
Multi-point evaluation in higher dimensions

Joris van der Hoeven∗

Laboratoire d’informatique
UMR 7161 CNRS
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr

Web: http://www.lix.polytechnique.fr/~vdhoeven

Éric Schost †

Computer Science Department
The University of Western Ontario

London, Ontario
Canada

Email: eschost@uwo.ca

Web: http://www.csd.uwo.ca/~eschost

February 2, 2012

In this paper, we propose efficient new algorithms for multi-dimensional multi-point
evaluation and interpolation on certain subsets of so called tensor product grids. These
point-sets naturally occur in the design of efficient multiplication algorithms for finite-
dimensional C-algebras of the form A=C[x1,	 , xn]/I, where I is generated by monomials
of the form x1

i1
 xn

in; one particularly important example is the algebra of truncated
power series C[x1,	 , xn]/(x1,	 , xn)

d. Similarly to what is known for multi-point eval-
uation and interpolation in the univariate case, our algorithms have quasi-linear time
complexity. As a known consequence [Sch05], we obtain fast multiplication algorithms
for algebras A of the above form.

Keywords: multi-point evaluation, multi-point interpolation, algorithm, complexity,
power series multiplication

A.M.S. subject classification: 12Y05, 68W30, 68W40, 13P10, 65F99

∗. This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the
Digiteo 2009-36HD grant of the Région Ile-de-France.

†. This work has also been supported by NSERC and the Canada Research Chairs program.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=12Y05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=65F99&submit=Search

1. Introduction

Overview. The purpose of this paper is to give fast algorithms for some polynomial evalua-
tion and interpolation problems in several variables; as an application, we improve algorithms
for multiplying dense multivariate polynomials and multivariate power series.

The complexity of our algorithms will be measured by counting base field operations:
we do not consider numerical issues (they may anyway be irrelevant, if e.g. our base field is
a finite field), and do not discuss the choice of data structures or index manipulation issues.

From the complexity point of view, evaluation and interpolation are rather well under-
stood for polynomials in one variable: algorithms of quasi-linear complexity are known to
evaluate a polynomial of degree less than d at d points, and conversely to interpolate it.
The best known algorithms [BM74] run in time O(d log2d log log d), and the main remaining
question is to close the gap between this and an optimal O(d), if at all possible.

In several variables, the questions are substantially harder, due to the variety of monomial
bases and evaluation sets one may consider; no quasi-linear time algorithm is known in
general. In this paper, following the terminology of [Sau04], we consider evaluation points
that are subgrids of tensor product grids . We prove that for some suitable monomial bases,
evaluation and interpolation can both be done in time O(n |I | log2 |I | log log |I |), where n is
the number of variables and |I | is the size of the evaluation set (and of the monomial basis
we consider). Remark that this result directly generalizes the univariate case. In many cases,
n is logarithmic in |I |; then, our result is optimal, up to logarithmic factors.

Moreover, for specific types of evaluation points, such as roots of unity or points in
a geometric progression, even faster algorithms can be used in the univariate case, of time
complexity O(d log d log log d). These algorithms will also be generalized to the mul-
tivariate case and result in evaluation and interpolation algorithms of time complexity
O(|I | n log d log log d), where d is the maximal partial degree. In particular, given two
dense multivariate polynomials in n variables of total degree <d/2 can be multiplied in
time O

(
(

n+ d− 1
n

)

n log d log log d
)

. To the best of our knowledge, this is the best cur-

rently available complexity bound for this problem. We also expect the new algorithms
to be efficient in practice, although we have not implemented them yet.

Figure 1. An initial segment of cardinality 12 in N
2

2 Multi-point evaluation in higher dimensions

Problem statement. In what follows, I ⊆ N
n is a finite initial segment for the partial

ordering on N
n: this means that if i6 i

′ and i
′∈ I, then i∈ I. For instance, one may think

of I as the set of standard monomials modulo a 0-dimensional ideal, for a given monomial
ordering. Figure 1 shows such a set (black dots), as well as the minimal elements of Nn \ I
(green squares).

As a very particular example, for positive integers d1, 	 , dn, let Id1,	 ,dn denote the set
{0,	 , d1− 1}×
 ×{0,	 , dn− 1}; this is an n-dimensional grid.

The set I will be used as an index set for both the evaluation points and the monomial
basis. Let C be our base field and let d1, 	 , dn be such that I ⊆ Id1,	 ,dn. For k ∈ {1, 	 , n},
assume that we are given pairwise distinct elements vk=(vk,0,	 , vk,dk−1)∈Cdk; we will denote
by v the collection (v1, 	 , vn). To i= (i1, 	 , in) ∈ I we associate the point αi,v = (v1,i1, 	 ,
vn,in)∈Cn and we let V (I , v)={αi,v: i∈ I}: this will be our set of evaluation points. Remark
that V (I , v) is contained in the “tensor product” grid

(v1,0,	 , v1,d1−1)×
 × (vn,0,	 , vn,dn−1).

For instance, if vk,i= i for all (k, i), then αi,v= i and V (I , v) = I.
Let further C[x] = C[x1,	 , xn] be the polynomial ring in n variables over C; for i =

(i1,	 , in)∈N
n, we write xi=x1

i1
 xn
in. Then, C[x]I denotes the C-vector space of polynomials

P =
∑

i∈I
pi x

i ∈ C[x] with support in I. On the example of Figure 1, C[x]I admits the

monomial basis

1, x2, x2
2, x2

3, x1, x1 x2, x1 x2
2, x1

2, x1
2 x2, x1

3, x1
3x2, x1

4.

Given a polynomial P ∈ C[x]I, written on the monomial basis, our problem of multidimen-
sional multi-point evaluation is the computation of the vector {P (αi,v): i∈ I}∈ CI.

Both the domain C[x]I and the codomain CI of the evaluation map are C-vector spaces of
dimension |I |, so it makes sense to ask whether this map is invertible. Indeed, let I(I , v)⊆
C[x] be the defining ideal of V (I , v). A result going back to Macaulay (see [Mor03] for

a proof) shows that the monomials {xi: i∈ I } form a monomial basis of C[x]/I(I , v). As a
consequence, the former evaluation map is invertible; the inverse problem is an instance of
multivariate interpolation.

Previous work. The purpose of this paper is to give complexity results for the evaluation
and interpolation problems described above. We found no previous references dedicated to
the evaluation problem (a naive solution obviously takes quadratic time). As to our form of
interpolation, an early reference is [Wer80], with a focus on the bivariate case; the question
has been the subject of several subsequent works, and one finds a comprehensive treatment in
[Sau04]. However, the algorithms mentioned previously do not have quasi-linear complexity.

To obtain a quasi-linear result, we rely on the fast univariate algorithms of [BM74]. In
the special case where I is the grid Id1,	 ,dn, Pan [Pan94] solves the multivariate problem
by applying a “tensored” form of the univariate algorithms, evaluating or interpolating one
variable after the other. The key contribution of our paper is the use of a multivariate
Newton basis, combined with fast change of basis algorithms between the Newton basis
and the monomial basis; this will allow us to follow an approach similar to Pan’s in our
more general situation. The Newton basis was already used in many previous works on our
interpolation problem [Wer80, Müh88], accompanied by divided differences computations:
we avoid divided differences, as they lead to quadratic time algorithms.

Joris van der Hoeven, Éric Schost 3

The results in this paper have a direct application to multivariate power series mul-
tiplication. Let I be as above, and let m be the monomial ideal generated by {xi: i � I};
equivalently, m is generated by all minimal elements of Nn \ I. Then, one is interested the
complexity of multiplication modulo m, that is, in C[x]/m. Suitable choices of I lead to total
degree truncation (take I = {(i1,	 , in): i1+
 + in< d}, so m= 〈x1,	 , xn〉d), which is used
in many forms of Newton-Hensel lifting, or partial degree truncation (take I = {(i1, 	 , in):
i1<d1,	 , in<dn}, so m= 〈x1

d1,	 , xn
dn〉).

There is no known algorithm with quasi-linear cost for this question in general. Inspired
by the sparse multiplication algorithm of [CKL89], Lecerf and Schost gave such an algorithm
for total degree truncation [LS03]. It was extended to weighted total degree in [vdH02] and
further improved from the bit-complexity point of view in [vdHL09]. Further speed-ups are
possible in small dimensions, when using the Truncated Fourier Transform or TFT [vdH04,
vdH05]. For more general truncation patterns, Schost [Sch05] introduced an algorithm based
on deformation techniques that uses evaluation and interpolation of the form described in
this paper. At the time of writing [Sch05], no efficient algorithm was known for evaluation
and interpolation; the present paper fills this gap and completes the results of [Sch05].

Conventions. In all that follows, we let M:N→N denote a multiplication time function,
in the sense that univariate polynomials of degree less than d can be multiplied in M(d)
operations in C. As in [GG03], we impose the condition that M(d)/d is an increasing function
(and freely use all consequences of this assumption), and we note that M can be taken in
O(d log d log log d) using the algorithm of [CK91].

We will use big-Oh notation for expressions that depend on an unbounded number of
variables (e.g., for Lemma 6 below). In such cases, the notation f(d1,	 , dn)=O(g(d1,	 , dn))
means that there exists a universal constant λ such that for all n and all d1, 	 , dn, the
inequality f(d1,	 , dn)6λ g(d1,	 , dn) holds.

2. Univariate Algorithms

This section describes some mostly classical algorithms for univariate polynomials over C.
We denote by C[x]d the set of univariate polynomials of degree less than d. Given pairwise
distinct points v= v0,	 , vd−1 in C, we write Ni,v(x)= (x− v0)
 (x− vi−1) for 06 i6 d. The
polynomials N0,v,	 ,Nd−1,v are called the Newton basis associated to v; they form a C-basis
of C[x]d. For instance, for vi= i, we have Ni,v(x) =x (x− 1)
 (x− (i− 1)).

Because we will have to switch frequently between the monomial and the Newton bases,
it will be convenient to use the notation Ni,v,ε(x), for ε∈{0, 1}, with

Ni,v,0(x) = xi

Ni,v,1(x) = Ni,v(x) = (x− v0)
 (x− vi−1).

We write P ⊣ (Ni,v,ε)i<d to indicate that a polynomial P ∈ C[x]d is written on the basis
(Ni,v,ε)i<d; remember that when no value ε is mentioned in subscript, we are working in the
Newton basis.

2.1. General results

The following classical lemma [BP94, Ex. 15 p. 67] gives complexity estimates for conversion
between these bases.

4 Multi-point evaluation in higher dimensions

Lemma 1. For ε ∈ {0, 1}, given P ⊣ (Ni,v,ε)i<d, one can compute P ⊣ (Ni,v,1−ε)i<d in time
O(M(d) log d).

Evaluation and interpolation in the monomial basis can be done in time O(M(d) log d),
by the algorithms of [BM74]; combining this to the previous lemma, we obtain a similar
estimate for evaluation and interpolation with respect to the Newton basis.

Lemma 2. For ε∈{0, 1}, given P ⊣ (Ni,v,ε)i<d, one can compute P (vi)06i<d, and conversely
recover P ⊣ (Ni,v,ε)i<d from its values P (vi)06i<d, in time O(M(d) log d).

If the points v0,	 , vd−1 are in geometric progression, we may remove a factor log d in all
estimates. Indeed, under these assumptions, the conversions of Lemma 1 and the evaluation
or interpolation of Lemma 2 take time O(M(d)) [BS05]. The following subsection studies in
detail another particular case, TFT (Truncated Fourier Transform) points. In this case we
may also remove the factor log d in all estimates, but the constant factor is even better than
for points in geometric progression.

2.2. TFT points

In this subsection, we are going to assume that C contains suitable roots of unity, and prove
refined complexity bounds for such points.

Let d be as above, let q = ⌈log2 d⌉ be the smallest integer such that d 6 2q and let us
suppose that C contains a primitive 2q-th root of unity ζ. The TFT points are vi= ζ [i]q, for
i=0,	 , d−1, where [i]q is the binary q-bits mirror of i. In other words, they form an initial
segment of length d for the sequence of 2q-th roots of unity written in the bit-reverse order;

when for instance d = 3 and q = 2, these points are 1, −1, −1
√

. In this subsection, these
points are fixed, so we drop the subscript v in our notation.

It is known [vdH04, vdH05] that in the monomial basis, evaluation and interpolation
at the TFT points can be done in time O(d log d). Precisely, both operations can be done
using d q+2q shifted additions and subtractions and ⌈(d q+2q)/2⌉ multiplications by powers
of ζ. Here we recall that a shifted addition (resp. subtraction) is a classical addition (resp.
subtraction) where any of the inputs may be premultiplied by 2 or 1/2 (e.g., a±2 b). In the
most interesting case d≃ 2q/2, the TFT roughly saves a factor of 2 over the classical FFT;
this makes it a very useful tool for e.g. polynomial multiplication.

We will show here that similar results hold for the conversion between the monomial and
Newton bases. First, we give the basis of the algorithm by assuming that d = 2q, so that
deg (P)=2q− 1. Such a polynomial can be written in the monomial, resp. Newton basis, as

P =
∑

i=0

2q−1

pi,0x
i=
∑

i=0

2q−1

pi,1
∏

j=0

i−1
(

x− ζ [j]q
)

.

For k=0,	 , q, let us introduce the polynomials P0
(k)
,	 , P

2q−k
−1

(k)
, all of degree less than 2k,

such that

P =
∑

i=0

2q−k
−1

Pi
(k)
∏

j=0

i−1
(

x2k − ζ [j]q
)

. (1)

Joris van der Hoeven, Éric Schost 5

Thus, Pi
(0)= pi,1 for k=0 and i=0,	 , 2q− 1, whereas P0

(q)=P for k= q.

Lemma 3. For k=0,	 , q− 1 and i=0,	 , 2q−k−1− 1, we have

Pi
(k+1)=P2i

(k)+P2i+1
(k) (

x2k − ζ [2i]q
)

=
(

P2i
(k)− ζ [2i]qP2i+1

(k))+x2kP2i+1
(k)

.

Proof. This follows by grouping the terms of indices 2 i and 2 i+1 in (1), and by noticing
that for all i < 2q−k−1, the following equality holds:

∏

j=0

2i−1
(

x2k − ζ [j]q
)

=
∏

j=0

i−1
(

x2k+1− ζ [j]q
)

.

Indeed, for all even j < 2q, [j + 1]q = −[j]q; thus, the left-hand side is the product of all

x2k+1 − ζ2[j]q, for j (even) = 0, 2,	 , 2 i− 2. The claim follows by writing j = 2 j ′, observing
that 2 [2 j ′]q= [j ′]q. �

The previous lemma implies an algorithm of complexity O(d log d) that takes as input
the coefficients p0,1,	 , p2q−1,1 on the Newton basis, and outputs P on the monomial basis. It
suffices to compute all polynomials Pi

(k+1) (on the monomial basis) by means of the recursive

formula. Computing Pi
(k+1) from P2i

(k) and P2i+1
(k) takes 2k additions and 2k multiplications

by powers of ζ, so going from index k to k + 1 takes a total of 2q − 1 additions and 2q−1

multiplications. The inverse conversion takes time O(d log d) as well, since knowing Pi
(k+1),

we can recover first P2i+1
(k) for free as the high-degree terms of Pi

(k+1), then P2i
(k) using 2k

additions and 2k multiplications.
The conversion algorithm from the Newton to the monomial basis can be depicted as

follows, in the case d= 16, q=4. The flow of the algorithm goes down, from k=0 to k=4;

the kth row contains the 16 coefficients of the polynomials P0
(k)
,	 , P24−k

−1
(k)

(on the monomial

basis), in that order, and each oblique line corresponds to a multiplication by a root of unity.
The algorithm does only “half-butterflies”, compared to the FFT algorithm.

k=1

k=2

k=3

k=4

k=0

Figure 2. Schematic representation of the conversion Newton to monomial for d= 16

If we assume that d< 2q, we will be able to avoid useless computations, by keeping track
of the zero coefficients in the polynomials Pi

(k). The next figure shows the situation for d=11;
this is similar to what happens in van der Hoeven’s TFT algorithm, but much simpler (here,
at each level, we can easily locate the zero coefficients).

6 Multi-point evaluation in higher dimensions

k=0

k=1

k=2

k=3

k=4

Figure 3. Schematic representation of the conversion Newton to monomial for d= 11

The pseudo-codes for the conversion from Newton basis to monomial basis and the inverse
transformation are as follows:

Algorithm TFT-Newton-to-Monomial

Input: an array p of length d that contains the coefficients pi,1 w.r.t. the Newton basis
Output: the same array p now contains the coefficients pi,0 w.r.t. the monomial basis

for k=0,	 , q− 1
m= d div 2k+1, r= dmod 2k+1

for i=0,	 , m− 1
for j=0,	 , 2k− 1
p[2k+1 i+ j]8 ζ [2i]q p[2k+1 i+ j+2k]

for j=0,	 , r− 2k− 1
p[2k+1 i+ j]8 ζ [2i]q p[2k+1 i+ j+2k]

Algorithm TFT-Monomial-to-Newton

Input: an array p of length d that contains the coefficients pi,0 w.r.t. the monomial basis
Output: the same array p now contains the coefficients pi,1 w.r.t. the Newton basis

for k= q− 1,	 , 0
m= d div 2k+1, r= dmod 2k+1

for i=0,	 , m− 1
for j=0,	 , 2k− 1
p[2k+1 i+ j]7 ζ [2i]q p[2k+1 i+ j+2k]

for j=0,	 , r− 2k− 1
p[2k+1 i+ j]7 ζ [2i]q p[2k+1 i+ j+2k]

We deduce the following complexity result for the conversions, which refines Lemma 1;
it is of the form O(d log d), with a tight control on the constants.

Lemma 4. Using the TFT evaluation points, for ε ∈ {0, 1}, given P ⊣ (Ni,ε)i<d, one can
compute P ⊣ (Ni,1−ε)i<d using q ⌊d/2⌋ additions or subtractions, and q ⌊d/2⌋ multiplications
by roots of unity, with q= ⌈log2 d⌉.

Proof. For any given k, we do 2km+max (r − 2k, 0) additions/subtractions and multipli-
cations. This is at most ⌊d/2⌋. �

Joris van der Hoeven, Éric Schost 7

The equivalent of Lemma 2 for the TFT points comes by using van der Hoeven’s TFT
algorithms for evaluation and interpolation on the monomial basis, instead of the general
algorithms.

3. Projections and Sections

Let I ⊆N
n be a finite initial segment and let (d1,	 , dn) be such that I is contained in Id1,	 ,dn.

We present here some geometric operations on I that will be useful for the evaluation and
interpolation algorithms.

Projections. We will denote by I ′⊆N
n−1 the projection

I ′= {i ′= (i2,	 , in)∈N
n−1: (0, i2,	 , in)∈ I }

of I on the (i2,	 , in)-coordinate plane. For i′ in I ′, we let d(i′)>1 be the unique integer such
that (d(i ′)− 1, i2,	 , in)∈ I and (d(i ′), i2,	 , in) � I. In particular, d(i ′)6 d1 holds for all i

′.
In Figure 1, we have d1=5; I ′ consists of the points of ordinates 0, 1, 2, 3 on the vertical

axis, with d(0)= 5, d(1)= 4, d(2)= 2 and d(3)= 1.
Finally, if v = (v1, 	 , vn) is a collection of points as defined in the introduction, with

vk∈Cdk for all k6 n, then we will write v ′= (v2,	 , vn).
Sections. For j1<d1, we let Ij1 be the section

Ij1= {(i1,	 , in)∈ I: i1= j1}

and we let Ij1
′ be the projection of Ij1 on the (i2, 	 , in)-coordinate plane. In other words,

i
′ = (i2,	 , in) is in Ij1

′ if and only if (j1, i2,	 , in) is in I. We have the following equivalent
definition

Ij1
′ = {i′=(i2,	 , in)∈ I ′: d(i′)> j1}.

Because the sets Ij1 form a partition of I, we deduce the equality |I |=∑
j1=0

d1−1 |Ij1′ |. Notice also
that all Ij1

′ are initial segments in N
n−1. In Figure 1, we have I0

′ = {0, 1, 2, 3}, I1′= {0, 1, 2},
I2
′= {0, 1}, I3′= {0, 1} and I4

′= {0}.

4. Multivariate Bases

From now on, we focus on multivariate polynomials. In all this section, we fix a finite initial
segment I ⊆N

n and d1,	 , dn such that I ⊆ Id1,	 ,dn. Naturally, polynomials in C[x]I may be
written in the monomial basis (xi)i∈I, but we may also use the multivariate Newton basis
(Ni,v)i∈I, defined by

Ni,v(x) = Ni1,v1(x1)
 Nin,vn(xn).

Generalizing the univariate notation, given ε∈{0, 1}n, we will consider a mixed monomial-
Newton basis (Ni,v,ε)i∈I with

Ni,v,ε(x) = Ni1,v1,ε1(x1)
 Nin,vn,εn(xn).

As in the univariate case, we will write P ⊣ (Ni,v,ε)i∈I to indicate that P is written on the
corresponding basis.

8 Multi-point evaluation in higher dimensions

It will be useful to rely on the following decomposition. Let P be in C[x]I, written on
the basis (Ni,v,ε)i∈I. Collecting coefficients, we obtain

P =
∑

i∈I

pi,v,εNi,v,ε=
∑

i′=(i2,	 ,in)∈I ′

Pi′,v ′,ε(x1)Ni2,v2,ε2(x2)
 Nin,vn,εn(xn), (2)

with i= (i1,	 , in) and
Pi′,v ′,ε(x1)=

∑

i1=0

d(i′)−1

pi,v,εNi1,v1,ε1(x1). (3)

Keep in mind that if the indices ε and εi are omitted, we are using the Newton basis.

Lemma 5. Let ε be in {0,1}n, and let ε′ be obtained by replacing εk by 1−εk in ε, for some k
in {1,	 , n}. Let P be in C[x]I. Given P ⊣ (Ni,v,ε)i∈I, one can compute P ⊣ (Ni,v,ε′)i∈I in time

O

(

M(dk) log dk
dk

|I |
)

.

Proof. Using a permutation of coordinates, we reduce to the case when k = 1. Using
the above notations, it suffices to convert Pi′,v ′,ε(x1) from the basis (Ni1,v1,ε1)i1<d1 to the
basis (Ni1,v1,1−ε1) for all i ′ ∈ I ′. By Lemma 1, each conversion can be done in time
O(M(d(i ′)) log (d(i′))), so the total cost is

O

(

∑

i′∈I ′

M(d(i ′)) log (d(i′))
)

=O

(

∑

i′∈I ′

M(d(i′)) log (d(i ′))

d(i′)
d(i ′)

)

.

Since the function M(d) log (d)/d is increasing, we get the upper bound

O

(

∑

i′∈I ′

M(d1) log d1
d1

d(i′)

)

=O

(

M(d1) log d1
d1

∑

i′∈I ′

d(i′)

)

;

the conclusion follows from the equality
∑

i′∈I
d(i ′)= |I |. �

Let us write 0=(0,	 , 0) and 1=(1,	 , 1), where both vectors have length n. Then, the
basis (Ni,v,0)i∈I is the monomial basis, whereas the basis (Ni,v,1)i∈I is the Newton basis.
Changing one coordinate at a time, we obtain the following corollary, which shows how to
convert from the monomial basis to the Newton basis, and back.

Lemma 6. Let ε be in {0, 1}n and let P be in C[x]I. Given P ⊣ (Ni,v,ǫ)i∈I, one can compute
P ⊣ (Ni,v,1−ε)i∈I in time

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |
)

.

The remarks in Section 2 about special families of points apply here as well: if the points
in v have special properties (e.g., vk is in geometric progression, or the vk are TFT points),
the cost may be reduced (both in the geometric case and in the TFT case, we may save the
factors log dk).

Joris van der Hoeven, Éric Schost 9

5. Multivariate Evaluation and Interpolation

We are now in a position to state and prove our main result.

Theorem 7. Given (I , v,P) such that I ⊆ Id1,	 ,dn, with P written on the monomial basis of
C[x]I, one can evaluate P at V (I , v) in time

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |
)

.

Conversely, given the values of P at V (I , v), one can compute the representation of P on
the monomial basis of C[x]I with the same cost.

Using the bound M(d)=O(d log d log log d), and the fact that di6 |I | holds for all i, we
deduce the simplified bound O(n |I | log2 |I | log log |I |) claimed in the introduction. Remark
also that our result matches the cost of the algorithm of [Pan94], which applies in the special
case of evaluation-interpolation at a grid.

The input P to the evaluation algorithm is given on the monomial basis of C[x]I; however,
internally to the algorithm, we use the Newton basis. Thus, before entering the (recursive)
evaluation algorithm, we switch once and for all to the Newton basis; this does not harm com-
plexity, in view of Lemma 6. Similarly, the interpolation algorithm uses the Newton basis,
so we convert the result to the monomial basis after we have completed the interpolation.

Remark also that if the points vk,0, 	 , vk,dk−1 are in geometric progression for each k,
then one may eliminate the factors log dk from the complexity bound. Using TFT evaluation
points allows for similar reductions.

5.1. Setup

The algorithm follows a pattern similar to Pan’s multivariate evaluation and interpolation at
a grid [Pan94]: e.g. for evaluation, we evaluate at the fibers above each i

′∈ I ′, and proceed
recursively with polynomials obtained from the sections Ij1. Using the Newton basis allows
us to alleviate the issues coming from the fact that V (I , v) is not a grid.

Let P ∈C[x]I be written (in the Newton basis) as in the previous section:

P (x1,	 , xn) =
∑

i′=(i2,	 ,in)∈I ′

∑

i1=0

d(i′)−1

pi,vNi1,v1(x1)Ni2,v2(x2)
 Nin,vn(xn)

=
∑

i′=(i2,	 ,in)∈I ′

Pi′,v ′(x1)Ni2,v2(x2)
 Nin,vn(xn),

where we write i= (i1,	 , in) and
Pi′,v ′(x1)=

∑

i1=0

d(i′)−1

pi,vNi1,v1(x1).

To j1<d1, we associate the (n− 1)-variate polynomial

Pj1(x2,	 , xn)=
∑

i′=(i2,	 ,in)∈Ij1
′

Pi′,v ′(v1,j1)Ni2,v2(x2)
 Nin,vn(xn).

10 Multi-point evaluation in higher dimensions

The key to our algorithms is the following proposition.

Proposition 8. For all j=(j1,	 , jn)∈ I, the following equality holds:

P (v1,j1,	 , vn,jn)=Pj1(v2,j2,	 , vn,jn).
Proof. First, we make both quantities explicit. The left-hand side is given by

P (v1,j1,	 , vn,jn) =
∑

i′=(i2,	 ,in)∈I ′

∑

i1=0

d(i′)−1

pi,vNi1,v1(v1,j1)Ni2,v2(v2,j2)
 Nin,vn(vn,jn),

whereas the right-hand side is

Pj1(v2,j2,	 , vn,jn) =
∑

i′=(i2,	 ,in)∈Ij1
′

∑

i1=0

d(i′)−1

pi,vNi1,v1(v1,j1)Ni2,v2(v2,j2)
 Nin,vn(vn,jn),

where in both cases we write i= (i1, 	 , in). Thus, to conclude, it is enough to prove that,
for i ′∈ I ′ \ Ij1′ , we have Ni1,v1(v1,j1)Ni2,v2(v2,j2)
 Nin,vn(vn,jn)= 0.

Indeed, recall that the assumption i
′∈ I ′ \ Ij1′ implies d(i ′)6 j1. On the other hand, we

have j ∈ I, whence the inequality j1<d(j ′), where we write j ′=(j2,	 , jn). In particular, we
deduce d(i ′)<d(j ′), which in turn implies that i′
 j ′. Thus, there exists k ∈{2,	 , n} such
that ik> jk. This implies that Nik,vk(vk,jk)= 0, as requested. �

5.2. Evaluation

Given (I , v, P), with P ∈ C[x]I written in the Newton basis (Ni,v)i∈I, we show here how
evaluate P at V (I , v). The algorithm is the following.

• If n=0, P is a constant; we return it unchanged.

• Otherwise, we compute all values Pi′,v ′(v1,j1), for i
′∈ I ′ and 06 j1<d(i′), by applying

the fast univariate evaluation algorithm to each Pi′,v ′. For 06 j1<d1, and for i ′∈ Ij1
′ ,

we have (by definition) j1<d(i′), so we have all the information we need to form the
polynomial Pj1⊣ (Ni′,v ′)i′∈I ′. Then, we evaluate recursively each Pj1 at V (Ij1

′ , v ′), for
06 j1<d1.

Proposition 9. The above algorithm correctly evaluates P at V (I , v) in time

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |
)

.

Proof. Correctness follows directly from Proposition 8, so we can focus on the cost analysis.
Let E(n, I , d1, 	 , dn) denote the cost of this algorithm. The former discussion shows that
E(0, I) = 0 and that E(n, I , d1,	 , dn) is the sum of two contributions:

• the cost of computing all values Pi′,v ′(v1,j1), for i
′∈ I ′ and j1<d(i′)

• the cost of the recursive calls on (Ij1
′ , v ′, Pj1) for 06 j1<d1.

Joris van der Hoeven, Éric Schost 11

Lemma 2 shows that the former admits the upper bound

O

(

∑

i′∈I ′

M(d(i′)) log (d(i ′))
)

;

as in the proof of Lemma 5, this can be bounded by

O

(

M(d1) log d1
d1

|I |
)

.

As to the recursive calls, notice that all Ij1
′ are contained in I ′, which is contained in Id2,	 ,dn.

Thus, for some constant K, we obtain the inequality

E(n, I , d1,	 , dn) 6 ∑

j1<d1

E(n, Ij1
′ , d2,	 , dn)+K

M(d1) log d1
d1

|I |. (4)

To conclude, we prove that for all n, for all d1,	 , dn and for any initial segment I ⊆ Id1,	 ,dn,
we have

E(n, I , d1,	 , dn) 6 K

(

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |. (5)

Such an inequality clearly holds for n=0. Assume by induction on n that for any d2,	 , dn
and any initial segment J ⊆ Id2,	 ,dn, we have

E(n− 1, J , d2,	 , dn) 6 K

(

M(d2) log d2
d2

+
 +
M(dn) log dn

dn

)

|J |. (6)

To prove (5), we substitute (6) in (4), to get

E(n, I , d1,	 , dn) 6
∑

j1<d1

K

(

M(d2) log d2
d2

+
 +
M(dn) log dn

dn

)

|Ij1′ |

+K
M(d1) log d1

d1
|I |.

Since
∑

j1<d1
|Ij1′ |= |I |, we are done. �

5.3. Interpolation

The interpolation algorithm is obtained by reversing step-by-step the evaluation algorithm.
On input, we take (I , v, F), with F ∈CI; the output is the unique polynomial P ⊣ (Ni,v)i∈I

such that Fi=P (αi,v) for all i∈ I.

• If n=0, F consists of a single entry; we return it unchanged.

• Otherwise, we recover recursively all Pj1 ⊣ (Ni′,v ′)i′∈I ′, for 0 6 j1 < d1. This is made
possible by Proposition 8, which shows that we actually know the values of each Pj1

at the corresponding V (Ij1
′ , v ′). Knowing all Pj1 gives us the values Pi′,v ′(v1,j1) for

all i′∈ I ′ and 06 j1<d(i ′). It suffices to interpolate each Pi′,v ′ on the Newton basis
(Ni1,v1)i1<d(i′) to conclude.

12 Multi-point evaluation in higher dimensions

Correctness of this algorithm is clear and the following complexity bound is proved in a sim-
ilar way as in the case of evaluation.

Proposition 10. The above algorithm correctly computes P ⊣ (Ni,v)i∈I in time

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |
)

.

6. Applications

We conclude with an application of our results to the multiplication of polynomials and
power series. Let I and d1,	 , dn be as above. We let d=max (d1,	 , dn), as we assume that C
has cardinality at least d, so that we can find v = (v1, 	 , vn), where vk = (vk,0, 	 , vk,dk−1)
consists of pairwise distinct entries in C. Let δ=1+max{i1+
 + in: (i1,	 , in)∈ I }, so that
d6 δ6n(d− 1).

6.1. Multiplication of polynomials

We discuss here the case when we want to multiply two polynomials P1∈C[x]I1 and P2∈C[x]I2
with I1+ I2= I. In this case, we may use a simple evaluation-interpolation strategy.

• Perform multi-point evaluations of P1 and P2 at V (I ,v);

• Compute the componentwise product of the evaluations;

• Interpolate the result at V (I , v) to yield the product P1P2.

By Theorem 7, this can be done in time

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I |
)

= O

(

n
M(d) log d

d
|I |
)

.

If C admits at least d points in geometric progression (or at least d TFT points), then the
factor log d may be removed. This result should be compared to the algorithm of [CKL89],
which has complexity O(M(|I |) log |I |); that algorithm applies to more general monomial
supports, but under more restrictive conditions on the base field.

6.2. Multiplication of power series

Let now m be the monomial ideal generated by {xi: i� I}. We discuss here the complexity of
multiplication modulo in C[x]/m. To our knowledge, no general algorithm with a complexity
quasi-linear in |I | is known.

Let us first recall an algorithm of [Sch05] and show how our results enable us to improve
it. Theorem 1 of [Sch05] gives an algorithm for multiplication in C[x]/m, that relies on the
following operations:

• O(δ) multi-point evaluations at V (I , v) of polynomials in C[x]I ;
• |I | univariate power series multiplication in precision O(δ);

Joris van der Hoeven, Éric Schost 13

• O(δ) interpolations at V (I , v) of polynomials in C[x]I.
The paper [Sch05] does not specify how to do the evaluation and interpolation (for lack of an
efficient solution); using our results, it becomes possible to fill all the gaps in this algorithm.
Applying Theorem 7, without doing any simplification, we obtain a cost of

O

((

M(d1) log d1
d1

+
 +
M(dn) log dn

dn

)

|I | δ+ |I |M(δ)

)

.

Using the inequality di 6 δ, this gives the upper bound O(nM(δ) log δ |I |). If we can take
at least d points in geometric progression in C (or at least d TFT points), then the upper
bound reduces to O(nM(δ) |I |).

6.3. Power series with total degree truncation

The most important case of truncated power series multiplication is when we truncate with
respect to the total degree. In other words, we take I = {(i1,	 , in): i1+
 + in<δ}. In that
case, several alternative strategies to the one of the former subsection are available [LS03,
vdH04, vdH05, vdHL09], and we refer to [vdH05, vdHL09] for some benchmarks.

As it turns out, one can apply the result from Section 6.1, in the special case of polyno-
mials supported in total degree, to improve these algorithms, when C admits at least d points
in geometric progression (or at least d TFT points). Indeed, the algorithms from [LS03,
vdHL09] rely on multivariate polynomial multiplication. Using the result of Section 6.1 in
these algorithms (instead of sparse polynomial multiplication), we obtain a new algorithm

of time complexity O(n
M(d)

d
|I |) instead of O(nM(|I |) log |I |). For constant n, this removes

a factor O(log d) from the asymptotic time complexity.

To finish, we would like to point out that the present paper almost repairs an error
in [vdH04, Section 5], which was first announced in [vdH05]. Indeed, it was implicitly, but
mistakenly, assumed that Proposition 8 also holds for monomial bases. The present “fix”
simply consists of converting to the Newton basis before evaluating, and similarly for the
inverse. The asymptotic time complexity analysis from [vdH04, Section 5] actually remains
valid up to a small but non trivial constant factor. When using TFT transforms in combi-
nation with the algorithms from section 2.2, we expect the constant factor to be comprised
between one and three in practice.

Bibliography

[BM74] A. Borodin and R. T. Moenck. Fast modular transforms. Journal of Computer and System

Sciences , 8:366–386, 1974.

[BP94] D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1 . Birkhäuser Boston Inc.,
Boston, MA, 1994. Fundamental algorithms.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points.
Journal of Complexity , 21(4):420–446, 2005.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica, 28(7):693–701, 1991.

14 Multi-point evaluation in higher dimensions

[CKL89] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations
faster. In G. Gonnet, editor, ISSAC ’89 , pages 121–128, Portland, Oregon, 1989. ACM.

[GG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2-
nd edition, 2003.

[LS03] G. Lecerf and É. Schost. Fast multivariate power series multiplication in characteristic zero.
SADIO Electronic Journal on Informatics and Operations Research, 5(1):1–10, September 2003.

[Mor03] F. Mora. De nugis Groebnerialium 2: Applying Macaulay’s trick in order to easily write a
Gröbner basis. Applicable Algebra in Engineering, Communication and Computing, 13(6):437–
446, 2003.

[Müh88] G. Mühlbach. On multivariate interpolation by generalized polynomials on subsets of grids.
Computing , 40(3):201–215, 1988.

[Pan94] V. Pan. Simple multivariate polynomial multiplication. Journal of Symbolic Computation,
18(3):183–186, 1994.

[Sau04] T. Sauer. Lagrange interpolation on subgrids of tensor product grids. Mathematics of Compu-

tation, 73(245):181–190, 2004.

[Sch05] É. Schost. Multivariate power series multiplication. In M. Kauers, editor, ISSAC ’05 , pages
293–300, New York, NY, USA, 2005. ACM.

[vdH02] J. van der Hoeven. Relax, but don’t be too lazy. Journal of Symbolic Computation, 34:479–542,
2002.

[vdH04] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor,
ISSAC ’04 , pages 290–296, Univ. of Cantabria, Santander, Spain, July 4–7 2004. ACM.

[vdH05] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical Report 2005-5, Uni-
versité Paris-Sud, Orsay, France, 2005.

[vdHL09] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication.
Technical Report http://arxiv.org/abs/0901.4323v1, Arxiv, 2009.

[Wer80] H. Werner. Remarks on Newton type multivariate interpolation for subsets of grids. Computing,
25(2):181–191, 1980.

Joris van der Hoeven, Éric Schost 15

