New algorithms for relaxed multiplication

Joris van der Hoeven

Dépt. de Mathématiques (Bat. 425)
CNRS, Université Paris-Sud
91405 Orsay Cedex
France
Email: joris@tezmacs.org

Abstract

In previous work, we have introduced the technique of relaxed power series com-
putations. With this technique, it is possible to solve implicit equations almost as
quickly as doing the operations which occur in the implicit equation. Here “almost
as quickly” means that we need to pay a logarithmic overhead. In this paper, we
will show how to reduce this logarithmic factor in the case when the constant ring
has sufficiently many 2P-th roots of unity.

Key words: power series, multiplication, algorithm, FF'T, computer algebra

1 Introduction

Let C 5 {3} be an effective ring and consider two power series f = fo+ f1z+- - -
and ¢ = go + g1z + --- in C][[z]]. In this paper we will be concerned with
the efficient computation of the first n coefficients of the product h = fg =
h() + hlz —+ -

If the first n coefficients of f and g are known beforehand, then we may use
any fast multiplication for polynomials in order to achieve this goal, such
as divide and conquer multiplication (Karatsuba and Ofman, 1963; Knuth,

* The paper was originally written using GNU TEXyacs (See www.texmacs.org).
Unfortunately, Elsevier insists on the use of IXTEX with its own style files. Any
insufficiencies in the typesetting quality should therefore be imputed to Elsevier.

Preprint submitted to Elsevier Science 6 April 2007

1997), which has a time complexity K(n) = O(n'63/1962) or F.F.T. multi-
plication (Cooley and Tukey, 1965; Schénhage and Strassen, 1971; Cantor
and Kaltofen, 1991; van der Hoeven, 2002), which has a time complexity
M(n) = O(nlognlog logn).

For certain computations, and most importantly the resolution of implicit
equations, it is interesting to use so called “relaxed algorithms” which output
the first ¢ coefficients of h as soon as the first 7 coefficients of f and g are known
for each 7 < n. This allows for instance the computation of the exponential
g = exp f of a series f with f; = 0 using the formula

9= /f'g- (1)

More precisely, this formula shows that the computation of exp f reduces to
one differentiation, one relaxed product and one relaxed integration. Differen-
tiation and relaxed integration being linear in time, it follows that n terms of
exp f can be computed in time R(n)+O(n), where R(n) denotes the time com-
plexity of relaxed multiplication. In (van der Hoeven, 1997, 2002), we proved
the following theorem:

Theorem 1 There exists a relared multiplication algorithm of time complezx-
1ty

R(n) = O(M(n)logn)

and space complezxity O(n).

In this paper, we will improve the time complexity bound in this theorem
in the case when C admits 2P-th roots of unity for any p € N. In section
2, we first reduce this problem to the case of “semi-relaxed multiplication”,
when one of the arguments is fixed and the other one relaxed. More precisely,
let f and g be power series, such that ¢ is known up to order n. Then a
semi-relaxed multiplication algorithm computes the product h = fg up to
order n and outputs (fg); as soon as fo,..., f; are known, for all i < n. In
section 3, we show that the logn overhead in theorem 1 can be reduced to
O((logn)'©&3/1962) n section 4, the technique of section 3 is further improved

so as to yield an O(e?V'982198108m) Gyerhead.

In the sequel, we will use the following notations from (van der Hoeven, 2002):
we denote by C[[z]], C C[z] C C[[z]] the set of truncated power series of order
n, like f = fo+ -+ fr_12" L. Given f € C[[2]], and 0 < i < j < n, we will
denote f; ;= fi+---+ fi—127771 € C[[2]] =i

Remark 1 An preprint of the present paper was published a few years ago
(van der Hoeven, 2003a). The current version includes a new section 5 with
implementation details, benchmarks and a few notes on how to apply similar
ideas in the Karatsuba and Toom-Cook models. Another algorithm for semi-
relaxed multiplication, based on the middle product (Hanrot et al., 2004), was
also published before (van der Hoeven, 2003b).

Remark 2 The exotic form O(nlogne*V'°821961067) of the new complexity
for relaxed multiplication might surprise the reader. It should be noticed that
the time complexity of Toom-Cook’s algorithm for polynomial multiplication

(Toom, 1963; Cook, 1966) has a similar complexity O(nlogn2V 2°6™) (Knuth,
1997, Section 4.3, p. 286 and exercise 5, p. 300). Indeed, whereas our algorithm
from section 3 has a Karatsuba-like flavour, the algorithm from section 4 uses
a generalized subdivision which is similar to the one used by Toom and Cook.

An interesting question is whether even better time complexities can be ob-
tained (in analogy with FFT-multiplication). However, we have not managed
so far to reduce the cost of relaxed multiplication to O(M(n)) or another
sharper complexity such as O(M(n)logloglogn). Nevertheless, it should be

noticed that the function e?V10621°81%8™ grows very slowly; in practice, it very
much behaves like as a constant (see section 5).

Remark 3 The reader may wonder whether further improvements in the
complexity of relaxed multiplication are really useful, since the algorithms
from (van der Hoeven, 1997, 2002) are already optimal up to a factor O(logn).
In fact, we expect fast algorithms for formal power series to be one of the build-
ing bricks for effective analysis (van der Hoeven, 2006b). Therefore, even small
improvements in the complexity of relaxed multiplication should lead to global
speed-ups for this kind of software.

2 Full and semi-relaxed multiplication

In (van der Hoeven, 1997, 2002), we have stated several fast algorithms for
relaxed multiplication. Let us briefly recall some of the main concepts and
ideas. For details, we refer to (van der Hoeven, 2002). Throughout this section,
f and g are two power series in C[[z]].

Definition 1 We call

P = fo.n90.n (2)

the full product of f and g at order n.

Definition 2 We call

P= 3 (fig;)?"" (3)

i+j<n
the truncated product of f and g at order n.

Definition 3 A full (or truncated) zealous multiplication algorithm of f and
g at order n takes fo,..., fn_1 and go, ..., Gn_1 on input and computes P as

in (2) (resp. (3)).

Definition 4 A full (or truncated) relazed multiplication algorithm of f and
g at order n successively takes the pairs (fo,90), - -y (fa—1, gn—1) on input and
successively computes Py, ..., Py, o (resp. Py, ..., P,_1). Here it is understood
that P; is output as soon as (fo, 90), - -, (fi, g;) are known.

Definition 5 A full (or truncated) semi-relazed multiplication algorithm of f

and g takes qq,...,gn_1 and the successive values fy,..., fn_1 on input and
successively computes Py, ..., Py, o (resp. Py, ..., P,_1). Here it is understood
that P; is output as soon as fy,..., f; are known.

We will denote by M(n), R(n) and Q(n) the time complexities of full zealous,
relaxed and semi-relaxed multiplication at order n, where it is understood that
the ring operations in C can be performed in time O(1). We notice that full
zealous multiplication is equivalent to polynomial multiplication. Hence, clas-
sical fast multiplication algorithms can be applied in this case (Karatsuba and
Ofman, 1963; Toom, 1963; Cook, 1966; Cooley and Tukey, 1965; Schonhage
and Strassen, 1971; Cantor and Kaltofen, 1991; van der Hoeven, 2002).

The main idea behind efficient algorithms for relaxed multiplication is to antic-
ipate on future computations. More precisely, the computation of a full prod-
uct (2) can be represented by an n x n square with entries f;g;, 0 < 4,5 < n.
As soon as fy, ..., f; and go, - .., g; are known, it becomes possible to compute
the contributions of the products f;g; with 0 < j, k < ¢ to P, even though the
contributions of f;gx with j + k > 7 are not yet needed. The next idea is to
subdivide the n X n square into smaller squares, in such a way that the contri-
bution of each small square to P can be computed using a zealous algorithm.
Now the contribution of such a small square is of the form f;, ;,g;,.. .,z 1.
Therefore, the requirement i; + j; < max(is, jo) suffices to ensure that the
resulting algorithm will be relaxed. In the left hand image of figure 1, we have
shown the subdivision from the main algorithm of (van der Hoeven, 1997,
2002), which has time complexity R(n) = O(M(n)logn).

There is an alternative interpretation of the left hand image in figure 1: when
interpreting the big square as a 2n X 2n multiplication

f f

Fig. 1. Tllustration of the facts that (1) a full relaxed 2n x 2n multiplication reduces
to one full relaxed n x n multiplication, two semi-relaxed n X n multiplication and
one zealous n x n multiplication (2) a semi-relaxed 2n x 2n multiplication reduces
to two semi-relaxed n X n multiplications and two zealous n X n multiplications.

P = fO...QnQO...Qm

we may regard it as the sum

P =Py + Po12" + Pig2" + P 12"

of four n X n multiplications

Poo = fo..n90..n
P0,1 = fo..n9n..2n
Pl,O = fn..2n90..n
P1,1 = fn..onGn..2n-

Now Py is a relaxed multiplication at order n, but F%; is even semi-relaxed,
since g, - . ., gn—1 are already known by the time that we need (FPp1)o. Similarly,
P, o corresponds to a semi-relaxed product and P, ; to a zealous product. This
shows that

R(2n) < R(n) +2Q(n) + M(n).

Similarly, we have

Q@(2n) <2Q(n) +2M(n),

as illustrated in the right-hand image of figure 1. Under suitable regularity
hypotheses for M (n) and Q(n), the above relations imply:

Theorem 2

a) If @ is increasing, then Q(n) = O(M(n)logn).
b) If % is increasing, then R(n) = O(Q(n)).

A consequence of part (b) of the theorem is that it suffices to design fast
algorithms for semi-relaxed multiplication in order to obtain fast algorithms
for relaxed multiplication. This fact may be reinterpreted by observing that
the fast relaxed multiplication algorithm actually applies Newton’s method in
a hidden way. Indeed, since Brent and Kung (Brent and Kung, 1978), it is
well known that Newton’s method can also be used in the context of formal
power series in order to solve differential or functional equations. One step of
Newton’s method at order n involves the recursive application of the method
at order [n/2] and the resolution of a linear equation at order |n/2]. The
resolution of the linear equation corresponds to the computation of the two
semi-relaxed products.

3 A new algorithm for fast relaxed multiplication

Assume from now on that C admits an n-th root of unity w, for every power
of two n € 2N. Given an element f € C[[z]],, let FFT,(f) € C" denote its
Fourier transform

FFT,(f) = (f(1), f(wn),---, flwh™))

and let FFT,' : C" — TPS(n) be the inverse mapping of FFT,,. It is well
known that both FFT,, and FFT, ' can be computed in time O(nlogn). Fur-
thermore, if f, g € C[[2]], are such that fg € C[[2]],, then

fg=FFT . (FET,(f) FFT.(9)),

where the product in C" is scalar multiplication (aq, . . ., an—1)(bg, ..., bp—1) =
(aobo,) an—lbn—l)-

Now consider a decomposition n = niny with n;y = 2P* and ny = 2P2. Then a
truncated power series f € C[z], can be rewritten as a series

fO...nl + fnl...2n1y +eeet f(nz—l)nl...n2n1yn2_l

in Clzln, [y]n,, where y = 2™ . This series may again be reinterpreted as a series
N(f) € C[Z]an [y]nza and we have

where N~ : C[z]y,, [y] = C[2] is the mapping which substitutes 2™ for y. Also,
the FFT-transform FFTy,, : C[2]s,, — C*™ may be extended to a mapping

Clelon, [yl — C*™ [yl
co+ -+ lelyl_l — FFTd(Co) + -+ FFTd(lel)yl_l

for each [, and similarly for its inverse FFT}, . Now the formula

fg=N"YFFT,. (FFTy,, (N(f)) FF Ty, (N(g))))

yields a way to compute fg by reusing the Fourier transforms of the “bunches
of coefficients” fin,..(k+1)n; and gin,..(1+1)n, Many times.

In the context of a semi-relaxed multiplication fg with fixed argument g,
the above scheme almost reduces the computation of an n x n product with
coefficients in C to the computation of an n, x ns product with coefficients
in C*"'. The only problem which remains is that FFTon, (feny...(k+1)n,) caN
only be computed when fyn,,..., f+1)n,—1 are all known. Consequently, the
products fin,...(k+1)n, 90..n, Should be computed apart, using a traditional semi-
relaxed multiplication. In other words, we have reduced the computation of a
semi-relaxed n xn product with coefficients in C to the computation of ny semi-
relaxed n; x ny products with coefficients in C, one semi-relaxed ny X (ng — 1)
product with coefficients in C*™ and 4ny — 3 FFT-transforms of length 2n;.
This has been illustrated in figure 2.

In order to obtain an efficient algorithm, we may choose p; = [p/2] and
pe = [p/2]:

Theorem 3 Assume that C admits an n-th root of unity for each n € 2N,
Then there exists a relared multiplication algorithm of time complexity

O(n(log n)10g3/10g2)

and space complexity
O(nlogn).

Proof In view of section 2, it suffices to consider the case of a semi-relaxed
product. Let T'(n) denote the time complexity of the above method. Then we
observe that

ny

ni n

Fig. 2. New decomposition of a semi-relaxed n x n multiplication into n/n;
semi-relaxed n; X n; multiplications (the light regions) and one semi-relaxed
ng X (ng — 1) multiplication (the dark region) with FFT-ed coefficients in C?™'.

T(n) < TLQT(TLl) + 27’L1T(’I’LQ) + O(nin log nl)
<neT(ny) + 20T (ne) + O(nlogn).

Taking p; = |p/2], p» = [p/2] and U(p) = T(2P)/2P, we obtain

U(p) < U([p/2]) +2U(|p/2]) + O(p),

from which we deduce that U(p) = O(p'°83/1°82) and

T(n) = O(n(logn)\°s3/1082),

Similarly, the space complexity S(n) satisfies the bound
S(n) < S(ny) + 2n1S(n2) + O(n) < (2ny + 1)S(n2) + O(n).

Setting R(p) = S(2P)/2?, it follows that

R(p) < (2 + 5y R([p/2]) + O(1)

Consequently, R(p) = O(p) and S(n) = O(np) = O(nlogn). O

ning

nm
HEEEEEEEEEEEEN ;

m ning n

Fig. 3. Generalized decomposition of a semi-relaxed n X n multiplication into [= 3
layers.

4 Further improvements of the algorithm

More generally, if n = ny - - -ny with ny = 2P1, ..., n; = 2P, then we may reduce
the computation of a semi-relaxed n x n product with coefficients in C into
the computation of

(3 3 .
- semi-relaxed n; X n; products over C of the form fin,. . .(k+1)n190..n,5

2(7% + ng — 1) — 1 FFT-transforms of length 2n;

n_ semi-relaxed ny X (ny — 1) products over C*;
ning

2(; 7~ +n3 — 1) — 1 FFT-transforms of length 2n;ny;
n1nan3

semi-relaxed n3 x (ns — 1) products over C*"'";

e 4n; — 3 FFT-transforms of length 2%;

e one semi-relaxed n; x (n; — 1) product over C*™ "™,

This computation is illustrated in 3. From the complexity point of view, it
leads to the following theorem:

Theorem 4 Assume that C admits an n-th root of unity for each n € 2N,
Then there exists a relared multiplication algorithm of time complexity

O(n IOg ne2\/10g210g10gn)

and space complezity

O(ne\/10g210glogn)‘

Proof In view of theorem 2(b), it suffices to consider the case of a semi-
relaxed product. Denoting by 7'(n) the time complexity of the above method,
we have

2 2
T(n) < —T(m1) + —T(ng) + - + —T(ny) + O(inlogn). (4)
nq o g
Let
_T@)

Ulp) = o
Taking ny = --- =mn; = 2P in (4), it follows for any [that

U(lp) < 2U(p) + O(1). (5)

Applying this relation & times, we obtain

U(I*) < 2FU(1) + O(2%1) = 0(2"). (6)

For a fixed p such that & = logp/logl is an integer, we obtain

U(p) = 02w/t y

The minimum of 2!°67/198!] is reached when its derivative w.r.t. [cancels. This
happens for

lp — e\/log2logp

Plugging this value into (7), we obtain

U(p) = O(c?V1"E210%).

Substitution of p = logn/log?2 finally gives the desired estimate

T(n) = O(nlogne*V 1°g21°g1°g"). (8)

In order to be painstakingly correct, we notice that we really proved (7) for
p of the form p = [M°e?/108!1 and (8) for n of the form n = 2P. Of course,

10

we may always replace p and n by larger values which do have this form.
Since these replacements only introduce additional constant factors in the
complexity bounds, the bound (8) holds for general n.

As to the space complexity S(n), we have

S(n) < S(n1) +2n1S(ng) + -+ -+ 2ny - - -my_15(ny) + O(n).

Let

Taking ny; = -+ = n; = 2P, it follows for any [that

R(lp) < (2+ C/2°)R(p) + O(1),

for some fixed constant C. Applying this bound £ times, we obtain

R(IF) (1;[1 2+ ;) (R(1) + O(1)).

For [— oo, this bound simplifies to

R(I*) = O(2%).

Taking k = logp/logl and | = V19821987 35 ahove, it follows that

R(p) = O(2V157/1%2) — O(eV/e2187),

Substitution of p = logn/log?2 finally gives us the desired estimate

S(n) — O(ne\/logﬂoglogn)

for the space complexity. For similar reasons as above, the bound holds for
general n. O

11

5 Implementation details and benchmarks

We implemented the algorithm from section 3 in the C++ library MMXLIB
(van der Hoeven et al., 2002). Instead of taking n; & ng, we took ny small
(with ny € {4,8,16,32} in the FFT range up to n = 2?*), and used a naive
multiplication algorithm on the FFT-ed blocks. The reason behind this change
is that n;, needs to be reasonably large in order to profit from the better asymp-
totic complexity of relaxed multiplication. In practice, the optimal choice of
(n1,n9) is obtained by taking ny quite small.

Moreover, our implementation uses a truncated version of relaxed multiplica-
tion (van der Hoeven, 2002, Section 4.4.2). In particular, the use of naive mul-
tiplication on the FFT-ed blocks allows us to gain a factor 2 at the top-level.
For small values of n = 2P, we also replaced FF'T transforms by “Karatsuba
transforms”: given a polynomial f = fy+- - -+ for 1 Z%" 71, we may form a poly-
nomial F(Zy,...,Z,) in p variables with coefficients Fj; i, _, = fio4.ti, 1201
for 4p,...,i,-1 € {0,1}. Then the Karatsuba transform of f is the vector
(F(20,---,2p-1))zeqon,0) of size 3P, where (a + b2)(£2) = b.

We have both tested (truncated) relaxed and semi-relaxed multiplication for
different types of coefficients on an Intel Xeon processor at 3.2 GHz with 1 Gb
of memory. The results of our benchmarks can be found in tables 1 and 2 be-
low. Our benchmarks start at the order n where FF'T multiplication becomes
useful. Notice that working with orders in 2N does not give us any significant
advantage, because the top-level product on FFT-ed blocks is naive. In table 1,
the choice of ny as a function of n has been optimized for complex double co-
efficients. No particular optimization effort was made for the coefficient types
in table 2, and it might be possible to gain about 10% on our timings.

Remark 4 It is instructive to compare the efficiencies of relaxed evaluation
and Newton’s method. For instance, the exponentiation algorithm from (Brent
and Kung, 1978) has a time complexity ~ 4M (n). Although this is better from
an asymptotic point of view, the ratio Q(n)/M (n) rarely reaches 4 in our ta-
bles. Consequently, relaxed algorithms are often better. We already observed
this phenomenon during our first implementation of exponentiation using both
a relaxed algorithm and Newton’s method (van der Hoeven, 2002, Tables 4
and 5). Nowadays, computers are faster and there have been some recent ad-
vances concerning Newton’s method (Bostan et al., 2006; van der Hoeven,
2006a); see also (Sedoglavic, 2001, Section 5.2.1). Therefore, it would be in-
teresting to carefully implement both methods and pursue the comparisons.

Remark 5 Although the emphasis of this paper is on asymptotic complexity,
the idea behind the new algorithms also applies in the Karatsuba and Toom-
Cook models. In the latter case, we take n; small (typically ny € {2,3,4}) and
use evaluation (interpolation) for polynomials of degree n; — 1 (2n; — 2) at

12

n Q(n) 18[((7;)) R(n) A}}[((Z))
28 | 0.001 | 1.844 | 0.001 | 1.923
29 | 0.003 | 2.266 | 0.003 | 2.633
2101 0.007 | 2.426 0.008 | 2.879
211 | 0.014 | 2.377 | 0.017 | 2.878
212 | 0.031 | 2.537 | 0.037 | 3.037
213 | 0.068 | 2.659 | 0.088 | 3.385
214 | 0.158 | 2.844 0.190 | 3.420
215 | 0.341 | 2.893 0.437 | 3.701
216 | 0.767 | 3.038 1.018 | 4.032
217 | 1.703 | 3.151 | 2.195 | 4.061
218 | 3.618 | 2.968 4.618 | 3.770
219 | 8.097 | 3.001 | 10.319 | 3.820

220 | 17.307 | 2.921 | 22.149 | 3.723
221 | 37.804 | 2.916 | 49.347 | 3.856
222 | 80.298 | 2.881 | 104.159 | 3.746

Table 1

Timings in seconds for the computation of n terms of the exponential of a given series
using complex double coefficients. We both computed the exponential using a semi-
relaxed and a relaxed product, corresponding to Q(n) and R(n). We also considered
the ratios with the timings M (n) for a full FF T-product of two polynomials of degree
<n.

2n; —1 points. From an asymptotic point of view, this yields R(n) ~ M(n) for
relaxed multiplication. Moreover, the approach naturally combines with the
generalization of pair/odd decompositions (Hanrot and Zimmermann, 2002),
which also yields an optimal bound for truncated multiplications. In fact,
we notice that truncated pair/odd Karatsuba multiplication is “essentially
relaxed” (van der Hoeven, 2002, Section 4.2).

On the negative side, these theoretically fast algorithms have bad space com-
plexities and they are difficult to implement. In order to obtain good timings, it
seems to be necessary to use dedicated code generation at different (ranges of)
orders n, which can be done using the C++4 template mechanism. The current
implementation in MMXLIB does not achieve the theoretical time complexity
by far, because the recursive function calls suffer from too much overhead.

13

n | semi, IF, | both, IF, | semi, Ca56 | both, Cos6
28 2.552 2.793 1.481 1.627
210 2.794 3.423 1.851 2.168
212 3.486 4.250 2.484 2.987
214 3.576 4.584 2.757 3.683
216 3.940 5.135 3.429 4.604
218 4.293 5.490 3.842 5.418
220 4.329 5.839

222 4.509 6.006

Table 2

Ratios for the computation of n terms of the exponential of a given series using
different types of coeflicients. In the first two columns, we use I, as our ground
field, with p = 3239 + 1. In the last two columns, we compute with 256 bit complex
floats from the MPFR library.

6 Conclusion

We have shown how to improve the complexity of relaxed multiplication in
the case when the coefficient ring admits sufficiently many 27-th roots of unity.
The improvement is based on reusing FFT-transforms of pieces of the multi-
plicands at different levels of the underlying binary splitting algorithm. The
new approach has proved to be efficient in practice (see tables 1 and 2).

For further studies, it would be interesting to study the price of artificially
adding 2P-th roots of unity, like in Schénhage-Strassen’s algorithm. In practice,
we notice that it is often possible, and better, to “cut the coefficients into
pieces” and to replace them by polynomials over the complexified doubles Csxs
or F, with p = 322° + 1. However, this approach requires more implementation
effort.

Acknowledgement We would like to thank the third referee for his detailed
comments on the proof of theorem 4, which also resulted in slightly sharper
bounds.

References
Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, E., Sedoglavic, A., april

2006. Fast computation of power series solutions of systems of differential
equation. preprint, submitted, 13 pages.

14

Brent, R., Kung, H., 1978. Fast algorithms for manipulating formal power
series. Journal of the ACM 25, 581-595.

Cantor, D., Kaltofen, E., 1991. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica 28, 693-701.

Cook, S., 1966. On the minimum computation time of functions. Ph.D. thesis,
Harvard University.

Cooley, J., Tukey, J., 1965. An algorithm for the machine calculation of com-
plex Fourier series. Math. Computat. 19, 297-301.

Hanrot, G., Quercia, M., Zimmermann, P., 2004. The middle product algo-
rithm I. speeding up the division and square root of power series. AAECC
14 (6), 415-438.

Hanrot, G., Zimmermann, P., Dec. 2002. A long note on Mul-
ders’ short product. Research Report 4654, INRIA, available from
http://www.loria.fr/ hanrot/Papers/mulders.ps.

Karatsuba, A., Ofman, J., 1963. Multiplication of multidigit numbers on au-
tomata. Soviet Physics Doklady 7, 595-596.

Knuth, D., 1997. The Art of Computer Programming, 3rd Edition. Vol. 2:
Seminumerical Algorithms. Addison-Wesley.

Schonhage, A., Strassen, V., 1971. Schnelle Multiplikation grosser Zahlen.
Computing 7 7, 281-292.

Sedoglavic, A., 2001. Méthodes seminumériques en algebre différentielle ; ap-
plications a I’étude des propriétés structurelles de systemes différentiels
algébriques en automatique. Ph.D. thesis, Ecole polytechnique.

Toom, A., 1963. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics 4 (2), 714-716.

van der Hoeven, J., July 1997. Lazy multiplication of formal power series. In:
Kiichlin, W. W. (Ed.), Proc. ISSAC ’97. Maui, Hawaii, pp. 17-20.

van der Hoeven, J., 2002. Relax, but don’t be too lazy. JSC 34, 479-542.

van der Hoeven, J., 2003a. New algorithms for relaxed multiplication. Tech.
Rep. 2003-44, Université Paris-Sud, Orsay, France.

van der Hoeven, J., August 2003b. Relaxed multiplication using the middle
product. In: Bronstein, M. (Ed.), Proc. ISSAC ’03. Philadelphia, USA, pp.
143-147.

van der Hoeven, J., 2006a. Newton’s method and FFT trading. Tech. Rep.
2006-17, Univ. Paris-Sud, submitted to JSC.

van der Hoeven, J., 2006b. On effective analytic continuation. Tech. Rep.
2006-15, Univ. Paris-Sud.

van der Hoeven et al., J., 2002. Mmxlib: the standard library for Mathemagix.
http://www.mathemagix.org/mml.html.

15

