D-algebraic power series

Joris van der Hoeven

(Paris, 27 january 1999)

In this paper, we study power series in several variables, which are completely deter-
mined as solutions of sets of differential equations with initial conditions. We introduce
a large class of such power series, which we call “D-algebraic”. We prove several closure
properties for this class and give an effective zero test for D-algebraic series.

1. Introduction

A popular topic in computer algebra is finding closed form solutions to systems of
differential equations. Unfortunately, such solutions rarely exist. Nevertheless, one often
wishes to do some further computations with the solutions of such systems of equations,
even if no closed form solutions exist. The next best thing to do then is to find a more
implicit way to represent the solutions and to show how to do computations with the
solutions via these representations.

Adopting this point of view, two main problems arise. First, the class of representable
solutions should be made as large as possible and it should have as many closure proper-
ties as possible. Secondly, it should still be possible to perform all operations in the class
effectively. In particular, we need an effective zero test.

Now in the case of analytic functions, it suffices to check whether an expression is
locally zero in order to test whether it vanishes globally. In this paper, we are therefore
interested in giving a zero test for expressions in power series, which are defined by
algebraic differential equations and suitable initial conditions.

Some theoretically effective results in this direction were first obtained in (Denef and
Lipshitz, 1989). Subsequently, more practical algorithms for zero testing were obtained in
(Shackell, 1989; Shackell, 1993; Péladan-Germa, 1995) (see also (Péladan-Germa, 1997;
van der Hoeven, 1997a). Unfortunately, the class of power series to which these latter
algorithms apply does not admit many closure properties. Therefore, in this paper, we in-
troduce a larger class of so called D-algebraic power series (which includes even divergent
series), which does admit several closure properties. Yet, we are still able to generalize
Shackell’s first zero-equivalence algorithm from (Shackell, 1993) to this larger class. In a
forthcoming paper we will describe an even larger class of D-implicit series in which an
implicit function theorem holds.

T The difference between the dates in the title and on the cover is due to the fact that this paper was
originally submitted to a journal. Although it was refused there, there has been some interest for this
work afterwards. This made me decide to publish this preprint a long time after its time of writing.
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2. Definition and examples of D-algebraic series

In all what follows, K is assumed to be an effective field of characteristic zero, i.e.
all field operations including the zero test can be performed effectively. We also assume
that all integer solutions to polynomial equations over K can be found. This holds for
instance for the rationals.

DEFINITION 2.1. An effective representation D-ring for power series in zy,...,z; over
K is a polynomial ring R = K[f1,..., fn] together with effective derivations dy, ... ,dy :
R — R and a K-algebra homomorphism € : R — K]|[z1, ... ,z¢]], called the evaluation
mapping, such that

1. For each 1 < i < k, there exists a p; with e(d;g) = 24" Bgi‘?) for all g € R.
2. There exists an algorithm, which given ¢ € R and ay,... ,ar € N computes the

coefficient of 23" --- 2% in e(g).

REMARK. In order to specify an effective representation D-ring R, it suffices to define
the derivations di, ... ,d; and the evaluation mapping ¢ for fi,..., fx-

REMARK. Without loss of generality, one may always assume that R contains elements
2 with e(2f) = z; for 1 < i < k. Indeed, assume for instance that no zf* with e(zf)
exists. Then we may extend R into R= K(fi, .., fn, z,f], using the previous remark, by
defining di, ... ,d, and € as in Ron fi,..., f,, and by setting di2ff = --- = dj_1 2} =

0,dizl = (z8)#* and e(2f) = 2.

DEFINITION 2.2. An effective D-algebraic series in zy,. ..,z is a series @ which can be
represented by an element o of an effective representation D-ring R; i.e. e(o®) = .

In what follows, we will shortly write representation D-ring resp. D-algebraic power
series for effective representation D-ring resp. effective D-algebraic power series, since

we will only be working in an effective context.
EXAMPLE. The series sinz; = 1 — 327 + 3721 +- - - is D-algebraic, since we may represent
it by f1 in the representation D-ring R = K[ f1, f»] with derivation dy f1 = fo,difo = —f1

and evaluation e(f1) = sinzy,e(f2) = cos z;.

ExampLE. For each k, the series exp(z; +- - - + 2i) is D-algebraic, since we may represent
it by f1 in the representation D-ring R = K|[f;] with derivations d; f; = fi.

EXAMPLE. The divergent series 1 + 2 + 222 + 623 + 242* + - .- is D-algebraic. Indeed,
we may represent it by fi in the representation D-ring R = K[fi, 2{!] with derivation

difi = (1 —2f)f1 + 1. In this case, e(d;-) = z%%s—z(;).

3. Closure properties for D-algebraic series

PRrorosiTION 3.1. The D-algebraic power series in z1,. ..,z form a K-algebra.
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PRrOOF. Clearly, elements in K are D-algebraic. Assume that R = K[fi,..., f,] and
R = K|[f{,...,f),] are representation D-rings, with derivations di, ... ,dy resp.d, ... ,d,
and evaluation mappings ¢ resp. €. We will prove that both D-rings can be embedded
in common super representation D-ring R. This will prove in particular that sums and
products of D-algebraic power series are again D-algebraic.

Let the p; and g} be such that

;02(0)
+ 0e'(+)
d- wi 90).
) = A
Modulo substitution of d; by (z)max(kiri)=rid; and d} by (zF )max(wi-mi)—kid! we may
assume without loss of generality that p; = pf for each i. We now take R = K{[f1,... , fu,
fi,.-., f),] and we define the derivations and the evaluation mapping on the f; asin R

and on the f asin R'. []

PROPOSITION 3.2. Let ¢ be an invertible D-algebraic power series in zi,...,z. Then

50 is its inverse @ 1.

PROOF. Let ¢ be represented by o®in R = K[f1,..., fu]- Then ¢! is represented by
g in the extension R = K|[fi,..., fn,g] of R, in which the derivatives of g are given by
dig = (d;p)g? and its evaluation by é(g) = ¢~'. O

PRrROPOSITION 3.3. The class of D-algebraic power series in zi,...,zr is stable under
il
N

PROOF. Let R = K|[fi,..., fn] be arepresentation D-ring such as in definition 2.1 and let

us show how to extend R into a representation D-ring R in which 8867(? can be represented

for any g € R. We take R = Klfi,.- s fn, fi,... ,fn], with evaluation mapping €, such
that £(f;) = e(f;) and é(fj) = &z’;j) for all j. The derivations d; are defined on the fi

]
as the d; in R. In order to define them on the fj, we first notice that, given 1 < j < n,
we may write d; f; = d;f; = P(f1,.-. , fn) for some polynomial P, so that
0 ., - 0
—é(d;f;) = —PE(f1),...,¢E
62’]96( f,]) aZk (E(fl) 6(fk))
(OB (0P BEL)
0f1 Oz, Ofn Oz,
[ OP : oP
— £ _ _|_ e + —Jn .
(a7t + o7-10)
If i < k, we now take
s n oP . oP
ifi=z7 0t a7 I

afl afn
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therefore
SO [ OP OP .
eldif;) = € <8—f1f1 +-- 4+ Wﬁ)
0 R
= a—zlcf‘?(difj)
_ O | w®UD] w0 [0 _ w95
Oz, 0z; Y 0z | Oz v 0z
If i = k, we take
A~ ~  OP 4 oP . 1z
dkfj = Tflfl + -+ Tfnfn — /Izk(lej)“k 1f]’.

Again, we obtain

k) = e(Dnfi et I g el )

wr—1

o .
= T%é(dkfj)_“kzk e(f5)
_ w0 [é(cikfj)] _ w02

Tk 9z z* ko 9z
O
PROPOSITION 3.4. The coefficients in zy, of a D-algebraic power series in zi,... ,2 is
a D-algebraic power series in z1,... ,2k_1.
PROOF. Let R = K|[fi1,..., fn] be a representation D-ring for power series in 21, ... , 2
and let » € N. We will construct a representation D-ring R for power seriesin z1, ... ,zx—1,

such that for each g in R and o < v, the coefficient £(g), of zf in €(g) can be represented
in R. This will clearly prove the proposition.

We take R = K(fi,0,--->fiws-- s fn0,---, fnp] with evaluation mapping £ : R —
K[[z1,...,2k-1]]; fi,a ¥ €(fi)a. Then we have natural “extraction of coefficient map-

pings” po, ... ,py : R = R, with p,(f;) = fj,a, such that p: g+ po(g) + -+ pu(9)zf is
a K-algebra homomorphism from R into R[z;]/(z} ).
We now define dz‘ by di(fj,a) = pa(difj)- We indeed have é(di(fj,a)) = é(pa(difj)) =

i 9e(f; i 0c(fi)a i 08(fja
e(difj)a = (' 51 ) = 2t 2fide = i 2f1e) OO

The proof of the last proposition is based on an effective stabilization property, which
will be proved in section 4.1.

PROPOSITION 3.5. Let ¢ be a D-algebraic power series in z1, ... , 2, whose valuation in
zk is at least one. Then <pzk_1 is D-algebraic.

PROOF. Let R = K[fi1,..., fn] be a representation D-ring for ¢ as in definition 2.1. By
proposition 4.3 from section 4.1, with &’ = k — 1, we can compute a set of generators
ol ... R for the smallest ideal of R, which contains ¢ and which is stable under
dy,...,dr_1. We notice that p; = z—:(cpf) has valuation at least one in zj, for each j,
whence z,; 1<pj is still a power series.
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Now consider the representation D-ring R = K[fi1,..., fn, 91, -. , gr] whose evaluation
mapping € is given by £(f;) = e(f;) for 1 < j < n and é(g;) = zk_lcpj forl1<j<<r. In
particular, cpz,?l will be represented in this ring.

For ¢ < k, we take the derivation d; on R to coincide with d; on the fij- As to (ng, we
first recall that digof can be written as a linear combination

dipf = aref + - + appf,

with coefficients aq,...,a, € R. Then we take (figj =a191 + -+ a,g,, so that

~
A~

é(dig;) = élargr +---+argy)
= (ela)pr + - +elar)er)z,

_ 1 0p; 0é(g;
= E(digof)zk b= ZzHlZIc 1% = Zzu 8(23)
1 (2

For i = k, we let dj, coincide with 2Py, on the f;, so that é((fk fi) = z,’j’““%’zj). Next,

we take Jkgj = dkgof — gj(2F)", and again we obtain

é(drg;) = eldrpl) —é(g;)z

j
“kégé] pr—1
= zF== —pz
k 6Zk I7k

ZHkJrl i Pj — Zuk+1 aé(gj) )
k 8zk Zk k 8zk

|

EXAMPLE. From the proposition, it follows that the series (exp z; — 1)/z; is D-algebraic
in z;. In previous settings, no zero tests were available for expressions involving such
series.

4. Zero tests for D-algebraic series

In this section, we fix once and for all a representation D-ring R = K{[f1,..., fn] asin
definition 2.1 and we assume that 2%, ... ,z,’f are elements which represent z1,... , 2.

In section 4.2, we are interested in testing whether a D-algebraic series ¢, which can
be represented by an element o in R vanishes. In section 4.3, we will describe a simul-
taneous zero test for D-algebraic power series &, ... ,&s, which can be represented by
elements &F,... ¢ in R. Throughout this section, we make the induction hypothesis
that we can answer both questions for D-algebraic power series in less than k variables;
we notice that both problems are trivial for k£ = 0.

4.1. DIFFERENTIAL STABILIZATION

One of the main ingredients for our zero test algorithms is the observation (due to
Shackell (Shackell, 1993) for the one dimensional case) that the differential ideal generated
by @' is finitely generated, since R is Noetherian. An easy consequence of this, which
leads to our zero test algorithm from section 4.2, is the following:
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PROPOSITION 4.1. Given o € R, we can compute a linear differential relation
vl = apady " et aop™, (4.1)
with ag, ... ,a,_1 € R.
ProOF. The chain of ideals (¢f), (%, dro®), (!, dre®, dip!),. .. stabilizes and we
(

can check whether djp® € (pF,... d; '¢f) by computing a Groebner basis of
(@, ..., d; ") O

Our collective zero test algorithm from section 4.3 will be based on the following, more
general result:

PROPOSITION 4.2. Given &F, ... ¢8R € R, we can compute generators pft, ... o € R
for the differential ideal (dj,¢;)ien1<j<s- There exists a rxr matric MPF with coefficients
in R, such that

off or
dy, ; =MmR|l | (4.2)
oF or

PRrOOF. We use the following algorithm: we start by computing a Groebner basis G' for
(¢f, ... €R). Next, as long as there exists an element g € G, such that dig does not
reduce to zero modulo G, we compute the set G’ of such elements dyg and replace G by
a Groebner basis for G U G'. At the end of this loop, the derivative dig of each element
¢ in G can be expressed as a linear combination of elements in G, which leads to the
expression (4.2). [

Instead of working with respect with the derivation dj only, one can also work with
respect to a finite set of derivations:

PROPOSITION 4.3. Given (... (8 € R and k' < k, we can compute a set of generators
of ... ol € R for the ideal generated by all d;, - d;,p;, with i1,...,i; < k' and
1 < j < s. There exists r x r matrices M, ..., ME with coefficients in R, such that for
each 1 <i <K
ot ot
d; : =ME|l | (4.3)
o7 o7

PRrROOF. Analogue proof as the previous proposition: now G' consists of those elements
d;g which do not reduce to zero modulo G, with 1 <i <k and g € G. O

4.2. A FIRST ZERO TEST

Assume that we want to test whether a series ¢, represented by pf € R, vanishes.
Application of proposition 4.1 and evaluation of (4.1) yields a relation

L VAN L T
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where
0
0= zp=—
k 8zk
and where ), ... ,¥,._; are D-algebraic power series, which can be represented by ele-
ments ¥ft, ... ,1E | in R. This relation can be rewritten as
when setting ¢, = —z,(c“’“fl)r.

By proposition 3.4 and the induction hypothesis, we can test whether each coefficient
of the form ¢; ; with 1 <4 <r—1and 0 < j < (ux —1)r vanishes. Denoting by vy, ... , vy
the valuations of vy, ... ,¥,_1 in 2z, we can therefore compute

v =min(vp,...,vp) < (up — Dr.

Now recall the rule (6§)q = af, for the extraction of the coefficient of 2y in . Then
extraction of the coefficient of z; ™ in (4.4) yields

(";er,uar +-+ ’l,Zlo,,,)QOa =1L, (4'5)

where L is a K[[z1,...,2;—1]]-linear combination of previous coefficients ¢; ; with j <
«a + v. Hence, in the case when the polynomial

‘Il(a) = ¢T7uar +---+ 1/)071/

does not vanish for a given «, the relation (4.5) yields a recurrence relation for ¢ .
LEMMA 4.1. There exists an algorithm to compute the integer roots of V.

Proor. Since ¥ # 0, let 31,...,Bk—1 be such that the coefficient of 2" ---z,f"fll in ¥,
which is a polynomial P in K[a] does not vanish. Then each root of ¥ is in particular a
root of P. Now we assumed that our effective field of constants K is such that the finite
number of integer roots of P can be determined. For each such a root «, we can check
whether ¥(a) = 0 by proposition 3.4 and the induction hypothesis. [

THEOREM 4.1. There exists an effective zero test for D-algebraic power series.

PROOF. Let 8 be the largest positive integer root of ¥, as computed in the previous
proposition. Then for each a > 3, the coefficient ¢, is given as a linear combination of
previous coefficients ¢y, ... ,¢q_1. Hence, ¢ = 0 if and only if ¢y = --- = 3 = 0. But
this can be tested using the induction hypothesis and proposition 3.4. O

4.3. AN ALTERNATIVE ZERO TEST

If several D-algebraic series &1,...,&s have all to be tested for zero (i.e. such as in
the recursive step of the proof of theorem 4.1), then it might be interesting to have
a simultaneous zero test, rather than applying the previous zero test sequentially on
&1,...,&. In this section, we therefore describe a variant of the algorithm from the
previous section, by starting from the relation (4.2) in proposition 4.2 (or from (4.3) in
proposition 4.3, when taking k' = k), rather than (4.1).
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After evaluation, the relation (4.2) becomes

Skp1 $1

P : =M| : |, (4.6)
Okspr ©r

where M is obtained by evaluation of the entries of M*. Now extraction of coefficients

in (4.6) does not immediately lead to a suitable recurrence relation like (4.5). Instead,

we will first perform some row operations, so that we get a relation of the form

k1 $1

Azt : =AM |

O pr ©r

for some suitable invertible matrix A. Extraction of coefficients in (4.7) will yield the
desired analogue of (4.5).

We obtain the invertible matrix A by starting with A = I'd and doing row operations
while maintaining the following properties:

: (4.7)

1. The coefficients of A are of the form cz, *, with c € K and 0 < o < pug, — 1.

2. The coefficients of AM are power series in zj.

3. For a certain ! > 0, we have d; < --- < d; < dj41 = --- = d,, where d; denotes the
maximal degree in z,;l of the i-th row.

4. The first [ rows of A;_,, a — (AM)o are linearly independent.

Condition 2 implies that we obtain the following relation, when extracting the coefficient
of 2y in (4.7):

P10 $1,0+1
[A1—p, 0 = (AM)o] + [As_p a0 — (AM )] +...=0.

Pra Pria+1 (48)

We will now show that after a finite number of row operations, we are able to obtain
a matrix A, such that [ = r in conditions 3 and 4. This means that, except for a finite
number of a (namely the integer eigenvalues of A;_,, o — (AM)o), the relation (4.8) is
actually a recurrence relation for ¢1 o, ... ,¢r -

LEMMA 4.2. We can compute a matriz A, which satisfies the above four conditions, and
such that | =r.

PRrROOF. Starting with A = Id and | = 0, we repeat the following process

— We compute C' = A;_,, o — (AM)o and determine the rank I’ of its last p — rows.

— We permute rows, such that the [ + 1’ first rows of C' become linearly independent,
and we apply the same permutation of rows on A.

— Next, by taking K-linear row combinations of the I’ middle rows (from row [ + 1
until row [ + 1), we make the last p — (I +1') rows of C' vanish, and we perform the
same row operations on A.

— If I+ < r, we finally multiply the last 7 — (I +1') rows of A by z; ' and return to
the first step of the loop with | := 1 +1'.
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Clearly, throughout this process, A remains an invertible matrix which satisfies condi-
tions 1, 3 and 4. Condition 2 is also preserved, since we made sure that the last r — (I+1')

rows of Az,‘;’“*l — AM have non zero valuation in zj (equivalently, the last r — (I + 1)
rows of C' vanish).
The loop terminates, since the rank I’ is necessarily maximal if djy; = -+ = d, = pp—1.

Indeed, the last r — [ rows of limy_, @1 C coincide with the last r — [ rows of Ai_p, in
this case, which must have rank r — [, since A is invertible. [

THEOREM 4.2. There exists an effective simultaneous zero test for D-algebraic series.

ProoF. We first claim that the problem of deciding whether & = --- = & = 0 is
equivalent to the deciding whether p; = --- = ¢, = 0. Indeed, the & are C[[z1,... , z]]-
linear combinations of the ¢;, while the &; are C[[z1,. .. , zg]]-linear combinations of the

&; and their partial derivatives.

Now let A be as in lemma 4.2 and let § be the largest positive integer root of the
characteristic polynomial ¥ € K{[z1,... , zx—1]|[a] of A;_,a — (AM)o. We compute 3 as
in lemma 4.1. Because of the recurrence relation (4.8), testing whether ¢ = --- = ¢, is
now equivalent to testing whether ¢;, = 0 for all j and o < 3. Again, we can test this
using the induction hypothesis and proposition 3.4. [

5. Conclusion

5.1. COMPLEXITY ISSUES

We have introduced a large class of formal D-algebraic power series, which enjoys many
closure properties and we gave an effective zero test for such series. However, from the
complexity point of view, our algorithm has two drawbacks. First, it may require a long
time to compute the relations (4.1), (4.2) or (4.3), since these computations both require
ideal stabilization and Groebner basis computations. Secondly, we have no nice a priori
bound for the largest integer root # computed in lemma 4.1.

Nevertheless, from a practical point of view we think that the first drawback is the
most serious one. Indeed, we think that Groebner basis computations are generically
expensive, while we expect the computed largest integer root § to be reasonable in
general. It would be interesting to know whether the first drawback can be removed
by using ideas from (Péladan-Germa, 1997). We also notice that the hard cases in zero
testing are usually when the power series are actually zero. If a power series is non zero,
then a non zero coefficient can usually be found quite efficiently using techniques from
(Brent and Kung, 1978; van der Hoeven, 1997b).

5.2. POWER SERIES INVOLVING PARAMETERS

Let us finally remark that the algorithms presented in this paper are compatible with

the “automatic case separation” strateger. This means that we can apply the algorithms
in the case when the field K has the form K = C[A,..., )], where C is an effective
field and Aq,...,\; are a finite numbers of formal parameters in C'.

T In computer algebra some authors also use the less suggestive terminology of “dynamic evaluation”
instead of “automatic case separation”. For a discussion, see (van der Hoeven, 1997a).
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The field K is then an effective field in the sense that at each zero test P = 0 in K,
we separate the cases when P = 0 and P # 0, by interpreting the conditions P = 0 resp.
P # 0 as constraints on the parameters Ag, ... ,A;. We automatically eliminate branches
which contain contradictory constraints (this can be tested for instance using Groebner
basis techniques). For more details, we refer to (van der Hoeven, 1997a).

The compatibility of the zero test algorithms in this paper with the automatic case
separation strategy stems from the fact that the only potentially infinite branches in
the computation tree correspond to the imposition of an infinite number of polynomial
equalities (and no inequalities). But in such a chain of constraints, all constraints can be
deduced from a finite number, since C[A1, ..., ;] is a Noetherian ring.
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