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1. Introduction

Let I(n) denote the cost of multiplying two n-bit integers in the deterministic multitape Turing
model [38] (commonly called “bit complexity”). Previously, the best known asymptotic bound for
I(n) was due to Fürer [18, 19]. He proved that there is a constant K > 1 such that

I(n) = O(n lognK log∗n), (1.1)

where log∗x, for x∈R, denotes the iterated logarithm, i.e.,

log∗x := min {k ∈N: log◦kx6 1}, (1.2)

log◦k := log ◦ ···
k×

◦ log.

The main contribution of this paper is a new algorithm that yields the following improvement.

Theorem 1.1. For n→∞ we have

I(n) = O(n log n 8log
∗n).

Fürer suggested several methods to minimise the value of K in his algorithm, but did not give
an explicit bound for K. In section 7 of this paper, we outline an optimised variant of Fürer’s
algorithm that achieves K = 16. We do not know how to obtain K < 16 using Fürer’s approach.
This suggests that the new algorithm is faster than Fürer’s by a factor of 2log

∗n.
The idea of the new algorithm is remarkably simple. Given two n-bit integers, we split them

into chunks of exponentially smaller size, say around log n bits, and thus reduce to the problem
of multiplying integer polynomials of degree O(n/ log n) with coefficients of bit size O(log n). We
multiply the polynomials using discrete Fourier transforms (DFTs) overC, with a working precision
of O(logn) bits. To compute the DFTs, we decompose them into “short transforms” of exponentially
smaller length, say length around logn, using the Cooley–Tukey method. We then use Bluestein’s
chirp transform to convert each short transform into a polynomial multiplication problem over C,
and finally convert back to integer multiplication via Kronecker substitution. These much smaller
integer multiplications are handled recursively.
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The algorithm just sketched leads immediately to a bound of the form (1.1). A detailed proof
is given in section 4. We emphasise that the new method works directly over C, and does not need
special coefficient rings with “fast” roots of unity, of the type constructed by Fürer. Optimising
parameters and keeping careful track of constants leads to Theorem 1.1, which is proved in sec-
tion 6. We also prove the following conditional result in section 9.

Theorem 1.2. Assume Conjecture 9.1. Then

I(n) = O(n log n 4log
∗n).

Conjecture 9.1 is a slight weakening of the Lenstra–Pomerance–Wagstaff conjecture on the
distribution of Mersenne primes, i.e., primes of the form p= 2q − 1. The idea of the algorithm is
to replace the coefficient ring C by the finite field Fp[i]; we are then able to exploit fast algorithms
for multiplication modulo numbers of the form 2q− 1.

An important feature of the new algorithms is that the same techniques are applicable in other
contexts, such as polynomial multiplication over finite fields. Previously, no Fürer-type complexity
bounds were known for the latter problem. The details are presented in the companion paper [24].

In the remainder of this section, we present a brief history of complexity bounds for integer
multiplication, and we give an overview of the paper and of our contribution. More historical details
can be found in books such as [21, Chapter 8].

1.1. Brief history and related work

Multiplication algorithms of complexity O(n2) in the number of digits n were already known in
ancient civilisations. The Egyptians used an algorithm based on repeated doublings and additions.
The Babylonians invented the positional numbering system, while performing their computations
in base 60 instead of 10. Precise descriptions of multiplication methods close to the ones that we
learn at school appeared in Europe during the late Middle Ages. For historical references, we refer
to [49, Section II.5] and [37, 5].

The first subquadratic algorithm for integer multiplication, with complexity O(nlog 3/log 2), was
discovered by Karatsuba [30, 31]. From a modern viewpoint, Karatsuba’s algorithm utilises an
evaluation-interpolation scheme. The input integers are cut into smaller chunks, which are taken to
be the coefficients of two integer polynomials; the polynomials are evaluated at several well-chosen
points; their values at those points are (recursively) multiplied; interpolating the results at those
points yields the product polynomial; finally, the integer product is recovered by pasting together
the coefficients of the product polynomial. This cutting-and-pasting procedure is sometimes known
as Kronecker segmentation (see section 2.6).

Shortly after the discovery of Karatsuba’s algorithm, which uses three evaluation points, Toom
generalised it so as to use 2 r − 1 evaluation points instead [51, 50], for any r > 2. This leads to
the bound I(n)=O(nlog (2r−1)/log r) for fixed r. Letting r grow slowly with n, he also showed that

I(n)=O(n 25 logn/log 2
√

). The algorithm was adapted to the Turing model by Cook [10] and is now
known as Toom–Cook multiplication. Schönhage obtained a slightly better bound [45] by working
modulo several numbers of the form 2k − 1 instead of using several polynomial evaluation points.
Knuth proved that an even better complexity bound could be achieved by suitably adapting Toom’s
method [32].

The next step towards even faster integer multiplication was the rediscovery of the fast Fourier
transform (FFT) by Cooley and Tukey [11] (essentially the same algorithm was already known
to Gauss [27]). The FFT yields particularly efficient algorithms for evaluating and interpolating
polynomials on certain special sets of evaluation points. For example, if R is a ring in which 2 is
invertible, and if ω ∈R is a principal 2k-th root of unity (see section 2.2 for detailed definitions),
then the FFT permits evaluation and interpolation at the points 1, ω, ..., ω2k−1 using only O(k 2k)
ring operations in R. Consequently, if P and Q are polynomials in R[X ] whose product has degree
less than 2k, then the product PQ can be computed using O(k 2k) ring operations as well.
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In [47], Schönhage and Strassen presented two FFT-based algorithms for integer multiplication.
In both algorithms, they first use Kronecker segmentation to convert the problem to multiplication
of integer polynomials. They then embed these polynomials into R[X] for a suitable ring R and
multiply the polynomials by using FFTs over R. The first algorithm takes R = C and ω =

exp(2 p i / 2k), and works with finite-precision approximations to elements of C. Multiplications
in C itself are handled recursively, by treating them as integer multiplications (after appropriate
scaling). The second algorithm, popularly known as the Schönhage–Strassen algorithm, takes
R=Z/m Z wherem=22

k

+1 is a Fermat number. This algorithm is the faster of the two, achieving
the bound I(n) = O(n log n log log n). It benefits from the fact that ω = 2 is a principal 2k+1-th
root of unity in R, and that multiplications by powers of ω can be carried out efficiently, as they
correspond to simple shifts and negations. At around the same time, Pollard pointed out that one
can also work with R=Z/mZ where m is a prime of the form m=a 2k+1, since then R∗ contains
primitive 2k-th roots of unity [39] (although he did not give a bound for I(n)).

Schönhage and Strassen’s algorithm remained the champion for more than thirty years, but was
recently superseded by Fürer’s algorithm [18]. In short, Fürer managed to combine the advantages
of the two algorithms from [47], to achieve the bound I(n)=O(n logn 2O(log∗n)). Fürer’s algorithm

is based on the ingenious observation that the ring R=C[X ]/(X2r−1
+1) contains a small number

of “fast” principal 2r-th roots of unity, namely the powers of X, but also a large supply of much
higher-order roots of unity inherited from C. To evaluate an FFT over R, he decomposes it into
many “short” transforms of length at most 2r, using the Cooley–Tukey method. He evaluates the
short transforms with the fast roots of unity, pausing occasionally to perform “slow” multiplications
by higher-order roots of unity (“twiddle factors”). A slightly subtle point of the construction is that
we really need, for large k, a principal 2k-th root of unity ω ∈R such that ω2k−r

=X.

In [15] it was shown that the technique from [39] to compute modulo suitable prime numbers
of the form m = a 2k + 1 can be adapted to Fürer’s algorithm. Although the complexity of this
algorithm is essentially the same as that of Fürer’s algorithm, this method has the advantage that
it does not require any error analysis for approximate numerical operations in C.

Date Authors Time complexity

<3000 BC Unknown [37] O(n2)

1962 Karatsuba [30, 31] O(nlog 3/log 2)

1963 Toom [51, 50] O(n 25 logn/log 2
√

)

1966 Schönhage [45] O(n 2 2logn/log 2
√

(log n)3/2)

1969 Knuth [32] O(n 2 2logn/log 2
√

logn)
1971 Schönhage–Strassen [47] O(n log n log log n)

2007 Fürer [18] O
(

n logn 2O(log∗n)
)

2014 This paper O(n log n 8log
∗n)

Table 1.1. Historical overview of known complexity bounds for n-bit integer multiplication.

1.2. Our contributions and outline of the paper

Throughout the paper, integers are assumed to be handled in the standard binary representation.
For our computational complexity results, we assume that we work on a Turing machine with
a finite but sufficiently large number of tapes [38]. The Turing machine model is very conservative
with respect to the cost of memory access, which is pertinent from a practical point of view for
implementations of FFT algorithms. Nevertheless, other models for sequential computations could
be considered [46, 20]. For practical purposes, parallel models might be more appropriate, but we
will not consider these in this paper. Occasionally, for polynomial arithmetic over abstract rings,
we will also consider algebraic complexity measures [8, Chapter 4].
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In section 2, we start by recalling several classical techniques for completeness and later use:
sorting and array transposition algorithms, discrete Fourier transforms (DFTs), the Cooley–Tukey
algorithm, FFT multiplication and convolution, Bluestein’s chirp transform, and Kronecker sub-
stitution and segmentation. In section 3, we also provide the necessary tools for the error analysis
of complex Fourier transforms. Most of these tools are standard, although our presentation is
somewhat ad hoc, being based on fixed point arithmetic.

In section 4, we describe a simplified version of the new integer multiplication algorithm,
without any attempt to minimise the aforementioned constant K. As mentioned in the sketch
above, the key idea is to reduce a given DFT over C to a collection of “short” transforms, and then
to convert these short transforms back to integer multiplication by a combination of Bluestein’s
chirp transform and Kronecker substitution.

The complexity analysis of Fürer’s algorithm and the algorithm from section 4 involves func-
tional inequalities which contain post-compositions with logarithms and other slowly growing
functions. In section 5, we present a few systematic tools for analysing these types of inequalities.
For more information on this quite particular kind of asymptotic analysis, we refer the reader
to [44, 16].

In section 6, we present an optimised version of the algorithm from section 4, proving in
particular the bound I(n) = O(n log n 8log

∗n) (Theorem 1.1), which constitutes the main result
of this paper. In section 7, we outline a similar complexity analysis for Fürer’s algorithm. Even
after several optimisations of the original algorithm, we were unable to attain a bound better than
I(n) =O(n log n 16log

∗n). This suggests that the new algorithm outperforms Fürer’s algorithm by
a factor of 2log

∗n.
This speedup is surprising, given that the short transforms in Fürer’s algorithm involve only

shifts, additions and subtractions. The solution to the paradox is that Fürer has made the short
transforms too fast . Indeed, they are so fast that they make a negligible contribution to the overall
complexity, and his computation is dominated by the “slow” twiddle factor multiplications. In the
new algorithm, we push more work into the short transforms, allowing them to get slightly slower;
the quid pro quo is that we avoid the factor of two in zero-padding caused by Fürer’s introduction
of artificial “fast” roots of unity. The optimal strategy is actually to let the short transforms
dominate the computation, by increasing the short transform length relative to the coefficient size.
Fürer is unable to do this, because in his algorithm these two parameters are too closely linked.
To underscore just how far the situation has been inverted relative to Fürer’s algorithm, we point
out that in our presentation we can get away with using Schönhage–Strassen for the twiddle factor
multiplications, without any detrimental effect on the overall complexity.

We have chosen to base most of our algorithms on approximate complex arithmetic. Instead,
following [39] and [15], we might have chosen to use modular arithmetic. In section 8, we will briefly
indicate how our main algorithm can be adapted to this setting. This variant of our algorithm
presents several analogies with its adaptation to polynomial multiplication over finite fields [24].

The question remains whether there exists an even faster algorithm than the algorithm of
section 6. In an earlier paper [17], Fürer gave another algorithm of complexity O(n logn 2O(log∗n))
under the assumption that there exist sufficiently many Fermat primes, i.e., primes of the form
Fm = 22

m

+ 1. It can be shown that a careful optimisation of this algorithm yields the bound
I(n) = O(n log n 4log

∗n). Unfortunately, odds are high that F4 is the largest Fermat prime. In
section 9, we present an algorithm that achieves the bound I(n)=O(n logn 4log

∗n) under the more
plausible conjecture that there exist sufficiently many Mersenne primes (Theorem 1.2). The main
technical ingredient is a variant of an algorithm of Crandall and Fagin [12] that permits efficient
multiplication modulo 2q− 1, despite q not being divisible by a large power of two.

It would be interesting to know whether the new algorithms could be useful in practice. We
have implemented an unoptimised version of the algorithm from section 8 in the Mathemagix

system [29] and found our implementation to be an order of magnitude slower than the Gmp

library [23]. There is certainly room for improvement, but we doubt that even a highly optimised
implementation of the new algorithm will be competitive in the near future. Nevertheless, the
variant for polynomial multiplication over finite fields presented in [24] seems to be a promising
avenue for achieving speedups in practical computations. This will be investigated in a forthcoming
paper.
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Notations. We use Hardy’s notations f ≺ g for f = o(g), and f ≍ g for f =O(g) and g=O(f).
The symbol R> denotes the set of non-negative real numbers, and N denotes {0, 1, 2, ...}. We will
write lg n := ⌈log n/ log 2⌉.

2. Survey of classical tools

This section recalls basic facts on Fourier transforms and related techniques used in subsequent
sections. For more details and historical references we refer the reader to standard books on the
subject such as [2, 8, 21, 42].

2.1. Arrays and sorting

In the Turing model, we have available a fixed number of linear tapes. An n1 × ··· × nd array
Mi1,...,id of b-bit elements is stored as a linear array of n1 ··· nd b bits. We generally assume that the
elements are ordered lexicographically by (i1, ..., id), though this is just an implementation detail.

What is significant from a complexity point of view is that occasionally we must switch repre-
sentations, to access an array (say 2-dimensional) by “rows” or by “columns”. In the Turing model,
we may transpose an n1× n2 matrix of b-bit elements in time O(b n1n2 lgmin (n1, n2)), using the
algorithm of [4, Appendix]. Briefly, the idea is to split the matrix into two halves along the “short”
dimension, and transpose each half recursively.

We will also require more complex rearrangements of data, for which we resort to sorting.
Suppose that X is a totally ordered set, whose elements are represented by bit strings of length b,
and suppose that we can compare elements of X in time O(b). Then an array of n elements of X
may be sorted in time O(b n lg n) using merge sort [33], which can be implemented efficiently on
a Turing machine.

2.2. Discrete Fourier transforms

Let R be a commutative ring with identity and let n> 1. An element ω∈R is said to be a principal
n-th root of unity if ωn=1 and

∑

k=0

n−1

(ωi)k=0 (2.1)

for all i∈{1, ...,n−1}. In this case, we define the discrete Fourier transform (or DFT) of an n-tuple
a=(a0, ..., an−1)∈Rn with respect to ω to be DFTω(a) = â=(â0, ..., ân−1)∈Rn where

âi := a0+ a1ω
i+ ···+ an−1ω

(n−1)i.

That is, âi is the evaluation of the polynomial A(X) := a0+ a1X + ···+ an−1X
n−1 at ωi.

If ω is a principal n-th root of unity, then so is its inverse ω−1=ωn−1, and we have

DFTω−1(DFTω(a)) = n a.

Indeed, writing b :=DFTω−1(DFTω(a)), the relation (2.1) implies that

bi=
∑

j=0

n−1

âjω
−ji=

∑

j=0

n−1
∑

k=0

n−1

akω
j(k−i)=

∑

k=0

n−1

ak
∑

j=0

n−1

ωj(k−i)=
∑

k=0

n−1

ak (n δi,k)=n ai,

where δi,k=1 if i= k and δi,k=0 otherwise.

Remark 2.1. In all of the new algorithms introduced in this paper, we actually work over a field,
whose characteristic does not divide n. In this setting, the concept of principal root of unity
coincides with the more familiar primitive root of unity . The more general “principal root” concept
is only needed for discussions of other algorithms, such as the Schönhage–Strassen algorithm or
Fürer’s algorithm.
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2.3. The Cooley–Tukey FFT

Let ω be a principal n-th root of unity and let n=n1n2 where 1<n1<n. Then ωn1 is a principal
n2-th root of unity and ωn2 is a principal n1-th root of unity. Moreover, for any i1∈{0, ..., n1− 1}
and i2∈{0, ..., n2− 1}, we have

âi1n2+i2 =
∑

k1=0

n1−1
∑

k2=0

n2−1

ak2n1+k1ω
(k2n1+k1)(i1n2+i2)

=
∑

k1=0

n1−1

ωk1i2

(

∑

k2=0

n2−1

ak2n1+k1 (ω
n1)k2i2

)

(ωn2)k1i1. (2.2)

If A1 and A2 are algorithms for computing DFTs of length n1 and n2, we may use (2.2) to construct
an algorithm A1⊙A2 for computing DFTs of length n as follows.

For each k1 ∈ {0, ..., n1 − 1}, the sum inside the brackets corresponds to the i2-th coefficient
of a DFT of the n2-tuple (a0n1+k1, ..., a(n2−1)n1+k1

) ∈ Rn2 with respect to ωn1. Evaluating these
inner DFTs requires n1 calls to A2. Next, we multiply by the twiddle factors ωk1i2, at a cost of n
operations in R. (Actually, fewer than n multiplications are required, as some of the twiddle factors
are equal to 1. This optimisation, while important in practice, has no asymptotic effect on the
algorithms discussed in this paper.) Finally, for each i2∈{0, ..., n2− 1}, the outer sum corresponds
to the i1-th coefficient of a DFT of an n1-tuple in Rn1 with respect to ωn2. These outer DFTs
require n2 calls to A1.

Denoting by FR(n) the number of ring operations needed to compute a DFT of length n, and
assuming that we have available a precomputed table of twiddle factors, we obtain

FR(n1n2) 6 n1FR(n2)+n2FR(n1) +n.

For a factorisation n=n1 ···nd, this yields recursively

FR(n) 6
∑

i=1

d
n

ni
FR(ni) + (d− 1)n. (2.3)

The corresponding algorithm is denoted A1 ⊙ ··· ⊙ Ad. The ⊙ operation is neither commutative
nor associative; the above expression will always be taken to mean (···((A1⊙A2)⊙A3)⊙···)⊙Ad.

Let B be the butterfly algorithm that computes a DFT of length 2 by the formula (a0, a1) 7→
(a0+a1,a0−a1). Then B⊙k :=B⊙···⊙B computes a DFT of length n :=2k in time FR(2k)=O(k n).
Algorithms of this type are called fast Fourier transforms (or FFTs).

The above discussion requires several modifications in the Turing model. Assume that elements
of R are represented by b bits.

First, for A1 ⊙ A2, we must add a rearrangement cost of O(b n lg min (n1, n2)) to efficiently
access the rows and columns for the recursive subtransforms (see section 2.1). For the general case
A1⊙ ··· ⊙Ad, the total rearrangement cost is bounded by O(

∑

i
b n lg ni) =O(b n lg n).

Second, we will sometimes use non-algebraic algorithms to compute the subtransforms, so it
may not make sense to express their cost in terms of FR. The relation (2.3) therefore becomes

F(n) 6
∑

i=1

d
n

ni
F(ni) + (d− 1)nmR+O(b n lgn), (2.4)

where F(n) is the (Turing) cost of a transform of length n over R, and where mR is the cost of
a single multiplication in R.

Finally, we point out that A1 ⊙A2 requires access to a table of twiddle factors ωi1i2, ordered
lexicographically by (i1, i2), for 0 6 i1 < n1, 0 6 i2 < n2. Assuming that we are given as input
a precomputed table of the form 1, ω, ..., ωn−1, we must show how to extract the required twiddle
factor table in the correct order. We first construct a list of triples (i1, i2, i1 i2), ordered by (i1, i2),
in time O(n lgn); then sort by i1 i2 in time O(n lg2n) (see section 2.1); then merge with the given
root table to obtain a table (i1, i2, ω

i1i2), ordered by i1 i2, in time O(n (b+ lg n)); and finally sort
by (i1, i2) in time O(n lgn (b+ lg n)). The total cost of the extraction is thus O(n lg n (b+ lg n)).
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The corresponding cost for A1 ⊙ ··· ⊙ Ad is determined as follows. Assuming that the table
1, ω, ..., ωn−1 is given as input, we first extract the subtables of (n1 ··· ni)-th roots of unity for
i= d− 1, ..., 2 in time O((n1 ···nd+ ···+n1n2) (b+ lg n)) =O(n (b+ lg n)). Extracting the twiddle
factor table for the decomposition (n1 ··· ni−1)× ni then costs O(n1 ··· ni lg n (b+ lg n)); the total
over all i is again O(n lg n (b+ lg n)).

Remark 2.2. An alternative approach is to compute the twiddle factors directly in the correct
order. When working over C, as in section 3, this requires a slight increase in the working precision.
Similar comments apply to the root tables used in Bluestein’s algorithm in section 2.5.

2.4. Fast Fourier multiplication

Let ω be a principal n-th root of unity in R and assume that n is invertible in R. Consider
two polynomials A = a0 + ··· + an−1 Xn−1 and B = b0 + ··· + bn−1 Xn−1 in R[X]. Let
C = c0+ ···+ cn−1X

n−1 be the polynomial defined by

c :=
1

n
DFTω−1(DFTω(a)DFTω(b)),

where the product of the DFTs is taken pointwise. By construction, we have ĉ = â b̂, which
means that C(ωi) = A(ωi) B(ωi) for all i ∈ {0, ..., n − 1}. The product S = s0 + ··· + sn−1 X

n−1

of A and B modulo Xn − 1 also satisfies S(ωi) = A(ωi) B(ωi) for all i. Consequently, ŝ = â b̂,
s=DFTω−1(ŝ)/n= c, whence C =S.

For polynomials A, B ∈R[X ] with degA< n and degB < n, we thus obtain an algorithm for
the computation of AB modulo Xn − 1 using at most 3 FR(n) +O(n) operations in R. Modular
products of this type are also called cyclic convolutions . If deg (A B) < n, then we may recover
the product A B from its reduction modulo Xn − 1. This multiplication method is called FFT
multiplication .

If one of the arguments (say B) is fixed and we want to compute many products AB (or cyclic
convolutions) for different A, then we may precompute DFTω(b), after which each new product
AB can be computed using only 2FR(n)+O(n) operations in R.

2.5. Bluestein’s chirp transform

We have shown above how to multiply polynomials using DFTs. Inversely, it is possible to reduce
the computation of DFTs — of arbitrary length, not necessarily a power of two — to polynomial
multiplication [3], as follows.

Let ω be a principal n-th root of unity. For simplicity we assume that n is even, and that there
exists some η ∈R with η2=ω. Consider the sequences

fi := ηi
2
, gi := η−i2.

Then ωij= fi fj gi−j, so for any a∈Rn we have

âi=
∑

j=0

n−1

ajω
ij= fi

∑

j=0

n−1

(aj fj) gi−j. (2.5)

Also, since n is even,

gi+n= η−(i+n)2= η−i2−n2−2ni= η−i2ω
−
(n

2
+i

)

n
= gi.

Now let F := f0 a0 + ··· + fn−1 an−1 Xn−1, G := g0 + ··· + gn−1 Xn−1 and C := c0 + ··· +
cn−1X

n−1≡FG modulo Xn−1. Then (2.5) implies that âi= fi ci for all i∈{0, ..., n−1}. In other
words, the computation of a DFT of even length n reduces to a cyclic convolution product of the
same length, together with O(n) additional operations in R. Notice that the polynomial G is fixed
and independent of a in this product.

The only complication in the Turing model is the cost of extracting the fi in the correct order,
i.e., in the order 1, η, η4, η9, ..., η(n−1)2, given as input a precomputed table 1, η, η2, ..., η2n−1.
We may do this in time O(n lg n (b+ lg n)) by applying the strategy from section 2.3 to the pairs
(i, i2mod 2n) for 06 i <n. Similar remarks apply to the gi.
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Remark 2.3. It is also possible to give variants of the new multiplication algorithms in which
Bluestein’s transform is replaced by a different method for converting DFTs to convolutions, such
as Rader’s algorithm [41].

2.6. Kronecker substitution and segmentation

Multiplication in Z[X ] may be reduced to multiplication in Z using the classical technique of
Kronecker substitution [21, Corollary 8.27]. More precisely, let d>0 and n>0, and suppose that we
are given two polynomials A,B ∈Z[X] of degree less than d, with coefficients Ai and Bi satisfying
|Ai|6 2n and |Bi|6 2n. Then for the product C =AB we have |Ci|6 22n+lg d. Consequently, the
coefficients of C may be read off the integer product C(2N)=A(2N)B(2N) whereN :=2 n+ lgd+2.
Notice that the integers |A(2N)| and |B(2N)| have bit length at most d N , and the encoding and
decoding processes have complexity O(dN).

The inverse procedure is Kronecker segmentation . Given n > 0 and d > 0, and non-negative
integers a < 2n and b < 2n, we may reduce the computation of c := a b to the computation of
a product C := A B of two polynomials A, B ∈ Z[X ] of degree less than d, and with |Ai| < 2k

and |Bi| < 2k where k := ⌈n/d⌉. Indeed, we may cut the integers into chunks of k bits each, so
that a=A(2k), b=B(2k) and c=C(2k). Notice that we may recover c from C using an overlap-
add procedure in time O(d (k + lg d)) = O(n + d lg d). In our applications, we will always have
d=O(n/ lg n), so that O(n+ d lg d) =O(n).

Kronecker substitution and segmentation can also be used to handle Gaussian integers (and
Gaussian integer polynomials), and to compute cyclic convolutions. For example, given polynomials
A,B ∈Z[i][X]/(Xd− 1) with |Ai|, |Bi|6 2n, then for C =AB we have |Ci|6 22n+lg d, so we may
recover C from the cyclic Gaussian integer product C(2N) = A(2N) B(2N) ∈ (Z/(2dN − 1) Z)[i],
where N := 2n+ lg d+2. In the other direction, suppose that we wish to compute a b for some a,

b ∈ (Z/(2dn − 1) Z)[i]. We may assume that the “real” and “imaginary” parts of a and b are non-
negative, and so reduce to the problem of multiplying A, B ∈Z[i][X]/(Xd − 1), where a=A(2n)
and b=B(2n), and where the real and imaginary parts of Ai, Bi∈Z[i] are non-negative and have
at most n bits.

3. Fixed point computations and error bounds

In this section, we consider the computation of DFTs over C in the Turing model. Elements of C
can only be represented approximately on a Turing machine. We describe algorithms that compute
DFTs approximately, using a fixed-point representation for C, and we give complexity bounds and
a detailed error analysis for these algorithms. We refer the reader to [7] for more details about
multiple precision arithmetic.

For our complexity estimates we will freely use the standard observation that I(O(n))=O(I(n)),
since the multiplication of two integers of bit length 6k n reduces to k2 multiplications of integers
of bit length 6n, for any fixed k> 1.

3.1. Fixed point numbers

We will represent fixed point numbers by a signed mantissa and a fixed exponent. More precisely,
given a precision parameter p > 4, we denote by Cp the set of complex numbers of the form
z=mz 2

−p, where mz= u+ v i for integers u and v satisfying u2+ v26 22p, i.e., |z |6 1. We write
Cp 2e for the set of complex numbers of the form u 2e, where u ∈ Cp and e ∈ Z; in particular,
for z ∈ Cp 2

e we always have |z | 6 2e. At every stage of our algorithms, the exponent e will be
determined implicitly by context, and in particular, the exponents do not have to be explicitly
stored or manipulated.

In our error analysis of numerical algorithms, each z∈Cp 2
e is really the approximation of some

genuine complex number z̃ ∈ C. Each such z comes with an implicit error bound εz > 0; this is
a real number for which we can guarantee that |z− z̃ |6εz. We also define the relative error bound
for z by ρz := εz/2

e. We finally denote by ǫ := 21−p6 1/8 the “machine accuracy”.

Remark 3.1. Interval arithmetic [36] (or ball arithmetic [28, Chapter 3]) provides a systematic
method for tracking error bounds by storing the bounds along with z. We will use similar formulas
for the computation of εz and ρz, but we will not actually store the bounds during computations.
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3.2. Basic arithmetic

In this section we give error bounds and complexity estimates for fixed point addition, subtraction
and multiplication, under certain simplifying assumptions. In particular, in our DFTs, we only ever
need to add and subtract numbers with the same exponent. We also give error bounds for fixed
point convolution of vectors; the complexity of this important operation is considered later.

For x∈R, we define the “round towards zero” function ⌊x⌉ by ⌊x⌉ := ⌊x⌋ if x>0 and ⌊x⌉ := ⌈x⌉
if x6 0. For x, y ∈R, we define ⌊x+ y i⌉ := ⌊x⌉+ ⌊y⌉ i. Notice that |⌊z⌉|6 |z | and |⌊z⌉− z |6 2

√

for any z ∈C.

Proposition 3.2. Let z,u∈Cp 2
e. Define the fixed point sum and difference z∔u, z−· u∈Cp 2

e+1

by mz±· u := ⌊(mz ±mu)/2⌉. Then z∔ u and z−· u can be computed in time O(p), and

ρz±· u 6
ρz+ ρu

2
+ ǫ.

Proof. We have

|(z±· u)− (z ± u)|
2e+1

=
∣

∣

∣

⌊

mz ±mu

2

⌉

− mz±mu

2

∣

∣

∣
2−p6 2

√
· 2−p6 ǫ

and
|(z ± u)− (z̃ ± ũ)|

2e+1
6

εz+ εu
2e+1

=
ρz+ ρu

2
,

whence |(z±· u)− (z̃ ± ũ)|/2e+16 (ρz+ ρu)/2+ ǫ. �

Proposition 3.3. Let z ∈Cp 2
ez and u∈Cp 2

eu. Define the fixed point product z×· u∈Cp 2
ez+eu

by mz×· u := ⌊2−pmzmu⌉. Then z×· u can be computed in time O(I(p)), and

1+ ρz×· u 6 (1+ ρz) (1+ ρu) (1+ ǫ).

Proof. We have

|z×· u− z u|/2ez+eu= |⌊2−pmzmu⌉− 2−pmzmu| 2−p6 2
√

· 2−p6 ǫ

and

|z u− z̃ ũ| 6 |z | |u− ũ|+ |z − z̃ | (|u|+ |ũ− u|)
6 2ez εu+2eu εz+ εz εu

= (ρu+ ρz+ ρz ρu) 2
ez+eu.

Consequently, |z×· u− z̃ ũ|/2ez+eu6 ρz+ ρu+ ρz ρu+ ǫ6 (1+ ρz) (1+ ρu) (1+ ǫ)− 1. �

Proposition 3.3 may be generalised to numerical cyclic convolution of vectors as follows.

Proposition 3.4. Let k> 1 and n :=2k. Let z∈ (Cp 2ez)n and u∈ (Cp 2eu)n. Define the fixed point
convolution z ∗· u∈ (Cp 2

ez+eu+k)n by

m(z∗·u)i :=

⌊

2−p−k
∑

i1+i2=i (modn)

mzi1
mui2

⌉

, 06 i <n.

Then

max
i

(1+ ρ(z∗·u)i) 6 max
i

(1+ ρzi)max
i

(1+ ρui
) (1+ ǫ).

Proof. Let ∗ denote the exact convolution, and write ρz :=maxjρzj
and ρu :=maxjρuj

. As in the

proof of Proposition 3.3, we obtain |(z ∗· u)i− (z ∗u)i|/2ez+eu+k6 2
√

· 2−p6 ǫ and

|(z ∗u)i− (z̃ ∗ ũ)i| 6
∑

i1+i2=i (modn)

|zi1 ui2− z̃i1 ũi2|

6 (ρz+ ρu+ ρz ρu) 2ez+eu+k.

The proof is concluded in the same way as Proposition 3.3. �
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3.3. Precomputing roots of unity

Let H := {x+ y i∈C: y> 0} and Hp := {x+ y i∈Cp: y> 0}. Let √ :H→H be the branch of the

square root function such that eiθ
√

:= eiθ/2 for 06 θ6π. Using Newton’s method [7, Section 3.5]
and Schönhage–Strassen multiplication [47], we may construct a fixed point square root function
·√ :Hp→Hp, which may be evaluated in time O(p log p log log p), such that | z·√ − z

√ |6 ǫ for all
z ∈Hp. For example, we may first compute some u∈H such that |u− z

√ |6 ǫ/4 and |u|6 1, and

then take z·√ := ⌊2p u⌉ 2−p; the desired bound follows since ǫ/4+ 2
√

· 2−p6 ǫ.

Lemma 3.5. Let z ∈Hp, and assume that |z̃ |=1 and ρz6 3/8. Then ρ
z·√ 6 ρz+ ǫ.

Proof. The mean value theorem implies that
∣

∣ z̃
√

− z
√ ∣

∣ 6 εz maxw∈D |1 / (2 w
√

)| where
D := {w ∈H: |w− z |6 εz}. For w ∈D we have |w |> |z̃ | − |z̃ − z | − |z −w |> 1− 3/8− 3/8> 1/4;
hence

∣

∣ z̃
√

− z
√ ∣

∣6εz= ρz. By construction | z·√ − z
√ |6 ǫ. We conclude that

∣

∣ z·√ − z̃
√ ∣

∣6 ρz+ ǫ. �

Proposition 3.6. Let k ∈ N and p > k, and let ω := e2πi/2k. We may compute 1, ω, ω2, ...,

ω2k−1∈Cp, with ρωi6 ǫ for all i, in time O(2k p log p log log p).

Proof. It suffices to compute 1, ω, ..., ω2k−1−1∈Hp. Starting from ω0=1 and ω2k−2
= i, for each

ℓ=k− 3, k− 4, ..., 0, we compute ωi2ℓ for i=1,3, ..., 2k−ℓ−1− 1 using ωi2ℓ := ωi2ℓ+1·√ if i< 2k−ℓ−2

and ωi2ℓ

:= i ωi2ℓ−2k−2
otherwise. Performing all computations with temporarily increased precision

p′ := p+ lg p+2 and corresponding ǫ′ := 21−p′
, Lemma 3.5 yields ρωi6 k ǫ′6 ǫ/4. This also shows

that the hypothesis ρωi6 3/8 is always satisfied, since ǫ/461/3263/8. After rounding to p bits,
the relative error is at most ǫ/4+ 2

√
· 2−p6 ǫ. �

3.4. Error analysis for fast Fourier transforms

A tight algorithm for computing DFTs of length n=2k> 2 is a numerical algorithm that takes as
input an n-tuple a∈ (Cp 2e)n and computes an approximation â∈ (Cp 2e+k)n to the DFT of a with

respect to ω=e2p i/n (or ω=e−2p i/n in the case of an inverse transform), such that

max
i

(1+ ρâi
) 6 max

i
(1+ ρai

) (1+ ǫ)3k−2.

We assume for the moment that any such algorithm has at its disposal all necessary root tables
with relative error not exceeding ǫ. Propositions 3.2 and 3.3 directly imply the following:

Proposition 3.7. The butterfly algorithm B that computes a DFT of length 2 using the formula
(a0, a1) 7→ (a0∔ a1, a0−· a1) is tight.

Proof. We have ρâi
6 (ρa0

+ ρa1
)/2+ ǫ6maxi ρai

+ ǫ6 (1+maxi ρai
) (1+ ǫ)− 1. �

Proposition 3.8. Let k1, k2 > 1, and let A1 and A2 be tight algorithms for computing DFTs of

lengths 2k1 and 2k2. Then A1⊙A2 is a tight algorithm for computing DFTs of length 2k1+k2.

Proof. The inner and outer DFTs contribute factors of (1 + ǫ)3k1−2 and (1 + ǫ)3k2−2, and by
Proposition 3.3 the twiddle factor multiplications contribute a factor of (1+ ǫ)2. Thus

max
i

(1+ ρâi
)6max

i
(1+ ρai

) (1+ ǫ)(3k1−2)+2+(3k2−2)6max
i

(1+ ρai
) (1+ ǫ)3(k1+k2)−2. �

Corollary 3.9. Let k > 1. Then B⊙k is a tight algorithm for computing DFTs of length 2k

over Cp, whose complexity is bounded by O(2k k I(p)).

4. A simple and fast multiplication algorithm

In this section we give the simplest version of the new integer multiplication algorithm. The key
innovation is an alternative method for computing DFTs of small length. This new method uses
a combination of Bluestein’s chirp transform and Kronecker substitution (see sections 2.5 and 2.6)
to convert the DFT to a cyclic integer product in (Z/(2n

′− 1)Z)[i] for suitable n′.
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Proposition 4.1. Let 16 r6 p. There exists a tight algorithm Cr for computing DFTs of length 2r

over Cp, whose complexity is bounded by O(I(2r p)+ 2r I(p)).

Proof. Let n := 2r, and suppose that we wish to compute the DFT of a ∈ (Cp 2e)n. Using
Bluestein’s chirp transform (notation as in section 2.5), this reduces to computing a cyclic convolu-
tion of suitable F ∈ (Cp 2e)[X ]/(Xn− 1) and G∈Cp[X]/(Xn− 1). We assume that the fi and gi
have been precomputed with ρfi, ρgi6 ε.

We may regard F ′ := 2p−e F and G′ := 2p G as cyclic polynomials with complex integer

coefficients, i.e., as elements of Z[i][X]/(Xn− 1). Write F ′=
∑

i=0
n−1

Fi
′X i and G′=

∑

i=0
n−1

Gi
′X i,

where Fi
′, Gi

′ ∈ Z[i] with |Fi
′| 6 2p and |Gi

′| 6 2p. Now we compute the exact product H ′ :=
F ′ G′ ∈Z[i][X]/(Xn − 1) using Kronecker substitution. More precisely, we have |Hi

′|6 22p+r, so
it suffices to compute the cyclic integer product H ′(2b)=F ′(2b)G′(2b)∈ (Z/(2nb− 1)Z)[i], where
b := 2 p+ r + 2 =O(p). Then H :=H ′ 2e−2p is the exact convolution of F and G, and rounding
H to precision p yields F ∗· G ∈ (Cp 2e+r)[X ] / (Xn − 1) in the sense of Proposition 3.4. A final
multiplication by fi yields the Fourier coefficients âi∈Cp 2

e+r.
To establish tightness, observe that 1 + ρFi

6 (1 + ρai
) (1 + ǫ)2 and ρGi

6 ǫ, so Proposition 3.4
yields 1+ ρ(F ∗·G)i6 (1+ ρa) (1+ ǫ)4 where ρa :=maxiρai

; we conclude that 1+ ρâi
6 (1+ ρa) (1+ ǫ)6.

For r> 3, this means that the algorithm is tight; for r6 2, we may take Cr :=B⊙r.
For the complexity, observe that the product in (Z / (2nb − 1) Z)[i] reduces to three integer

products of size O(n p). These have cost O(I(n p)), and the algorithm also performs O(n) multi-
plications in Cp, contributing the O(n I(p)) term. �

Remark 4.2. A crucial observation is that, for suitable parameters, the DFT algorithm in Propo-
sition 4.1 is actually faster than the conventional Cooley–Tukey algorithm of Corollary 3.9. For
example, if we assume that I(m)=m (logm)1+o(1), then to compute a transform of length n overCp

with n∼ p, the Cooley–Tukey approach has complexity n2 (log n)2+o(1), whereas Proposition 4.1
yields n2 (logn)1+o(1), an improvement by a factor of roughly log n.

Theorem 4.3. For n→∞, we have

I(n)

n lg n
= O

(

I(lg2n)
lg2n lg lg n

+
I(lgn)

lg n lg lg n
+1

)

. (4.1)

Proof. We first reduce our integer product to a polynomial product using Kronecker segmentation
(section 2.6). Splitting the two n-bit inputs into chunks of b := lg n bits, we need to compute
a product of polynomials u, v ∈ Z[X ] with non-negative b-bit coefficients and degrees less than
m := ⌈n/b⌉ = O(n/ lg n). The coefficients of h := u v have O(lg n) bits, and we may deduce the
desired integer product h(2b) in time O(n).

Let k := lg (2m). To compute u v, we will use DFTs of length 2k =O(n/ lg n) over Cp, where

p :=2 b+2 k+ lgk+8=O(lgn). Zero-padding u to obtain a sequence (u0, ...,u2k−1)∈ (Cp 2
b)2

k

, and

similarly for v, we compute the transforms û, v̂∈ (Cp 2
b+k)2

k

with respect to ω :=e2p i/2
k

as follows.
Let r := lg lgn and d := ⌈k/r⌉=O(lgn/ lg lgn). Write k= r1+ ···+ rd with ri := r for i6 d− 1

and rd := k − (d − 1) r 6 r. We use the algorithm A := A1 ⊙ ··· ⊙ Ad (see section 2.3), where
for 1 6 i 6 d − 1 we take Ai to be the tight algorithm Cr for DFTs of length 2r ≍ lg n given by
Proposition 4.1, and where Ad is B⊙rd as in Corollary 3.9. In other words, we split the k usual
radix-2 layers of the FFT into groups of r layers, handling the transforms in each group with the
Bluestein–Kronecker reduction, and then using ordinary Cooley–Tukey for the remaining rd layers.

We next compute the pointwise products ĥi := ûi v̂i ∈ Cp 2
2b+2k, and then apply an inverse

transform A′ defined analogously to A. A final division by 2k (which is really just an implicit
adjustment of exponents) yields approximations hi∈Cp 22b+2k.

SinceA andA′ are tight by Propositions 3.8, 4.1 and Corollary 3.9, we have 1+ ρûi
6(1+ ǫ)3k−2,

and similarly for v̂. Thus 1 + ρĥi
6 (1 + ǫ)6k−3, so 1 + ρhi

6 (1 + ǫ)9k−5 6 exp(9 k ǫ) 6

exp(25+lg k−p) 6 1 + 26+lg k−p after the inverse transform (since exp x 6 1 + 2 x for x 6 1). In
particular, εhi

=22b+2k ρhi
622b+2k+lg k−p+661/4, so we obtain the exact value of hi by rounding

to the nearest integer.
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Now we analyse the complexity. Using Proposition 3.6, we first compute a table of roots 1,

ω, ..., ω2k−1 in time O(2k p log p log log p)=O(n lgn), and then extract the required twiddle factor
tables in time O(2k k (p+ k)) =O(n lg n) (see section 2.3). For the Bluestein reductions, we may
extract a table of 2r+1-th roots in time O(2k p) = O(n), and then rearrange them as required in
time O(2r r (p+r))=O(lg2n lg lgn) (see section 2.5). These precomputations are then all repeated
for the inverse transforms.

By Corollary 3.9, Proposition 4.1 and (2.4), each invocation of A (or A′) has cost

O((d− 1) 2k−r (I(2r p) + 2r I(p))+ 2k−rd 2rd rd I(p)+ (d− 1) 2k I(p)+ p 2k k)

= O((d− 1) 2k−r I(2r p)+ (d+ rd) 2
k I(p)+ p 2k k)

= O

(

n

lg n lg lgn
I(lg2n)+

n

lg lg n
I(lg n)+n lgn

)

.

The cost of the O(2k) pointwise multiplications is subsumed within this bound. �

It is now a straightforward matter to recover Fürer’s bound.

Theorem 4.4. For some constant K > 1, we have

I(n) = O(n lgnK log∗n).

Proof. Let T (n) := I(n)/(n lgn) for n>2. By Theorem 4.3, there exists x0>2 and C>1 such that

T (n) 6 C (T (lg2n)+T (lgn) + 1)

for all n > x0. Let Φ(x) := 4 log2 x for x ∈ R, x > 1. Increasing x0 if necessary, we may assume
that Φ(x)6x− 1 for x>x0, so that the function Φ∗(x) :=min {j ∈N: Φ◦j(x)6x0} is well-defined.
Increasing C if necessary, we may also assume that T (n)6 3C for all n6 x0.

We prove by induction on Φ∗(n) that T (n)6 (3C)Φ
∗(n)+1 for all n. If Φ∗(n)= 0, then n6 x0,

so the bound holds. Now suppose that Φ∗(n)>1. Since lg2n6Φ(n), we have Φ∗(lgn)6Φ∗(lg2n)6
Φ∗(Φ(n)) =Φ∗(n)− 1, so by induction T (n)6C (3C)Φ

∗(n)+C (3C)Φ
∗(n)+C 6 (3C)Φ

∗(n)+1.
Finally, since Φ(Φ(x)) ≺ log x, we have Φ∗(x) 6 2 log∗ x + O(1), so T (n) = O(K log∗n) for

K := (3C)2. �

5. Logarithmically slow recurrence inequalities

This section is devoted to developing a framework for handling recurrence inequalities, similar
to (4.1), that appear in subsequent sections.

Let Φ: (x0, ∞) → R be a smooth increasing function, for some x0 ∈ R. We say that
Φ∗: (x0,∞)→R> is an iterator of Φ if Φ∗ is increasing and if

Φ∗(x) = Φ∗(Φ(x)) + 1 (5.1)

for all sufficiently large x.
For instance, the standard iterated logarithm log∗ defined in (1.2) is an iterator of log. An

analogous iterator may be defined for any smooth increasing function Φ: (x0, ∞) → R for which
there exists some σ>x0 such that Φ(x)6x− 1 for all x>σ. Indeed, in that case,

Φ∗(x) := min {k ∈N: Φ◦k(x)6 σ}

is well-defined and satisfies (5.1) for all x > σ. It will sometimes be convenient to increase x0 so
that Φ(x)6 x− 1 is satisfied on the whole domain of Φ.

We say that Φ is logarithmically slow if there exists an ℓ∈N such that

(log◦ℓ ◦Φ ◦ exp◦ℓ)(x) = log x+O(1) (5.2)

for x→∞. For example, the functions log(2 x), 2 logx, (logx)2 and (logx)log log x are logarithmically
slow, with ℓ=0, 1, 2, 3 respectively.
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Lemma 5.1. Let Φ: (x0,∞)→R be a logarithmically slow function. Then there exists σ>x0 such
that Φ(x)6 x− 1 for all x>σ. Consequently all logarithmically slow functions admit iterators.

Proof. The case ℓ = 0 is clear. For ℓ > 1, let Ψ := log ◦ Φ ◦ exp. By induction Ψ(x) 6 x − 1 for
large x, so Φ(x)6 exp(log x− 1)= x/e6x− 1 for large x. �

In this paper, the main role played by logarithmically slow functions is to measure size reduction
in multiplication algorithms. In other words, multiplication of objects of size n will be reduced to
multiplication of objects of size n′, where n′6Φ(n) for some logarithmically slow function Φ(x).
The following result asserts that, from the point of view of iterators, such functions are more or
less interchangeable with log x.

Lemma 5.2. For any iterator Φ∗ of a logarithmically slow function Φ, we have

Φ∗(x) = log∗x+O(1).

Proof. First consider the case where ℓ = 0 in (5.2), i.e., assume that |Φ(x) − log x| 6 C for
some constant C > 0 and all x > x0. Increasing x0 and C if necessary, we may assume that
Φ∗(x)=Φ∗(Φ(x))+ 1 for all x>x0, and that 2 e2C >x0.

We claim that
y

2
6 x6 2 y =⇒ log y

2
6Φ(x)6 2 log y (5.3)

for all y > 4 e2C. Indeed, if y

2
6x6 2 y, then

1

2
log y6 log y

2
−C 6Φ

( y

2

)

6Φ(x)6Φ(2 y)6 log (2 y) +C 6 2 log y.

Now, given any x> 4 e2C, let k :=min {k ∈N: log◦kx6 4 e2C}, so k> 1. For any j=0, ..., k− 1
we have log◦jx> 4 e2C, so k-fold iteration of (5.3), starting with y=x, yields

log◦jx
2

6Φ◦j(x)6 2 log◦jx (06 j6 k).

Moreover this shows that Φ◦j(x) > 2 e2C > x0 for 0 6 j < k, so Φ∗(x) = Φ∗(Φ◦k(x)) + k. Since
Φ◦k(x)6 2 log◦kx6 8 e2C and k= log∗x+O(1), we obtain Φ∗(x)= log∗x+O(1).

Now consider the general case ℓ > 0. Let Ψ := log◦ℓ ◦ Φ ◦ exp◦ℓ, so that Ψ∗ := Φ∗ ◦ exp◦ℓ is
an iterator of Ψ. By the above argument Ψ∗(x) = log∗ x + O(1), and so Φ∗(x) = Ψ∗(log◦ℓ x) =
log∗(log◦ℓx) +O(1)= log∗x− ℓ+O(1)= log∗x+O(1). �

The next result, which generalises and refines the argument of Theorem 4.4, is our main tool
for converting recurrence inequalities into actual asymptotic bounds for solutions. We state it
in a slightly more general form than is necessary for the present paper, anticipating the more
complicated situation that arises in [24].

Proposition 5.3. Let K > 1, B > 0 and ℓ ∈ N. Let x0 > exp◦ℓ(1), and let Φ: (x0, ∞) → R be
a logarithmically slow function such that Φ(x)6 x− 1 for all x>x0. Then there exists a positive
constant C (depending on x0, Φ, K, B and ℓ) with the following property.

Let σ > x0 and L > 0. Let S ⊆R, and let T : S →R> be any function satisfying the following
recurrence. First, T (y)6L for all y∈S, y6σ. Second, for all y∈S, y >σ, there exist y1, ..., yd∈S
with yi6Φ(y), and weights γ1, ..., γd> 0 with

∑

i
γi=1, such that

T (y) 6 K

(

1+
B

log◦ℓ y

)

∑

i=1

d

γiT (yi)+L.

Then we have T (y)6CLK log∗ y−log∗σ for all y ∈S, y >σ.

Proof. Let σ, L, S and T (x) be as above. Define Φσ
∗(x) :=min {k∈N: Φ◦k(x)6σ} for x>x0. We

claim that there exists r ∈N, depending only on x0 and Φ, such that

Φσ
∗(x) 6 log∗x− log∗σ+ r (5.4)
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for all x>σ. Indeed, let Φ∗(x) :=min{j ∈N:Φ◦j(x)6x0}. First suppose σ>x0, so that Φ∗(σ)> 1.
For any x>σ, we have Φ◦(Φσ

∗(x)−1)(x)>σ, so

Φ◦(Φσ
∗(x)−1+Φ∗(σ)−1)(x)>Φ◦(Φ∗(σ)−1)(σ)>x0,

and hence Φ∗(x)>Φσ
∗(x)+Φ∗(σ)−2. This last inequality also clearly holds if σ=x0 (since 0>−2).

By Lemma 5.2 we obtain Φσ
∗(x)6Φ∗(x)−Φ∗(σ)+O(1)= log∗x− log∗σ+O(1).

Define a sequence of real numbers E1, E2, ... by the formula

Ej :=

{

1+B if j6 r+ ℓ,

1+B/exp◦(j−r−ℓ−1)(1) if j > r+ ℓ.

We claim that

1+B/log◦ℓx 6 EΦσ
∗(x) (5.5)

for all x>σ. Indeed, let j :=Φσ
∗(x). If j6 r+ ℓ then (5.5) holds as x>σ>x0> exp◦ℓ(1). If j >r+ ℓ

then log∗x> j − r by (5.4), so x> exp◦(j−r−1)(1) and hence log◦ℓx> exp◦(j−r−ℓ−1)(1).
Now let y ∈S. We will prove by induction on j :=Φσ

∗(y) that

T (y) 6 E1 ···EjL (K j+ ···+K +1)

for all y > x0. The base case j := 0, i.e., y 6 σ, holds by assumption. Now assume that j > 1, so
y>σ. By hypothesis there exist y1, ..., yd∈S, yi6Φ(y), and γ1, ..., γd> 0 with

∑

i
γi=1, such that

T (y) 6 KEj

∑

i

γiT (yi)+L.

Since Φσ
∗(yi)6Φσ

∗(Φ(y))=Φσ
∗(y)− 1, we obtain

T (y) 6 KEj

∑

i

γi (E1 ···Ej−1L (K j−1+ ···+K +1))+L

= E1 ···EjL (K j+ ···+K2+K)+L

6 E1 ···EjL (K j+ ···+K2+K +1).

Finally, the infinite product

E :=
∏

j>1

Ej6 (1+B)r+ℓ
∏

k>0

(

1+
B

exp◦k(1)

)

certainly converges, so we have T (y)6E LK j+1/(K−1) for y>x0. Setting C :=EKr+1/(K−1),
by (5.4) we obtain T (y)6CLK log∗ y−log∗σ for all y >σ. �

6. Even faster multiplication

In this section, we present an optimised version of the new integer multiplication algorithm. The
basic outline is the same as in section 4, but our goal is now to minimise the “expansion factor” at
each recursion level. The necessary modifications may be summarised as follows.

• Since Bluestein’s chirp transform reduces a DFT to a complex cyclic convolution, we take
the basic recursive problem to be complex cyclic integer convolution, i.e., multiplication in
(Z/(2n− 1)Z)[i], rather than ordinary integer multiplication.

• In multiplications involving one fixed operand, we reuse the transform of the fixed operand.

• In a convolution of length n with input coefficients of bit size b, the size of the output
coefficients is 2 b + O(lg n), so the ratio of output to input size is 2 + O((lg n) / b). We
increase b from lgn to (lgn)2, so as to reduce the inflation ratio from O(1) to 2+O(1/ lgn).

• We increase the “short transform length” from lgn to (lgn)lg lgn+O(1). The complexity then
becomes dominated by the Bluestein–Kronecker multiplications, while the contribution from
ordinary arithmetic in Cp becomes asymptotically negligible. (As noted in section 1, this
is precisely the opposite of what occurs in Fürer’s algorithm.)
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We begin with a technical preliminary. To perform multiplication in (Z/(2n − 1) Z)[i] efficiently
using FFT multiplication, we need n to be divisible by a high power of two. We say that an integer
n> 3 is admissible if 2κ(n) | n, where κ(n) := lg n− lg (lg2 n) + 1 (note that 06 κ(n)6 lg n for all
n>3). We will need a function that rounds a given n up to an admissible integer. For this purpose
we define α(n) :=

⌈

n/2κ(n)
⌉

2κ(n) for n> 3. Note that α(n) may be computed in time O(lg n).

Lemma 6.1. Let n> 3. Then α(n) is admissible and

n6α(n)6n+
4n

lg2n
. (6.1)

Proof. We have n6α(n)6n+2κ(n), which implies (6.1). Since n/2κ(n)62lg n−κ(n) and κ(n)6 lgn,
we have

⌈

n/2κ(n)
⌉

62lgn−κ(n) and thus α(n)62lgn, i.e., lgα(n)= lgn. In particular κ(α(n))=κ(n),
so α(n) is admissible. (In fact, one easily checks that α(n) is the smallest admissible integer >n). �

Remark 6.2. It is actually possible to drop the requirement that n be divisible by a high power
of two, by using the Crandall–Fagin method (see section 9). We prefer to avoid this approach in
this section, as it adds an unnecessary layer of complexity to the presentation.

Now let n be admissible, and consider the problem of computing t > 1 products u1 v, ..., ut v

with u1, ..., ut, v∈ (Z/(2n− 1)Z)[i], i.e., t products with one fixed operand. Denote the cost of this
operation by Ct(n). Our algorithm for this problem will perform t+1 forward DFTs and t inverse
DFTs, so it is convenient to introduce the normalisation

C(n) := sup
t>1

Ct(n)

2 t+1
.

This is well-defined since clearly Ct(n)6 t C1(n). Roughly speaking, C(n) may be thought of as the
notional cost of a single DFT.

The problem of multiplying k-bit integers may be reduced to the above problem by using zero-
padding, i.e., by taking n :=α(2 k+1) and t := 1. Since α(2 k+1)=O(k) and C1(n)6 3C(n), we
obtain I(k)6 3C(O(k))+O(k). Thus it suffices to obtain a good bound for C(n).

The recursive step in the main multiplication algorithm involves computing “short” DFTs via
the Bluestein–Kronecker device. As pointed out in section 2.5, this leads to a cyclic convolution
with one fixed operand. To take advantage of the fixed operand, let Bp,t(2

r) denote the cost of
computing t independent DFTs of length 2r over Cp, and let Bp(2

r) := supt>1 Bp,t(2
r)/(2 t+ 1).

Then we have the following refinement of Proposition 4.1. As usual we assume that the necessary
Bluestein root table has been precomputed.

Proposition 6.3. Let r>3, and assume that 2r divides n′ :=α((2 p+ r+2) 2r). Then there exists
a tight algorithm Cr′ for computing DFTs of length 2r over Cp, with

Bp(2
r) 6 C(n′)+O(2r I(p)).

Proof. We use the same notation and algorithm as in the proof of Proposition 4.1, except that
in the Kronecker substitution we take b := n′ / 2r > 2 p + r + 2, so that the resulting integer
multiplication takes place in (Z / (2n

′ − 1) Z)[i]. The proof of tightness is identical to that of
Proposition 4.1 (this is where we use the assumption r> 3). For the complexity bound, note that
n′ is admissible by construction, so for any t> 1 we have Bp,t(2

r)6Ct(n
′) +O(t 2r I(p)). Here we

have used the fact that G′ is fixed over all these multiplications. Dividing by 2 t + 1 and taking
suprema over t> 1 yields the result. �

The next result gives the main recurrence satisfied by C(n) (compare with Theorem 4.3).

Theorem 6.4. There exists x0 > 3 and a logarithmically slow function Φ: (x0,∞)→ R with the
following property. For all admissible n>x0, there exists an admissible n′6Φ(n) such that

C(n)

n lg n
6

(

8+O

(

1

lg lg n

))

C(n′)
n′ lg n′ +O(1). (6.2)
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Proof. Let n be admissible and sufficiently large, and consider the problem of computing t > 1
products u1 v, ..., ut v, for u1, ..., ut, v ∈ (Z/(2n− 1)Z)[i]. Let k :=κ(n)∼ lgn, so that 2k |n, and let
b :=n/2k≍ lg2n.

We cut the inputs into 2k chunks of size b, i.e., if w is one of the t + 1 inputs, we write
w=w0+w1 2b+ ···+w2k−1 2

(2k−1)b, where wi∈Z[i], and where the real and imaginary parts of wi

have absolute value at most 2b. Thus |wi|6 2
√

· 2b< 2b+1, and for any p> b+1 we may encode w

as a polynomial W ∈ (Cp 2
b+1)[X ]/(X2k − 1).

We will multiply the desired (cyclic) polynomials by using DFTs of length 2k over Cp where
p := 2 b + 2 k + lg k + 10 = O(lg2 n). We construct the DFTs in a similar way to section 4. Let
r := (lg lg n)2 and d := ⌈k/r⌉=O(lg n/(lg lg n)2). Write k = r1+ ···+ rd with ri := r for i6 d− 1
and rd :=k− (d− 1) r6 r. We use the tight algorithm A :=A1⊙···⊙Ad, where for 16 i6d− 1 we
take Ai to be the tight algorithm Cr′ for DFTs of length 2r given by Proposition 6.3, and where Ad

is B⊙rd as in Corollary 3.9. Thus, for the first d− 1 groups of r layers, we use Bluestein–Kronecker
to reduce to complex integer convolution of size n′ :=α((2 p+ r+2) 2r), and the remaining layers
are handled using ordinary Cooley–Tukey. We write A′ for the analogous inverse transform.

To check the hypothesis of Proposition 6.3, we observe that 2r |n′ for sufficiently large n, as n′

is divisible by 2k
′
where k ′ := lg n′− lg(lg2n′) + 1, and

2k
′≍ n′

lg2n′ ≍
(2 p+ r+2) 2r

lg2 ((2 p+ r+2) 2r)
≍ b 2r

(lg b+ r)2
≍ (lg n)2

(lg lgn)4
2r≻ 2r.

Denote by D the cost of a single invocation of A (or A′). By Corollary 3.9 and (2.4), we have

D 6 (d− 1)Bp,2k−r(2r)+O(2k−rd 2rd rd I(p))+O(d 2k I(p))+O(2k k b).

The last term is the rearrangement cost, and simplifies to O(n lg n). The second term covers the
invocations of Ad, and simplifies to O(r 2k I(p)), so is absorbed by the d 2k I(p) term. The first
term covers the invocations of Cr′. By definition Bp,2k−r(2r) 6 (2 · 2k−r + 1) Bp(2

r), and since
2k−r≻ lg lg n, Proposition 6.3 yields

Bp,2k−r(2r) 6 (2+O(1/ lg lgn)) 2k−r C(n′)+O(2k I(p)).

Thus

D 6 (2+O(1/lg lg n)) d 2k−rC(n′) +O(d 2k I(p))+O(n lg n).

We will use Schönhage–Strassen’s algorithm for fixed point multiplications in Cp. Since p =
O(lg2n), we may take I(p)=O(lg2n lg lg n lg lg lg n). Thus the d 2k I(p) term becomes

O

(

lg n
(lg lg n)2

n

lg2n
lg2n lg lg n lg lg lg n

)

=O

(

n lg n
lg lg lg n
lg lgn

)

=O(n lgn).

(We could of course use our algorithm recursively for these multiplications; however, it turns out
that Schönhage–Strassen is fast enough, and leads to simpler recurrences. In fact, the algorithm
asymptotically spends more time rearranging data than multiplying in Cp!)

Since (2 p + r + 2) 2r = (4 b + O(lg n)) 2r = (4 + O(1 / lg lg n)) b 2r, and since lg(b 2r) =
r+O(lg lgn) = (1+O(1/ lg lg n)) r≻ lg lg n, by Lemma 6.1 we have

n′ = (4+O(1/lg lg n)) b 2r,

lg n′ = (1+O(1/lg lg n)) r.

We also have k= lgn+O(lg lg n) and d= k/r+O(1), so

lg n = (1+O(1/ lg lgn)) k,

d = (1+O(1/ lg lgn)) k/r.

Thus

d 2k−r=
4 (2k b) d

(4 b 2r)
=

(

4+O

(

1

lg lg n

))

n lg n
n′ lg n′ ,

and consequently

D 6

(

8+O

(

1

lg lg n

))

n lg n
n′ lg n′ C(n

′)+O(n lg n).
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To compute the desired t products, we must execute t + 1 forward transforms and t inverse
transforms. For each product, we must also perform O(2k) pointwise multiplications in Cp, at
cost O(2k I(p)) = O(n lg n). As in the proof of Theorem 4.3, the cost of all necessary root table
precomputations is also bounded by O(2k I(p)) =O(n lgn). Thus we obtain

Ct(n) 6 (2 t+1)D+O(t n lgn).

Dividing by (2 t+1)n lg n and taking suprema yields the bound (6.2).
The error analysis is almost identical to the proof of Theorem 4.3, the only difference being

that b is replaced by b+1. Denoting one of the t products by h∈ (Cp 2
2b+2k+2)[X ]/(X2k− 1), we

have ρhi
6 26+lg k−p exactly as in Theorem 4.3. Thus εhi

6 22b+2k+lg k−p+86 1/4, and again we
obtain hi by rounding to the nearest integer.

Finally we show how to define Φ(x). We already observed that lgn′∼ r∼ (lg lgn)2. Thus there
exists a constant C > 0 such that log log log n′ 6 log log log log n+C for large n, so we may take
Φ(x) := exp◦3(log◦4x+C). �

Now we may prove the main theorem announced in the introduction.

Proof of Theorem 1.1. Let x0 and Φ(x) be as in Theorem 6.4. Increasing x0 if necessary, by
Lemma 5.1 we may assume that Φ(x)6x− 1 for x>x0, and that x0> exp (exp (1)).

Let T (n) :=C(n)/(n lg n) for admissible n> 3. By the theorem, there exist constants B,L> 0
such that for all admissible n>x0, there exists an admissible n′6Φ(n) with

T (n) 6 8

(

1+
B

log log n

)

T (n′)+L.

Increasing L if necessary, we may also assume that T (n) 6 L for all admissible n 6 x0. Taking
S to be the set of admissible integers, we apply Proposition 5.3 with K := 8, σ := x0, ℓ := 2, and
for each admissible n > x0 setting d := 1, γ1 := 1, y := n and y1 := n′ as above. We conclude that
T (n)=O(8log

∗n), and hence C(n)=O(n lgn 8log
∗n) as n runs over admissible integers. We already

pointed out that I(k)6 3C(O(k))+O(k). �

7. An optimised variant of Fürer’s algorithm

As pointed out in the introduction, Fürer proved that I(n)=O(n lognK log∗n) for some K> 1, but
did not give an explicit bound for K. In this section we sketch an argument showing that one may
achieve K = 16 in Fürer’s algorithm, by reusing tools from previous sections, especially section 6.

At the core of Fürer’s algorithm is the ring R=C[X ]/(X2r−1
+1), which contains the principal

2r-th root of unity X. Note that R is a direct sum of 2r−1 copies of C, and hence not a field (for
r> 2). A crucial observation is that X is a “fast” root of unity, in the sense that multiplication by
X and its powers can be achieved in linear time, as in Schönhage–Strassen’s algorithm. For any
k > r, we need to construct a 2k−r-th root ω of X, which is itself a 2k-th principal root of unity.
We recall Fürer’s construction of ω as follows.

Lemma 7.1. With R as above, let ̺= exp 2 p i

2k
and σ= exp 2 p i

2r
. Then

ω :=
∑

i=0

2r−1−1

̺2i+1

∏

j=/ i
(X −σ2j+1)

∏

j=/ i
(σ2i+1− σ2j+1)

∈R

is a principal 2k-th root of unity with ω2k−r

=X. The coefficients of ω have absolute value 61.

Proof. See [19, Section 4]. �

As our basic recursive problem, we will consider multiplication in (Z/(2n+1)Z)[i], where n is
divisible by a high power of two. We will refer to the last property as “admissibility”, but we will
not define it precisely. We write Ct(n) for the cost of t> 1 such products with one fixed argument,
and C(n) := supt>1Ct(n)/(2 t+1) for the normalised cost, exactly as in section 6.
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Fürer worked with Z/(2n+1)Z rather than (Z/(2n+ 1)Z)[i], but, since we are interested in
constant factors, and since the recursive multiplication step involves multiplication of complex
quantities, it simplifies the exposition to work systematically with complexified objects everywhere.

For suitable parameters r and k, we will encode elements of (Z/(2n + 1) Z)[i] as (nega)cyclic
polynomials in R[Y ]/

(

Y 2k+1
)

, where R :=C[X ]/(X2r−1
+1) as above. We choose the parameters

later; for now we require only that 2k+r−2 divides n and that b := n/2k+r−2 > lg n (so that the
coefficients are not too small).

The encoding proceeds as follows. Given a∈Z/(2n+1)Z, we split a into 2k parts a0, ..., a2k−1

of n/2k bits. Each ai is cut into 2r−2 even smaller pieces ai,0, ..., ai,2r−2−1 of b bits. Then a is
encoded as

ã :=
∑

i=0

2k−1
∑

j=0

2r−2−1

ai,jX
j Y i,

and an element u=x+ y i∈ (Z/(2n+1)Z)[i] is encoded as ũ := x̃+ ỹ i. (Notice that the coefficients
of X j are zero for 2r−26 j <2r−1; this zero-padding is the price Fürer pays for introducing artificial
roots of unity.)

We represent complex coefficients by elements ofCp 2
e for a suitable precision parameter p. The

exponent e varies during the algorithm, as explained in [19]; nevertheless, additions and subtrac-
tions only occur for numbers with the same exponent, as in the algorithms from sections 4 and 6.

Given u, v ∈ (Z / (2n + 1) Z)[i], to successfully recover the product u v from the polynomial

product ũ ṽ ∈ R[Y ] /
(

Y 2k + 1
)

, we must choose p > 2 b + k + r + h, where h is an allowance for
numerical error. Certainly r6 k6 lgn, and, as shown by Fürer, we may also take h=O(lgn) (an
analogous conclusion is reached in sections 4 and 6). Thus we may assume that p=2 b+O(lg n).

We must now show how to compute a product ũ ṽ, for ũ, ṽ ∈R[Y ]/
(

Y 2k + 1
)

. Fürer handles
these types of multiplications using “half-DFTs”, i.e., DFTs that evaluate at odd powers of η,
where η ∈ R is a principal 2k+1-th root of unity such that η2

k+1−r

= X (Lemma 7.1). To keep
terminology and notation consistent with previous sections, we prefer to make the substitution

U(X, Y ) := ũ(X, η Y ), i.e., writing ũ=
∑

i=0
2k−1

ũi(X) Y i, we put U :=
∑

i
(ũi η

i) Y i, and similarly
for ṽ and V . This reduces the problem to computing the product U V in R[Y ] / (Y 2k − 1). The
change of variable imposes a cost of O(2kmR), where mR is the cost of a multiplication in R.

So now consider a product UV , where U , V ∈R[Y ]/(Y 2k − 1). Let ω := η2, so that ω2k−r

=X.
Let d := ⌈k/r⌉, and write k= r1+ ···+ rd with ri := r for i6 d− 1 and rd := k− (d− 1) r6 r. For
each i, let Ai be the algorithm for DFTs of length 2ri that applies the usual Cooley–Tukey method,

taking advantage of the fast 2ri-th root of unity X2r−ri
. The complexity of Ai is O(2ri+r ri p), since

it performs O(2ri ri) linear-time operations on objects of bit size O(2r p). Let D be the complexity
of the algorithm A :=A1⊙ ··· ⊙Ad for DFTs of length 2k over R. Then (2.4) yields

D 6 O

(

∑

i=1

d

2k−ri 2ri+r ri p

)

+

⌈

k

r

⌉

2kmR+O(n lg n),

The first term is bounded by O(d 2k 2r r p)=O((2k+r p) k)=O(n lg n), since p=O(b).
Let us now consider the second term ⌈k/r⌉ 2k mR, which describes the cost of the twiddle factor

multiplications. This term turns out to be the dominant one. Both Kronecker substitution and
FFT multiplication may be considered for multiplication in R, but it turns out that Kronecker
substitution is faster (a similar phenomenon was noted in Remark 4.2). So we reduce multiplication
in R to multiplication in (Z/(2n

′
+1)Z)[i] where n′> 2r−1 (2 p+ r+2) is admissible and divisible

by 2r−1. For any reasonable definition of admissibility we then have n′=(1+ o(1)) 2r p, provided
that r is somewhat smaller than p. (In the interests of brevity, we will not specify the o(1) terms
for the remainder of the argument. They can all be controlled along the lines of section 6.) Most
of the twiddle factors are reused many times, so we will assume that mR=(2+ o(1))C(n′), where
the factor 2 counts the two (rather than three) DFTs needed for each multiplication of size n′. The
term of interest then becomes

⌈

k

r

⌉

2kmR = (2+ o(1))
r+ lg p

r

2k+r p k

n′ lg n′ C(n′).

18 Even faster integer multiplication



Since p=2 b+O(lgn) =
(

2+O
(

lgn

b

))

b and 2k+r b=4n, this yields

D 6 (16+ o(1))

(

1+O

(

lg n
b

))

r+ lg p
r

n lg n
n′ lg n′ C(n

′) +O(n lgn).

To minimise the leading constant, we must choose b to grow faster than lgn, and r to grow faster
than lg p. For example, taking r :=(lg lgn)2 and k := lgn−r− lg (lg2n) leads to b=4 n/2k+r≍ lg2n
and lg p≍ lg b≍ lg lg n. The function mapping n to n′ is then bounded by a logarithmically slow
function, and a similar argument to section 6 shows that I(n) =O(n log n 16log

∗n).

8. Fast multiplication using modular arithmetic

Shortly after Fürer’s algorithm appeared, De et al [15] presented a variant based on modular
arithmetic that also achieves the complexity bound I(n) = O(n log n Klog∗n) for some K > 1.
Roughly speaking, they replace the coefficient ring C with the field Qp of p-adic numbers, for
a suitable prime p. In this context, working to “finite precision” means performing computations
in Z/pλZ, where λ> 1 is a precision parameter.

The main advantage of this approach is that the error analysis becomes trivial; indeed Z/pλZ
is a ring (unlike our Cp), and arithmetic operations never lead to precision loss (unless one divides
by p, which never happens in these algorithms). The main disadvantage is that there are certain
technical difficulties associated with finding an appropriate p; this is discussed in section 8.2 below.

The aim of this section is to sketch an analogue of the algorithm of section 6 that achieves
I(n)=O(n logn 8log

∗n) using modular arithmetic instead of C. We assume familiarity with p-adic
numbers, referring the reader to [22] for an elementary introduction.

8.1. Sketch of the algorithm

For the basic problem, we take multiplication in Z/(2n− 1)Z, where n is admissible (in the sense
of section 6) and where one of the arguments is fixed over t> 1 multiplications. As before, we take
k :=κ(n), and cut the inputs into chunks of b :=n/2k=O(lg2n) bits. Thus we reduce to multiplying
polynomials in Z[X]/(X2k− 1) with coefficients of at most b bits. The coefficients of the product
have at most 2 b+ k bits.

Let p be a prime such that p=1(mod2k), so that Qp contains a primitive 2k-th root of unity ω.
The problem of finding such p and ω is discussed in the next section; for now we assume only
that lg p= O(lg n). We may then embed the multiplication problem into Qp[X ]/(X2k − 1), and
use DFTs with respect to ω to compute the product. On a Turing machine, we cannot represent
elements of Qp exactly, so we perform all computations in Z/pλZ where

λ :=

⌈

2 b+ k

(lg p)− 1

⌉

.

This choice ensures that lg(pλ)> 2 b+ k, so knowledge of the product in (Z/pλZ)[X ]/(X2k − 1)

determines it unambiguously in Z[X]/(X2k − 1).
To compute each DFT, we first use the Cooley–Tukey algorithm to decompose it into “short

transforms” of length 2r, where r := (lg lg n)2. (As in section 6, there are also residual transforms
of length 2rd for some rd6 r, whose contribution to the complexity is negligible.) Multiplications
in Z/pλZ, such as the multiplications by twiddle factors, are handled using Schönhage–Strassen’s
algorithm, with the divisions by pλ being reduced to multiplication via Newton’s method. We
then use Bluestein’s algorithm to convert each short transform to a cyclic convolution of length 2r

over Z/pλZ, and apply Kronecker substitution to convert this to multiplication in Z/(2n
′− 1)Z,

where n′ is the smallest admissible integer exceeding 2r (2 λ lg p+ r). This multiplication is then
handled recursively.

Now, since lg p=O(lgn), lg p> k, b≍ lg2n and k=O(lgn), we have λ=(2+O(1/ lgn)) b/ lg p,
and hence n′ = (4 + O(1/ lg lg n)) b 2r, just as in section 6. The rest of the complexity analysis
follows exactly as in the proof of Theorem 6.4, except for the computation of p and ω, which is
considered below.
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Remark 8.1. The role of the precision parameter λ is to give some extra flexibility regarding the
choice of p. If there was an efficient way to find a prime p=1(mod 2k) larger than 22b+k (but not
too much larger), and an efficient way to find a suitable 2k-th root of unity modulo p, then we
could always take λ := 1 and obtain an algorithm working directly over the finite field Fp.

8.2. Computing suitable p and ω

Given a transform length 2k for k> 1, our aim is to find a prime p such that p= 1 (mod 2k), i.e.,
such that 2k divides p− 1. Denote by p0(k) the smallest such prime.

Heath-Brown has conjectured that p0(k)=O(2k k2) [25], but given the current state of knowl-
edge in number theory, we are only able to prove a result of the following type.

Lemma 8.2. For all sufficiently large k we have p0(k) < 26k, and we may compute p0(k) in time
O(25k kO(1)).

Proof. This is a special case of Linnik’s theorem [34, 35], which states that there exist constants
C and L such that for any a, b∈N with gcd (a, b) = 1, there exists a prime number p= a (mod b)
with p<C bL. The best currently known estimate L6 5.2 for L is due to Xylouris [53]. Applying
this result for a=1 and b=2k, we get the bound p<26k for large enough k. The complexity bound
follows by testing 2k + 1, 2 · 2k + 1, 3 · 2k + 1, ... for primality until we find p, using a polynomial
time primality test [1]. �

The difficulty with this result — already noted in [15] — is that the time required to find p

greatly exceeds the time bound we are trying to prove for I(n)!
To avoid this problem, De et al suggested using a multivariate splitting, i.e., by encoding each

integer as a polynomial in Z[X1, ..., Xm] for suitable m, say m> 7. One then uses m-dimensional
DFTs to multiply the polynomials. Since the transform length is shorter, one can get away with
a smaller p. Unfortunately, this introduces further zero-padding and leads to a larger value of K,
ruining our attempt to achieve the bound O(n log n 8log

∗n).
On the other hand, we note that the problem only really occurs at the top recursion level.

Indeed, at deeper recursion levels, there is exponentially more time available at the previous level
to compute p. So one possible workaround is to use a different, sufficiently fast algorithm at the
top level, such as Fürer’s algorithm, and then switch to the algorithm sketched in section 8.1 for
the remaining levels. In this way one still obtains the bound O(n logn 8log

∗n), and asymptotically
almost all of the computation is done using the algorithm of section 8.1.

If one insists on avoiding C entirely, there are still many choices: one could use the algorithm
of De et al at the top level, or use a multivariate version of the algorithm of section 8.1. One
could even use the Schönhage–Strassen algorithm, whose main recursive step yields the bound
I(n)=O(n1/2

I(n1/2)+n logn); applying this three times gives I(n)=O(n7/8
I(n1/8)+n logn), and

then to multiply integers with n1/8 bits, one can find a suitable prime using Lemma 8.2 in time
O(n3/4+o(1))=O(n).

Another way to work around the problem is to assume the generalised Riemann hypothesis
(GRH). De et al pointed out that under GRH, it is possible to find a suitable prime efficiently using
a randomised algorithm. Here we show that, under GRH, we can even use deterministic algorithms.

Lemma 8.3. Assume GRH. Then p0(k) = O(22k k2), and we may compute p0(k) in time
O(2k kO(1)).

Proof. The first bound is given in [26], and the complexity bound follows similarly to the proof
of Lemma 8.2. �

To use this result, we must modify the algorithm of section 8.1 slightly. Choose a constant C>3
so that we can compute p0(k) in time O(2k kC), as in Lemma 8.3. Increase the coefficient size from
(lg n)2 to (lg n)C−1, and change the definition of admissibility accordingly. The transform length
then decreases to 2k=O(n/(lgn)C−1), and the cost of computing p decreases to only O(n lgn). The
rest of the complexity analysis is essentially unchanged; the result is an algorithm with complexity
O(n log n 8log

∗n), working entirely with modular arithmetic, in which the top recursion level does
not need any special treatment.
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Finally, we consider the computation of a suitable approximation to a 2k-th root of unity in Qp.

Lemma 8.4. Given k, λ > 1 and a prime p = 1 (mod 2k), we may find ω̃ ∈ Z / pλ Z such that

ω̃ = ω (mod pλ) for some primitive 2k-th root of unity ω ∈Qp, in time O(p1/4+ǫ+ (k λ log p)1+ǫ)
for any ǫ> 0.

Proof. We may find a generator g of (Z/ p Z)∗ deterministically in time O(p1/4+ǫ) [48]. Then
ω̃0 = g(p−1)/2k

is a primitive 2k-th root of unity in Z/ p Z, and there is a unique primitive 2k-th
root of unity ω ∈Qp congruent to ω̃0 modulo p. Given ω̃0, we may compute ω (mod pλ) using fast
Newton lifting in time O((k λ log p)1+ǫ) [9, Section 12.3]. �

In the context of section 8.1, we may assume that λ = O((lg n)O(1)) and k = O(lg n), so the
cost of finding ω is O(p1/4+ǫ). This is certainly less than the cost of finding p itself, using either
Lemma 8.2 or Lemma 8.3.

9. Conjecturally faster multiplication

It is natural to ask whether the approaches from sections 6, 7 or 8 can be further optimised, to
obtain a complexity bound I(n)=O(n lognK log∗n) with K < 8.

In Fürer’s algorithm, the complexity is dominated by the cost of multiplications in R=C[X]/
(X2r−1

+ 1). If we could use a similar algorithm for a much simpler R, then we might achieve
a better bound. Such an algorithm was actually given by Fürer [17], under the assumption that
there exist sufficiently many Fermat primes, i.e., primes of the form Fm=22

m

+1. More precisely,
his algorithm requires that there exists a positive integer k such that for every m∈N, the sequence
Fm+1, ..., F2m+k contains a prime number. The DFTs are then computed directly over R=FFm

for
suitable m, taking advantage of the fact that FFm

contains a fast 2m+1-th primitive root of unity
(namely the element 2) as well as a 22

m

-th primitive root of unity. It can be shown that a suitably
optimised version of this hypothetical algorithm achieves K=4: we still pay a factor of two due to
the fact that we compute both forward and inverse transforms, and we pay another factor of two
for the zero-padding in the recursive reduction. Unfortunately, it is likely that F4 = 65537 is the
last Fermat prime [13].

In the K =8 algorithm of section 6, a potential bottleneck arises during the short transforms,
when we use Kronecker substitution to multiply polynomials in Cp[X ]/(X2r − 1). We really only
need the high p bits of each coefficient of the product (i.e., of the real and imaginary parts), but
we are forced to allocate roughly 2 p bits per coefficient in the Kronecker substitution, and then
we discard roughly half of the output. This problem is similar to the well-known obstruction that
prevents us from using FFT methods to compute a “short product”, i.e., the high n bits or low n

bits of the product of two n-bit integers, any faster than computing the full 2n bits.
In this section, we present a variant of the algorithm of section 6, in which the coefficient ring C

is replaced by a finite field Fp[i], where p=2q− 1 is a Mersenne prime. Thus “short products” are
replaced by “cyclic products”, namely by multiplications modulo 2q− 1. This saves a factor of two
at each recursion level, and consequently reduces K from 8 to 4.

This change of coefficient ring introduces several technical complications. First, it is of course
unknown if there are infinitely many Mersenne primes. Thus we are forced to rely on unproved
conjectures about the distribution of Mersenne primes.

Second, q is always prime (except possibly at the top recursion level). Thus we cannot cut up
an element of Z/p Z into equal-sized chunks with an integral number of bits, and still expect to
take advantage of cyclic products. In other words, q is very far from being admissible in the sense
of section 6. To work around this, we deploy a variant of an algorithm of Crandall and Fagin [12],
which allows us to work with chunks of varying size. The Crandall–Fagin algorithm was originally
presented over C, and depended crucially on the fact that R contains suitable roots of 2. In our
setting, we work over Fp′[i] =∼F(p′)2, where p′=2q

′− 1 is a Mersenne prime exponentially smaller
than p. Happily, Fp′ contains suitable roots of 2, and this enables us to adapt their algorithm to
our setting. Moreover, since (p′)2− 1=2q

′+1 (2q
′−1− 1), the field Fp′[i] contains roots of unity of

high power-of-two order, namely of order 2q
′+1, so we can perform FFTs over Fp′[i] very efficiently.
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Finally, we can no longer use Kronecker substitution, as this would reintroduce the very zero-
padding we are trying to avoid. Instead, we take our basic problem to be polynomial multiplication
over (Z/pZ)[i] (where p=2q−1 is not necessarily prime). After the Crandall–Fagin splitting step,
we have a bivariate multiplication problem over Fp′[i], which is solved using 2-dimensional FFTs
over Fp′[i]. These FFTs are in turn reduced to 1-dimensional FFTs using standard methods; this
dimension reduction is, roughly speaking, the analogue of Kronecker substitution in this algorithm.
(Indeed, it is also possible to give an algorithm along these lines that works over C but avoids Kro-
necker substitution entirely; this still yieldsK=8 because of the “short product” problem mentioned
above.) For the 1-dimensional transforms, we use the same technique as in previous sections: we
use Cooley–Tukey’s algorithm to decompose them into “short transforms” of exponentially shorter
length, then use Bluestein’s method to convert them to (univariate) polynomial products, and
finally evaluate these products recursively.

9.1. Mersenne primes

Let πm(x) denote the number of Mersenne primes less than x. Based on probabilistic arguments
and numerical evidence, Lenstra, Pomerance and Wagstaff have conjectured that

πm(x) ∼ eg

log 2
log log x

as x→∞, where g=0.5772... is the Euler constant [52, 40]. Our fast multiplication algorithm relies
on the following slightly weaker conjecture.

Conjecture 9.1. There exist constants 0<a< b such that for all x> 3,

a log log x<πm(x)<b log log x.

Proposition 9.2. Assume Conjecture 9.1 and let c := b/a. For any integer n > 2, there exists

a Mersenne prime p=2q − 1 in the interval 2n< p< 2n
c

. Given n, we may compute the smallest

such p, and find a primitive 2q+1-th root of unity in Fp[i], in time O(n(3+o(1))c).

Proof. The required prime exists since for n> 2 we have

πm(2
nc

)>a log log (2n
c

)= a c log n+ a log log 2>b log n+ b log log 2= b log log(2n)>πm(2
n).

An integer of the form 2q− 1 may be tested for primality in time q2+o(1) using the Lucas–Lehmer
primality test [13]. A simple way to compute p is to apply this test successively for all q∈{n+1, ...,

⌊nc⌋}; this takes time O(n(3+o(1))c). A primitive 2q+1-th root of unity ω may be computed by the

formula ω := 22
q−2

+(−3)2
q−2

i∈Fp[i] in time O(q2+o(1)); see [43] or [14, Corollary 5]. �

9.2. Crandall and Fagin’s algorithm revisited

Let p = 2q − 1 be a Mersenne number (not necessarily prime). The main integer multiplication
algorithm depends on a variant of Crandall and Fagin’s algorithm that reduces multiplication in
(Z/pZ)[i][X ]/(XM − 1) to multiplication in Fp′[i][X,Y ]/(XM − 1, Y N − 1), where p′=2q

′− 1 is
a suitably smaller Mersenne prime (assuming that such a prime exists).

To explain the idea of this reduction, we first consider the simpler univariate case, in which
we reduce multiplication in (Z/ p Z)[i] to multiplication in Fp′[i][Y ] / (Y N − 1). Here we require
that N 6 q, that gcd(N, q ′) = 1 and that q ′ > 2 ⌈q/N ⌉+ lg N + 3. For any k ∈N, we will write
Nk= {0, ..., k− 1} and Zk= {−(k− 1), ..., k− 1}.

Assume that we wish to compute the product of u, v ∈ (Z / p Z)[i]. Considering u and v as
elements of Np[i] modulo p, we decompose them as

u=
∑

i=0

N−1

ui 2
ei, v=

∑

i=0

N−1

vi 2
ei, (9.1)

where

ei := ⌈q i/N ⌉,
ui, vi ∈ N

2
ei+1−ei[i].
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We regard ui and vi as complex “digits” of u and v, where the base 2ei+1−ei varies with the position i.
Notice that ei+1− ei takes only two possible values: ⌊q/N ⌋ or ⌈q/N ⌉.

For 06 i <N , let

ci := Nei− q i, (9.2)

so that 0 6 ci < N . For any 0 6 i1, i2 <N , define δi1,i2 ∈ Z as follows. Choose σ ∈ {0, 1} so that
i := i1+ i2−σN lies in the interval 06 i <N , and put

δi1,i2 := ei1+ ei2− ei− σ q.

From (9.2), we have

ci1+ ci2− ci=N (ei1+ ei2− ei)− q (i1+ i2− i)=Nδi1,i2.

Since the left hand side lies in the interval (−N, 2N), this shows that δi1,i2 ∈ {0, 1}. Now, since
2q=1 (mod p) and ei1+ ei2= ei+ δi1,i2 (mod q), we have

u v =
∑

i1=0

N−1
∑

i2=0

N−1

ui1 vi2 2
ei1+ei2 =

∑

i=0

N−1

wi 2
ei (mod p),

where

wi :=
∑

i1+i2=i (modN)

2δi1,i2ui1 vi2.

Since |ui1| < 2
√

· 2⌈q/N ⌉ and similarly for vi2, we have wi ∈ Z4⌈q/N⌉+1N[i]. Note that we may
recover u v from w0, ..., wN−1 in time O(q), by a standard overlap-add procedure (provided that
N =O(q/ lg q)).

Let h be the inverse of q ′ modulo N ; this inverse exists since we assumed gcd(N, q ′) = 1. Let
θ := 2h∈Fp′, so that

θN =2hN =2,

since 2 has order q ′ in Fp′. The quantity θ plays the same role as the real N -th root of 2 appearing
in Crandall–Fagin’s algorithm.

Now define polynomials U , V ∈Fp′[i][Y ]/(Y N − 1) by Ui := θci ui and Vi := θci vi for 06 i <N ,
and let W =W0+ ···+WN−1Y

N−1 :=UV be their (cyclic) product. Then

w̃i := θ−ciWi=
∑

i1+i2=i (modN)

θ−ciUi1Vi2=
∑

θci1+ci2−ciui1 vi2=
∑

2δi1,i2ui1 vi2

coincides with the reinterpretation of wi as an element of Fp′[i]. Moreover, we may recover wi

unambiguously from w̃i, as q ′> 2 ⌈q/N ⌉+ lgN +3 and wi∈Z4⌈q/N⌉+1N[i]. Altogether, this shows
how to reduce multiplication in (Z/pZ)[i] to multiplication in Fp′[i][Y ]/(Y N − 1).

Remark 9.3. The pair (ei+1, ci+1) can be computed from (ei, ci) in O(lg q) bit operations, so
we may compute the sequences e0, ..., eN−1 and c0, ..., cN−1 in time O(N lg q). Moreover, since
ci+1− ci takes on only two possible values, we may compute the sequence θc0, ..., θcN−1 using O(N)
multiplications in Fp′[i].

9.3. Bivariate Crandall–Fagin reduction

Generalising the discussion of the previous section, we now show how to reduce multiplication in
(Z/pZ)[i][X ]/(XM − 1), for a given M > 1, to multiplication in Fp′[i][X, Y ]/(XM − 1, Y N − 1).
For this, we require that N 6 q, that gcd(N , q ′) = 1 and that q ′> 2 ⌈q/N ⌉+ lg (MN) + 3.

Indeed, consider two cyclic polynomials u=u0+ ···+uM−1 X
M−1 and v=v0+ ···+vM−1 X

M−1

in (Z/pZ)[i][X]/(XM − 1). We cut each of the coefficients ui, vi∈ (Z/pZ)[i] into N chunks ui,j

and vi,j of bit size at most ⌈q/N ⌉, using the same varying base strategy as above. With θN = 2
and cj as before, we next form the bivariate cyclic polynomials

U :=
∑

i,j

ui,j θ
cjX iY j , V :=

∑

i,j

vi,j θ
cjX iY j
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in Fp′[i][X,Y ]/(XM − 1, Y N − 1). Setting

W := UV =
∑

i,j

wi,j θ
cjXi Y j ,

the same arguments as in the previous section yield

wi,j =
∑

i1+i2=i (modM)

∑

j1+j2=j (modN)

2δj1,j2ui1,j1 vi2,j2.

Using the assumption that q ′> 2 ⌈q/N ⌉+ lg (MN)+3, we recover the coefficients wi,j, and hence
the product u v, from the bivariate cyclic convolution product W =UV .

9.4. Conjecturally faster multiplication

Let q> 2 and p := 2q − 1 (not necessarily prime). We will take our basic recursive problem to be
multiplication in (Z/ p Z)[i][X ] /(XM − 1) for suitable M . We need M somewhat larger than q;
this is analogous to the situation in section 6, where we chose a “short transform length” somewhat
larger than the coefficient size. Thus we set M =M(q) := 2µ(q) where µ(q) is defined as follows.

Lemma 9.4. There exists an increasing function µ:N→N such that

06 µ(q)− (log2 q) (log2 log2 q)6 2 (9.3)

for all q> 2, and such that we may compute µ(q) in time (log q)1+o(1).

Proof. Let f(q) := (log2 q) (log2 log2 q). Using [6], we may construct a function g(q) such that
|g(q)− f(q)|61/ q for all q>2, and which may be computed in time (log q)1+o(1). One checks that
f(q+1)− f(q)> 2/ q for all q> 2, so g(q+1)> f(q+1)− 1

q+1
> f(q+ 1)− 1

q
> f(q) +

1

q
> g(q)

for q> 2. Thus g(q) is increasing, and µ(q) := ⌊g(q)+ 3/2⌋ has the desired properties. �

We say that an integer n>2 is admissible if it is of the form n= qM where M :=M(q) for some
q > 2. (This should not be confused with the notion of admissibility of section 6.) An element of
(Z/ p Z)[i][X ]/(XM −1) is then represented by 2 n bits. Note that q 7→ q M(q) is strictly increasing,
so there is a one-to-one correspondence between integers q > 2 and admissible n. For x > 2 we
define β(x) to be the smallest admissible integer n>x.

Lemma 9.5. We have β(n) = O(n) as n → ∞. Given n > 2, we may compute β(n), and the
corresponding q, in time o(n).

Proof. From (9.3) we have (q+1)M(q+1)/(q M(q))=O
(

2µ(q+1)−µ(q)
)

=O(1); this immediately
implies that β(n) =O(n).

Suppose that we wish to compute β(n) for some n. We assume that n is large enough that
the definition q0 := 2⌈lgn/(lg lgn−lg lg lg n−1)⌉ makes sense and so that q0 > 2. One checks that
(log2 q0) (log2 log2 q0)> lgn, so µ(q0)> lgn and hence q0M(q0)>n. To find the smallest suitable q,
we may simply compute q M(q) for each q = 2, 3, ..., q0, and compare with n. This takes time
O
(

q0 (log q0)1+o(1)
)

= o(n). �

Now let q> 2, p := 2q − 1 and M :=M(q). Consider the problem of computing t> 1 products
u1 v, ..., ut v with u1, ..., ut, v∈ (Z/pZ)[i][X]/(XM −1). We denote by Ct(n) the complexity of this
problem, where n := qM(q) is the admissible integer corresponding to q. As in section 6, we define
C(n) := supt>1Ct(n)/(2 t+1).

Notice that multiplication of two integers of bit size 6k reduces to the above problem, for t=1,
via a suitable Kronecker segmentation. Indeed, let n := β(8 k) = q M(q) for some q, and encode
the integers as integer polynomials of degree less than M / 2 with coefficients of bit size m :=
⌈k/(M /2)⌉. The desired product may be recovered from the product in (Z/pZ)[i][X]/(XM −1),
as

2m+ lg (M /2)6
4 k

M
+ µ(q)6

q

2
+ µ(q)6 q− 1

for large q. Thus, as in section 6, we have I(k)6 3C(O(k))+O(k), and it suffices to obtain a good
bound for C(n).
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Now suppose additionally that p=2q− 1 is prime. In this case (Z/pZ)[i]=Fp[i] is a field, and
as noted above, it contains 2q+1-th roots of unity, so we may define DFTs of length 2r over Fp[i]
for any r 6 q + 1. In particular, for r 6 q we may use Bluestein’s algorithm to compute DFTs of
length 2r. Denote by Bq,t(2

r) the cost of evaluating t independent DFTs of length 2r over Fp[i],
and put Bq(2

r) := supt>1Bq,t(2
r)/(2 t+1). Here we assume as usual that a 2r+1-th root of unity

is known, and that the corresponding Bluestein root table has been precomputed.
Let us apply these definitions in the case r := lgM ; this is permissible, as lgM 6 q for sufficiently

large q. Since convolution of length M over Fp[i] is exactly the basic recursive problem, and since
one of the operands is fixed, we have Bq,t(M)6Ct(n)+O(tM I(q)), where n := qM , and hence

Bq(M) 6 C(n) +O(M I(q)). (9.4)

Theorem 9.6. Assume Conjecture 9.1. Then there exists x0>2 and a logarithmically slow function
Φ: (x0,∞)→R with the following property. For all admissible n > x0, there exists an admissible
n′6Φ(n) such that

C(n)

n lg n
6

(

4+O

(

1

lg lg lgn

))

C(n′)
n′ lgn′ +O(1). (9.5)

Proof. Let n := qM with M =M(q). Assume that we wish to compute t> 1 products with one
fixed operand. Our goal is to reduce to a problem of the same form, but for exponentially smaller n.

Choose parameters. Let p′ = 2q
′ − 1 be the smallest Mersenne prime larger than 2(lgM)2. By

Proposition 9.2, we have 2(lgM)2< p′< 2(lgM)2c, whence (lgM)26 q ′6 (lgM)2c, for some absolute
constant c > 1. Moreover, we may compute p′, together with a primitive 2q

′+1-th root of unity ω

in Fp′[i], in time O((lgM)(6+o(1))c)=O(n lg n). We define M ′ :=M(q ′) and n′ := q ′M ′.
The algorithm must perform various multiplications in Fp′[i], at cost O(I(q ′)). For simplicity

we will use Schönhage–Strassen’s algorithm for these multiplications, i.e., we will take I(q ′) =
O(q ′ lg q ′ lg lg q ′). Since lg q ′=O(lg lgM) =O(lg lg n), we have

I(q ′) = O(q ′ lg lgn lg lg lgn).

Crandall–Fagin reduction. We use the framework of section 9.3 to reduce the basic multipli-
cation problem in (Z/pZ)[i][X]/(XM − 1) to multiplication in Fp′[i][X,Y ]/(XM − 1, Y N − 1) for
suitable N . We take N := 2ℓ s where

ℓ := lg

(

2 q

q ′ lg lg q

)

,

s := 2

⌈

q

2ℓ (q ′− lg2 q)

⌉

+1.

We also write L := 2ℓ. The definition of s makes sense for large q since q ′> (lgM)2≍ (lg q lg lg q)2.
Let us check that the hypotheses of section 9.3 are satisfied for large q. We have L≍ q/(q ′ lg lg q)
and hence s ≍ lg lg q; in particular, s =/ q ′, so gcd(N, q ′) = 1, and also N ≍ q / q ′ ≺ q / lg q.
Since N = L s > 2 q / (q ′ − lg2 q), we also have 2 ⌈q /N ⌉ 6 q ′ − lg2 q + O(1), and thus
2 ⌈q/N ⌉+ lg (MN) + 36 q ′ since lg(MN)=O(lg q lg lg q).

We also note for later use the estimate

MNq ′ =

(

2+O

(

1

lg lg n

))

n.

Indeed, since s≍ lg lg q we have

s =

(

2+O

(

1

lg lg q

))

q

2ℓ (q ′− lg2 q)
,

and we already noticed earlier that (lg2 q)/ q ′=O(1/(lg lg q)2)=O(1/ lg lg q).
To assess the cost of the Crandall–Fagin reduction, we note that computing the ei and ci

costs O(N lg q) = O(n lg n) (see Remark 9.3), the splitting itself and final overlap-add phase
require time O(t n), and the various multiplications by θ, θci and θ−ci have cost O(tMN I(q ′)) =
O(t n I(q ′)/q ′)=O(t n lg n).

David Harvey, Joris van der Hoeven, Grégoire Lecerf 25



Reduction to power-of-two lengths. Next we reduce multiplication in Fp′[i][X,Y ]/(XM − 1,
Y N − 1) to multiplication in R[X, Z]/(XM − 1, ZL − 1), where R :=Fp′[i][U ]/(Us − 1). In fact,
since gcd(L, s) = 1, these rings are isomorphic, via the map that sends X to X and Y to Z U .
Evaluating this isomorphism corresponds to rearranging the coefficients according to the rule
i 7→ (i0, i1), where i∈{0, ..., N − 1} is the exponent of Y and where i0 := imodL and i1 := imod s
are the exponents of Z and U . This may be achieved in time O(t MN lgN (q ′+ lgN))=O(t n lgn)
using the same sorting strategy as in section 2.3. The inverse rearrangement is handled similarly.

Reduction to univariate transforms. For multiplication in R[X,Z]/(XM −1, ZL−1), we will
use bivariate DFTs over R. This is possible because Fp′[i] contains both M -th and L-th primitive

roots of unity, namely ω2q ′+1/M and ω2q ′+1/L, since q ′ ≻ lg M and q ′ ≻ lg L. More precisely, we
must perform t+1 forward bivariate DFTs and t inverse bivariate DFTs of length M ×L over R,
and t M L multiplications in R. Each bivariate DFT reduces further to s M univariate DFTs of
length L over Fp′[i] (with respect to Z) and s L univariate DFTs of length M over Fp′[i] (with
respect to X). Interspersed between these steps are various matrix transpose operations of total
cost O(t sML lg(sML) q ′)=O(t n lgn), to enable efficient access to the “rows” and “columns” (see
section 2.1).

Multiplications in R are handled by zero-padding, i.e., we first use Cooley–Tukey to multiply

in Fp′[i][U ]/(U2⌈lg s⌉+1−1), and then reduce modulo Us−1. The total cost of these multiplications
is O(tML s lg s I(q ′))=O(t n lg s I(q ′)/ q ′) =O(t n lg lg n (lg lg lg n)2)=O(t n lg n).

Reduction to short transforms. Consider one of the “long” univariate DFTs of length 2k∈{M,

L} over Fp′[i]. We decompose the DFT into “short” DFTs of length M ′ as follows. Let r :=
lgM ′=O(lg lgn lg lg lgn) and d :=⌈k /r⌉=O(lgn/(lg lgn lg lg lgn)), and write k=r1+ ···+rd where
ri := r for 16 i6 d− 1 and rd := k− (d− 1) r6 r. We use the algorithm A :=A1⊙ ··· ⊙Ad, where
for 16 i6d−1 we take Ai to be the algorithm based on Bluestein’s method (discussed immediately
before (9.4)), and where Ad is the usual Cooley–Tukey algorithm over Fp′[i]. Let Dk be the cost
of a single invocation of A (or of the corresponding inverse transform A′). By (2.4) we have

Dk 6 (d− 1)Bq ′,2k−r(2r)+O(2k−rd 2rd rd I(q ′))+O(d 2k I(q ′))+O(2k q ′ lg n).

The cost of precomputing the necessary root tables is only O(2k I(q ′)). By definition Bq ′,2k−r(2r)6

(2 · 2k−r+1)Bq ′(M ′). From (9.4) and the estimate 2k−r≻ lg lg n, the first term becomes

(d− 1)Bq ′,2k−r(2r) 6 (2+O(1/ lg lg n)) (d− 1) 2k−rC(n′) +O(d 2k−rM ′ I(q ′)).

The contribution to Dk from all terms involving I(q ′) is

O(2k (rd+ d) I(q ′))=O

(

2k
lg n

lg lg n lg lg lg n
q ′ lg lgn lg lg lgn

)

=O(2k q ′ lg n),

so

Dk 6 (2+O(1/ lg lg n)) (d− 1) 2k−rC(n′) +O(2k q ′ lg n).

Denoting by D the cost of a bivariate DFT of length M × L over R, we thus have (ignoring the
transposition costs, which were included earlier)

D = sLDlgM + sM DlgL

6

(

2+O

(

1

lg lg n

))(

sL

⌊

lgM
lgM ′

⌋

M

M ′ + sM

⌊

lgL
lgM ′

⌋

L

M ′

)

C(n′)+O(sLMq ′ lg n)

6

(

2+O

(

1

lg lg n

))

sLM
lg (LM)

M ′ lgM ′ C(n
′)+O(sLMq ′ lg n)

6

(

4+O

(

1

lg lg n

))

n lg n
n′ lgM ′ C(n

′) +O(n lgn).

Moreover, since
lg n′

lgM ′ =1+
lg q ′

lgM ′ =1+O

(

1

lg lg q ′

)

=1+O

(

1

lg lg lg n

)

,

we get

D 6

(

4+O

(

1

lg lg lgn

))

n lgn
n′ lgn′ C(n

′)+O(n lg n).
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We must perform 2 t+ 1 bivariate DFTs; the bound (9.5) then follows exactly as in the proof
of Theorem 6.4.

For large n, we have log q ′ = O(log log M) = O(log log n), so log n′ = log q ′ + O(µ(q ′)) =
O(log q ′ log log q ′) = O(log log n log log log n). Thus there exists a constant C > 0 such that
log log logn′6 log log log log n+C for large n, and we may take Φ(x) := exp◦3(log◦4 x+C). �

Proof of Theorem 1.2. Follows from Theorem 9.6 and Proposition 5.3, analogously to the proof
of Theorem 1.1. �
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