜖)−M

⩾ |𝜄(𝑨)| 1
|𝑨|/r−1 (1+𝜖)−M

⩾ |𝜄(𝑨)| (1+𝜖)𝛽(qk+1)−1
2− (1+𝜖)𝛽(qk+1)−1

(1+𝜖)−M

⩾ |𝜄∘(𝑨)| (1−𝜖) (1+𝜖)𝛽(qk+1)−1
1−𝛽𝜖 (1+𝜖)−M

⩾ |𝜄∘(𝑨)| ((1+𝜖)𝛽(qk+1)−1)(1+𝜖)𝛽−(M+2)

⩾ |𝜄∘(𝑨)| ((1+𝜖)𝛽qk−1)(1+𝜖)𝛽 (1+𝜖)𝛽−(M+2)

⩾ |𝜄∘(𝑨)| ((1+𝜖)𝛽qk−1).

For the second induction, we redefine

𝛾k≔(((((((1
1+𝛼 +

𝛼
𝛾 (1+𝛼)Hqk,qΓ))))))) (1+𝜖)M(qΓ−qk).

18 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

Assume Xk≔𝜄(Yk), letℬ(𝑨∗,r∗) (resp. ℬ(𝑨,r)) be the value of Yk in the semi-exact eval-
uation (resp. transient evaluation), and let i be the biggest index so that Yk=Xi. Then
Lemma 4.3 implies

tk∗ = r∗ 𝜄((⌊𝑨⌋− r∗) ⌊𝑨⌋)+𝜀∘(𝜄(𝑨∗))
⩽ r∗ 𝜄((⌊𝑨⌋− r∗) ⌊𝑨⌋)+𝜂k tk
⩽ 𝛾i r 𝜄((⌊𝑨⌋− r) ⌊𝑨⌋)+𝜂k tk
⩽ 𝛾i (1+𝜖)M tk+𝜂k tk
⩽ 𝛾k tk.

The two inductions still hold for the other operations since we increased 𝛽 and 𝛾. □

Similar comments as those made after Theorem 4.2 also apply to the above theorem.
In particular, we recommend taking 𝜅,Κ∈[1,10].

5. GLOBAL PROJECTIVE BOUNDS

In the previous sections we have focussed on more efficient algorithms for the reliable
evaluation of functions on fixed bounded poly-balls. This technique applies to very
general SLPs that may involve operations like division, which are only locally defined.
Nonetheless, polynomial SLPs, which only involve the ring operations +,−, ⋅ are impor-
tant for many applications such as numerical homotopy continuation. In this special
case, we will show how remove the locality restriction and allow for the global eval-
uation of such SLPs in a reliable and efficient way.

5.1. Homogenization of SLPs
Consider a polynomial map

P:𝔸m ⟶ 𝔸n

x=(x1, . . . ,xm) ⟼ P(x)=(P1(x1, . . . ,xm), . . . ,Pn(x1, . . . ,xn))

for polynomials P1,...,Pn∈𝔸[x1,...,xm]. Given i∈{1,...,n}, the polynomial Pi is not homo-
geneous, in general, but there exists a homogeneous polynomial Pi

hom∈𝔸[x1, . . . ,xm+1]
such that Pi(x1,...,xm)=Pi

hom(x1,...,xm,1). This polynomial is unique up tomultiplication
by powers of xm+1. The polynomials P1hom, . . . ,Pn

hom give rise to a polynomial map

Phom:𝔸m+1 ⟶ 𝔸n

x=(x1, . . . ,xm+1) ⟼ (P1hom(x1, . . . ,xn+1), . . . ,Pn
hom(x1, . . . ,xn+1)),

which we call a homogenization of Pi.
Assume now that the map P=EΓ can be computed using an SLP Γ of length lwithout

divisions. Let us show how to construct an SLP Γhom such that Phom≔EΓhom is a homoge-
nization of P. Consider the formal evaluation of Γ over𝔸[x1,...,xm], by applying EΓ to the
input arguments x1,...,xm. Then the output valueXk and the input argumentsYk andZk of
an instruction Γk of the form Xk≔Yk∗Zk (∗∈{+,−, ⋅}) are polynomials in𝔸[x1, . . . ,xm+1]
that we denote by X̄k Ȳk, and Z̄k, respectively (for instructions Xk≔Ck, we set X̄k≔Ck).
We can recursively compute upper bounds dX̄k,k, dȲk,k, dZ̄k,k (abbreviated as dX̄k, dȲk, dZ̄k)
for the total degrees of these polynomials:
• If Γk is of the form Xk≔Ck, then we take dX̄k≔0.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 19

• If Γk is of the form Xk≔Yk±Zk, then dX̄k≔max(dȲk,dZ̄k).
• If Γk is of the form Xk≔Yk ⋅Zk, then dX̄k≔dȲk+dZ̄k.
Here dȲk≔1 (resp. dZ̄k≔1) whenever Yk (resp. Zk) is an input variable.

Now consider the program Γ̃ obtained by rewriting each instruction Γk as follows:
• If Γk is of the form Xk≔Ck or Xk≔Yk ⋅Zk, then Γk is rewritten into itself.
• If Γk is of the form Xk≔Yk±Zk with dȲk=dZ̄k, then Γk is rewritten into itself.
• If Γk is of the form Xk≔Yk±Zk with dȲk<dZ̄k, then Γk is rewritten into two instructions

Ak≔Yk ⋅xm+1
dZ̄k−dȲk and Xk≔Ak±Zk, for some new auxiliary variable Ak.

• If Γk is of the form Xk≔Yk±Zk with dZ̄k<dȲk, then Γk is rewritten into two instructions
Ak≔Zk ⋅xm+1

dȲk−dZ̄k and Xk≔Yk±Ak, for some new auxiliary variable Ak.
By induction, one verifies that the image of Γk under this rewriting computes the unique
homogenization EΓ,khom of EΓ,k of degree dX̄k for k=1,..., l. We obtain Γhom by prepending Γ̃
with instructions that compute all powers xm+1i that occur in Γ̃. This can for instance be
done using binary powering: xm+12i ≔xm+1i ⋅xm+1i and xm+12i+1≔xm+12i ⋅xm+1 for all i⩾1.

Example 5.1. Applying the homogenization procedure to the left-hand SLP below, we
obtain the right-hand one:

x32≔x3 ⋅x3
x33≔x32 ⋅x3
x36≔x33 ⋅x33

x37≔x36 ⋅x3
V1≔x1 ⋅x1 V1≔x1 ⋅x1
V2≔V1+x2 A2≔x2 ⋅x3

→→ →
homogenize

V2≔V1+A2
V3≔V2 ⋅V2 V3≔V2 ⋅V2
V4≔V3+x2 A4≔x2 ⋅x33

V4≔V3+A4
V5≔V3 ⋅V3 V5≔V3 ⋅V3
V6≔V5+x2 A4≔x2 ⋅x37

V4≔V3+A4

In this example, dV̄1=dV̄2=2, dV̄3=dV̄4=4, and dV̄5=dV̄6=8. In the last instruction, we thus
have dV̄5=8>dx2=1, whence the exponent 7=dV̄5−dx2 in A4≔x2 ⋅x37.

Remark 5.2. In the worst case, computing the powers of xm+1 using binary powering
may give rise to a logarithmic overhead. For instance, there is a straightforward SLP Γ of
length l proportional to n that computes the polynomials x3k+1 for k=1, . . .,n. But when
computing using binary powering in order to compute its homogenization, the length
of Γhom is proportional to n log n.

An alternative way to compute the required powers is to systematically compute
xm+1
dX̄k and (xm+1−1)dX̄k for all k. In that case xm+1

dZ̄k−dȲk and xm+1
dȲk−dZ̄k can always be obtained using

a simple multiplication and the length of Γhom remains bounded by O(l) for an SLP Γ
of length l. Of course, this requires division to be part of the SLP signature, or xm+1−1 to
be passed an argument, in addition to xm+1.

20 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

Consider an output variable Oi with i∈{1, . . . , n} and denote by EΓ,i: 𝔸m→𝔸 and
EΓhom,i:𝔸m+1→𝔸 the i-th component of EΓ and EΓhom, respectively. If k∈{1,..., l} is largest
with Xk=Oi, then we define di≔dX̄i, and we note that EΓhom,i is the unique homogeniza-
tion of EΓ,i of degree di. Let d≔(d1, . . . , dn) and define Atd≔(A1 td1, . . . ,An tdn) for any
A1, . . . ,An∈𝔸. For any x∈𝔸m+1 and t∈𝔸, it then follows that

EΓhom(x t)=EΓhom(x) td. (5.1)

We will denote by Phom∈𝔸[x1,.. .,xm+1]n the polynomials with EΓhom(x)=Phom(x) for all
x∈𝔸m+1.

5.2. Global bounds through homogenization

With the notation from the previous subsection, assume that𝔸=𝕂with𝕂=ℝ or𝕂=ℂ.
Suppose that we wish to evaluate P at a point x∈𝕂m and let

t≔max(|x1|, . . . , |xm|, 1), u≔ 1
t , xhom≔(ux1, . . . ,uxm,u). (5.2)

Of course, we may simply evaluate Γ at x, which yields P(x)=EΓ(x). But thanks to (5.1),
we also have the projective evaluation method

P(x)=EΓhom(xhom) td.

The advantage here is that

|xhom|∞≔max (|x1hom|, . . . , |xm+1hom|)⩽1, (5.3)

sowe only evaluate Γhom at points in the poly-ballℬ(0,1)m+1. This allows us to apply the
material from the previous sections concerning the evaluations of SLPs at points inside a
fixed ball. Note that we may easily add the max function to SLPs since its computation
is always exact. If𝕂=ℂ then we applymax to the real and imaginary parts.

For instance, let (ℬ(c1, r1), . . . , ℬ(cn, rn))∈ℬ(𝕂,ℝ)n be the evaluation of Γhom
atℬ(0,1)m+1 using ball arithmetic and set Mi≔|ci|+ ri for i=1, . . . ,n. Then we have

|Pi(x)|⩽Mi tdi (5.4)

for all x∈𝕂m and i= 1, . . . , n. Consequently, we may compute upper bounds for
|P1(x)|, . . . , |Pn(x)| in time O(log d1+ ⋅ ⋅ ⋅ + log dn), which is typically much smaller than
the length l of Γ.

We may use such global bounds for the construction of more efficient ball lifts,
although the resulting error bounds may be less sharp. For this, we first evaluate the
Jacobian matrix of EΓhom atℬ(0,1)m+1, which yields bounds

�
∂EΓhom,i
∂xj

(x)�⩽Mi, j, (5.5)

for all i= 1, . . . , n, j= 1, . . . ,m+ 1, and x∈ℬ(0, 1)m+1. For any ball 𝒙 = (ℬ(x1, r1), . . . ,
ℬ(xm+1, rm+1)) withℬ(xi, ri)⊆ℬ(0,1) for i=1, . . . ,m+1, we then have

Pi
hom(𝒙)⊆ℬ(EΓhom,i(x),Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m+1 rm+1). (5.6)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 21

This allows us to compute an enclosure of P(𝒙) using a single evaluation of Γhom at x
plusO(mn) extra operations (the quantityO(mn) can be further reduced toO(m+n) by
replacing the Mi, j bymax (M1, j, . . . ,Mn, j) ormax (Mi,1, . . . ,Mi,m+1)).

Similarly, if 𝒙=(ℬ(x1, r1), . . . ,ℬ(xm, rm)) is any ball, then we define

t≔max(|x1|+ r1, . . . , |xm|+ rm, 1), u≔ 1
t , 𝒙hom≔(u𝒙1, . . . ,u𝒙m,ℬ(u, 0)). (5.7)

For i=1, . . . ,n, the relations (5.1) and (5.6) now yield

Pi(𝒙)⊆ℬ(EΓ,i(x), (Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m rm) tdi−1). (5.8)

(If di=0, then EΓ,i(x) is a constant, and we may use zero as the radius.) This allows us to
compute an enclosure of P(𝒙) using one evaluation of Γ at x plus O(mn+log d1+ ⋅ ⋅ ⋅ +
log dn) extra operations in 𝕂. Note that the homogenization Γhom was only required in
order to compute the constantsMi, j, but not for evaluating the right-hand side of (5.8) at
a specific 𝒙.

5.3. Managing rounding errors
In the previous subsection, we assumed infinitely precise arithmetic overℝ orℂ. Let us
now showhow to adapt thismaterial to the casewhen𝔸=𝕂p, where𝕂p=ℝp or𝕂p=ℂp.
As usual, assume 𝜖≔max (𝜖ℝp,𝜖𝔸p)⩽ /1 16, and let us first showhow to deal with rounding
errors in the absence of overflows and underflows. We first replace (5.2) by

t∘ ≔ ∘[max(|x1|, . . . , |xm|, 1) (1+3𝜖)]
u∘ ≔ ∘[(1−3𝜖)/t∘]

x∘hom ≔ ∘[(u∘x1, . . . ,u∘xm,u∘)]

and verify that

t∘ ⩾ ∘[max(|x1|, . . . , |xm|, 1)] (1+3𝜖)(1+𝜖)−1⩾ t (1+3𝜖)(1+𝜖)−2⩾ t
t∘ ⩽ ∘[max(|x1|, . . . , |xm|, 1)] (1+3𝜖)(1−𝜖)−1⩽ t (1+3𝜖)(1−𝜖)−2⩽ t (1+𝜖)6

u∘ ⩾ (1−3𝜖)/(t∘(1+𝜖))⩾(1−3𝜖)u/(1+𝜖)7⩾u(1+𝜖)−11

u∘ ⩽ (1−3𝜖)/(t∘(1−𝜖))⩽(1−3𝜖)u/(1−𝜖)⩽u(1−𝜖).
|(x∘hom)i| ⩽ |u∘xi| (1−𝜖)−1⩽u(1−𝜖) t (1−𝜖)−1=1, (i=1, . . . ,m).

We have

|x∘hom−xhom|∞ ⩽ �u∘u xhom−xhom�
∞
+�x∘hom− u∘

u xhom�
∞

⩽ �u∘u −1� |xhom|∞+|x∘hom|∞𝜖

⩽ �u∘u −1�+𝜖
⩽ 12𝜖.

Let i∈{1, . . . ,n}. Evaluating Γhom at �𝑼, . . .(m+1)×,𝑼�, for the matryoshka 𝑼≔ℬ(0,1, 12𝜖),
by Proposition 3.6 for instance, we may compute a Δ∈ℝp

n with

|Pi
hom(x∘hom)−Pi

hom(xhom)|⩽Δi

for all x∈𝕂p
m, as well as

|∘[EΓhom,i(x)]−Pi
hom(x)|⩽Δi

22 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

for all x∈𝕂p
m+1 with |x|∞⩽1. It follows that

�∘[EΓhom,i(x∘hom)] t∘di−Pi(x)� ⩽ �Pi
hom(x∘hom) t∘di−Pi

hom(xhom) tdi�+Δi t∘di

⩽ �Pi(x)��
t∘
t �

di−1��+2Δi t∘di

⩽ |Pi(x)| ((1+𝜖)6di−1)+2Δi t∘di.

Setting
Pi,∘(x)≔∘�EΓhom,i(x∘hom) t∘di�,

we then get

|Pi,∘(x)−Pi(x)| ⩽ �∘[EΓhom,i(x∘hom)] t∘di−Pi(x)�+ �∘[EΓhom,i(x∘hom)] t∘di�((1+𝜖)di+1−1)
⩽ �∘[EΓhom,i(x∘hom)] t∘di−Pi(x)� (1+𝜖)di+1+|Pi(x)|((1+𝜖)di+1−1)
⩽ �|Pi(x)| ((1+𝜖)6di−1)+2Δi t∘di�(1+𝜖)di+1+|Pi(x)|((1+𝜖)di+1−1)
⩽ |Pi(x)| ((1+𝜖)7di+1−1)+2Δi t∘di(1+𝜖)di+1. (5.9)

Note that for all a⩾2 and 𝜖⩽a−2/2 we have

a log(1+𝜖)⩽log(1+a2𝜖),

whence (1+𝜖)a− 1⩽ a2 𝜖. Consequently, provided that 𝜖< (8 di)−2/2, the bound (5.9)
simplifies into

|Pi,∘(x)−Pi(x)| ⩽ (8di)2𝜖 |Pi,∘(x)|+3Δi t∘di. (5.10)

This yields an easy way to compute error bound

|Pi,∘(x)−Pi(x)| ⩽ ∘��(8di)2𝜖 |Pi,∘(x)|+3Δi t∘di�(1+𝜖)di+3� (5.11)

for the approximate numeric evaluation of Γ at any point x∈𝕂p
m.

Let us now turn to the bound (5.4). Using traditional ball arithmetic (formulas (2.5))
overℬ(𝕂p,ℝp), wemay still computeMi∈ℝpwith |Pi(x)|⩽Mi for all x∈ℝp

mwith |x|∞⩽1.
Then we simply have

|Pi(x)|⩽Mi t∘di

for all x∈𝕂p
m, since t⩽t∘. In a similar way, boundsMi, j that satisfy (5.5) can be computed

using traditional ball arithmetic. For any ball 𝒙=(ℬ(x1, r1), . . . ,ℬ(xm, rm))∈ℬ(𝕂p,ℝp)m
and with we notation from (5.7), the enclosure (5.8) still holds. Combining

Pi(𝒙)⊆ℬ(EΓ,i(x), (Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m rm)max(|𝒙1|∘, . . . , |𝒙m|∘, 1)di−1).

with (5.10), this yields

Pi(𝒙)⊆ℬ�∘[EΓ,i(x)], (Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m rm) t∘di−1+(8di)2𝜖 |Pi,∘(x)|+3Δi t∘di�.

Hence

Pi(𝒙) ⊆ ℬ(∘[EΓ,i(x)],𝜌i),

where

𝜌i ≔ ∘��(Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m rm) t∘di−1+(8di)2𝜖 |Pi,∘(x)|+3Δi t∘di�(1+𝜖)2m+di+10�. (5.12)

This yields a ball lift for P that is almost as efficient to compute as a mere numeric eval-
uation of EΓ.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 23

Let us finally analyze how to deal with underflows and overflows. Let 𝜂≔𝜂ℝp∈ℝp be
such that (2.8) holds. As long as the computation of u∘ does not underflow, the inequality
|x∘hom−xhom|∞⩽12𝜖 remains valid, even in the case of overflows (provided that 𝜖⩾2−p).
Consequently, the relation (5.10) still holds, so it suffices to replace (5.11) by

|Pi,∘(x)−Pi(x)| ⩽ ∘��(8di)2𝜖 |Pi,∘(x)|+3Δi t∘di�(1+𝜖)di+3+𝜂�.

This indeed counters the possible underflow for themultiplication of (8di)2𝜖with |Pi,∘(x)|.
Note that the relation trivially holds in the case when the right-hand side overflows,
which happens in particular when the computation of t∘ overflows. Similarly, it suf-
fices to replace (5.12) by

𝜌i ≔ ∘��(Mi,1 r1+ ⋅ ⋅ ⋅ +Mi,m rm) t∘di−1+(8di)2𝜖 |Pi,∘(x)|+3Δi t∘di�(1+𝜖)2m+di+10+m𝜂�.

If the computation of t∘ does not overflow, but the computation of u∘ underflows, then
the IEEE 754 norm implies that we must have t∘⩾0.35Ω, where Ω is the largest pos-
itive floating point number in ℝp with Ω<∞. Consequently, the computation 3 Δi t∘di

overflows whenever di>0, provided that we compute this product as Δi times 3 t∘di. The
adjusted bounds are therefore valid in general.

6. BOUNDING DERIVATIVES

For several applications, it is useful to not only compute bounds for the function f itself,
but also for some of its iterated derivatives.

6.1. The univariate case
Let us first assume that f :𝒰→ℂ is an analytic function defined on an open subset 𝒰 ofℂ.
Given a derivation order k∈ℕ and a ball 𝒂=ℬ(a,R)⊆𝒰, our goal is to compute a bound
for sup𝒂 ⊸→←z | f (k)(z)|. If f is actually an explicit polynomial

f (z)= fdzd+ ⋅ ⋅ ⋅ + f0

and a=0, then a first option is to use the crude bound

sup
ℬ(0,R) ⊸→←z

| f (k)(z)| ⩽ �
i=0

d−k (i+k)!
i! | fi+k|Ri.

Of course, the case where a≠0may be reduced to the case where a=0 via the change of
variables z→z+a.

Assume now that f is given through an SLP, which possibly involves other opera-
tions as +,−, ⋅, such as division. In that case, the above crude bound typically becomes
suboptimal, and does not even apply if f is no longer a polynomial. A general alternative
method to compute iterated derivatives is to use Cauchy's formula

f (k)(z)= k!
2 iπ �

𝒞
f (u)

(u−z)k+1
du, (6.1)

where 𝒞⊆𝒰 is some circle around z∈ℬ(a,R). Taking 𝒞≔𝒞(a,R+ r) to be the circle with
center a and radius R+ r for some r>0, this yields the bound

sup
ℬ(a,R) ⊸→←z

| f (k)(z)| ⩽ k! ⌈ f (ℬ(a,R+ r))⌉
rk

, (6.2)

24 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

where ⌈ℬ(b, s)⌉≔ |b|+ s denotes an upper bound for |z|where z∈ℬ(b, s).
It is an interesting question how to choose r. One practical approach is to start with

any r>0 such that ℬ(a,R+ r) ⊆𝒰. Next we may compute both ⌈ f (ℬ(a,R+ r))⌉ and
⌈ f (ℬ(a,R+r′))⌉ for some other r′≠r and checkwhich value provided a better bound. If,
say r′:=r/2, yields a better bound, then we may next try r′′≔ r/4. If the bound for r/2 is
better than the one for r/4, we may continue with r′′′≔ r/�2 2� � and so on until we find
a bound that suits us.

For simple explicit functions f, it is also instructive to investigate what is the optimal
choice for r. For instance, if a=0 and f = zd with d> k, then we have ⌈ f (ℬ(0,R))⌉≔Rd,
so the bound (6.2) reduces to

sup
ℬ(0,R) ⊸→←z

| f (k)(z)| ⩽ k! (R+ r)d

rk
.

The right-hand side is minimal when

r= k
d−k R. (6.3)

In general, we may consider the power series expansion at a

f (a+z)= f0+ f1z+ f2z2+ ⋅ ⋅ ⋅.

For such a power series expansion and a fixed r>0 with ℬ(a,R+ r)⊆𝒰, let d∈ℕ be
largest such that | fd| (R+r)d is maximal. We regard d=d(R+r) as the “numerical degree”
of f on the disk ℬ(a,R+ r)). Then the relation (6.3) suggests that we should have r≈
kR/(d(R+ r)−k) for the optimal value of r.

6.2. Bounds for derivatives of multivariate functions
For higher dimensional generalizations, consider an analytic map f : 𝒰 →ℂn for some
open set 𝒰 ⊆ℂm. Let |⋅|2 be the standard Euclidean norm on ℂd for any d∈ℕ. Given
a∈ℂm and R∈(ℝ>)m, we denote by

𝒟(a,R)≔ℬ(a1,R1)× ⋅ ⋅ ⋅ ×ℬ(am,Rm)

the polydisk associated to the poly-ballℬ(a,R). For k∈ℕ and assuming that𝒟(a,R)⊆𝒰,
we denote the operator norm of the k-th derivative Dk f of f on𝒟(a,R) by

‖Dk f ‖𝒟(a,R)≔ sup
z∈𝒟(a,R)

� max
|u1|2=⋅ ⋅ ⋅=|uk|2=1

|(Dk f)(z)(u1, . . . ,uk)|2�.

Here we recall that

(Dk f)(z)(h1, . . . ,hk) = �
i1=1

m

. . .�
ik=1

m ∂k f
∂zi1 ⋅ ⋅ ⋅ ∂zik

(z)h1,i1 ⋅ ⋅ ⋅ hk,ik.

Given r∈(ℝ>)m and 𝒞≔𝒞(a,R+ r)≔𝒞(a1,R1+ r1)× ⋅ ⋅ ⋅ ×𝒞(am, rm) with 𝒟(a,R+ r)⊆𝒰,
we have the following m-dimensional generalization of (6.1):

∂k1+⋅ ⋅ ⋅+km f
∂z1k1 ⋅ ⋅ ⋅ ∂zmkm

(z) ≔ k1! ⋅ ⋅ ⋅ km!
(2 iπ)m �

𝒞
f (u)

(u1−z1)k1+1 ⋅ ⋅ ⋅ (um−zm)km+1
du1 ⋅ ⋅ ⋅ dum,

for any z∈𝒟(a,R). For anyℬ(a,R) ⊸→← z, it follows that

|||||||||||||||||
∂k1+⋅ ⋅ ⋅+km f
∂z1k1 ⋅ ⋅ ⋅ ∂zmkm

(z)|||||||||||||||||2 ⩽ k1! ⋅ ⋅ ⋅ km!
⌈ f (ℬ(a,R+ r))⌉2

r1
k1 ⋅ ⋅ ⋅ rmkm

,

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF, ARNAUD MINONDO 25

where ⌈ℬ(b, s)⌉2 stands for an upper bound for |z|2 with ℬ(b, s) ⊸→← z. Translated into
operator norms, this yields

‖Dk f ‖𝒟(a,R) ⩽ ⌈ f (ℬ(a,R+ r))⌉2 �
k1+⋅ ⋅ ⋅+km=k

� k
k1, . . . ,km

� k1! ⋅ ⋅ ⋅ km!
r1
k1 ⋅ ⋅ ⋅ rmkm

= k! ⌈ f (ℬ(a,R+ r))⌉2 �
k1+⋅ ⋅ ⋅+km=k

1
r1
k1 ⋅ ⋅ ⋅ rmkm

.

A practical approach to find an r which approximately minimizes the right-hand side
is similar to what we did in the univariate case: starting from a given r, we vary it in
a dichotomic way until we reach an acceptably good approximation. This time, we need
to vary the m individual components r1, . . . , rm of r in turn, which makes the approxima-
tion process roughly m times more expensive. Multivariate analogues of (6.3) are more
complicated and we leave this issue for future work.

BIBLIOGRAPHY

[1] A. Ahlbäck, J. van der Hoeven, and G. Lecerf. JIL: a high performance library for straight-line pro-
grams. https://sourcesup.renater.fr/projects/jil, 2025.

[2] G. Alefeld and J. Herzberger. Introduction to interval computation. Academic Press, New York, 1983.
[3] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317–330, 1983.
[4] C. Beltrán and A. Leykin. Robust certified numerical homotopy tracking. Found. Comput. Math.,

13(2):253–295, 2013.
[5] P. Bürgisser, M. Clausen, andM.A. Shokrollahi. Algebraic complexity theory, volume 315 ofGrundlehren

der Mathematischen Wissenschaften. Springer-Verlag, 1997.
[6] T. Duff and K. Lee. Certified homotopy tracking using the Krawczyk method. In Proceedings of the

2024 International Symposium on Symbolic and Algebraic Computation, ISSAC '24, pages 274–282. New
York, NY, USA, 2024. ACM.

[7] A. Guillemot and P. Lairez. Validated numerics for algebraic path tracking. In Proc. ISSAC 2024,
pages 36–45. ACM, 2024.

[8] J. van der Hoeven. Ball arithmetic. In A. Beckmann, C. Gaßner, and B. Löwe, editors, Logical approaches
to Barriers in Computing and Complexity, number 6 in Preprint-ReiheMathematik, pages 179–208. Ernst-
Moritz-Arndt-Universität Greifswald, February 2010. International Workshop.

[9] J. van der Hoeven. Reliable homotopy continuation. Technical Report, HAL, 2011. https://
hal.archives-ouvertes.fr/hal-00589948.

[10] J. van der Hoeven and G. Lecerf. Evaluating straight-line programs over balls. In 23nd IEEE Sympo-
sium on Computer Arithmetic (ARITH), pages 142–149. 2016. Extended preprint versionwith Appendix
at https://hal.archives-ouvertes.fr/hal-01225979.

[11] J. van der Hoeven and G. Lecerf. Towards a library for straight-line programs. Technical Report,
HAL, 2025. https://hal.science/hal-05075591.

[12] J. van der Hoeven, G. Lecerf, B. Mourrain et al. Mathemagix. 2002. http://www.mathemagix.org.
[13] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied interval analysis. Springer, London, 2001.
[14] F. Johansson. Arb: a C library for ball arithmetic. ACM Commun. Comput. Algebra, 47(3/4):166–169,

2014.
[15] R. B. Kearfott. An interval step control for continuationmethods. SIAM J. Numer. Anal., 31(3):892–914,

1994.
[16] U. W. Kulisch. Computer arithmetic and validity. Theory, implementations and applications. Studies

in Mathematics., (33), 2008.
[17] R. E. Moore. Interval analysis. Prentice Hall, Englewood Cliff, 1966.
[18] R. E. Moore, R.B. Kearfott, and M. J. Cloud. Introduction to interval analysis. SIAM Press, 2009.
[19] A. Neumaier. Interval methods for systems of equations. Cambridge University Press, Cambridge, 1990.
[20] S. M. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534–554, 1999.
[21] S. M. Rump. Verification methods: rigorous results using floating-point arithmetic. Acta Numer,

19:287–449, 2010.

26 STATIC BOUNDS FOR STRAIGHT-LINE PROGRAMS

https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://sourcesup.renater.fr/projects/jil
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-00589948
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.archives-ouvertes.fr/hal-01225979
https://hal.science/hal-05075591
https://hal.science/hal-05075591
https://hal.science/hal-05075591
https://hal.science/hal-05075591
https://hal.science/hal-05075591
https://hal.science/hal-05075591
https://hal.science/hal-05075591
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

	1. Introduction
	2. Different types of ball arithmetic
	2.1. IEEE floating point arithmetic and notation
	2.2. Ball arithmetic
	2.3. Matryoshka arithmetic
	2.4. Rounded and transient ball arithmetic
	2.5. Transient matryoshka arithmetic

	3. Evaluating straight line programs
	3.1. Straight-line programs
	3.2. Transient ball evaluations
	3.3. From balls to matryoshki
	3.4. Applications

	4. Division
	4.1. Reciprocals of balls
	4.2. Transient evaluation
	4.3. Reciprocals of matryoshki

	5. Global projective bounds
	5.1. Homogenization of SLPs
	5.2. Global bounds through homogenization
	5.3. Managing rounding errors

	6. Bounding derivatives
	6.1. The univariate case
	6.2. Bounds for derivatives of multivariate functions

	Bibliography

