
Towards a Model Theory for Transseries

Matthias Aschenbrenner, Lou van den Dries,

and Joris van der Hoeven

For Anand Pillay, on his 60th birthday.

Abstract The differential field of transseries extends the field of real
Laurent series, and occurs in various context: asymptotic expansions,
analytic vector fields, o-minimal structures, to name a few. We give an
overview of the algebraic and model-theoretic aspects of this differential
field, and report on our efforts to understand its first-order theory.

Introduction

We shall describe a fascinating mathematical object, the differential field T
of transseries. It is an ordered field extension of R and is a kind of universal
domain for asymptotic real differential algebra. In the context of this paper,
a transseries is what is called a logarithmic-exponential series or LE-series
in [16]. Here is the main problem that we have been pursuing, intermittently,
for more than 15 years.

Conjecture. The theory of the ordered differential field T is model complete,

and is the model companion of the theory of H-fields with small derivation.

With slow progress during many years, our understanding of the situation
has recently increased at a faster rate, and this is what we want to report
on. In Section 1 we give an informal description of T, in Section 2 we give
some evidence for the conjecture and indicate some plausible consequences.
In Section 3 we define H-fields, and explain their expected role in the story.
Section 4 describes our recent partial results towards the conjecture, obtained
since the publication of the survey [4]. (A full account is in preparation, and
of course we hope to finish it with a proof of the conjecture.) Section 5 proves
quantifier-free versions of the conjectural induced structure on the constant
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field R of T, of the asymptotic o-minimality of T, and of T having NIP. In
the last Section 6 we discuss what might be the right primitives to eliminate
quantifiers for T; this amounts to a strong form of the above conjecture.

This paper is mainly expository and programmatic in nature, and occasionally
speculative. It is meant to be readable with only a rudimentary knowledge
of model theory, valuations, and differential fields, and elaborates on talks by
us on various recent occasions, in particular by the second-named author at
the meeting in Oléron. For more background on the material in Sections 1–3
(for example, on Hardy fields) see [4], which can serve as a companion to the
present paper.

Conventions. Throughout, m, n range over N = {0, 1, 2, . . . }. For a field K

we let K
× = K \ {0} be its multiplicative group. By a Hahn field we mean

a field k((tΓ)) of generalized power series, with coefficients in the field k and
exponents in a non-trivial ordered abelian group Γ, and we view it as a valued

field in the usual way1. By differential field we mean a field extension K of Q
equipped with a derivation ∂ : K → K. In our work the operation of taking
the logarithmic derivative is just as basic as the derivation itself, and so we
introduce a special notation: y† := y

�
/y denotes the logarithmic derivative of

a non-zero y in a differential field. Thus (yz)† = y
† + z

† for non-zero y, z in a
differential field. Given a differential field K and an element a in a differential
field extension of K we letK�a� be the differential field generated by a overK.
An ordered differential field is a differential field equipped with an ordering in
the usual sense of “ordered field.” A valued differential field is a differential
field equipped with a (Krull) valuation that is trivial on its subfield Q. The
term pc-sequence abbreviates pseudo-cauchy sequence.

1 Transseries

The ordered differential field T of transseries arises as a natural remedy for
certain shortcomings of the ordered differential field of formal Laurent series.

1.1 Laurent series. Recall that the field R((x−1)) of formal Laurent series
in powers of x−1 over R consists of all series of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x� �� �
infinite part of f

+a0 + a−1x
−1 + a−2x

−2 + · · ·� �� �
infinitesimal part of f

with real coefficients an, an−1, . . . We order R((x−1)) by requiring x > R, and
make it a differential field by requiring x

� = 1 and differentiating termwise.

The ordered differential field R((x−1)) is too small for many purposes:

• x
−1 has no antiderivative log x in R((x−1));

• there is no reasonable exponentiation f �→ exp(f).

Here “reasonable” means that it extends real exponentiation and preserves
its key properties: the map f �→ exp(f) should be an isomorphism from the
ordered additive group of R((x−1)) onto its ordered multiplicative group of
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positive elements, and exp(x) > x
n for all n in view of x > R. Note that

exponentiation does make sense for the finite elements of R((x−1)):

exp(a0 + a−1x
−1 + a−2x

−2 + · · · )

= e
a0

∞�

n=0

1

n!
(a−1x

−1 + a−2x
−2 + · · · )n

= e
a0(1 + b1x

−1 + b2x
−2 + · · · ) for suitable b1, b2, . . . ∈ R.

The main model-theoretic defect of R((x−1)) as a differential field is that it
defines the subset Z; see [18, proof of Proposition 3.3, (i)]. Thus it has no
“tame” model-theoretic features. (In contrast, R((x−1)) viewed as just a field
is decidable by the work of Ax and Kochen [6].)

1.2 Transseries. To remove these defects we extend R((x−1)) to an ordered
differential field T of transseries: series of transmonomials (or logarithmic-
exponential monomials) arranged from left to right in decreasing order, each
multiplied by a real coefficient, for example

e
e
x

− 3ex
2

+ 5x
√
2
− (log x)π + 1 + x

−1 + x
−2 + x

−3 + · · ·+ e
−x + x

−1
e
−x .

The reversed order type of the set of transmonomials that occur in a given
transseries can be any countable ordinal. (For the series displayed it is ω+2.)
As with R((x−1)), the natural derivation of T is given by termwise differenti-
ation of such series, and in the natural ordering on T, a non-zero transseries
is positive iff its leading (“leftmost”) coefficient is positive.

Transseries occur in solving implicit equations of the form P (x, y, ex, ey) = 0
for y as x → +∞, where P is a polynomial in four variables over R. More
generally, transseries occur as asymptotic expansions of functions definable in
o-minimal expansions of the real field; see [4] for more on this. Transseries
also arise as formal solutions to algebraic differential equations and in many
other ways. For example, the Stirling expansion for the Gamma function is a
(very simple) transseries.

The terminology “transseries” is due to Écalle who introduced T in his solution
of Dulac’s Problem: a polynomial vector field in the plane can only have
finitely many limit cycles; see [19]. (This is related to Hilbert’s 16th Problem.)
Independently, T was also defined by Dahn and Göring in [17], in connection
with Tarski’s problem on the real exponential field, and studied as such in
[16], in the aftermath of Wilkie’s famous theorem [40]. (Discussions of the
history of transseries are in [28; 32].)

Transseries are added and multiplied in the usual way and form a ring T, and
this ring comes equipped with several other natural operations. Here are a
few, each accompanied by simple examples and relevant facts about T:
Taking the multiplicative inverse. Each non-zero f ∈ T has a multiplicative
inverse in T: for example,

1

x− x2e−x
=

1

x(1− xe−x)
= x

−1(1 + xe
−x + x

2
e
−2x + · · · )

= x
−1 + e

−x + xe
−2x + · · ·
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As an ordered field, T is a real closed extension of R. In particular, an algebraic
closure of T is given by T[i] where i2 = −1.

Formal differentiation. Each f ∈ T can be differentiated term by term, giving
a derivation f �→ f

� on the field T. For example:

(e−x + e
−x

2

+ e
−x

3

+ · · · )� = −(e−x + 2xe−x
2

+ 3x2
e
−x

3

+ · · · ).

The field of constants of this derivation is {f ∈ T : f
� = 0} = R.

Formal integration. For each f ∈ T there is some F ∈ T (unique up to
addition of a constant from R) with F

� = f : for example,

�
e
x

x
dx = constant +

∞�

n=0

n!x−1−n
e
x (diverges).

Formal composition. Given f, g ∈ T with g > R, we can “substitute g for x

in f” to obtain a transseries f ◦ g ∈ T. For example, let f(x) = x + log x
and g(x) = x log x; writing f(g(x)) for f ◦ g, we have

f(g(x)) = x log x+ log(x log x) = x log x+ log x+ log(log x),

g(f(x)) = (x+ log x) log(x+ log x)

= x log x+ (log x)2 + (x+ log x)
∞�

n=1

(−1)n+1

n

�
log x

x

�n

= x log x+ (log x)2 + log x+
∞�

n=1

(−1)n+1

n(n+ 1)

(log x)n+1

xn
.

The Chain Rule holds:

(f ◦ g)� = (f �
◦ g) · g� for all f, g ∈ T, g > R.

Compositional inversion. The set T>R := {f ∈ T : f > R} of positive infinite
transseries is closed under the composition operation (f, g) �→ f ◦g, and forms
a group with identity element x. For example, the transseries g(x) = x log x
has a compositional inverse of the form

x

log x
· F

�
log log x

log x
,

1

log x

�

where F (X,Y ) is an ordinary convergent power series in the two variables X
and Y over R with constant term 1. (This fact plays a certain role in the
solution, using transseries, of a problem of Hardy dating from 1911, obtained
independently in [15] and [26]; see [32].)

Exponentiation. We have a canonical isomorphism f �→ exp(f), with inverse
g �→ log(g), between the ordered additive group of T and the ordered mul-
tiplicative group T>0; it extends the exponentiation of finite Laurent series
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described above. With sinh := 1
2e

x −
1
2e

−x ∈ T>0 (sinus hyperbolicus),

exp(sinh) = exp
�
1
2e

x
�
· exp

�
−

1
2e

−x
�

= e
1
2 e

x

·

∞�

n=0

1

n!

�
−

1
2e

−x
�n

=
∞�

n=0

(−1)n

n!2n
e

1
2 e

x−nx
,

log(sinh) = log
�
e
x

2

�
1− e

−2x
��

= x− log 2−
∞�

n=1

1

n
e
−2nx

.

As an exponential ordered field, T is an elementary extension of the real
exponential field [15], and thus model complete and o-minimal [40]. The
iterated exponentials

e0 := x, e1 := expx, e2 := exp(exp(x)), . . .

form an increasing cofinal sequence in the ordering of T. Likewise, their formal
compositional inverses

�0 := x, �1 := log x, �2 := log(log(x)), . . .

form a decreasing coinitial sequence in T>R.

A precise construction of T is in [16], where it is denoted by R((x−1))LE. See
also [19], [20] and [28] for other accounts. The purely logarithmic transseries

are those which, informally speaking, do not involve exponentiation, and they
make up an intriguing differential subfield Tlog of T that has a very explicit
definition: First, setting �0 := x and �m+1 = log �m yields the sequence (�m)
of iterated logarithms of x. Next, let Lm be the formal multiplicative group

�
R
0 · · · �

R
m

=
�
�
r0
0 · · · �

rm
m

: r0, . . . , rm ∈ R
�
,

made into an ordered group such that �
r0
0 · · · �rm

m
> 1 iff the exponents

r0, . . . , rm are not all zero, and ri > 0 for the least i with ri �= 0. Of course,
if m � n, then Lm is naturally an ordered subgroup of Ln, and so we have a
natural inclusion of Hahn fields R((Lm)) ⊆ R((Ln)). We now have

Tlog =
∞�

n=0

R((Ln)) (increasing union of differential subfields).

It is straightforward to define log f ∈ Tlog for f ∈ T>0
log.

The inductive construction of T is more complicated, but also yields T as
a directed union of Hahn subfields, each of which is also closed under the
derivation. Hahn fields themselves (as opposed to suitable directed unions of
Hahn fields) cannot be equipped with a reasonable exponential map; see [31].

Note that Tlog is a proper subfield of R((L)), where L :=
�∞

n=0 Ln (directed
union of ordered multiplicative subgroups): for example, the series

1

�
2
0

+
1

(�0�1)2
+ · · ·+

1

(�0�1 · · · �n)2
+ · · ·

lies in R((L)), but not in Tlog, and in fact, not even in T. (This series will be
important in Section 4 below; see also Theorem 2.3.)
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1.3 Analytic counterparts of T. Convergent series in R((x−1)) define germs
of real analytic functions at infinity. This yields an isomorphism of ordered
differential fields between the subfield of convergent series in R((x−1)) and a
Hardy field. It would be desirable to extend this to isomorphisms between
larger differential subfields T of T and Hardy fields H which preserves as much
structure as possible: the ordering, differentiation, and even integration and
composition, whenever defined.

However, if T is sufficiently closed under integration (or solutions of other
simple differential equations), then it will contain divergent power series in
x
−1, as well as more general divergent transseries. A major difficulty is to give

an analytic meaning to such transseries. In simple cases, Borel summation
provides a systematic device for doing this. Borel’s theory has been greatly
extended by Écalle, who introduced a big subfield Tas of T. The elements
of Tas are called accelero-summable transseries , and Tas is real closed, stable
under differentiation, integration, composition, etc. The analytic counterparts
of accelero-summable transseries are called analysable functions, and they
appear naturally in Écalle’s proof of the Dulac Conjecture. As a prelude to
the T-Conjecture in the next section, here are some sweeping statements2

from Écalle’s book [19] on these notions, indicating that T and its cousin Tas

might be viewed as universal domains for asymptotic analysis.

It seems [ . . . ] (but I have not yet verified this in all generality) that Tas

is closed under resolution of differential equations, or, more exactly, that if

a differential equation has formal solutions in T, then these solutions are

automatically in Tas
.

It seems [ . . . ] that the algebra Tas
of accelero-summable transseries is truly

the algebra-from-which-one-can-never-exit and that it marks an almost im-

passable horizon for “ordered analysis.” (This sector of analysis is in some

sense “orthogonal” to harmonic analysis.)

This notion of analysable function represents probably the ultimate extension

of the notion of (real) analytic function, and it seems inclusive and stable to

a degree unheard of.

Accelero-summation requires a big machinery. If we just try to construct
isomorphisms T → H which do not necessarily preserve composition (but
do preserve the ordering and differentiation), then simpler arguments with a
more model-theoretic flavor can be used to prove the following, from [29]:

Theorem 1.1. Let Tda ⊆ T be the field of transseries that are differentially

algebraic over R. Then there is an isomorphism of ordered differential fields

between Tda
and some Hardy field.

In [29], this follows from general theorems about extending isomorphisms
between suitable differential subfields of T and Hardy fields.

2 The T-Conjecture

As explained above, the elementary theory of T as an exponential field is
understood, but T is far more interesting when viewed as a differential field.
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From now on we consider T as an ordered valued differential field.

T-Conjecture. T is model complete.

Model completeness is fairly robust as to which first-order language is used,
but to be precise, we consider T here as an L-structure, where L is the language
of ordered valued differential rings given by

L := {0, 1, +, −, · , ∂, �, �}

where the unary operation symbol ∂ names the derivation, and the binary
relation symbol � names the valuation divisibility on the field T given by

f � g ⇐⇒ |f | � c|g| for some c ∈ R>0.

For the T-Conjecture, it doesn’t really matter whether or not we include � and
�, since the ordering and the valuation divisibility are existentially definable
in terms of the other primitives: for �, use that R is the field of constants
for the derivation. (See also [3, Section 14].) A purely differential-algebraic
formulation of the T-Conjecture reads as follows:

For any differential polynomial P over Q in m + n variables there exists a

differential polynomial Q over Q in m+ p variables, for some p depending on

P , such that for all a ∈ Tm
the following equivalence holds:

P (a, b) = 0 for some b ∈ Tn
⇐⇒ Q(a, c) �= 0 for all c ∈ Tp

.

In logical terms: every existential formula in the language of differential rings
is equivalent in T to a universal formula in that language. In Section 5 we shall
try to make it plausible that a strong form of the T-Conjecture (elimination
of quantifiers in a reasonable language) implies the following attractive and
intrinsic model-theoretic properties of T:

• If X ⊆ Tn is definable, then X ∩ Rn is semialgebraic.
• T is asymptotically o-minimal : for each definable X ⊆ T there is a
b ∈ T such that either (b,+∞) ⊆ X or (b,+∞) ⊆ T \X.

• T has NIP. (What this means is explained in Section 5.)

2.1 Positive evidence. In Section 5 we establish quantifier-free versions of
the last three statements. Over the years, evidence for the T-Conjecture has
accumulated. For example, the value group of T equipped with a certain
function induced by the derivation of T (the “asymptotic couple” of T as
defined in Section 3.3 below) is model complete; see [1]. The best evidence
for the T-Conjecture to date is the analysis by van der Hoeven in [28] of the
set of zeros in T of any given differential polynomial in one variable over T.
Among other things, he proved the following Intermediate Value Theorem:

Theorem 2.1. Given any differential polynomial P (Y ) ∈ T{Y } and f, h ∈ T
with P (f) < 0 < P (h), there is g ∈ T with f < g < h and P (g) = 0.

Here and laterK{Y } = K[Y, Y �
, Y

��
, . . . ] is the ring of differential polynomials

in the indeterminate Y over a differential field K. The proofs in [28] make
full use of the formal structure of T as an increasing union of Hahn fields.
This makes it possible to apply analytic techniques (fixed point theorems,
compact-like operators, etc.) for solving algebraic differential equations; see
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also [27]. Much of our work consists of recovering significant parts of [28]
under weak first-order assumptions on valued differential fields.

2.2 The different flavors of T. In any precise inductive construction of T
we can impose various conditions on the so-called support of a transseries,
which is the ordered set of transmonomials occurring in it with a non-zero
coefficient. This leads to variants of the differential field T; see for example
the discussion in [19] and [28]. For the sake of definiteness, we take here T
to be the field R((x−1))LE of logarithmic-exponential power series from [16],
where supports are only required to be anti-wellordered; this is basically the
weakest condition that can be imposed.

In [28], however, every transseries in T has gridbased support (which implies
that it is contained in a finitely generated subgroup of the multiplicative group
of transmonomials). This leads to a rather small differential subfield of our T,
but results such as the Intermediate Value Theorem in [28] proved there for
the gridbased version of T are known to hold also for the T we consider here.
Of course, we expect these variants of T all to be elementarily equivalent, and
this is part of the motivation for our T-Conjecture. For this expectation to
hold we would need also an explicit first-order axiomatization of the theory of
T, and show that the various flavors of T all satisfy these axioms. At the end
of Section 4 we conjecture such an axiomatization as part of a more explicit
version of the T-Conjecture.

Likewise, we expect Écalle’s differential field Tas of accelero-summable
transseries to be an elementary submodel of T. (By the way, Tas comes in
similar variants as T itself.)

2.3 Linear differential operators over T. The Intermediate Value Property
for differential polynomials over T resembles the behavior of ordinary one-
variable polynomials over R. There is another analogy in [28] between T and
R which is much easier to establish: factoring linear differential operators
over T is similar to factoring one-variable polynomials over R. By a linear
differential operator over T we mean an operator A = a0 + a1∂ + · · · + an∂n

on T (∂ = the derivation, all ai ∈ T); it defines the same function on T as
the differential polynomial a0Y + a1Y

� + · · ·+ anY
(n). The linear differential

operators over T form a non-commutative ring T[∂] under composition.

Theorem 2.2. Every linear differential operator over T of order n � 1 is

surjective as a map T → T, and is a product (composition) of operators a+b∂
of order 1 in T[i][∂]. Every such operator is a product of order 1 and order 2
operators in T[∂].

Thus coming to grips with linear differential operators over T reduces to some
extent to understanding those of order 1 and order 2. Studying operators of
order 1 is largely a matter of solving equations y

� = a and z
† = b. Modulo

solving such equations, order 2 operators can be reduced to those of the form
4∂2 + f , where the next theorem is relevant.

Theorem 2.3. Let f ∈ T. Then the following are equivalent:

(1) the equation 4y�� + fy = 0 has a non-zero solution in T;
(2) f <

1
(�0)2

+ 1
(�0�1)2

+ 1
(�0�1�2)2

+ · · ·+ 1
(�0�1···�n)2 for some n;
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(3) f �= 2(u††)� − (u††)2 + (u†)2 for all u > R in T.

The equivalence of (1) and (2) is analogous to a theorem of Boshernitzan [12]
and Rosenlicht [37] in the realm of Hardy fields. (See the remarks following
Theorem 1.12 in [4] for a correction of [37].) The equivalence of (1) and (3)
has been known to us since 2002. Its model-theoretic significance is that
the existential condition (1) on f is equivalent to a universal condition on f ,
namely (3), in accordance with the T-Conjecture.

We note here that for a non-constant element u of a differential field,

2(u††)� − (u††)2 + (u†)2 = 2S(u), where

S(u) := (u�†)� −
1

2
(u�†)2 =

u
(3)

u� −
3

2

�
u
��

u�

�2

is known as the Schwarzian derivative of u, which plays a role in the analytic
theory of linear differential equations; see [25, Chapter 10].

3 H-Fields

Abraham Robinson taught us to think about model completeness and quan-
tifier elimination in an abstract algebraic way. This approach as refined by
Shoenfield and Blum suggests that the T-Conjecture follows from an adequate
extension theory for those ordered differential fields that share certain basic
(universal) properties with T. This involves a critical choice of the “right”
class of ordered differential fields. Our choice: H-fields3 as defined below.
Then the challenge becomes to show that the “existentially closed” H-fields
are exactly the H-fields that share certain deeper first-order properties with
T. If we can achieve this, then T will be model complete.

In practice this often amounts to the following: come up with the “right”
extra primitives (these should be existentially as well as universally definable
in T); guess the “right” axioms characterizing existentially closedH-fields; and
prove suitable embedding theorems forH-fields enriched with these primitives.
If this works, one has a proof of a strong form of the T-Conjecture, namely
an elimination of quantifiers in the language L augmented by symbols for
the extra primitives. Such an approach to understanding definability in a
given mathematical structure often yields further payoffs, for example, a useful
dimension theory for definable sets.

Let K be an ordered differential field, and put

C = {a ∈ K : a� = 0} (constant field of K)

O = {a ∈ K : |a| � c for some c ∈ C
>0

} (convex hull of C in K)

O = {a ∈ K : |a| < c for all c ∈ C
>0

} (maximal ideal of O).

We call K an H-field if the following conditions are satisfied:

(H1) O = C + O,
(H2) a > C =⇒ a

�
> 0.

Examples of H-fields include any Hardy field containing R, such as R(x, ex);
the ordered differential field R((x−1)) of Laurent series; and T. All these satisfy
an extra axiom:

(H3) a ∈ O =⇒ a
� ∈ O,
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which is also expressed by saying that the derivation is small.

An H-field K comes with a definable (Krull) valuation v whose valuation ring
is the convex hull O of C. It will be useful to fix similar notation for any
valued differential field K, not necessarily an H-field: C is the constant field,
O is the valuation ring, O is the maximal ideal of O, and v : K× → Γ with
Γ = v(K×) is the valuation. If we need to indicate the dependence on K we
use subscripts, so C = CK , O = OK , and so on. The valuation divisibility on
K corresponding to its valuation is the binary relation � on K given by

f � g ⇐⇒ vf � vg.

Note that if K is an H-field, then for all f, g ∈ K,

f � g ⇐⇒ |f | � c|g| for some c ∈ C
>0.

We also write g � f instead of f � g, and we define

f � g ⇐⇒ f � g and g � f .

Further, we introduce the binary relations ≺ and � on K:

f ≺ g ⇐⇒ vf > vg, f � g ⇐⇒ g ≺ f.

If K is an H-field, then for f, g ∈ K this means:

f ≺ g ⇐⇒ |f | < c|g| for all c ∈ C
>0.

Rosenlicht gave a nice valuation-theoretic formulation of l’Hôpital’s rule: if
K is a Hardy field, then we have:

for all f, g ∈ K with f, g ≺ 1: f ≺ g ⇐⇒ f
�
≺ g

�. (∗)

This rule (∗) goes through for H-fields. The ordering of an H-field determines
its valuation, but plays otherwise a secondary role. Moreover, it is often
useful to pass to algebraic closures like T[i], with the valuation extending
uniquely, still obeying (H1) and (∗), but without ordering. Thus much of
our work is in the setting of asymptotic differential fields: these are the
valued differential fields satisfying (∗). Section 4 will show the benefits of
coarsening the valuation of an H-field; the resulting object might not be an
H-field anymore, but remains an asymptotic differential field. It is a non-
trivial fact that any algebraic extension of an asymptotic differential field is
also an asymptotic differential field.

An H-field K is existentially closed if every finite system of algebraic dif-
ferential equations over K in several unknowns with a solution in an H-field
extension of K has a solution in K. Including in these systems also differential
inequalities (using � and <) and asymptotic conditions (involving � and ≺)
makes no difference. (See [3, Section 14].) A more detailed version of the
T-Conjecture now says:

Refined T-Conjecture. T is an existentially closed H-field, and there exists

a set Σ of L-sentences such that the existentially closed H-fields with small

derivation are exactly the H-fields satisfying Σ. (In more model-theoretic

jargon: the theory of H-fields with small derivation has a model companion,

and T is a model of this model companion.)
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A comment on axiom (H1) for H-fields. It expresses that the constant field
for the derivation is also in a natural way the residue field for the valuation.
However, (H1) cannot be expressed by a universal sentence in the language L
of ordered valued differential rings. We define a pre-H-field to be an ordered
valued differential subfield of an H-field. There are pre-H-fields that are not
H-fields, and the valuation of a pre-H-field is not always determined by its
ordering, as is the case in H-fields. Fortunately, any pre-H-field K has an
H-field extension H(K), its H-field closure, that embeds uniquely over K

into any H-field extension of K; see [2]. (Here and below, “extension” and
“embedding” are meant in the sense of L-structures.)

3.1 Liouville closed H-fields. The real closure of an H-field is again an
H-field; see [2]. Going beyond algebraic adjunctions, we consider adjoining
solutions to first-order linear differential equations y� + ay = b.

Call an H-field K Liouville closed if it is real closed and for all a, b ∈ K

there are y, z ∈ K such that y� = a and z �= 0, z† = b; equivalently, K is real
closed, and any equation y

� + ay = b with a, b ∈ K has a non-zero
4 solution

y ∈ K. For example, T is Liouville closed. Each existentially closed H-field is
Liouville closed as a consequence of the next theorem. A Liouville closure

of an H-field K is a minimal Liouville closed H-field extension of K. We can
now state the main result from [2]:

Theorem 3.1. Let K be an H-field. Then K has exactly one Liouville closure,

or exactly two Liouville closures (up to isomorphism over K).

Whether K has one or two Liouville closures is related to a trichotomy in the
class of H-fields which pervades our work. In fact, it is a trichotomy that can
be detected on the level of the value group; see below.

3.2 Trichotomy for H-fields. Let K be an H-field. Let v be the valuation
defined above, and Γ := v(K×) its value group. We set

Γ �= := Γ \ {0}, Γ> := {γ ∈ Γ : γ > 0}.

As a consequence of (∗), the derivation and logarithmic derivative of K induce
functions on Γ�=:

v(a) = γ �→ v(a�) = γ
� : Γ �=

→ Γ,

v(a) = γ �→ v(a†) = γ
† := γ

�
− γ : Γ �=

→ Γ,

where a ∈ K
×, v(a) �= 0. The function γ �→ γ

� : Γ�= → Γ is strictly increasing
and γ �→ γ

† : Γ> → Γ is decreasing, with (−γ)† = γ
† for all γ ∈ Γ �=. Figure 1

shows the qualitative behavior of the functions γ �→ γ
� and γ �→ γ

†. Some
features are a little hard to indicate in such a picture, for example the fact
that γ† is constant on each archimedean class of Γ �=.

Following Rosenlicht [36], we put

Ψ = ΨK := {γ
† : γ ∈ Γ �=

}.

Then Ψ < (Γ>)�, and exactly one of the following holds:

Case 1: Ψ < γ < (Γ>)� for some (necessarily unique) γ;
Case 2: Ψ has a largest element;



12 Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven

Γ ↑

→ Γ
◦

γ
�

γ
†

Figure 1

Case 3: supΨ does not exist; equivalently, Γ = (Γ�=)�.

If K = C we are in Case 1, with γ = 0; the Laurent series field R((x−1)) falls
under Case 2, and Liouville closed H-fields under Case 3. In Case 1 there are
two Liouville closures of K; in Case 2 there is only one, but Case 3 requires
finer distinctions for a definite answer. We now explain this in more detail.

SupposeK falls under Case 1. Then the element γ is called a gap, and there
are two ways to remove the gap: with v(a) = γ, we have an H-field extension
K(y1) with y1 ≺ 1 and y

�
1 = a, and we also have an H-field extension K(y2)

with 0 �= y2 ≺ 1 and y
†
2 = a. Both of these extensions fall under Case 2,

and they are incompatible in the sense that they cannot be embedded over K
into a common H-field extension of K. (Any Liouville closed extension of K,
however, contains either a copy of K(y1) or a copy of K(y2).) Instead of “K
falls under Case 1” we say “K has a gap.”

Suppose K falls under Case 2. Then so does every differential-algebraic
H-field extension of K that is finitely generated over K as a differential field.
Thus it takes an infinite generation process to construct the (unique) Liouville
closure of K. An H-field falling under Case 3 is said to admit asymptotic

integration. This is because Case 3 is equivalent to having for each non-zero
a in the field an element y in the field such that y� ∼ a.

3.3 Asymptotic couples. Let K be an H-field with valuation v : K× → Γ
defined as before. The ordered group Γ equipped with the function

γ �→ γ
† : Γ �=

→ Γ

is an asymptotic couple in the terminology of Rosenlicht [33; 34; 35], who
proved the first non-trivial facts about them as structures in their own right,
independent of their origin in Hardy fields. Indeed, this function γ �→ γ

† has
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rather nice properties: it is a valuation on the abelian group Γ: for all α,β ∈ Γ
(and 0† := ∞ > Γ),

(i) (α+ β)† � min(α†
,β

†),
(ii) (−α)† = α

†,

and this valuation is compatible with the group ordering: for all α,β ∈ Γ,

0 < α � β =⇒ α
† � β

†
. (H)

The asymptotic couple of T has a good model theory: It allows elimination
of quantifiers in its natural language augmented by a predicate for the subset
Ψ of Γ, and its theory is axiomatized by adding to Rosenlicht’s axioms5 for
asymptotic couples the following requirements:

(i) divisibility of the underlying abelian group;
(ii) compatibility with the ordering, as displayed in (H) above;
(iii) Ψ is downward closed and has no maximum;
(iv) there is no gap.

This result is in [1], which proves also the weak o-minimality of the asymptotic
couple of T. The trichotomy from the previous section is in [2], and holds for
all asymptotic couples satisfying (H).

4 New Results

The above material raises some issues which turn out to be related. First,
no H-subfield K of T with Γ �= {0} has a gap. Even to construct a Hardy

field with a gap and Γ �= {0} takes effort. Nevertheless, the model theory of
asymptotic couples strongly suggests that H-fields with a gap should play a
key role, and so the question arises how a given H-field can be extended to
one with a gap. The analogous issue for asymptotic couples is easy, but we
only managed to show rather recently that every H-field can be extended to
one with a gap. This is discussed in more detail in Section 4.7.

Recall: a valued field is maximal if it has no proper immediate extension;
this is equivalent to the more geometric notion of spherically complete. For
example, Hahn fields are maximal. Decisive results in the model theory of
maximal valued fields are due to Ax & Kochen [7] and Eršov [21]. Among
other things they showed that henselian is the exact first-order counterpart
of maximal , at least in equicharacteristic zero. In later extensions (Scanlon’s
valued differential fields in [38] and the valued difference fields from [8; 9]),
the natural models are still maximal. Here and below, “maximal” means
“maximal as a valued field” even if the valued field in question has further
structure like a derivation.

However, in our situation the expected natural models cannot be maximal:
no maximal H-field can be Liouville closed, let alone existentially closed.
Maximal H-fields do nevertheless exist in abundance, and turn out to be
a natural source for creating H-fields with a gap. It also remains true that
immediate extensions require close attention: T has proper immediate H-field
extensions that embed over T into an elementary extension of T; see the proof
of Proposition 5.4. Thus we cannot bypass the immediate extensions of T in
any model-theoretic account of T as we are aiming for.
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4.1 Immediate extensions of H-fields.

Theorem 4.1. Every real closed H-field has an immediate maximal H-field

extension.

This was not even known when the value group is Q. A difference with
the situation for valued fields of equicharacteristic 0 (without derivation) is
the lack of uniqueness of the maximal immediate extension. (The proof of
Proposition 5.4 shows such non-uniqueness in the case of T.)
Here are some comments on our proof of Theorem 4.1. First, this involves a
change of derivation as follows. Let K be a differential field with derivation ∂,
and let ϕ ∈ K

×. Then we define Kϕ to be the differential field obtained from
K by taking ϕ

−1∂ as its derivation instead of ∂. Then the constant field C

of K is also the constant field of Kϕ, and so C{Y } is a common differential
subring of K{Y } and K

ϕ{Y }. Given a differential polynomial P ∈ K{Y }

we let P
ϕ ∈ K

ϕ{Y } be the result of rewriting P in terms of the derivation
ϕ
−1∂, so P

ϕ(y) = P (y) for all y ∈ K. (For example, Y �ϕ = ϕY
� in K

ϕ{Y }.)
This change of derivation is called compositional conjugation. A suitable
choice of ϕ can often drastically simplify things. Also, if K is an H-field and
ϕ > 0, then K

ϕ is still an H-field, with Ψϕ = Ψ− vϕ.
Next, given any valued differential field K, we extend its valuation v to a

valuation on the domain K{Y } of differential polynomials by

vP := min{va : a ∈ K is a coefficient of P}.

Let now K be a real closed H-field with value group Γ �= {0}, and suppose
first that K does not admit asymptotic integration. Then supΨ exists in Γ,
and by compositional conjugation we can arrange that supΨ = 0. One can
show that then K is flexible, by which we mean that it has the following
property: for any P ∈ K{Y } with vP (0) > vP and any γ ∈ Γ>, the set
{vP (y) : y ∈ K, |vy| < γ} is infinite. This property then plays a key role
in constructing an immediate maximal H-field extension of K. (It is worth
mentioning that the notion of flexibility makes sense for any valued differential
field. There are indeed other kinds of flexible valued differential fields such as
those considered in [38] where this property can be used for similar ends.)

The case that the real closed H-field K does admit asymptotic integration
is harder and uses compositional conjugation in a more delicate way. We say
more on this in the next subsection.

4.2 The Newton polynomial. In this subsection K is a real closed H-field
with asymptotic integration. To simulate the favorable case supΨ = 0
from the previous subsection, we use compositional conjugation by ϕ with
vϕ < (Γ>)� as large as possible. Call ϕ ∈ K admissible if vϕ < (Γ>)�.

Theorem 4.2. Let P ∈ K{Y }, P �= 0. Then there is a differential polynomial

NP ∈ C{Y }, NP �= 0, such that for all admissible ϕ ∈ K with sufficiently

large vϕ we have a ∈ K
×

and R ∈ K
ϕ{Y } with

P
ϕ = aNP +R in K

ϕ
{Y }, vR > va.

We call NP the Newton polynomial of P . As described here, NP is only
determined up to multiplication by an element of C

×, but the key fact is
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that NP is independent of the admissible ϕ for high enough vϕ. We now
have a modified version of the flexibility property of the previous subsection:
given any non-zero P ∈ K{Y } with NP (0) = 0 and any γ ∈ Γ>, the set
{vP (y) : y ∈ K, |vy| < γ} is infinite. This can then be used to prove
Theorem 4.1 for real closed H-fields with asymptotic integration.

4.3 Differential-newtonian H-fields. An important fact about T from [28]
is that if the Newton polynomial of P ∈ T{Y } has degree 1, then P has a
zero in the valuation ring. Let us define an H-field K to be differential-

newtonian if it is real closed, admits asymptotic integration, and every non-
zero P ∈ K{Y } whose Newton polynomial has degree 1 has a zero in the
valuation ring. Thus T is differential-newtonian. A more basic example of a
differential-newtonian H-field is Tlog. If K is a differential-newtonian H-field,
then so is each compositional conjugate K

ϕ with ϕ > 0.

4.4 Differential-henselian valued differential fields. If an H-field K is differ-
ential-newtonian, then certain coarsenings of suitable compositional conju-
gates of K are differential-henselian. To explain this, let K be any valued
differential field with small derivation, that is, ∂O ⊆ O. It is not hard to see
that then ∂O ⊆ O, and so the residue field k = O/O is a differential field. In
the spirit of [38] we define K to be differential-henselian if the following
conditions are satisfied:

(DH1) every linear differential equation a0y + a1y
� + · · · + any

(n) = b with
a0, . . . , an, b ∈ k, an �= 0, has a solution in k;

(DH2) for every P ∈ O{Y } with vP0 > 0 and vP1 = 0, there is y ∈ O such
that P (y) = 0.

Here Pd is the homogeneous part of degree d of P , so

P0 = P (0), P1 =
�

i

∂P

∂Y (i)
(0)Y (i)

.

Without further assumptions on K this doesn’t give much, but it is enough
to get an analogue of the familiar lifting of residue fields in henselian valued
fields: if K is differential-henselian, then every maximal differential subfield of
O maps isomorphically (as a differential field) onto k under the residue map.

If K is an H-field with ∂O ⊆ O, then the derivation on its residue field k is
trivial, so (DH1) fails. To make the notion of differential-henselian relevant
for H-fields we need to consider coarsenings: Suppose K is a differential-
newtonian H-field and ∂O ⊆ O. Then the value group Γ = v(K×) has a
distinguished non-trivial convex subgroup

∆ := {γ ∈ Γ : γ
†
> 0},

and K with the coarsened valuation v∆ : K× → Γ/∆ is differential-henselian.
Moreover, by passing to suitable compositional conjugates of K, we can make
this distinguished non-trivial convex subgroup ∆ as small as we like, and
in this way we can make the coarsened valuation approximate the original
valuation as close as needed. We call K with v∆ the flattening of K.



16 Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven

These coarsenings are asymptotic differential fields, as defined in Section 3.
Let us consider more generally any asymptotic differential fieldK with ∂O ⊆ O.
Then “differential-henselian” does have some further general consequences:

Lemma 4.3. If K is differential-henselian and a0, . . . , an, b ∈ K, an �= 0,
then a0y + a1y

� + · · ·+ any
(n) = b for some y ∈ K.

This has a useful sharper version where we assume that a0, . . . , an, b ∈ O and
ai /∈ O for some i, with the solution y also required to be in O.

Proposition 4.4. If K is maximal as a valued field, and its differential residue

field k satisfies (DH1), then K is differential-henselian.

It follows in particular from Lemma 4.3 that if K is a differential-newtonian
H-field, then every linear differential equation a0y + a1y

� + · · · + any
(n) = b

over K, with an �= 0, has a solution in K.

While the AKE paradigm6 does not apply directly to H-fields, it may well be
relevant for certain coarsenings of compositional conjugates of H-fields. Here
we have of course in mind that “differential-henselian” should take over the
role of “henselian” in the AKE-theory.

It is worth mentioning that in dealing with a pc-sequence (aλ) in an H-
field with asymptotic integration we can reduce to two very different types of
behavior: one kind of behavior is when (aλ) is fluent, that is, it remains a pc-
sequence upon coarsening the valuation by some non-trivial convex subgroup
of the value group Γ, and the other type of behavior is when (aλ) is jammed,
that is, for every γ ∈ Γ> there is an index λ0 such that |v(aµ−aλ)| < γ for all
µ > λ > λ0. In differential-henselian matters it is enough to deal with fluent
pc-sequences. Jammed pc-sequences are considered in Section 4.7.

4.5 Consequences for existentially closed H-fields. Using the results above,
some important facts about T can be shown to go through for existentially
closed H-fields. Thus existentially closed H-fields are not only Liouville
closed, but also differential-newtonian. As to linear differential equations,
let us go into a little more detail.

Let K be a differential field, and consider a linear differential operator

A = a0 + a1∂ + · · ·+ an∂n (a0, . . . , an ∈ K)

over K; here ∂ stands for the derivation operator on K. These operators form
a ring K[∂] under composition, with ∂a = a∂ + a

� for a ∈ K.

Theorem 4.5. If K is an existentially closed H-field, n � 1, an �= 0, then
A : K → K is surjective, and A is a product of operators a+ b∂ of order 1 in

K[i][∂] (and thus a product of order 1 and order 2 operators in K[∂]).

4.6 The Equalizer Theorem. This is an important technical tool, needed,
for example, in proving Proposition 4.4.

Let K be a valued differential field with small derivation and value group Γ.
Let P = P (Y ) ∈ K{Y }, P �= 0. Then we have for g ∈ K

× the non-zero
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differential polynomial P (gY ) ∈ K{Y }, and it turns out that its valuation
vP (gY ) depends only on vg (not on g). Thus P induces a function

vP : Γ → Γ, vP (γ) := vP (gY ) for g ∈ K
× with vg = γ.

Moreover, if P (0) = 0, this function is strictly increasing. These facts are easy
to prove, but the following “equalizer” theorem lies deeper:

Theorem 4.6. Let K be an asymptotic differential field with small derivation

and divisible value group Γ. Let P ∈ K{Y }, P �= 0, be homogeneous of

degree d > 0. Then vP : Γ → Γ is a bijection. If also Q ∈ K{Y }, Q �= 0, is
homogeneous of degree e �= d, then there is a unique γ ∈ Γ with vP (γ) = vQ(γ).

In combination with compositional conjugation and Newton polynomials, the
equalizer theorem plays a role in detecting the γ ∈ Γ for which there can exist
y ∈ K

× with vy = γ and P (y) = 0.

4.7 Two important pseudo-cauchy sequences. We consider here jammed pc-
sequences. Recall that in T we have the iterated logarithms �n with

�0 = x, �n+1 = log �n,

and that this sequence is coinitial in T>R. By a straightforward computation,

−�
††
n

=
1

�0
+

1

�0�1
+ · · ·+

1

�0�1 · · · �n
.

Then (−�
††
n
) is a (jammed) pc-sequence in T, but has no pseudolimit in T. It

does have a pseudolimit in a suitable immediate H-field extension, and such
a limit can be thought of as

�∞
n=0

1
�0�1···�n .

The fact that the pc-sequence (�††
n
) has no pseudolimit in T is related to a

key elementary property of T. To explain this we assume in the rest of this
subsection: K is a real closed H-field with asymptotic integration.

To mimick the above iterated logarithms, first take for any f � 1 in K an
L f � 1 in K such that (L f)� � f

†. (Think of L f as a substitute for log f .)
Next, pick a sequence of elements �λ � 1 in K, indexed by the ordinals λ less
than some infinite limit ordinal κ: take any �0 � 1 inK, and set �λ+1 := L(�λ);
if µ is an infinite limit ordinal such that all �λ with λ < µ have been chosen,
then take any element �µ � 1 in K such that �µ ≺ �λ for all λ < µ, if there is
such an �µ, while if there is no such �µ, set κ := λ. Thus

(i) �µ ≺ �λ whenever µ > λ;
(ii) (�λ) is coinitial in K

�1, that is, for each f � 1 in K there is an index
λ with �λ ≺ f .

One can show that this yields a jammed pc-sequence
�
�
††
λ

�
in K and that the

pseudolimits of this pc-sequence in H-field extensions of K do not depend
on the choice of the sequence (�λ): different choices yield “equivalent” pc-
sequences in the sense of [9]. Here is a useful fact about this pc-sequence:

Theorem 4.7. If s ∈ K is a pseudolimit of
�
�
††
λ

�
, then there is an H-field

extension K(y) such that y
† = s and K(y) has a gap.
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Every H-field has an extension to a real closed H-field with asymptotic in-
tegration (for example, a Liouville closure). By Theorem 4.1 we can further
arrange that this extension is maximal, so that all pc-sequences in it have a
pseudolimit. Thus the last theorem has the following consequence:

Corollary 4.8. Every H-field has an H-field extension with a gap.

If K is Liouville closed, then
�
�
††
λ

�
has no pseudolimit in K.

Theorem 4.9. The following conditions on K are equivalent:

(1) K |= ∀a∃b
�
v(a− b

†) � vb < (Γ>)�
�
;

(2)
�
�
††
λ

�
has no pseudolimit in K.

Since T satisfies (2), it also satisfies (1). Our discussion preceding Corollary 4.8
made it clear that not all real closed H-fields with asymptotic integration
satisfy (2). We call attention to the first-order nature of condition (1).

There is a related and even more important pc-sequence. To define it, set

�(z) := 2z� + z
2 for z ∈ K.

Then in T we have

�(−�
††
n
) = −

�
1

(�0)2
+

1

(�0�1)2
+

1

(�0�1�2)2
+ · · ·+

1

(�0�1 · · · �n)2

�
,

so
�
�(−�

††
n
)
�
is also a jammed pc-sequence in T without any pseudolimit

in T. Likewise, for our real closed H-field K with asymptotic integration,�
�(−�

††
λ
)
�
is a jammed pc-sequence. (If

�
�
††
λ

�
pseudoconverges in K, then

so does
�
�(−�

††
λ
)
�
, but [5] has a Liouville closed example where the converse

fails.) Here is an analogue of Theorem 4.9:

Theorem 4.10. The following conditions on K are equivalent:

(1) K |= ∀a∃b
�
vb < (Γ>)� and v(a− �(−b

†)) � 2vb
�
;

(2)
�
�(−�

††
λ
)
�
has no pseudolimit in K;

(3)
�
�(−�

††
λ
)
�
has no pseudolimit in any differentially algebraic H-field ex-

tension of K.

The equivalence of (1) and (2) is relatively easy, but to show that (2) implies
(3) is much harder. Since T satisfies (2), it also satisfies (1) and (3). The first-
order nature of condition (1) will surely play a role in our quest to characterize
the existentially closed H-fields by first-order axioms. The equivalence of (2)
and (3) is related to the following important fact:

Theorem 4.11. Suppose
�
�(−�

††
λ
)
�
has no pseudolimit in K. Then

�
�
††
λ

�

has a pseudolimit a in an immediate H-field extension K�a� of K with the

following universal property: if b is any pseudolimit of
�
�
††
λ

�
in any immediate

pre-H-field extension of K, then there is a unique isomorphism K�a� → K�b�

over K of ordered valued differential fields sending a to b.

We define an H-field to be amenable if it is real closed, admits asymptotic
integration, and satisfies the first-order condition in (1) of Theorem 4.10. Any
real closed H-field that admits asymptotic integration and is a directed union
of H-subfields F for which ΨF has a largest element is amenable. Amenability
is invariant under compositional conjugation.
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4.8 Simple Newton polynomials. As shown in [28], the Newton polynomials
of differential polynomials over T have the very special form

(c0 + c1Y + · · ·+ cmY
m) · (Y �)n (c0, . . . , cm ∈ R = C).

This fails for some other real closed H-fields with asymptotic integration:

Example. Consider the immediateH-field extensionK = R((L)) of Tlog, where
L =

�∞
n=0 Ln (see the end of Section 1.2). Then K is closed under as-

ymptotic integration, and is not amenable, since it contains a pseudolimit
� := −

�∞
n=0

1
(�0�1···�n)2 of the pc-sequence

�
�(−�

††
n
)
�
. We set

P := N + � · (Y �)2 ∈ K{Y } where N(Y ) := 2Y �
Y

(3)
− 3(Y ��)2 ∈ R{Y }.

A somewhat lengthy computation yields NP = N /∈ R[Y ](Y �)N.

Amenability turns out to be exactly what makes Newton polynomials to have
the above simple form:

Theorem 4.12. Let K be a real closed H-field with asymptotic integration.

Then K is amenable if and only if the Newton polynomial of any non-zero

differential polynomial P ∈ K{Y } has the form

(c0 + c1Y + · · ·+ cmY
m) · (Y �)n (c0, . . . , cm ∈ C).

This has a nice consequence for the behavior of a differential polynomial near
the constant field:

Corollary 4.13. Let K be an amenable H-field and P ∈ K{Y }, P �= 0. Then
there are α ∈ Γ, a ∈ K

>C
and m, n such that

CL < y < a =⇒ v(P (y)) = α+mvy + nvy
�

for all y in all H-field extensions L of K, where CL = constant field of L.

We also have the following converse to a result from Section 4.4:

Corollary 4.14. Suppose the H-field K is amenable, and there are K-

admissible ϕ > 0 with arbitrarily high vϕ < (Γ>)� such that the flattening of

K
ϕ
is differential-henselian. Then K is differential-newtonian.

4.9 Conjectural characterization of existentially closed H-fields. We can
show that every existentially closed H-field with small derivation is amenable.
We already mentioned earlier that they are Liouville closed, and differential-
newtonian, and that their linear differential operators factor completely after
adjoining i =

√
−1 to the field. Maybe this is the full story:

Optimistic Conjecture. An H-field K with small derivation is existentially

closed if and only if it satisfies the following first-order conditions:

(i) K is Liouville closed,

(ii) every A ∈ K[∂] is a product of operators of order 1 in K[i][∂],
(iii) K is amenable,

(iv) K is differential-newtonian.

This conjecture makes the T-Conjecture more precise. It is also conceivable
that the H-field Tlog has a good model theory. It satisfies (ii), (iii), (iv), and
has some other attractive properties. On the other hand, the H-field Texp of
purely exponential transseries defines Z; see [3, Section 13].
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5 Quantifier-free Definability

In Section 2 we considered three intrinsic model-theoretic statements about T:
(1) If X ⊆ Tn is definable, then X ∩ Rn is semialgebraic.
(2) T is asymptotically o-minimal : for each definable X ⊆ T there is a

b ∈ T such that either (b,+∞) ⊆ X or (b,+∞) ⊆ T \X.
(3) T has NIP.

In this section we prove quantifier-free versions of these statements. First
we do this in the easy case when the language is the natural language L of
ordered valued differential rings. (“Easy” means here that it follows with very
little work from results in the literature.) Next we exhibit a basic obstruction7

showing that T does not eliminate quantifiers in L. This obstruction can be
lifted by extending L to a language L∗ which has a unary function symbol
naming a certain integration operator on T. (This operator is existentially
definable in T using L.) We then show that (1), (2), (3) also hold for quantifier-
free definable relations on T when the latter is construed as an L∗-structure.

Thus (1), (2), (3) would follow from the strong form of the T-Conjecture
which says that T admits quantifier elimination in the language L∗. This
form of the T-Conjecture is unfortunately too strong: In Section 6 we discuss
further obstacles, and speculate on how these might be dealt with.

5.1 Quantifier-free definable sets in T using L. Recall:

L = {0, 1, +, −, · , ∂, �, �}.

In this subsection we view any H-field K as an L-structure in the natural way,
and so “quantifier-free definable” means “definable in K by a quantifier-free
formula of the language L augmented by names for the elements of K.” The
next three propositions state the quantifier-free versions of (1)–(3) above, each
in a somewhat more general form.

Proposition 5.1. Let K be a real closed H-field. If X ⊆ K
n
is quantifier-free

definable, then its trace X ∩ C
n
in the field C of constants is semialgebraic.

Proof Let P = P (Y1, . . . , Yn) ∈ K{Y1, . . . , Yn} be a differential polynomial.

Removing from P the terms involving any Y
(r)
i

with r � 1 we obtain an
ordinary polynomial p ∈ K[Y1, . . . , Yn] such that for all y1, . . . , yn ∈ C ⊆ K,

P (y1, . . . , yn) = p(y1, . . . , yn).

Recall also that for all f, g ∈ K we have

f � g ⇐⇒ |f | � c|g| for some c ∈ C
>0.

It follows that if X ⊆ K
n is quantifier-free definable, then X ∩C

n is definable
(with parameters) in the pair (K,C) construed here as the real closed field K

(forgetting its derivation and valuation), with C as a distinguished subset.
This pair (K,C) is a model of RCFtame, as defined in [13]. By Proposition
8.1 of [13] applied to T = RCF, a subset of C

n which is definable (with
parameters) in the pair (K,C) is semialgebraic in the sense of C. �

We now turn to quantifier-free asymptotic o-minimality. This follows easily
from the logarithmic decomposition of a differential polynomial in [28], as we
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explain now. Let K be a differential field. For y ∈ K, we set y
�0� := y,

and inductively, if y�n� ∈ K is defined and non-zero, y�n+1� := (y�n�)† (and
otherwise y

�n+1� is not defined). Thus in the differential fraction field K�Y �

of the differential polynomial ring K{Y } each Y
�n� is defined, the elements

Y
�0�

, Y
�1�

, Y
�2�

, . . . are algebraically independent over K, and

K�Y � = K
�
Y

�n� : n = 0, 1, 2, . . .
�
.

If y�n� is defined and i = (i0, . . . , in) ∈ N1+n, we set

y
�i� := (y�0�)i0(y�1�)i1 · · · (y�n�)in .

One can show that any P ∈ K{Y } of order � r has a unique decomposition

P =
�

i P�i�Y
�i�

(logarithmic decomposition),

with i ranging over N1+r, all P�i� ∈ K, and P�i� �= 0 for only finitely many i.

Consider the case y ∈ K := T. Then y
�1� = y

† is defined for y �= 0, and if
y > exp(x2), then y

�1�
> 2x and y > (y�1�)m for all m. By induction on n, if

y > expn+1(x2), with the exponent n+1 referring to compositional iteration,
then y

�n+1� is defined, y�n� > expn(x2), and y
�n+1�

> (y�n�)m for all m.
Let a non-zero P ∈ T{Y } of order � r be given with the logarithmic

decomposition displayed before. Take j ∈ N1+r lexicographically maximal
with P�j� �= 0. It follows from the above that we can take b ∈ T so large that

if y > b, then y
�r� is defined and P (y) ∼ P�j�y

�j�. In particular, if P�j� > 0,
then P (y) > 0 for all y > b, and if P�j� < 0, then P (y) < 0 for all y > b. By
similar reasoning, given any non-zero P,Q ∈ T{Y }, there is b ∈ T such that
either P (y) � Q(y) for all y > b in T, or P (y) � Q(y) for all y > b in T. Thus:

Proposition 5.2. If X ⊆ T is quantifier-free definable, then there is b ∈ T
such that either (b,+∞) ⊆ X, or (b,+∞) ⊆ T \X.

This proposition holds for any Liouville closed H-field K instead of T: we can
define on such K a substitute for the exponential function exp as used in the
proof above, see [3, Section 1.1].

A relation R ⊆ A×B is said to be independent if for every N � 1 there are
elements a1, . . . , aN ∈ A and bI ∈ B, for each I ⊆ {1, . . . , N}, such that

R(ai, bI) ⇐⇒ i ∈ I (for i = 1, . . . , N, and all I ⊆ {1, . . . , N}).

A (one-sorted) structure M = (M ; . . . ) is said to have NIP (the Non-

Independence Property) if there is no independent definable relation
R ⊆ M

m × M
n. This is a robust model-theoretic tameness condition on

a structure, and follows from o-minimality as well as from stability. It was
introduced early on by Shelah [39]; there is also a substantial body of recent
work around this notion, see for example [30].

Proposition 5.3. Let K be an H-field. No quantifier-free definable relation

R ⊆ K
m ×K

n
is independent.

Proof Let OVDF be the L-theory of ordered, valued, differential fields where
the only axiom relating the ordering, valuation, and derivation is

∀x∀y (0 � x � y → x � y).
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Guzy and Point [23, Corollary 6.4] show that OVDF has a model completion
OVDFc, and that OVDFc has NIP. Now use an embedding of K into some
model of OVDFc. �

5.2 T does not admit quantifier elimination in L. Let K be an H-field with
small derivation. Then we have the ideal

I(K) := {y ∈ K : y � f
� for some f ∈ O}

of its valuation ring O. If K is also Liouville closed, then

I(K) = ∂O = {y ∈ K : y ≺ f
† for all non-zero f ∈ O},

so I(K) is existentially as well as universally definable in the L-structure K.
Still considering T as an L-structure, we have:

Proposition 5.4. The subset I(T) of T is not quantifier-free definable in T.

Proof Recall from Section 4.7 the pc-sequence
�
�
††
n

�
in T:

�
††
n

=

�
1

�n

�††
= −

�
1

�0
+

1

�0�1
+ · · ·+

1

�0�1 · · · �n

�
.

It has no pseudolimit in T. Fix some ℵ0-saturated elementary extension K of
T and take � ∈ K such that � > C but � < �n for all n. Then a := �

†† = (1/�)††

is a pseudolimit of
�
�
††
n

�
. Also, one computes easily that

(1/�n)
�† = (1/�n)

††
− (1/�0 · · · �n),

so the sequence
�
(1/�n)�†

�
is also a pc-sequence, and has the same pseudolimits

in K as
�
�
††
n

�
. Moreover, b := (1/�)�† is a pseudolimit of

�
(1/�n)�†

�
. Thus by

Theorem 4.11, the H-subfields T�a� and T�b� of K are immediate extensions
of T, and we have an isomorphism T�a� → T�b� over T that sends a to b. The
element f = (1/�)† of K satisfies f† = a and h

� ≺ f ≺ h
† for all h ∈ T× with

h �� 1, and the real closure T�a�rc of T�a� in K is an immediate extension of
T. Hence in the terminology of [3, Section 12], a creates a gap over T�a�rc, by
[3, Proposition 12.4]. Since g = (1/�)� satisfies g† = b, by [3, Lemma 12.3] and
the uniqueness statement in [2, Lemma 5.3] the above isomorphism extends
to an isomorphism

T�a, f� → T�b, g�
of L-structures which sends f to g. Now, if I(T) were defined in T by a
quantifier-free formula ϕ(y) in the language L augmented by names for the
elements of T, then we would have K |= ¬ϕ(f) and K |= ϕ(g), and so
T�a, f� |= ¬ϕ(f) and T�b, g� |= ϕ(g), which violates the above isomorphism
between T�a, f� and T�b, g�. �

For later use it is convenient to extend the language L to the language LT,a,
by adding for each semialgebraic function Tn → T an n-ary function symbol
naming that function. In particular, by taking n = 0 we see that LT,a has a
name (constant symbol) for each f ∈ T. Also, T, and any real closed valued
differential field extension of T, is naturally construed as a structure for the
language LT,a. For example, the function y �→ y

−1 : T → T, with 0−1 := 0
by convention, is named by a function symbol of LT,a. So is, for each integer
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d � 1, the function y �→ y
1/d : T → T, taking the value 0 for y � 0 by

convention.

Proposition 5.5. If X ⊆ Tn
is quantifier-free definable in T as LT,a-

structure, then X is quantifier-free definable in T as L-structure.

One can view this as a partial quantifier elimination: it is obvious how to
eliminate occurrences of function symbols of LT,a \ L from a quantifier-free
LT,a-formula at the cost of introducing existentially quantified new variables,
and Proposition 5.5 says that we can eliminate those quantifiers again without

reintroducing these function symbols. This fact can be proved by explicit
means, but we prefer a model-theoretic argument that we can use also in
later situations where explicit elimination would be very tedious.

To formulate this in sufficient generality, let L be a sublanguage of the (one-
sorted) first-order language L∗, and assume that L has a constant symbol. Let
A

∗ = (A; . . . ) and B
∗ range over L

∗-structures, and let A and B be their
L-reducts. Let T ∗ be an L

∗-theory. Then we have the following criterion:

Lemma 5.6. Let ϕ
∗(x) with x = (x1, . . . , xn) be an L

∗
-formula. Then

ϕ
∗(x) is T

∗
-equivalent to some quantifier-free L-formula ϕ(x) iff for all

A
∗
,B

∗
|= T

∗
, common L-substructures C = (C; . . . ) of A and B, and

c ∈ C
n
:

A
∗
|= ϕ

∗(c) ⇐⇒ B
∗
|= ϕ

∗(c).

This criterion is well-known (at least for L = L
∗), and follows by a standard

model-theoretic compactness argument. Typically, the criterion gets used via
its corollary below. To state that corollary, we define T

∗ to have closures

of L-substructures if for all A∗
,B

∗
|= T

∗ with a common L-substructure
C = (C; . . . ) of A and B, there is a (necessarily unique) isomorphism from
the L

∗-substructure of A∗ generated by C onto the L
∗-substructure of B∗

generated by C which is the identity on C.

Corollary 5.7. If T
∗
has closures of L-substructures, then every quantifier-

free L
∗
-formula is T

∗
-equivalent to a quantifier-free L-formula.

Proof of Lemma 5.5 We are going to apply Corollary 5.7 with

L : = L augmented by a name (constant symbol) for each element of T,
L
∗ : = LT,a, T

∗ := the elementary theory of T as L∗-structure.

Indeed, we show that T ∗ has closures of L-substructures. Let E,F |= T
∗ have

a common L-substructureD. ThusD is an ordered differential subring of both
E and F such that for all f, g ∈ D we have f �E g ⇐⇒ f �D g ⇐⇒ f �F g,
where �D, �E , �F are the interpretations of the symbol � of L in D, E, F ,
respectively. Let KE and KF be the fraction fields of the integral domain D in
E and F respectively. Then KE is the underlying ring of an L-substructure
of E, to be denoted also by KE . Likewise, KF denotes the corresponding
L-substructure of F , and we have a unique L-isomorphism KE → KF that is
the identity on D. Let Krc

E
and K

rc
F

be the real closures of the ordered fields
KE and KF in E and F , respectively. Then K

rc
E

is the underlying ring of an
L
∗-substructure of E, to be denoted also by K

rc
E
. Likewise, Krc

F
denotes the

corresponding L
∗-substructure of F , and the above L-isomorphism KE → KF
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extends uniquely to an L
∗-isomorphism K

rc
E

→ K
rc
F
. It remains to note that

K
rc
E

is the L
∗-substructure of E generated by D. �

Given a real closed field extension K of T, a set X ⊆ K
n is T-semialgebraic

if it is defined inK by some (quantifier-free) formula in the language of ordered
rings augmented by names for the elements of T, and a function K

n → K is
T-semialgebraic if its graph is.

5.3 Adding a new primitive. Let LT,a,I be the language LT,a augmented by a
unary predicate symbol I. We construe T as an LT,a,I-structure by interpreting
I as I(T). In view of Proposition 5.4 and Lemma 5.5 this genuinely changes
what can be defined quantifier-free in T. Nevertheless, Propositions 5.1, 5.2,
5.3 (in the case K = T) go through when “quantifier-free” is with respect
to T as LT,a,I-structure. For “quantifier-free NIP” we can almost repeat the
previous argument:

Proposition 5.8. No quantifier-free definable relation R ⊆ Tm ×Tn
on T as

an LT,a,I-structure is independent.

Proof The set I(T) is convex in T. Embedding the L-structure T in a suf-
ficiently saturated model M of OVDFc, we can take a > 0 in M such that
(−a, a)∩T = I(T), where the interval (−a, a) is with respect to M . Now use
that M has NIP. �

Let K be an H-field extension of T, and r ∈ N. For y = (y1, . . . , ym) ∈ K
m

we set y� := (y�1, . . . , y
�
m
), and define the rth prolongation of y to be

�
y, y

�
, . . . , y

(r)
�
:=

�
y1, . . . , ym, y

�
1, . . . , y

�
m
, . . . , y

(r)
1 , . . . , y

(r)
m

�
∈ K

m(1+r)
.

A ∂-covering (of order r) of a function g : Km → K consists of a finite cover-
ing C of Km(1+r) by T-semialgebraic sets and for each S ∈ C a T-semialgebraic
function gS : Km(1+r) → K such that

g(y) = gS

�
y, y

�
, . . . , y

(r)
�

for all y ∈ K
m with

�
y, y

�
, . . . , y

(r)
�
∈ S.

For example, if P ∈ T{Y1, . . . , Ym} is a differential polynomial of order � r,
then the function y �→ P (y) : Km → K has a ∂-covering of order r consisting
just of a single set, namely K

m(1+r). It is easy to see that if f : Kn → K is T-
semialgebraic and g1, . . . , gn : Km → K have ∂-coverings (of various orders),
then f(g1, . . . , gn) : Km → K has a ∂-covering. In particular, the sum g1 + g2

of functions g1, g2 : Km → K with ∂-coverings has a ∂-covering, and so does
their product g1g2. Less obviously:

Lemma 5.9. If g : Km → K has a ∂-covering, then so does the function

y �→ g(y)� : Km
→ K.

Proof Let C be a ∂-covering of g of order r with, for each set S ∈ C, the
witnessing function gS : Km(1+r) → K. By further partitioning we can ar-
range that each set S ∈ C is a T-semialgebraic cell which is of class C

1 in
the sense that the standard projection map pS : S → p(S) onto an open cell
p(S) ⊆ K

d, with d = dimS, is not just a homeomorphism, but even a diffeo-
morphism of class C1 (in the sense of the real closed field K). In addition we
can arrange that for each witnessing map gS : Km(1+r) → K the restriction
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of gS to S is of class C1. Let us now focus on one particular S ∈ C, and first
consider the case that S is open in K

m(1+r). Then by the T-semialgebraic
version of Lemma 4.4 in [3], and Remark (2) following its proof, we have
T-semialgebraic functions h, h1, . . . , hmr : Km(1+r) → K, such that for all
�y = (y10, . . . , ym0, . . . , y1r, . . . , ymr) ∈ S,

gS(�y)
� = h(�y) +

m�

i=1

r�

j=0

hij(�y)y
�
ij
.

If S is not open, of dimension d, this statement remains true, as one can see
by reducing to the case of the open cell p(S) ⊆ K

d via the C1-diffeomorphism
pS : S → p(S). It follows easily that the function y �→ g(y)� has a ∂-covering
of order r + 1, whose sets are the products S ×K

m with S ∈ C. �

It follows that if t(x1, . . . , xn) is an LT,a,I-term, then the function

y �→ t(y) : Kn
→ K

has a ∂-covering. This is now used to prove:

Proposition 5.10. If X ⊆ Tn
is quantifier-free definable in T as an LT,a,I-

structure, then X ∩ Rn
is semialgebraic.

Proof By the remark preceding the proposition, and the arguments in the
proof of Proposition 5.1, it suffices to show the following. Let s(x1, . . . , xn)
and t(x1, . . . , xn) be LT,a,I-terms in which the function symbol ∂ does not
occur. Then the sets

�
y ∈ Rn : t(y) = 0

�
,

�
y ∈ Rn : t(y) > 0

�
,

�
y ∈ Rn : s(y) � t(y)

�
,

�
y ∈ Rn : t(y) ∈ I(T)

�

are semialgebraic subsets of Rn. Since the function y �→ t(y) : Tn → T is
T-semialgebraic, this holds for the first three sets by the argument at the end
of the proof of Proposition 5.1. For the last set, take some real closed field
extension K of T with a positive element a such that I(T) = T∩(−a, a), where
the interval (−a, a) is in the sense of K. Then

�
y ∈ Rn : t(y) ∈ I(T)

�
=

�
y ∈ Rn : |t(y)| < a

�
,

which is the trace in R of a semialgebraic subset of Kn. Such traces are known
to be semialgebraic in R. �

In proving next that T qua LT,a,I-structure is quantifier-free asymptotically
o-minimal, we shall use the easily verified fact that if K is an H-field that
admits asymptotic integration, and L is an H-field extension of K, then
I(L) ∩K = I(K).

Proposition 5.11. If X ⊆ T is quantifier-free definable in T as LT,a,I-
structure, then for some f ∈ T, either (f,+∞) ⊆ X or (f,+∞) ⊆ T \X.

Proof LetK be an elementary extension of T as LT,a,I-structure and a, b ∈ K,
a > T, b > T. By familiar model-theoretic arguments it suffices to show that
then there is an isomorphism of L-structures T�a�rc → T�b�rc over T that
sends a to b, and maps I(K) ∩ T�a�rc onto I(K) ∩ T�b�rc. (Here rc refers to
the real closure in K.) Proposition 5.2 gives an isomorphism of L-structures
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T�a� → T�b� over T sending a to b, and this isomorphism extends uniquely to
an L-isomorphism T�a�rc → T�b�rc. The arguments preceding Proposition 5.2
show that for all m,n � 1,

v(a�n−1�) < mv(a�n�) < v(T×),

so a is differentially transcendental over T, and the value group of T�a�rc is

v(T×)⊕
�

n

Qv(a�n�) (internal direct sum of Q-subspaces),

which contains v(T×) as a convex subgroup. It also follows that T�a�rc is anH-
field, with the same constant field R as T. Therefore, T�a�rc admits asymptotic
integration, so I(K)∩T�a�rc = I(T�a�rc). Likewise, I(K)∩T�b�rc = I(T�b�rc),
hence our isomorphism T�a�rc → T�b�rc maps I(K)∩T�a�rc onto I(K)∩T�b�rc
as required. �

This proposition tells us how a quantifier-free definable X ⊆ T behaves
near +∞. Using fractional linear transformations we get analogous behav-
ior to the left as well as to the right of any point in T. In other words, the
LT,a,I-structure T is quantifier-free locally o-minimal. (In this connection we
note that local o-minimality by itself does not imply NIP [22, Example 6.19].)

5.4 Expanding by small integration. Next we show that “small integration”
can be eliminated from quantifier-free formulas. This is a further partial
quantifier elimination in the style of Proposition 5.5.

Let K be an H-field. We have ∂O ⊆ I(K), and we say that K admits

small integration if ∂O = I(K). So T admits small integration. It follows
from Section 3 and Proposition 4.3 in [2] that K has an immediate H-field
extension si(K) that is henselian as a valued field and admits small integration,
with the following universal property: for any H-field extension L of K that
is henselian as a valued field and admits small integration there is a unique
K-embedding of si(K) into L. We call si(K) the closure of K under small

integration.

Let K be an H-field admitting small integration. The derivation ∂ is injective
on O, so we can define

�
: K → K by

�
a
� = a for a ∈ O,

�
b = 0 for b /∈ ∂O.

Note that the standard part map st : K → K defined by

st(c+ ε) = c for c ∈ C, ε ≺ 1, st(a) = a for a � 1,

can be expressed in terms of
�
by st(a) = a−

�
a
�. The reason for mentioning

this fact is that such a standard part map is used to eliminate quantifiers in
certain expansions of o-minimal fields; see [14, (5.9)].

Real closed H-field extensions of T admitting small integration are construed
below as L∗-structures where L∗ is a language extending LT,a,I by a new unary
function symbol

�
, to be interpreted as indicated above.

Let T ∗ be the L∗-theory of real closed H-field extensions of T admitting small
integration. Then we have the following elimination result:
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Proposition 5.12. T
∗
has closures of LT,a,I-substructures. Therefore, by Cor-

ollary 5.7, every quantifier-free L∗
-formula is T

∗
-equivalent to a quantifier-free

LT,a,I-formula.

Proof Let K be a model of T ∗ and let E be an LT,a,I-substructure of K.
Then E is a real closed pre-H-field, and we may consider the H-field closure
H(E) of E as an H-subfield of K, with real closure H(E)rc in K. We let
E

∗ := si
�
H(E)rc

�
be the closure under small integrals of H(E)rc, viewed

as an H-subfield of K. In fact, E
∗ is real closed and closed under small

integrals, hence an L∗-substructure of K. Let L be another model of T
∗

containing E as LT,a,I-substructure; we need to show that the natural inclusion
E → L extends to an embedding of L∗-structures E∗ → L. By the universal
properties of H-field closure, real closure, and closure under small integrals,
there is an embedding of LT,a-structures E∗ → L which extends the inclusion
E → L. This embedding also preserves the interpretations of the symbol

�
in

K respectively L; so after identifying E
∗ with its image under this embedding,

it remains to show that I(K) ∩ E
∗ = I(L) ∩ E

∗. For this we distinguish two
cases:

Case 1: there is r ∈ OE \ CE with v(r�) /∈ (Γ>

E
)�. Take such r, and take

y ∈ H(E) with y
� = r

� and α := v(y) > 0. Then by Corollary 4.5, (1) in [2],
ΓH(E) = ΓE ⊕Zα with 0 < nα < Γ>

E
for all n � 1. Also, maxΨH(E) = α

†. It
follows easily that

I(K) ∩H(E) =
�
f ∈ H(E) : vf > α

†� = I(L) ∩H(E).

This remains true when we replace H(E) by E
∗, since

ΓE∗ = divisible hull of ΓH(E) = ΓE ⊕Qα,

thus maxΨE∗ = α
†.

Case 2: there is no such r. Then by [2, Corollary 4.5, (2)] we have ΓH(E) = ΓE ,
and hence ΓE∗ = ΓE , so

I(K) ∩ E = I(L) ∩ E ⇐⇒ (Γ>

K
)� ∩ ΓE = (Γ>

L
)� ∩ ΓE

⇐⇒ (Γ>

K
)� ∩ ΓE∗ = (Γ>

L
)� ∩ ΓE∗

⇐⇒ I(K) ∩ E
∗ = I(L) ∩ E

∗
,

as required. �

We can do the same for small exponentiation: given a ≺ 1 in T, its exponential
e
a is the unique element 1+ y with y ≺ 1 in T such that y� = (1+ y)a�. Thus
the bijection a �→ e

a : O → 1 + O is (existentially and universally) definable in
the L-structure T. Arguments as in the proof of Proposition 5.12 show that
expanding the L∗-structure T by this operation (taking the value 0 on T \ O,
by convention) does not change what is quantifier-free definable.

6 Further Obstructions to Quantifier Elimination

The language LT,a,I is rather strong as to what it can express quantifier-free
about T, as we have seen. However, T does not admit QE in this language.
To discuss this, let K be an H-field, and consider the subset

Z(K) := −(K>C)†† = {−a
†† : a ∈ K

>C
}
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of K. In T the sequence (zn) given by

zn := −�
††
n

=
1

�0
+

1

�0�1
+ · · ·+

1

�0�1 · · · �n

is cofinal in Z(T). As with most of this paper we omit proofs for what we
claim below: these proofs are either straightforward, or very similar to proofs
of analogous results in Section 5, or would require many extra pages.

Lemma 6.1. Suppose K is Liouville closed. Then Z(K) is closed downward:

whenever f ∈ K and f < g ∈ Z(K), then f ∈ Z(K). For f ∈ K
×

we have

f ∈ I(K) ⇐⇒ −f
†
/∈ Z(K).

This follows easily from results in [2] and [3]. In particular, I(T) is quantifier-
free definable from Z(T) in the LT,a-structure T. A refinement of the proof of
Proposition 5.4 shows that we cannot reverse here the roles of I(T) and Z(T):

Lemma 6.2. Z(T) is not quantifier-free definable in the LT,a,I-structure T.

Let LT,a,Z be the language LT,a augmented by a unary predicate symbol Z, to
be interpreted in T as Z(T). We have not checked the details, but we expect
that what we proved in Section 5 for T as LT,a,I-structure goes through for
T as LT,a,Z-structure. However, we run into a new obstruction involving the
function �. To explain this, we first summarize some basic facts about this
function on T:

Lemma 6.3. The restriction of � : T → T to Z(T) is strictly decreasing and

has the intermediate value property. Also, �(T) = �(Z(T)), and so the se-

quence
�
�(zn)

�
is strictly decreasing and coinitial in �(T).

We need the following strengthening of Theorem 4.11, where the “iterated
logarithms” �λ are as in that theorem:

Theorem 6.4. Suppose the H-field K is amenable. Then
�
�(−�

††
λ
)
�
has a

pseudolimit a in an immediate H-field extension K�a� of K with the following

universal property: if b is any pseudolimit of
�
�(−�

††
λ
)
�
in any immediate pre-

H-field extension of K, then there is a unique isomorphism K�a� → K�b�

over K of ordered valued differential fields sending a to b.

Using also a result from [5], this theorem has the following consequence:

Corollary 6.5. �(T) is not quantifier-free definable in the LT,a,Z-structure T.

The next candidate of a language in which T might eliminate quantifiers is
the extension LT,a,Z,R of LT,a,Z by a unary predicate symbol R, interpreted in
T by �(T). At this stage we do not know any obstruction to this possibility.

Propositions 5.8 and 5.10 go through with LT,a,Z,R replacing LT,a,I: the
same proofs work since Z(T) and �(T) are convex subsets of T.

Notes

1. Strictly speaking, any valued field isomorphic to such a generalized power series
field is also considered as a Hahn field in this paper.
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2. The English translation given here is ours; the original sentences are on p. 148.
We also used our notations T and Tas instead of Écalle’s R[[[x]]] and R{{{x}}}.

3. The prefix H honors the pioneers Hahn, Hardy, and Hausdorff. Arguably,
Borel’s work [11] in this vein is even more significant, but his name doesn’t
start with H. One could go still further back, to du Bois-Reymond’s paper [10],
a source of inspiration for Hardy [24].

4. This non-zero requirement was inadvertently dropped on p. 580 of [2].

5. Formally, an asymptotic couple is an ordered abelian group Γ equipped with a
valuation ψ : Γ�= → Γ such that ψ(α) < β + ψ(β) for all α,β ∈ Γ>.

6. “AKE” stands for “Ax-Kochen-Eršov”.

7. The term “obstruction” is often used to refer to a non-trivial (co)homology
class. In fact, the vanishing of a homology group leads to the elimination of a
quantifier: this vanishing means that the existential condition on a cycle c to be
a boundary is equivalent to the quantifier-free condition on c that its boundary
vanishes.

References

[1] M. Aschenbrenner and L. van den Dries, Closed asymptotic couples, J. Algebra
225 (2000), 309–358. 7, 13

[2] M. Aschenbrenner and L. van den Dries, H-fields and their Liouville extensions,
Math. Z. 242 (2002), 543–588. 11, 13, 22, 26, 27, 28, 29

[3] M. Aschenbrenner and L. van den Dries, Liouville closed H-fields, J. Pure Appl.
Algebra 197 (2005), 83-139. 7, 10, 19, 21, 22, 25, 28

[4] M. Aschenbrenner and L. van den Dries, Asymptotic differential algebra, in: O.
Costin, M. D. Kruskal, A. Macintyre (eds.), Analyzable Functions and Appli-
cations, 49–85, Contemp. Math., vol. 373, Amer. Math. Soc., Providence, RI
(2005). 1, 2, 3, 9

[5] M. Aschenbrenner, L. van den Dries, and J. van der Hoeven, Differentially
algebraic gaps, Selecta Math. 11 (2005), 247–280. 18, 28

[6] J. Ax and S. Kochen, Diophantine problems over local fields, III. Decidable
fields, Ann. of Math. (2) 83 (1966), 437–456. 3

[7] J. Ax and S. Kochen, Diophantine problems over local fields, I, Amer. J. Math.
87 (1965), 605–630. 13

[8] S. Azgin and L. van den Dries, Elementary theory of valued fields with a valua-
tion-preserving automorphism, J. Inst. Math. Jussieu 10 (2011), no. 1, 1–35.
13

[9] L. Bélair, A. Macintyre, and T. Scanlon, Model theory of the Frobenius on the
Witt vectors, Amer. J. Math. 129 (2007), no. 3, 665–721. 13, 17



30 Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven

[10] P. du Bois-Reymond, Ueber asymptotische Werthe, infinitäre Approximationen
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