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In this paper, we study power series in several variables, whi
h are 
ompletely deter-

mined as solutions of sets of di�erential equations with initial 
onditions. We introdu
e

a large 
lass of su
h power series, whi
h we 
all \D-algebrai
". We prove several 
losure

properties for this 
lass and give an e�e
tive zero test for D-algebrai
 series.

1. Introdu
tion

A popular topi
 in 
omputer algebra is �nding 
losed form solutions to systems of

di�erential equations. Unfortunately, su
h solutions rarely exist. Nevertheless, one often

wishes to do some further 
omputations with the solutions of su
h systems of equations,

even if no 
losed form solutions exist. The next best thing to do then is to �nd a more

impli
it way to represent the solutions and to show how to do 
omputations with the

solutions via these representations.

Adopting this point of view, two main problems arise. First, the 
lass of representable

solutions should be made as large as possible and it should have as many 
losure proper-

ties as possible. Se
ondly, it should still be possible to perform all operations in the 
lass

e�e
tively. In parti
ular, we need an e�e
tive zero test.

Now in the 
ase of analyti
 fun
tions, it suÆ
es to 
he
k whether an expression is

lo
ally zero in order to test whether it vanishes globally. In this paper, we are therefore

interested in giving a zero test for expressions in power series, whi
h are de�ned by

algebrai
 di�erential equations and suitable initial 
onditions.

Some theoreti
ally e�e
tive results in this dire
tion were �rst obtained in (Denef and

Lipshitz, 1989). Subsequently, more pra
ti
al algorithms for zero testing were obtained in

(Sha
kell, 1989; Sha
kell, 1993; P�eladan-Germa, 1995) (see also (P�eladan-Germa, 1997;

van der Hoeven, 1997a). Unfortunately, the 
lass of power series to whi
h these latter

algorithms apply does not admit many 
losure properties. Therefore, in this paper, we in-

trodu
e a larger 
lass of so 
alled D-algebrai
 power series (whi
h in
ludes even divergent

series), whi
h does admit several 
losure properties. Yet, we are still able to generalize

Sha
kell's �rst zero-equivalen
e algorithm from (Sha
kell, 1993) to this larger 
lass. In a

forth
oming paper we will des
ribe an even larger 
lass of D-impli
it series in whi
h an

impli
it fun
tion theorem holds.

y

The di�eren
e between the dates in the title and on the 
over is due to the fa
t that this paper was

originally submitted to a journal. Although it was refused there, there has been some interest for this

work afterwards. This made me de
ide to publish this preprint a long time after its time of writing.
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2. De�nition and examples of D-algebrai
 series

In all what follows, K is assumed to be an e�e
tive �eld of 
hara
teristi
 zero, i.e.

all �eld operations in
luding the zero test 
an be performed e�e
tively. We also assume

that all integer solutions to polynomial equations over K 
an be found. This holds for

instan
e for the rationals.

Definition 2.1. An e�e
tive representation D-ring for power series in z

1

; : : : ; z

k

over

K is a polynomial ring R = K[f

1

; : : : ; f

n

℄ together with e�e
tive derivations d

1

; : : : ; d

k

:

R ! R and a K-algebra homomorphism " : R ! K[[z

1

; : : : ; z

k

℄℄, 
alled the evaluation

mapping, su
h that

1. For ea
h 1 6 i 6 k, there exists a �

i

with "(d

i

g) = z

�

i

i

�"(g)

�z

i

for all g 2 R.

2. There exists an algorithm, whi
h given g 2 R and �

1

; : : : ; �

k

2 N 
omputes the


oeÆ
ient of z

�

1

1

� � � z

�

k

k

in "(g).

Remark. In order to spe
ify an e�e
tive representation D-ring R, it suÆ
es to de�ne

the derivations d

1

; : : : ; d

k

and the evaluation mapping " for f

1

; : : : ; f

k

.

Remark. Without loss of generality, one may always assume that R 
ontains elements

z

R

i

with "(z

R

i

) = z

i

for 1 6 i 6 k. Indeed, assume for instan
e that no z

R

k

with "(z

R

k

)

exists. Then we may extend R into

^

R = K[f

1

; : : : ; f

n

; z

R

k

℄, using the previous remark, by

de�ning d

1

; : : : ; d

k

and " as in R on f

1

; : : : ; f

n

, and by setting d

1

z

R

k

= � � � = d

k�1

z

R

k

=

0; d

k

z

R

k

= (z

R

k

)

�

k

and "(z

R

k

) = z

k

.

Definition 2.2. An e�e
tive D-algebrai
 series in z

1

; : : : ; z

k

is a series ' whi
h 
an be

represented by an element '

R

of an e�e
tive representation D-ring R; i.e. "('

R

) = '.

In what follows, we will shortly write representation D-ring resp. D-algebrai
 power

series for e�e
tive representation D-ring resp. e�e
tive D-algebrai
 power series , sin
e

we will only be working in an e�e
tive 
ontext.

Example. The series sin z

1

= 1�

1

2

z

2

1

+

1

24

z

4

1

+ � � � is D-algebrai
, sin
e we may represent

it by f

1

in the representation D-ring R = K[f

1

; f

2

℄ with derivation d

1

f

1

= f

2

; d

1

f

2

= �f

1

and evaluation "(f

1

) = sin z

1

; "(f

2

) = 
os z

1

.

Example. For ea
h k, the series exp(z

1

+ � � �+z

k

) is D-algebrai
, sin
e we may represent

it by f

1

in the representation D-ring R = K[f

1

℄ with derivations d

i

f

1

= f

1

.

Example. The divergent series 1 + z + 2z

2

+ 6z

3

+ 24z

4

+ � � � is D-algebrai
. Indeed,

we may represent it by f

1

in the representation D-ring R = K[f

1

; z

R

1

℄ with derivation

d

1

f

1

= (1� z

R

1

)f

1

+ 1. In this 
ase, "(d

1

�) = z

2

1

�"(�)

�z

1

.

3. Closure properties for D-algebrai
 series

Proposition 3.1. The D-algebrai
 power series in z

1

; : : : ; z

k

form a K-algebra.
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Proof. Clearly, elements in K are D-algebrai
. Assume that R = K[f

1

; : : : ; f

n

℄ and

R

0

= K[f

0

1

; : : : ; f

0

n

0

℄ are representation D-rings, with derivations d

1

; : : : ; d

k

resp. d

0

1

; : : : ; d

0

k

and evaluation mappings " resp. "

0

. We will prove that both D-rings 
an be embedded

in 
ommon super representation D-ring

^

R. This will prove in parti
ular that sums and

produ
ts of D-algebrai
 power series are again D-algebrai
.

Let the �

i

and �

0

i

be su
h that

"(d

i

�) = z

�

i

i

�"(�)

�z

i

;

"(d

0

i

�) = z

�

0

i

i

�"

0

(�)

�z

i

:

Modulo substitution of d

i

by (z

R

i

)

max(�

i

;�

0

i

)��

i

d

i

and d

0

i

by (z

R

0

i

)

max(�

i

;�

0

i

)��

0

i

d

0

i

, we may

assume without loss of generality that �

i

= �

0

i

for ea
h i. We now take

^

R = K[f

1

; : : : ; f

n

;

f

0

1

; : : : ; f

0

n

0

℄ and we de�ne the derivations and the evaluation mapping on the f

j

as in R

and on the f

0

j

as in R

0

. 2

Proposition 3.2. Let ' be an invertible D-algebrai
 power series in z

1

; : : : ; z

k

. Then

so is its inverse '

�1

.

Proof. Let ' be represented by '

R

in R = K[f

1

; : : : ; f

n

℄. Then '

�1

is represented by

g in the extension

^

R = K[f

1

; : : : ; f

n

; g℄ of R, in whi
h the derivatives of g are given by

^

d

i

g = (d

i

'

R

)g

2

and its evaluation by "̂(g) = '

�1

. 2

Proposition 3.3. The 
lass of D-algebrai
 power series in z

1

; : : : ; z

k

is stable under

�

�z

k

.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring su
h as in de�nition 2.1 and let

us show how to extend R into a representation D-ring

^

R in whi
h

�"(g)

�z

k


an be represented

for any g 2 R. We take

^

R = K[f

1

; : : : ; f

n

;

^

f

1

; : : : ;

^

f

n

℄, with evaluation mapping "̂, su
h

that "̂(f

j

) = "(f

j

) and "̂(

^

f

j

) =

�"(f

j

)

�z

k

for all j. The derivations

^

d

i

are de�ned on the f

j

as the d

i

in R. In order to de�ne them on the

^

f

j

, we �rst noti
e that, given 1 6 j 6 n,

we may write d

i

f

j

=

^

d

i

f

j

= P (f

1

; : : : ; f

n

) for some polynomial P , so that

�

�z

k

"̂(

^

d

i

f

j

) =

�

�z

k

P ("̂(f

1

); : : : ; "̂(f

k

))

= "̂

�

�P

�f

1

�

�"̂(f

1

)

�z

k

+ � � �+ "̂

�

�P

�f

n

�

�"̂(f

n

)

�z

k

= "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

�

:

If i < k, we now take

^

d

i

^

f

j

=

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

;
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therefore

"̂(

^

d

i

^

f

j

) = "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

�

=

�

�z

k

"(

^

d

i

f

j

)

=

�

�z

k

�

z

�

i

i

�"̂(f

j

)

�z

i

�

= z

�

i

i

�

�z

i

�

�"̂(f

j

)

�z

k

�

= z

�

i

i

�"̂(

^

f

j

)

�z

i

:

If i = k, we take

^

d

k

^

f

j

=

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

� �

k

(z

R

k

)

�

k

�1

^

f

j

:

Again, we obtain

"̂(

^

d

k

^

f

j

) = "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

� �

k

(z

R

k

)

�

k

�1

^

f

j

�

=

�

�z

k

"̂(

^

d

k

f

j

)� �

k

z

�

k

�1

k

"̂(

^

f

j

)

= z

�

k

k

�

�z

k

"

"̂(

^

d

k

f

j

)

z

�

k

k

#

= z

�

k

k

�"̂(

^

f

j

)

�z

k

:

2

Proposition 3.4. The 
oeÆ
ients in z

k

of a D-algebrai
 power series in z

1

; : : : ; z

k

is

a D-algebrai
 power series in z

1

; : : : ; z

k�1

.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring for power series in z

1

; : : : ; z

k

and let � 2 N. We will 
onstru
t a representation D-ring

^

R for power series in z

1

; : : : ; z

k�1

,

su
h that for ea
h g in R and � 6 �, the 
oeÆ
ient "(g)

�

of z

�

k

in "(g) 
an be represented

in

^

R. This will 
learly prove the proposition.

We take

^

R = K[f

1;0

; : : : ; f

1;�

; : : : ; f

n;0

; : : : ; f

n;�

℄ with evaluation mapping "̂ :

^

R !

K[[z

1

; : : : ; z

k�1

℄℄; f

i;�

7! "(f

i

)

�

. Then we have natural \extra
tion of 
oeÆ
ient map-

pings" �

0

; : : : ; �

�

: R!

^

R, with �

�

(f

j

) = f

j;�

, su
h that � : g 7! �

0

(g) + � � �+ �

�

(g)z

�

k

is

a K-algebra homomorphism from R into

^

R[z

k

℄=(z

�+1

k

).

We now de�ne

^

d

i

by

^

d

i

(f

j;�

) = �

�

(d

i

f

j

). We indeed have "̂(

^

d

i

(f

j;�

)) = "̂(�

�

(d

i

f

j

)) =

"(d

i

f

j

)

�

= (z

�

i

i

�"(f

j

)

�z

i

)

�

= z

�

i

i

�"(f

j

)

�

�z

i

= z

�

i

i

�"̂(f

j;�

)

�z

i

. 2

The proof of the last proposition is based on an e�e
tive stabilization property, whi
h

will be proved in se
tion 4.1.

Proposition 3.5. Let ' be a D-algebrai
 power series in z

1

; : : : ; z

k

, whose valuation in

z

k

is at least one. Then 'z

�1

k

is D-algebrai
.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring for ' as in de�nition 2.1. By

proposition 4.3 from se
tion 4.1, with k

0

= k � 1, we 
an 
ompute a set of generators

'

R

1

; : : : ; '

R

r

for the smallest ideal of R, whi
h 
ontains ' and whi
h is stable under

d

1

; : : : ; d

k�1

. We noti
e that '

j

= "('

R

i

) has valuation at least one in z

k

, for ea
h j,

when
e z

�1

k

'

j

is still a power series.
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Now 
onsider the representation D-ring R = K[f

1

; : : : ; f

n

; g

1

; : : : ; g

r

℄ whose evaluation

mapping "̂ is given by "̂(f

j

) = "(f

j

) for 1 6 j 6 n and "̂(g

j

) = z

�1

k

'

j

for 1 6 j 6 r. In

parti
ular, 'z

�1

k

will be represented in this ring.

For i < k, we take the derivation

^

d

i

on

^

R to 
oin
ide with d

i

on the f

j

. As to

^

d

i

g

j

, we

�rst re
all that d

i

'

R

j


an be written as a linear 
ombination

d

i

'

R

j

= a

1

'

R

1

+ � � �+ a

r

'

R

r

;

with 
oeÆ
ients a

1

; : : : ; a

r

2 R. Then we take

^

d

i

g

j

= a

1

g

1

+ � � �+ a

r

g

r

, so that

"̂(

^

d

i

g

j

) = "̂(a

1

g

1

+ � � �+ a

r

g

r

)

= ("(a

1

)'

1

+ � � �+ "(a

r

)'

r

)z

�1

k

= "(d

i

'

R

j

)z

�1

k

= z

�

i

i

z

�1

k

�'

j

�z

i

= z

�

i

i

�"̂(g

j

)

�z

i

:

For i = k, we let

^

d

k


oin
ide with z

R

k

d

k

on the f

j

, so that "̂(

^

d

k

f

j

) = z

�

k

+1

k

�"̂(f

j

)

�z

k

. Next,

we take

^

d

k

g

j

= d

k

'

R

j

� g

j

(z

R

k

)

�

k

, and again we obtain

"̂(

^

d

k

g

j

) = "(d

k

'

R

j

)� "̂(g

j

)z

�

k

k

= z

�

k

k

�'

j

�z

k

� '

j

z

�

k

�1

k

= z

�

k

+1

k

�

�z

k

�

'

j

z

k

�

= z

�

k

+1

k

�"̂(g

j

)

�z

k

:

2

Example. From the proposition, it follows that the series (exp z

1

� 1)=z

1

is D-algebrai


in z

1

. In previous settings, no zero tests were available for expressions involving su
h

series.

4. Zero tests for D-algebrai
 series

In this se
tion, we �x on
e and for all a representation D-ring R = K[f

1

; : : : ; f

n

℄ as in

de�nition 2.1 and we assume that z

R

1

; : : : ; z

R

k

are elements whi
h represent z

1

; : : : ; z

k

.

In se
tion 4.2, we are interested in testing whether a D-algebrai
 series ', whi
h 
an

be represented by an element '

R

in R vanishes. In se
tion 4.3, we will des
ribe a simul-

taneous zero test for D-algebrai
 power series �

1

; : : : ; �

s

, whi
h 
an be represented by

elements �

R

1

; : : : ; �

R

s

in R. Throughout this se
tion, we make the indu
tion hypothesis

that we 
an answer both questions for D-algebrai
 power series in less than k variables;

we noti
e that both problems are trivial for k = 0.

4.1. Differential stabilization

One of the main ingredients for our zero test algorithms is the observation (due to

Sha
kell (Sha
kell, 1993) for the one dimensional 
ase) that the di�erential ideal generated

by '

R

is �nitely generated, sin
e R is Noetherian. An easy 
onsequen
e of this, whi
h

leads to our zero test algorithm from se
tion 4.2, is the following:
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Proposition 4.1. Given '

R

2 R, we 
an 
ompute a linear di�erential relation

d

r

k

'

R

= a

r�1

d

r�1

k

'

R

+ � � �+ a

0

'

R

; (4.1)

with a

0

; : : : ; a

r�1

2 R.

Proof. The 
hain of ideals ('

R

); ('

R

; d

k

'

R

); ('

R

; d

k

'

R

; d

2

k

'

R

); : : : stabilizes and we


an 
he
k whether d

r

k

'

R

2 ('

R

; : : : ; d

r�1

k

'

R

) by 
omputing a Groebner basis of

('

R

; : : : ; d

r�1

k

'

R

). 2

Our 
olle
tive zero test algorithm from se
tion 4.3 will be based on the following, more

general result:

Proposition 4.2. Given �

R

1

; : : : ; �

R

s

2 R, we 
an 
ompute generators '

R

1

; : : : ; '

R

r

2 R

for the di�erential ideal (d

i

k

'

j

)

i2N;16j6s

. There exists a r�r matrixM

R

with 
oeÆ
ients

in R, su
h that

d

k

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

=M

R

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

: (4.2)

Proof. We use the following algorithm: we start by 
omputing a Groebner basis G for

(�

R

1

; : : : ; �

R

s

). Next, as long as there exists an element g 2 G, su
h that d

k

g does not

redu
e to zero modulo G, we 
ompute the set G

0

of su
h elements d

k

g and repla
e G by

a Groebner basis for G [G

0

. At the end of this loop, the derivative d

k

g of ea
h element

g in G 
an be expressed as a linear 
ombination of elements in G, whi
h leads to the

expression (4.2). 2

Instead of working with respe
t with the derivation d

k

only, one 
an also work with

respe
t to a �nite set of derivations:

Proposition 4.3. Given �

R

1

; : : : ; �

R

s

2 R and k

0

6 k, we 
an 
ompute a set of generators

'

R

1

; : : : ; '

R

r

2 R for the ideal generated by all d

i

1

� � � d

i

l

'

j

, with i

1

; : : : ; i

l

6 k

0

and

1 6 j 6 s. There exists r� r matri
es M

R

1

; : : : ;M

R

k

0

with 
oeÆ
ients in R, su
h that for

ea
h 1 6 i 6 k

0

d

i

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

=M

R

i

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

: (4.3)

Proof. Analogue proof as the previous proposition: now G

0


onsists of those elements

d

i

g whi
h do not redu
e to zero modulo G, with 1 6 i 6 k

0

and g 2 G. 2

4.2. A first zero test

Assume that we want to test whether a series ', represented by '

R

2 R, vanishes.

Appli
ation of proposition 4.1 and evaluation of (4.1) yields a relation

z

(�

k

�1)r

k

Æ

r

' =  

r�1

Æ

r�1

'+ � � �+  

0

';
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where

Æ = z

k

�

�z

k

and where  

0

; : : : ;  

r�1

are D-algebrai
 power series, whi
h 
an be represented by ele-

ments  

R

0

; : : : ;  

R

r�1

in R. This relation 
an be rewritten as

 

r

Æ

r

'+ � � �+  

0

' = 0; (4.4)

when setting  

r

= �z

(�

k

�1)r

k

.

By proposition 3.4 and the indu
tion hypothesis, we 
an test whether ea
h 
oeÆ
ient

of the form  

i;j

with 1 6 i 6 r�1 and 0 6 j 6 (�

k

�1)r vanishes. Denoting by �

0

; : : : ; �

r

the valuations of  

0

; : : : ;  

r�1

in z

k

, we 
an therefore 
ompute

� = min(�

0

; : : : ; �

r

) 6 (�

k

� 1)r:

Now re
all the rule (Æ�)

�

= ��

�

for the extra
tion of the 
oeÆ
ient of z

�

k

in �. Then

extra
tion of the 
oeÆ
ient of z

�+�

k

in (4.4) yields

( 

r;�

�

r

+ � � �+  

0;�

)'

�

= L; (4.5)

where L is a K[[z

1

; : : : ; z

k�1

℄℄-linear 
ombination of previous 
oeÆ
ients  

i;j

with j <

�+ �. Hen
e, in the 
ase when the polynomial

	(�) =  

r;�

�

r

+ � � �+  

0;�

does not vanish for a given �, the relation (4.5) yields a re
urren
e relation for '

�

.

Lemma 4.1. There exists an algorithm to 
ompute the integer roots of 	.

Proof. Sin
e 	 6= 0, let �

1

; : : : ; �

k�1

be su
h that the 
oeÆ
ient of z

�

1

1

� � � z

�

k�1

k�1

in 	,

whi
h is a polynomial P in K[�℄ does not vanish. Then ea
h root of 	 is in parti
ular a

root of P . Now we assumed that our e�e
tive �eld of 
onstants K is su
h that the �nite

number of integer roots of P 
an be determined. For ea
h su
h a root �, we 
an 
he
k

whether 	(�) = 0 by proposition 3.4 and the indu
tion hypothesis. 2

Theorem 4.1. There exists an e�e
tive zero test for D-algebrai
 power series.

Proof. Let � be the largest positive integer root of 	, as 
omputed in the previous

proposition. Then for ea
h � > �, the 
oeÆ
ient '

�

is given as a linear 
ombination of

previous 
oeÆ
ients '

0

; : : : ; '

��1

. Hen
e, ' = 0 if and only if '

0

= � � � = '

�

= 0. But

this 
an be tested using the indu
tion hypothesis and proposition 3.4. 2

4.3. An alternative zero test

If several D-algebrai
 series �

1

; : : : ; �

s

have all to be tested for zero (i.e. su
h as in

the re
ursive step of the proof of theorem 4.1), then it might be interesting to have

a simultaneous zero test, rather than applying the previous zero test sequentially on

�

1

; : : : ; �

s

. In this se
tion, we therefore des
ribe a variant of the algorithm from the

previous se
tion, by starting from the relation (4.2) in proposition 4.2 (or from (4.3) in

proposition 4.3, when taking k

0

= k), rather than (4.1).
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After evaluation, the relation (4.2) be
omes

z

�

k

�1

k

0

B

�

Æ

k

'

1

.

.

.

Æ

k

'

r

1

C

A

=M

0

B

�

'

1

.

.

.

'

r

1

C

A

; (4.6)

where M is obtained by evaluation of the entries of M

R

. Now extra
tion of 
oeÆ
ients

in (4.6) does not immediately lead to a suitable re
urren
e relation like (4.5). Instead,

we will �rst perform some row operations, so that we get a relation of the form

Az

�

k

�1

k

0

B

�

Æ

k

'

1

.

.

.

Æ

k

'

r

1

C

A

= AM

0

B

�

'

1

.

.

.

'

r

1

C

A

; (4.7)

for some suitable invertible matrix A. Extra
tion of 
oeÆ
ients in (4.7) will yield the

desired analogue of (4.5).

We obtain the invertible matrix A by starting with A = Id and doing row operations

while maintaining the following properties:

1. The 
oeÆ
ients of A are of the form 
z

��

k

, with 
 2 K and 0 6 � 6 �

k

� 1.

2. The 
oeÆ
ients of AM are power series in z

k

.

3. For a 
ertain l > 0, we have d

1

6 � � � 6 d

l

< d

l+1

= � � � = d

r

, where d

i

denotes the

maximal degree in z

�1

k

of the i-th row.

4. The �rst l rows of A

1��

k

�� (AM)

0

are linearly independent.

Condition 2 implies that we obtain the following relation, when extra
ting the 
oeÆ
ient

of z

�

k

in (4.7):

[A

1��

k

�� (AM)

0

℄

0

B

�

'

1;�

.

.

.

'

r;�

1

C

A

+ [A

2��

k

�� (AM)

1

℄

0

B

�

'

1;�+1

.

.

.

'

r;�+1

1

C

A

+ � � � = 0:

(4.8)

We will now show that after a �nite number of row operations, we are able to obtain

a matrix A, su
h that l = r in 
onditions 3 and 4. This means that, ex
ept for a �nite

number of � (namely the integer eigenvalues of A

1��

k

� � (AM)

0

), the relation (4.8) is

a
tually a re
urren
e relation for '

1;�

; : : : ; '

r;�

.

Lemma 4.2. We 
an 
ompute a matrix A, whi
h satis�es the above four 
onditions, and

su
h that l = r.

Proof. Starting with A = Id and l = 0, we repeat the following pro
ess

� We 
ompute C = A

1��

k

�� (AM)

0

and determine the rank l

0

of its last p� l rows.

� We permute rows, su
h that the l+ l

0

�rst rows of C be
ome linearly independent,

and we apply the same permutation of rows on A.

� Next, by taking K-linear row 
ombinations of the l

0

middle rows (from row l + 1

until row l+ l

0

), we make the last p� (l+ l

0

) rows of C vanish, and we perform the

same row operations on A.

� If l+ l

0

< r, we �nally multiply the last r� (l+ l

0

) rows of A by z

�1

k

and return to

the �rst step of the loop with l := l+ l

0

.
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Clearly, throughout this pro
ess, A remains an invertible matrix whi
h satis�es 
ondi-

tions 1, 3 and 4. Condition 2 is also preserved, sin
e we made sure that the last r�(l+ l

0

)

rows of Az

�

k

�1

k

� AM have non zero valuation in z

k

(equivalently, the last r � (l + l

0

)

rows of C vanish).

The loop terminates, sin
e the rank l

0

is ne
essarily maximal if d

l+1

= � � � = d

r

= �

k

�1.

Indeed, the last r� l rows of lim

�!1

�

�1

C 
oin
ide with the last r� l rows of A

1��

k

in

this 
ase, whi
h must have rank r � l, sin
e A is invertible. 2

Theorem 4.2. There exists an e�e
tive simultaneous zero test for D-algebrai
 series.

Proof. We �rst 
laim that the problem of de
iding whether �

1

= � � � = �

s

= 0 is

equivalent to the de
iding whether '

1

= � � � = '

r

= 0. Indeed, the �

i

are C[[z

1

; : : : ; z

k

℄℄-

linear 
ombinations of the '

j

, while the �

j

are C[[z

1

; : : : ; z

k

℄℄-linear 
ombinations of the

�

i

and their partial derivatives.

Now let A be as in lemma 4.2 and let � be the largest positive integer root of the


hara
teristi
 polynomial 	 2 K[[z

1

; : : : ; z

k�1

℄℄[�℄ of A

1��

�� (AM)

0

. We 
ompute � as

in lemma 4.1. Be
ause of the re
urren
e relation (4.8), testing whether '

1

= � � � = '

r

is

now equivalent to testing whether '

j;�

= 0 for all j and � 6 �. Again, we 
an test this

using the indu
tion hypothesis and proposition 3.4. 2

5. Con
lusion

5.1. Complexity issues

We have introdu
ed a large 
lass of formal D-algebrai
 power series, whi
h enjoys many


losure properties and we gave an e�e
tive zero test for su
h series. However, from the


omplexity point of view, our algorithm has two drawba
ks. First, it may require a long

time to 
ompute the relations (4.1), (4.2) or (4.3), sin
e these 
omputations both require

ideal stabilization and Groebner basis 
omputations. Se
ondly, we have no ni
e a priori

bound for the largest integer root � 
omputed in lemma 4.1.

Nevertheless, from a pra
ti
al point of view we think that the �rst drawba
k is the

most serious one. Indeed, we think that Groebner basis 
omputations are generi
ally

expensive, while we expe
t the 
omputed largest integer root � to be reasonable in

general . It would be interesting to know whether the �rst drawba
k 
an be removed

by using ideas from (P�eladan-Germa, 1997). We also noti
e that the hard 
ases in zero

testing are usually when the power series are a
tually zero. If a power series is non zero,

then a non zero 
oeÆ
ient 
an usually be found quite eÆ
iently using te
hniques from

(Brent and Kung, 1978; van der Hoeven, 1997b).

5.2. Power series involving parameters

Let us �nally remark that the algorithms presented in this paper are 
ompatible with

the \automati
 
ase separation" strategy

y

. This means that we 
an apply the algorithms

in the 
ase when the �eld K has the form K = C[�

1

; : : : ; �

l

℄, where C is an e�e
tive

�eld and �

1

; : : : ; �

l

are a �nite numbers of formal parameters in C.

y

In 
omputer algebra some authors also use the less suggestive terminology of \dynami
 evaluation"

instead of \automati
 
ase separation". For a dis
ussion, see (van der Hoeven, 1997a).
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The �eld K is then an e�e
tive �eld in the sense that at ea
h zero test P = 0 in K,

we separate the 
ases when P = 0 and P 6= 0, by interpreting the 
onditions P = 0 resp.

P 6= 0 as 
onstraints on the parameters �

1

; : : : ; �

l

. We automati
ally eliminate bran
hes

whi
h 
ontain 
ontradi
tory 
onstraints (this 
an be tested for instan
e using Groebner

basis te
hniques). For more details, we refer to (van der Hoeven, 1997a).

The 
ompatibility of the zero test algorithms in this paper with the automati
 
ase

separation strategy stems from the fa
t that the only potentially in�nite bran
hes in

the 
omputation tree 
orrespond to the imposition of an in�nite number of polynomial

equalities (and no inequalities). But in su
h a 
hain of 
onstraints, all 
onstraints 
an be

dedu
ed from a �nite number, sin
e C[�

1

; : : : ; �

l

℄ is a Noetherian ring.
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