
From implicit to recursive equations�

Joris van der Hoeven

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr
Web: http://lix.polytechnique.fr/~vdhoeven

August 30, 2018

The technique of relaxed power series expansion provides an e�cient way to solve so
called recursive equations of the form F =�(F), where the unknown F is a vector of
power series, and where the solution can be obtained as the limit of the sequence 0;
�(0); �(�(0)); :::. With respect to other techniques, such as Newton's method, two
major advantages are its generality and the fact that it takes advantage of possible
sparseness of �. In this paper, we consider more general implicit equations of the form
�(F)=0. Under mild assumptions on such an equation, we will show that it can be
rewritten as a recursive equation.

Keywords: Implicit equation, relaxed power series, algorithm

A.M.S. subject classification: 68W25, 42-04, 68W30, 65G20, 30B10

1. Introduction
Let K be an e�ective �eld of constants of characteristic zero. This means that elements
in K can be encoded by data structures on a computer and that we have algorithms for
performing the �eld operations of K.

Let F =(F [1]; :::; F [r]) be a column vector of r indeterminate series in K[[z]]. We may
also consider F as a power series F0+F1 z+ ���2Kr[[z]]. Let �(F)=(�(F)[1]; :::;�(F)[r]) be
a column vector of expressions built up from F , z and constants in K using ring operations,
di�erentiation and integration (with constant term zero). Finally, let C0; :::; Cl¡12Kr be
a �nite number of initial conditions. Assume that the system8>>>>>><>>>>>>:

�(f) = 0
f0 = C0

���
fl¡1 = Cl¡1

(1)

admits a unique solution f 2 K[[z]]r. In this paper, we are interested in the e�cient
computation of this solution up to a given order n.

In the most favourable case, the equation �(f)=0 is of the form

f ¡	(f) = 0; (2)

where the coe�cient 	(f)n of zn in 	(f) only depends on earlier coe�cients f0; :::; fn¡1
of f , for each n2N. In that case,

fn = 	(f)n

�. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX and ANR-10-BLAN-0109 projects, as
well as a Digiteo 2009-36HD grant and Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=42-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=42-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=42-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=65G20&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=30B10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=30B10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=30B10&submit=Search

actually provides us with a recurrence relation for the computation of the solution. Using
the technique of relaxed power series expansions [Hoe02, Hoe07], which will brie�y be
recalled in section 2.4, it is then possible to compute the expansion f;n= f0+ ���+ fn z

n at
order n in time

T(n) = sR(n)+O(t n); (3)

where s is the number of multiplications occurring in 	, t is the total size of 	 as an
expression, and R(n) denotes the complexity of relaxed multiplication of two power series
at order n. Here we assume that 	 is represented by a directed acyclic graph, with possible
common subexpressions. For large n, it was shown in [Hoe02, FS74, Hoe03, LS16] that
R(n) = O(M(n) log n), where M(n) = O(n log n log log n) denotes the complexity [CT65,
SS71, CK91] of multiplying two polynomials of degrees < n. More recently, it has been

shown [Hoe14, Hoe07] that we even have R(n)=n logn e 2log2
p

loglogn
p

(log logn)O(1). For
moderate n, when polynomial multiplication is done naively or using Karatsuba's method,
relaxed multiplication is as e�cient as the truncated multiplication of polynomials at
order n [Hoe97, Hoe02].

One particularly important example of an equation of the above type is the integration
of a dynamical system

f = f0+
R
	(f); (4)

where 	 is algebraic (i.e. does not involve di�erentiation or integration). In that case, given
the solution f at order n, we may consider the linearized system

E 0 = 	(f)+ J	(f)E+O(z2n)

at order 2n, where J	(f) stands for the Jacobian matrix associated to 	 at f . If we have
a fundamental system of solutions of E 0= J	(f)E at order n, then one step of Newton's
method allows us to �nd the solution of (4) and a new fundamental system of solutions
of the linearized equation at order 2n [BK78, Sed01, BCO+07]. A careful analysis shows
that this leads to an algorithm of time complexity

T(n) = M(n) (2 s r+2 s+ 13/6 r2+4/3 r+ o(1))+O(t r n+ r3n): (5)

In [Hoe10], this bound has been further improved to

T(n) = M(n) (2 s+4/3 r+ o(1))+O(t n); (6)

under the assumptions that K admits su�ciently many 2p-th roots of unity and that
r=O(logn).

Although the complexity (5) is asymptotically better than (3) for very large n, the
relaxed approach often turns out to be more e�cient in practice. Indeed, Newton's method
both su�ers from a larger constant factor and the fact that we pro�t less from the potential
sparsity of the system. In particular, if r > log n, then the relaxed approach is generally
faster. Moreover, as long as multiplications are done in the naive or Karatsuba model,
the relaxed approach is optimal in the sense that the computation of the solution takes
roughly the same time as its veri�cation. Another advantage of the relaxed approach is
that it generalizes to more general functional equations and partial di�erential equations.

Let us now return to our original implicit system (1). If � is a system of di�erentially
algebraic equations, then we may also seek to apply Newton's method. For non degenerate
systems and assuming that we have computed the solution f and a fundamental system
of solutions for the linearized equation at order n, one step of Newton's method yields
an extension of the solutions at order 2 n ¡ i, for a �xed constant i 2 N. From an
asymptotic point of view, this means that the complexities (5) and (6) remain valid, modulo
multiplication of r by the di�erential order of the system in these bounds.

2 From implicit to recursive equations

Another approach for the resolution of (1) is to keep di�erentiating the system with
respect to f until it becomes equivalent to a system of the form (2). For instance, if � is
algebraic, then di�erentiation of (1) yields

J�(f) f 0+
@�

@z
(f) = 0:

Consequently, if J�(f)0 is invertible, then

f = f0¡
R
J�(f)

¡1 @�
@z

(f)

provides us with an equivalent system that can be solved by one of the previous methods.
Unfortunately, this method requires the computation of the Jacobian, so we do not longer
exploit the potential sparsity of the original system.

Yet another recent approach [Hoe09] is to consider not yet computed coe�cients of f as
formal unknowns, and solve the system of equations �(f)0= ���=�(f)n=0 for increasing
values of n. For large n, the system �(f)0 = ��� = �(f)n = 0 usually reduces to a linear
system of equations. In particular, the coe�cients of series with unknown coe�cients are
not polynomials but merely linear combinations. Using the so called �substitution product�,
the multiplication of series with unknown coe�cients can be done while taking advantage
of this linearity.

In this paper, we will present a variant of the approach of [Hoe09]. Roughly speaking,
we reconsider the series with unknown coe�cients as vectors of partially unknown series.
Technically speaking, this is done via the concept of anticipators, which will be introduced
in section 3. Using this technique, and under mild assumptions, we show in section 4.1
how to rewrite the original system of equations into a new system that is both recursive
and not much larger in size. We may then apply a standard relaxed algorithm for its
resolution. In section 4.2 we show that this leads to slightly sharper complexity bounds than
those from [Hoe09]. Roughly speaking, in the case of a system of r di�erential equations
of order O(r) that must be evaluated at order n+ i in order to determine the solution at
order n, we prove the following generalization of (3):

T(n)= sR(n)+O(M(i) s n+ i t n)+O(i2 r3n): (7)

Especially for larger values of r, this still compares favourably with respect to (5). Another
major bene�t of the new technique is the fact that it allows for the direct resolution of
implicit equations using existing software for recursive equations.

For algebraic equations over the p-adic numbers, relaxed algorithms with similar com-
plexities have been developed in [BL12, Leb15]. The index i in (7) corresponds to the
opposite of the notion of shift in [Leb15]. We notice that a preprint version of the present
paper [Hoe11] appeared shortly before [BL12], so the main ideas in the present paper
were not in�uenced by [BL12, Leb15]. Predecessors of the algorithms in this paper were
implemented in Mathemagix (see [Hoe09]), as well as the algorithms from [BL12, Leb15].
Timings tend to re�ect the theoretical complexity bounds. The new algorithms from this
paper have not been implemented yet.

Our algorithm can for instance been used for the computation of power series solutions
to di�erential-algebraic systems of equations. The well known example of a pendulum is
treated in detail in section 5. The reader may wish to fast forward to this example when
struggling through the more technical parts of this paper.

Acknowledgments. We wish to thank the referees for their careful reading and their
comments and suggestions.

Joris van der Hoeven 3

2. Preliminaries

2.1. Dags
Assume that we have �xed a set
 of function symbols, together with an arity n! for
each ! 2
. Then a dag over
 is a rooted �nite directed acyclic
-labeled graph, such
that each !-labeled node has n! successors, together with an ordering on the successors.
For instance,

�

+

x y

is a typical dag for the expression (x + y)2, with
 = fx; y; +; �g, nx = ny = 0 and
n+=n�=2. We will denote by t� the number of nodes of a dag � (also called its size) and
by s� its number of multiplications (also called its multiplicative size). For our example
dag �, we thus have t�=4 and s�=1. We will denote by D
 the set of dags over
.

More generally, we may considermultivariate dags with an arbitrary number of roots,
which again come with ordering. For instance,

+ +

x y 2

� +

� �

is a bivariate dag that represents a vector of two expressions (x+ y)2 ((x+ y) + (y + 2))
and ((x+ y)+(y+2))2. We will denote by d� the number of roots of a multivariate dag �,
which we will also call its dimension. We will write �=(�[1]; :::;�[d�]), where �[i] stands
for the subdag whose root is the i-th root of �. We will denote byD

d the set of multivariate
dags over
 of dimension d and D

� =D

1 [D

2 [���.

2.2. Dags as operators on power series
Consider a linear operator !:K[[z]]!K[[z]]. We say that ! is a coe�cientwise operator,
if there exist �xed constants !0; !1; !2; :::2K such that

!(f0+ f1 z+ f2 z
2+ ���) = !0 f0+!1 f1 z+!2 f2 z

2+ ���;

for all f =
P

i fi z
i2K[[z]]. For every c2K, the operator �c de�ned by

�c(f) = c f

is an example of a coe�cientwise operator. The truncation operators>i: f 7! fi;,>j: f 7! f;j
and >i

j: f 7! fi;j de�ned by

fi; = fi zi+ fi+1 zi+1+ ���
f;j = f0+ ���+ fj z

j

fi;j = fi z
i+ ���+ fj z

j ;

4 From implicit to recursive equations

constitute another family of examples. We will denote by �K and >N the sets of all
operators of the form�c with c2K resp.>i with i2N. Finally, we de�ne the coe�cientwise
operators �= z /@ @z and �¡1 by

�(f0+ f1 z+ f2 z
2+ ���) = f1 z+2 f2 z

2+ ���
�¡1(f0+ f1 z+ f2 z

2+ ���) = f1 z+
1

2
f2 z

2+ ���:

The operator � is called the Euler derivation with respect to z and we notice that �¡1

is the inverse of � on z K[[z]]. The Euler derivation admits the advantage with respect
to the ordinary derivation that val �(f) > val f for all f 2 K[[z]], where �val� stands for
the valuation in z. Nevertheless, any di�erential equation for the usual derivation can
be rewritten as a di�erential equation for the Euler derivation: it su�ces to multiply the
equation by a su�ciently large power of z.

Let F = (F [1]; :::; F [r]) be r �indeterminate series� in K[[z]]. We will sometimes con-
sider F as a series with formal coe�cients

F = F0+F1 z
1+ ���;

Fn = (Fn
[1]
; :::; Fn

[r]
):

Let � be a set of coe�cientwise linear operators. In what follows, we will take

F ;� = K[z][fF [1]; :::; F [r];+;¡;�g[�K[>N[�

and denote by DF ;� the set of dags over
F ;�. Similarly, we set DF ;�
d = D
F ;�

d and
DF ;�
� =D
F ;�

� . Dags in DF ;?
� , DF ;f�g

� and DF ;f�¡1g
� will respectively be called algebraic,

di�erential and integral. Notice that polynomials in K[z] are regarded as dags of size 1,
independently of their degree; this is motivated by the fact that coe�cient extraction is
trivial for explicit polynomials.

Clearly, any dag �2DF ;�
d can be considered as a function K[[z]]r!K[[z]]d; f 7!�(f).

Given a small symbolic perturbation E = (E[1]; :::; E[r]) 2 zn K[[z]]r, we may expand
�(F +E) as a Taylor series in E

�(F +E) = �(F)+ (D�)(F)(E)+
1

2
(D2�)(F)(E)+ ���

and truncation at order 2n yields

�(F +E) = �(F)+ (D�)(F)(E)+O(z2n):

We claim that (D�)(F)(E) can be regarded as a dag in D(F ;E);�. For instance, if

�(F) = F�F + z �¡1 (F�¡1F);

then

(D�)(F)(E) = E�F +F�E+ z �¡1(E�¡1F +F�¡1E):

In general, the claim is easily shown by induction over t�.

2.3. Dags as series
We claim that any dag �2DF ;�

d can be regarded as a series in z

� = �0+�1 z+ ���;

such that each coe�cient �n is a dag over

F ;�;n = K[fF0
[1]
; :::; F0

[r]
; ::::::; Fn

[1]
; :::; Fn

[r]
;+;¡;�g[�K[�:

Joris van der Hoeven 5

Indeed, by induction over the size of �, we �rst de�ne the valuation v� of � by

vP = valP (P 2K[z])

vF [i] = 0

v	�� = min (v	; v�)
v	� = v	+ v�

v!() = max (v	;min fn:!n=/ 0g) (! 2�K[>N[�)
v(�[1];:::;�[d]) = min (v�[1]; :::; v�[d]) (d> 2)

We next de�ne the coe�cients �n by another induction over the size of �. If n<v�, then
we take �n=0. Otherwise, we take

Pn = Pn (P 2K[z])

>i()n = 	n (i2N; n> i)
(��)n = 	n��n
(�)n = 	v	�n¡v	+	v	+1�n¡v	¡1+ ���+	n¡v��v�
!()n = !n	n (! 2�K[�)

(�[1]; :::;�[d])n = (�n
[1]
; :::;�n

[d]
) (d> 2)

As a result of the claim, we emphasize that �n only depends on the coe�cients F0; :::; Fn
in z0; :::; zn of F .

Remark 1. The formula for (�)n can be replaced by any algebraically equivalent
formula, as long as (�)n only depends on 	0; :::;	n¡v� and �0; :::;�n¡v	. Assuming the
concept of relaxed power series, to be introduced below, this allows us to compute 	 �
using the formula

	�= [(div zv) (�div zv�)] zv	+v�;

where we may use a relaxed algorithm for the multiplication (div zv) (�div zv�). From
now on, we will assume that all products 	� are expanded in this way.

2.4. Relaxed power series
Let us brie�y recall the technique of relaxed power series computations, which is explained
in more detail in [Hoe02]. In this computational model, a power series f 2K[[z]] is regarded
as a stream of coe�cients f0; f1; :::. When performing an operation g=�(f1; :::; fk) on
power series it is required that the coe�cient gn of the result is output as soon as su�ciently
many coe�cients of the inputs are known, so that the computation of gn does not depend
on the further coe�cients. For instance, in the case of a multiplication h= f g, we require
that hn is output as soon as f0; :::; fn and g0; :::; gn are known. In particular, we may use
the naive formula hn=

P
i=0
n fi gn¡i for the computation of hn.

The additional constraint on the time when coe�cients should be output admits the
important advantage that the inputs may depend on the output, provided that we add
a small delay. For instance, the exponential g = exp f of a power series f 2 zK[[z]] may
be computed in a relaxed way using the formula

g =

Z
f 0 g:

Indeed, when using the naive formula for products, the coe�cient gn is given by

gn =
1

n
(f1 gn¡1+2 f2 gn¡2+ ���+n fn g0);

6 From implicit to recursive equations

and the right-hand side only depends on the previously computed coe�cients g0; :::; gn¡1.
The main drawback of the relaxed approach is that we cannot directly use fast algo-

rithms on polynomials for computations with power series. For instance, assuming that K
has su�ciently many 2p-th roots of unity and that �eld operations in K can be done in
time O(1), two polynomials of degrees 6 n can be multiplied in time M(n) =O(n log n),
using FFT multiplication [CT65]. Given the truncations f;n = f0 + ��� + fn zn and
g;n = g0 + ��� + gn z

n at order n of power series f ; g 2K[[z]], we may thus compute the
truncated product (f g);n in time M(n) as well. This is much faster than the naive O(n2)
relaxed multiplication algorithm for the computation of (f g);n. However, the formula for
(f g)0 when using FFT multiplication depends on all input coe�cients f0; :::; fn¡1 and
g0; :::; gn¡1, so the fast algorithm is not relaxed. Fortunately, e�cient relaxed multiplication
algorithms do exist:

Theorem 2. [Hoe97, Hoe02, FS74] Let M(n) be the time complexity for the multipli-
cation of polynomials of degrees < n in K[z]. Then there exists a relaxed multiplication
algorithm for series in K[[z]] of time complexity R(n)=O(M(n) logn).

Theorem 3. [Hoe07] There exists a relaxed multiplication algorithm of time complexity

R(n)=n logn e 2log2
p

loglogn
p

(log logn)O(1).

In what follows, we will denote by R(n) the complexity of relaxed multiplication at
order n. Let us now consider a general equation of the form

f = �(f); (8)

where � 2 DF ;�
r an r-dimensional dag. We say that (8) is a recursive equation, if

each coe�cient �(F)n only depends on earlier coe�cients F0; :::; Fn¡1 of F . That is,
�(F)n2D(F0;:::;Fn¡1);�

r for all n. In order to solve (8) at order n, we then need to perform
s� relaxed multiplications at order n and t� coe�cientwise operations +;¡ or !2�K[C
at order n. This yields the following complexity bound:

Proposition 4. Any recursive equation (8) can be solved at order n in time

T (n) = s�R(n)+O(t�n):

3. Anticipators

When solving an implicit equation in f using a relaxed algorithm, the coe�cients fn are
computed only gradually. During the resolution process, it might happen that we wish
to evaluate dags at higher orders than the number of known coe�cients of f . That is,
given �2DF ;�

� and i> 1, we might need �(f)n+i, even though only f0; :::; fn are known.
In that case, we have a problem, but we may still do the best we can, and compute
�(f0+ ���+ fn z

n)n+i instead of �(f)n+i.
This motivates the introduction of the i-th order anticipator �hii of � by

�hii(F);i¡1 = 0

�hii(F)n+i = �(F;n)n+i;

where we recall that Fi;j=Fi zi+ ���+Fj zj and F;j=F0;j. On the one hand, we will show in
this section that �h0i; :::;�hii can be computed simultaneously by a dag 	 of multiplicative
size s	= s� and total size t	=O(i t�+M(i) s�). On the other hand, we will show that
�hii is essentially a linear perturbation of �, that can be computed explicitly.

Joris van der Hoeven 7

3.1. Computation of �hii as a dag

Let us show how to compute a dag for �hii. The following rules are straightforward:

P hii = Pi; (P 2K[z])

(F [k])hii = 0

(��)hii = �hii�	hii

!(�)hii = !(�hii) (! 2�K[>N[�):

As to multiplication, for n> i¡ 1, we have

(�)hii(F)n+i =
X
k=0

n+i

�(F;n)k	(F;n)n+i¡k

=
X
k=i

n

�(F;n)k	(F;n)n+i¡k+

X
k=0

i¡1

�(F;n)k	(F;n)n+i¡k+�(F;n)n+i¡k	(F;n)k

=
X
k=i

n

�(F)k	(F)n+i¡k+

X
k=0

i¡1

�(F)k	
hi¡ki(F)n+i¡k+�hi¡ki(F)n+i¡k	(F)k

=

"
(�i;	i;)(F)+

X
k=0

i¡1

(�(F)k	
hi¡ki(F)+	(F)k�

hi¡ki(F)) zk

#
n+i

;

where �i; = � ¡ �0 ¡ ��� ¡ �i¡1 zi¡1 stands for the operator with �i;(F) = �(F)i; =

�(F)i z
i+�(F)i+1 z

i+1+ ��� and similarly for 	i;. Consequently,

(�)hii = P�;	
hii

+�i;	i;+
X
k=0

i¡1

(�(F)k	
hi¡ki+	(F)k�

hi¡ki) zk; (9)

for some polynomial P�;	
hii 2K[z] with val P�;	

hii > i and deg P�;	
hii 6 2 i ¡ 2 (in particular,

P�;	
h1i

=0). Notice also that

�i¡1;	i¡1; = �i;	i;+(�(F)i¡1	i;+	(F)i¡1�i;) z
i¡1+

�(F)i¡1	(F)i¡1 z
2i¡2: (10)

Now assume that �h0i; :::;�hii and 	h0i; :::;	hii are known. Then we may simultaneously
compute (�)h0i; :::; (�)hii in the following way:

�1; = �¡�0
���

�i; = �i¡1;¡�i¡1 zi¡1

	1;; :::;	i; similarly
�i;	i;

�i¡1;	i¡1;; :::;�0;	0; using formula (10)
(�)h1i; :::; (�)hii using formula (9):

8 From implicit to recursive equations

This computation involves one series product and O(i2) additions and scalar multiplica-
tions. For large i, we may further reduce the cost to O(M(i)) since the computation of
(�)h1i; :::; (�)hii really comes down to the computation of two truncated power series
products �(F) (h0i+	h1i z + ���) and 	(F) (�h0i+�h1i z + ���) at order i. In summary,
we obtain

Lemma 5. Given � 2 DF ;�
� , there exists a simultaneous dag 	 for �h0i; :::; �hii of

multiplicative size s	= s� and total size t	=O(i t�+M(i) s�).

3.2. Computation of �hii as a perturbation of �
Since �(F)n only depends on F0; :::; Fn, we notice that

�h0i = �:

In general, for n> i and E=Fn+1;n+i, we may expand

�(F;n+E) = �(F;n)+ (D�)(F;n)(E)+O(z2n+2)

= �(F;n)+ (D�)(F;i¡1)(E)+O(zn+i+1):

Let e[k] denote the k-th basis element of Kr, so that Fj =Fj
[1]

e[1]+ ���+ Fj
[r]
e[r] for all j.

When considering F as a column vector, it follows by linearity that

�(F)n+i = �hii(F)n+i+�fi;1g(n)Fn+1+ ���+�fi;ig(n)Fn+i; (11)

where �fi;jg is a row matrix whose k-th entry is given by

�[k]
fi;jg

(n) = [D(�)(F;i¡1)(z
n+j e[k])]n+i:

Notice that �fi;jg(n) depends on n, but D(�)(F;i¡1) does not. Let us investigate the
functions �fi;jg(n) more closely for some important examples.

Example 6. If � is algebraic, then we have

D(�)(F;i¡1)(z
n+j e[k]) =

@�

@F [k]
(F;i¡1) z

n+j ;

whence

�[k]
fi;jg

(n) =
@�

@F [k]
(F;i¡1)i¡j: (12)

In particular, �fi;jg(n) is actually constant.

Example 7. If � is di�erential, of di�erential order d (this means that d is the maximal
number of �-nodes on a path from the root of � to a leaf), then, considering � as a di�er-
ential polynomial in F ; �F ; :::; �dF , we have

D(�)(F;i¡1)(z
n+j e[k]) =

@�

@F [k]
(F;i¡1) z

n+j+ ���+ @�

@ (�dF [k])
(F;i¡1) (�

d zn+j);

whence

�[k]
fi;jg

(n) =
h

@�

@F [k]
(F;i¡1)

i
i¡j

+ ���+
�

@�

@ (�dF [k])
(F;i¡1)

�
i¡j

(n+ j)d (13)

is a polynomial of degree at most d.

Example 8. Similarly, if � is algebraic in F ;
R
F ; :::;

R
dF, where

R
= �¡1 z, then

D(�)(F;i¡1)(zn+j e[k]) =
@�

@F [k]
(F;i¡1) zn+j+ ���+ @�

@ (
R
dF [k])

(F;i¡1) (
R
d zn+j);

Joris van der Hoeven 9

whence

�[k]
fi;jg

(n) =
h

@�

@F [k]
(F;i¡1)

i
i¡j
+ ���+

�
@�

@ (
R
dF [k])

(F;i¡1)

�
i¡j¡d

1

(n+ j) ��� (n+ j+ d¡ 1) : (14)

Consequently, there exists a polynomial Ai;j;k of degree 6d with

�[k]
fi;jg

(n) =
Ai;j ;k(n)

(n+ j) (n+ j+1) ��� (n+ j+ d¡ 1) ;

for all n> i.

Example 9. For more general integral dags �, it can be checked by induction over the
size of � that �[k]

fi;jg
(n) is still a rational function in n, that remains bounded for n!1,

and whose denominator has integer coe�cients. Similarly, for any dag � 2 DF ;� where
��f�; �¡1g, the expression �[k]

fi;jg
(n) is a rational function in n, whose denominator has

integer coe�cients.

4. Relaxed resolution of implicit equations

Assume now that we want to solve a system of power series equations8>>>>>><>>>>>>:
�(f) = 0
f0 = C0

���
fl¡1 = Cl¡1

(15)

where �=(�[1]; :::;�[r])2DF ;�
r is a vector of dags and C0; :::; Cl¡12Kr a �nite number of

initial conditions. For de�niteness, it is also important that (15) admits a unique solution f .
This will be guaranteed by an even stronger technical assumption to be detailed below.
Roughly speaking, for a given index i6 1

2
(l+1), we will assume that each coe�cient fn

with n> l can be determined as a function of the previous coe�cients f0; :::; fn¡1 using
only the equations �(f)0 = ��� = �(f)n+i¡1 = 0. In fact, we will only use the equations
�(f)n= ���=�(f)n+i¡1=0, which requires us to assume that n¡ i> i¡ 1; :::; n¡ 1> i¡ 1
in order to determine fn via (11); this explains why we need l> 2 i¡ 1 initial conditions.

4.1. Construction of a recursive equation

Let i6 1

2
(l+1). For each n and j 2f1; :::; ig, we introduce the r� r matrix

Mn
fjg

=

0BBBBBB@
(�[1])[1]

fi;jg
(n) ��� (�[1])[r]

fi;jg
(n)

��� ���
(�[r])[1]

fi;jg
(n) ��� (�[r])[r]

fi;jg
(n)

1CCCCCCA;
the i r� (2 i¡ 1) r block matrix

Mn =

0BBBB@ Mn¡i
f1g ��� Mn¡i

fig

��� ���
Mn¡1
f1g ��� Mn¡1

fig

1CCCCA; (16)

10 From implicit to recursive equations

the (i¡ 1) r� 1, i r� 1 and (2 i¡ 1) r� 1 block column vectors

f�n =

0BB@ fn¡(i¡1)
���

fn¡1

1CCA; fn =

0BB@ fn¡(i¡1)
���
fn

1CCA; f̂n =

0BB@ fn¡(i¡1)
���

fn+i¡1

1CCA;
and the i r� 1 column vector

gn =

0BB@ ¡�hii(f)n
���

¡�hii(f)n+i¡1

1CCA:
In view of (11), the equations �(f)n= ���=�(f)n+i¡1=0 then translate into

Mn f̂n = gn:

We will say that (15) is i-predictive or predictive of index i, if, for all n> l, there exist
r� i r and r� (i¡ 1) r matrices Pn and Qn, such that

PnMn = (Qn Idr 0):

In that case, we have

PnMn f̂n = Qnf�n+ fn

= Pn gn;

whence

fn = Pn gn¡Qnf�n (17)

provides us with an explicit formula for fn. Now let P and Q be the operators on vectors
of power series V with the property that (PV)n = Pn Vn and (QV)n = Qn Vn. Then we
may rewrite (17) into

f = P

0BB@ ¡�hii(f)
���

¡z¡(i¡1)�hii(f)

1CCA¡Q
0BB@ zi¡1 f

���
z f

1CCA+C 0 (18)

for a suitable vector C 0 of polynomials in K[z] of degree <l. This is the desired recursive
equation for f .

Example 10. If � is algebraic, then we recall from Example 6 that

�[k]
f1;1g

(n)=
�

@�

@F [k]
(C0)

�
0

for all k. If i=1, then it follows that the matrix

Mn=Mn¡1
f1g

=

�
@�
@F

(C0)

�
0

does not depend on n and that it simply equals the evaluation of the Jacobian matrix
of � with respect to F at the �initial condition� C0. In particular, the equation (15) is
1-predictive if and only if this matrix is invertible.

Example 11. Assume, as in Example 7, that � is of di�erential order d. If i=1, then it
follows in a similar way as above that

Mn=

�
@�
@F

(C0)+ ���+
@�

@(�dF)
(C0)n

d

�
0

;

Joris van der Hoeven 11

so we may regardMn as the evaluation at N =n of a matrixM� in K[N]r�r of degree 6d
in N . In particular, the equation (15) is 1-predictive for a su�ciently large value of l if
and only if M� admits an inverse in K(N)r�r. More precisely, if M� is invertible, then
we need l to be larger than each of the poles of (M�)¡1 (which are �nite in number).

Example 12. If � is algebraic and C 2K[[z]]r is such that the Jacobian matrix @�/@F
evaluated at C admits an inverse V 2K((z))r�r with Laurent series coe�cients, then it can
be shown that the system �(f)=0; f;l¡1=C;l¡1 is i-predictive for i=1¡valV , whenever
l>2 i¡1. Notice that Example 10 is a special case of this situation when valV =0 and i=1.
The observation actually generalizes to more general dags �, for a suitable interpretation
of the inverse V as a matrix of operators acting on K((z))[log z]r�r and assuming that l
is taken su�ciently large. This also means that the method of this paper can be applied
to the same class of equations as a suitable generalization of Newton's method. However,
the details behind these claims are beyond the scope of this paper.

Remark 13. The main sources of unpredictivity are an insu�cient number of initial
conditions and the existence of multiple solutions. In the latter case, we may usually restore
predictivity by di�erentiating the equation a �nite number of times.

4.2. Complexity analysis
Let us �rst consider the case of an algebraic dag �. In that case, the matrixM =Mn does
not depend on n and its coe�cients are explicitly given by (12). We may now determine
r� i r and r� (i¡ 1) r matrices P and Q with

PM = (Q Idr 0); (19)

using Gaussian elimination in order, and whenever such matrices exist. The equation (15)
is i-predictive, if and only if this is indeed possible.

Theorem 14. Consider an i-predictive equation (15), such that � is algebraic. Then we
may compute n terms of its unique solution f in time

Talg(n) = s�R(n)+O(M(i) s�n+ i t�n)+O(i r2n):

Proof. By what precedes, the operators P and Q in (18) are really the constant matrices
from (19). By lemma 5, the size of the righthand side of (18) as a dag is therefore bounded
by O(M(i) s�+ i t�+ i r2) and its multiplicative size is exactly s�. The result thus follows
from proposition 4. �

Assume now that � � f�; �¡1g. Then we claim that there exists an algorithms for
checking i-predictivity and constructing a general formula for the corresponding matrices
Pn and Qn. Indeed, we recall from section 3.2 that Mn is the evaluation at N = n of
a matrix M� with entries in K(N) and denominators in Z[N]. We may thus use Gaussian
elimination in order to compute r� i r and r� (i¡ 1) r matrices P � and Q� with entries
in K(N) and

P �M� = (Q� Idr 0);

whenever such matrices exist. For those n > l that are not positive integer roots of one
of the denominators of the entries of P �, we now have Pn=P �(n) and Qn=Q�(n). For
each of the �nite number of integer roots n> l, we may directly compute the matrices Pn
and Qn by Gaussian elimination over K, whenever such matrices exist.

12 From implicit to recursive equations

x

y

L

Figure 1. Illustration of the equations of the pendulum.

Theorem 15. Consider an i-predictive equation (15) and let d be the maximal degree of
an entry of M�. Then we may compute n terms of the solution f to (15) in time

T (n) = s�R(n)+O(M(i) s�n+ i t�n)+O((i2 r3+ i r2 d)n):

Proof. The computation of M� (and the �nite number of exceptional Mn for which n
is a root of one of the denominators) is a precomputation. The determination of every
next Mn can be done in time O(i2 r2 + i r2 d), via a diagonal translation of Mn¡1 and
evaluation of the O(i r2) rational functions that are the entries of the bottom r� (2 i¡1) r
submatrix. Now assume that we maintain upper and lower triangular matrices Un, Ln and
a permutation matrix�n at each stage such that Ln=Un�nMn. Then the determination
of Un, Ln and�n as a function of Un¡1;Ln¡1 and�n¡1 can be done in time O(i2 r3) using
naive linear algebra. The determination of Pn and Qn from Un, Ln and �n can again be
done in time O(i2 r3). Consequently, the cost of applying the operators P and Q during
the relaxed resolution of (18) at order n is bounded by O((i2 r3+ i r2 d) n). The cost of the
evaluation of the remaining dag is bounded by s� R(n) +O(M(i) s� n+ i t� n), as in the
algebraic case. �

5. A worked example
The prototype application of the techniques in this paper is the integration of di�erential-
algebraic systems of equations. Let us consider the traditional example of a pendulum,
whose equations are given by

x_ = u

y_ = v

u_ = �x

v_ = � y¡ g

x2+ y2 = L2:

Here x, u, y, v, � are the unknowns and g, L are constant parameters; see Figure 1. When
presented in this way, the pendulum is a di�erential-algebraic system of index 3. Using
di�erentiation and simpli�cation, it can be rewritten as a system of index 1:

x_ = u

u_ = �x

L2 = x2+ y2

0 = ux+ v y

0 = u2+ v2¡ g y+L2�:

Joris van der Hoeven 13

Setting F = (F [1]; F [2]; F [3]; F [4]; F [5]) = (x; u; y; v; �), the latter system corresponds the
following system � using our notations:

�[1] = � x¡ z u
�[2] = �u¡ z � x
�[3] = x2+ y2¡L2

�[4] = ux+ v y

�[5] = u2+ v2¡ g y+L2�:

The order one anticipators of these equations are given by

(�[1])h1i = ¡z u
(�[2])h1i = ¡z � x
(�[3])h1i = x1;

2 + y1;
2

(�[4])h1i = u1;x1;+ v1; y1;

(�[5])h1i = u1;
2 + v1;

2

and the Jacobian matrix of � is given by

@�
@F

=

0BBBBBBBBBB@
� ¡z 0 0 0
¡z � � 0 0 ¡z x
2x 0 2 y 0 0
u x v y 0

0 2u ¡g 2 v L2

1CCCCCCCCCCA
For the initial conditions, one typically takes x0= L sin �, y0= L cos �, u0= v0= 0, and
�0= g cos�/L. For these initial conditions, the formula for the Jacobian implies

Mn =

0BBBBBBBBBB@
n 0 0 0 0
0 n 0 0 0

2L sin� 0 2L cos� 0 0
0 L sin� 0 L cos� 0

0 0 ¡g 0 L2

1CCCCCCCCCCA:
For every n2N, this matrix admits the inverse

Pn =

0BBBBBBBBBBBBBBBBBBBB@

1

n
0 0 0 0

0
1

n
0 0 0

¡tan�
n

0
1

2L cos� 0 0

0 ¡ tan�
n

0
1

L cos� 0

¡ 1

L2n
0

g

2L3 cos�
0

1

L2

1CCCCCCCCCCCCCCCCCCCCA
:

Now consider the operator

P =

0BBBBBBBBBBBBBBBB@

�¡1 0 0 0 0

0 �¡1 0 0 0

¡tan��¡1 0
1

2L cos� 0 0

0 ¡tan� �¡1 0
1

L cos� 0

¡ 1

L2
�¡1 0

g

2L3 cos�
0

1

L2

1CCCCCCCCCCCCCCCCA
:

14 From implicit to recursive equations

This operator is the coe�cientwise operator with (Pg)n = Pn g for all g 2K[[z]]5�1 and
n2N. The desired recursive equation (18) for f is therefore given by

f = f0¡P �h1i;

or, equivalently,

x = L sin�+ �¡1(z u)

u = �¡1(z � x)

y = L cos�¡ tan��¡1(z u)¡ 1

2L cos� (x1;
2 + y1;

2)

v = ¡tan� �¡1(z� x)¡ 1

L cos� (u1;x1;+ v1; y1;)

� =
g cos�
L

¡ 1

L2
�¡1(z u)¡ g

2L3 cos�
(x1;
2 + y1;

2)¡ 1

L2
(u1;
2 + v1;

2):

One may now use any traditional relaxed evaluation algorithm in order to compute the
power series solution:

x = L sin�+
�
1
2
g sin� cos�

�
z2+O(z4)

u = (g sin� cos�) z+ g sin�
6L

((1¡ 3 sin2�) g¡ sin� cos�) z3+O(z4)

y = L cos�¡
�
1
2
g sin2�

�
z2+O(z4)

v = ¡(g sin2�) z+ g sin2�
6L cos�

(sin� cos�¡ 3+ (3 sin2�¡ 1) g) z3+O(z4)

� =
g cos�
L

¡ g sin� cos�
2L2

¡ g2 sin2�
L2

z2+O(z4):

This shows how our algorithm applies to the derived index 1 formulation of the equations
of the pendulum. In fact, our algorithm can also be applied directly to the original system
of index 3, which we indeed regard as a major advantage of the method. However, the
resulting matrices Mn have size 25� 15, which makes this variant less suitable for peda-
gogic purposes.

Bibliography

[BCO+07] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast computation
of power series solutions of systems of di�erential equations. In Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms , pages 1012�1021. New Orleans, Louisiana, U.S.A., January
2007.

[BK78] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of
the ACM , 25:581�595, 1978.

[BL12] J. Berthomieu and R. Lebreton. Relaxed p-adic hensel lifting for algebraic systems. In J. van der
Hoeven and M. van Hoeij, editors, Proc. ISSAC '12 , pages 59�66. Grenoble, France, July 2012.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica , 28:693�701, 1991.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297�301, 1965.

[FS74] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. Proc. 5th ACM Sympo-
sium on Theory of Computing , 9:67�72, 1974.

[Hoe97] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor, Proc.
ISSAC '97 , pages 17�20. Maui, Hawaii, July 1997.

[Hoe02] J. van der Hoeven. Relax, but don't be too lazy. JSC , 34:479�542, 2002.
[Hoe03] J. van der Hoeven. Relaxed multiplication using the middle product. In Manuel Bronstein,

editor, Proc. ISSAC '03 , pages 143�147. Philadelphia, USA, August 2003.

Joris van der Hoeven 15

[Hoe07] J. van der Hoeven. New algorithms for relaxed multiplication. JSC , 42(8):792�802, 2007.
[Hoe09] J. van der Hoeven. Relaxed resolution of implicit equations. Technical Report, HAL, 2009.

http://hal.archives-ouvertes.fr/hal-00441977.
[Hoe10] J. van der Hoeven. Newton's method and FFT trading. JSC , 45(8):857�878, 2010.
[Hoe11] J. van der Hoeven. From implicit to recursive equations. Technical Report, HAL, 2011. http://

hal.archives-ouvertes.fr/hal-00583125.
[Hoe14] J. van der Hoeven. Faster relaxed multiplication. In Proc. ISSAC '14 , pages 405�412. Kobe,

Japan, July 2014.
[Leb15] R. Lebreton. Relaxed hensel lifting of triangular sets. JSC , 68(2):230�258, 2015.
[LS16] R. Lebreton and É. Schost. A simple and fast online power series multiplication and its analysis.

JSC , 72:231�251, 2016.
[Sed01] A. Sedoglavic. Méthodes seminumériques en algèbre di�érentielle ; applications à l'étude des

propriétés structurelles de systèmes di�érentiels algébriques en automatique . PhD thesis, École poly-
technique, 2001.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation groÿer Zahlen. Computing , 7:281�292,
1971.

16 From implicit to recursive equations

http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00441977
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125

	1. Introduction
	2. Preliminaries
	2.1. Dags
	2.2. Dags as operators on power series
	2.3. Dags as series
	2.4. Relaxed power series

	3. Anticipators
	3.1. Computation of Φ^�⠧椧) as a dag
	3.2. Computation of Φ^�⠧椧) as a perturbation of Φ

	4. Relaxed resolution of implicit equations
	4.1. Construction of a recursive equation
	4.2. Complexity analysis

	5. A worked example
	Bibliography

