
D-algebrai power series

Joris van der Hoeven

(Paris, 27 january 1999)

y

In this paper, we study power series in several variables, whih are ompletely deter-

mined as solutions of sets of di�erential equations with initial onditions. We introdue

a large lass of suh power series, whih we all \D-algebrai". We prove several losure

properties for this lass and give an e�etive zero test for D-algebrai series.

1. Introdution

A popular topi in omputer algebra is �nding losed form solutions to systems of

di�erential equations. Unfortunately, suh solutions rarely exist. Nevertheless, one often

wishes to do some further omputations with the solutions of suh systems of equations,

even if no losed form solutions exist. The next best thing to do then is to �nd a more

impliit way to represent the solutions and to show how to do omputations with the

solutions via these representations.

Adopting this point of view, two main problems arise. First, the lass of representable

solutions should be made as large as possible and it should have as many losure proper-

ties as possible. Seondly, it should still be possible to perform all operations in the lass

e�etively. In partiular, we need an e�etive zero test.

Now in the ase of analyti funtions, it suÆes to hek whether an expression is

loally zero in order to test whether it vanishes globally. In this paper, we are therefore

interested in giving a zero test for expressions in power series, whih are de�ned by

algebrai di�erential equations and suitable initial onditions.

Some theoretially e�etive results in this diretion were �rst obtained in (Denef and

Lipshitz, 1989). Subsequently, more pratial algorithms for zero testing were obtained in

(Shakell, 1989; Shakell, 1993; P�eladan-Germa, 1995) (see also (P�eladan-Germa, 1997;

van der Hoeven, 1997a). Unfortunately, the lass of power series to whih these latter

algorithms apply does not admit many losure properties. Therefore, in this paper, we in-

trodue a larger lass of so alled D-algebrai power series (whih inludes even divergent

series), whih does admit several losure properties. Yet, we are still able to generalize

Shakell's �rst zero-equivalene algorithm from (Shakell, 1993) to this larger lass. In a

forthoming paper we will desribe an even larger lass of D-impliit series in whih an

impliit funtion theorem holds.

y

The di�erene between the dates in the title and on the over is due to the fat that this paper was

originally submitted to a journal. Although it was refused there, there has been some interest for this

work afterwards. This made me deide to publish this preprint a long time after its time of writing.
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2. De�nition and examples of D-algebrai series

In all what follows, K is assumed to be an e�etive �eld of harateristi zero, i.e.

all �eld operations inluding the zero test an be performed e�etively. We also assume

that all integer solutions to polynomial equations over K an be found. This holds for

instane for the rationals.

Definition 2.1. An e�etive representation D-ring for power series in z

1

; : : : ; z

k

over

K is a polynomial ring R = K[f

1

; : : : ; f

n

℄ together with e�etive derivations d

1

; : : : ; d

k

:

R ! R and a K-algebra homomorphism " : R ! K[[z

1

; : : : ; z

k

℄℄, alled the evaluation

mapping, suh that

1. For eah 1 6 i 6 k, there exists a �

i

with "(d

i

g) = z

�

i

i

�"(g)

�z

i

for all g 2 R.

2. There exists an algorithm, whih given g 2 R and �

1

; : : : ; �

k

2 N omputes the

oeÆient of z

�

1

1

� � � z

�

k

k

in "(g).

Remark. In order to speify an e�etive representation D-ring R, it suÆes to de�ne

the derivations d

1

; : : : ; d

k

and the evaluation mapping " for f

1

; : : : ; f

k

.

Remark. Without loss of generality, one may always assume that R ontains elements

z

R

i

with "(z

R

i

) = z

i

for 1 6 i 6 k. Indeed, assume for instane that no z

R

k

with "(z

R

k

)

exists. Then we may extend R into

^

R = K[f

1

; : : : ; f

n

; z

R

k

℄, using the previous remark, by

de�ning d

1

; : : : ; d

k

and " as in R on f

1

; : : : ; f

n

, and by setting d

1

z

R

k

= � � � = d

k�1

z

R

k

=

0; d

k

z

R

k

= (z

R

k

)

�

k

and "(z

R

k

) = z

k

.

Definition 2.2. An e�etive D-algebrai series in z

1

; : : : ; z

k

is a series ' whih an be

represented by an element '

R

of an e�etive representation D-ring R; i.e. "('

R

) = '.

In what follows, we will shortly write representation D-ring resp. D-algebrai power

series for e�etive representation D-ring resp. e�etive D-algebrai power series , sine

we will only be working in an e�etive ontext.

Example. The series sin z

1

= 1�

1

2

z

2

1

+

1

24

z

4

1

+ � � � is D-algebrai, sine we may represent

it by f

1

in the representation D-ring R = K[f

1

; f

2

℄ with derivation d

1

f

1

= f

2

; d

1

f

2

= �f

1

and evaluation "(f

1

) = sin z

1

; "(f

2

) = os z

1

.

Example. For eah k, the series exp(z

1

+ � � �+z

k

) is D-algebrai, sine we may represent

it by f

1

in the representation D-ring R = K[f

1

℄ with derivations d

i

f

1

= f

1

.

Example. The divergent series 1 + z + 2z

2

+ 6z

3

+ 24z

4

+ � � � is D-algebrai. Indeed,

we may represent it by f

1

in the representation D-ring R = K[f

1

; z

R

1

℄ with derivation

d

1

f

1

= (1� z

R

1

)f

1

+ 1. In this ase, "(d

1

�) = z

2

1

�"(�)

�z

1

.

3. Closure properties for D-algebrai series

Proposition 3.1. The D-algebrai power series in z

1

; : : : ; z

k

form a K-algebra.



D-algebrai power series 3

Proof. Clearly, elements in K are D-algebrai. Assume that R = K[f

1

; : : : ; f

n

℄ and

R

0

= K[f

0

1

; : : : ; f

0

n

0

℄ are representation D-rings, with derivations d

1

; : : : ; d

k

resp. d

0

1

; : : : ; d

0

k

and evaluation mappings " resp. "

0

. We will prove that both D-rings an be embedded

in ommon super representation D-ring

^

R. This will prove in partiular that sums and

produts of D-algebrai power series are again D-algebrai.

Let the �

i

and �

0

i

be suh that

"(d

i

�) = z

�

i

i

�"(�)

�z

i

;

"(d

0

i

�) = z

�

0

i

i

�"

0

(�)

�z

i

:

Modulo substitution of d

i

by (z

R

i

)

max(�

i

;�

0

i

)��

i

d

i

and d

0

i

by (z

R

0

i

)

max(�

i

;�

0

i

)��

0

i

d

0

i

, we may

assume without loss of generality that �

i

= �

0

i

for eah i. We now take

^

R = K[f

1

; : : : ; f

n

;

f

0

1

; : : : ; f

0

n

0

℄ and we de�ne the derivations and the evaluation mapping on the f

j

as in R

and on the f

0

j

as in R

0

. 2

Proposition 3.2. Let ' be an invertible D-algebrai power series in z

1

; : : : ; z

k

. Then

so is its inverse '

�1

.

Proof. Let ' be represented by '

R

in R = K[f

1

; : : : ; f

n

℄. Then '

�1

is represented by

g in the extension

^

R = K[f

1

; : : : ; f

n

; g℄ of R, in whih the derivatives of g are given by

^

d

i

g = (d

i

'

R

)g

2

and its evaluation by "̂(g) = '

�1

. 2

Proposition 3.3. The lass of D-algebrai power series in z

1

; : : : ; z

k

is stable under

�

�z

k

.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring suh as in de�nition 2.1 and let

us show how to extend R into a representation D-ring

^

R in whih

�"(g)

�z

k

an be represented

for any g 2 R. We take

^

R = K[f

1

; : : : ; f

n

;

^

f

1

; : : : ;

^

f

n

℄, with evaluation mapping "̂, suh

that "̂(f

j

) = "(f

j

) and "̂(

^

f

j

) =

�"(f

j

)

�z

k

for all j. The derivations

^

d

i

are de�ned on the f

j

as the d

i

in R. In order to de�ne them on the

^

f

j

, we �rst notie that, given 1 6 j 6 n,

we may write d

i

f

j

=

^

d

i

f

j

= P (f

1

; : : : ; f

n

) for some polynomial P , so that

�

�z

k

"̂(

^

d

i

f

j

) =

�

�z

k

P ("̂(f

1

); : : : ; "̂(f

k

))

= "̂

�

�P

�f

1

�

�"̂(f

1

)

�z

k

+ � � �+ "̂

�

�P

�f

n

�

�"̂(f

n

)

�z

k

= "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

�

:

If i < k, we now take

^

d

i

^

f

j

=

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

;
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therefore

"̂(

^

d

i

^

f

j

) = "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

�

=

�

�z

k

"(

^

d

i

f

j

)

=

�

�z

k

�

z

�

i

i

�"̂(f

j

)

�z

i

�

= z

�

i

i

�

�z

i

�

�"̂(f

j

)

�z

k

�

= z

�

i

i

�"̂(

^

f

j

)

�z

i

:

If i = k, we take

^

d

k

^

f

j

=

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

� �

k

(z

R

k

)

�

k

�1

^

f

j

:

Again, we obtain

"̂(

^

d

k

^

f

j

) = "̂

�

�P

�f

1

^

f

1

+ � � �+

�P

�f

n

^

f

n

� �

k

(z

R

k

)

�

k

�1

^

f

j

�

=

�

�z

k

"̂(

^

d

k

f

j

)� �

k

z

�

k

�1

k

"̂(

^

f

j

)

= z

�

k

k

�

�z

k

"

"̂(

^

d

k

f

j

)

z

�

k

k

#

= z

�

k

k

�"̂(

^

f

j

)

�z

k

:

2

Proposition 3.4. The oeÆients in z

k

of a D-algebrai power series in z

1

; : : : ; z

k

is

a D-algebrai power series in z

1

; : : : ; z

k�1

.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring for power series in z

1

; : : : ; z

k

and let � 2 N. We will onstrut a representation D-ring

^

R for power series in z

1

; : : : ; z

k�1

,

suh that for eah g in R and � 6 �, the oeÆient "(g)

�

of z

�

k

in "(g) an be represented

in

^

R. This will learly prove the proposition.

We take

^

R = K[f

1;0

; : : : ; f

1;�

; : : : ; f

n;0

; : : : ; f

n;�

℄ with evaluation mapping "̂ :

^

R !

K[[z

1

; : : : ; z

k�1

℄℄; f

i;�

7! "(f

i

)

�

. Then we have natural \extration of oeÆient map-

pings" �

0

; : : : ; �

�

: R!

^

R, with �

�

(f

j

) = f

j;�

, suh that � : g 7! �

0

(g) + � � �+ �

�

(g)z

�

k

is

a K-algebra homomorphism from R into

^

R[z

k

℄=(z

�+1

k

).

We now de�ne

^

d

i

by

^

d

i

(f

j;�

) = �

�

(d

i

f

j

). We indeed have "̂(

^

d

i

(f

j;�

)) = "̂(�

�

(d

i

f

j

)) =

"(d

i

f

j

)

�

= (z

�

i

i

�"(f

j

)

�z

i

)

�

= z

�

i

i

�"(f

j

)

�

�z

i

= z

�

i

i

�"̂(f

j;�

)

�z

i

. 2

The proof of the last proposition is based on an e�etive stabilization property, whih

will be proved in setion 4.1.

Proposition 3.5. Let ' be a D-algebrai power series in z

1

; : : : ; z

k

, whose valuation in

z

k

is at least one. Then 'z

�1

k

is D-algebrai.

Proof. Let R = K[f

1

; : : : ; f

n

℄ be a representation D-ring for ' as in de�nition 2.1. By

proposition 4.3 from setion 4.1, with k

0

= k � 1, we an ompute a set of generators

'

R

1

; : : : ; '

R

r

for the smallest ideal of R, whih ontains ' and whih is stable under

d

1

; : : : ; d

k�1

. We notie that '

j

= "('

R

i

) has valuation at least one in z

k

, for eah j,

whene z

�1

k

'

j

is still a power series.
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Now onsider the representation D-ring R = K[f

1

; : : : ; f

n

; g

1

; : : : ; g

r

℄ whose evaluation

mapping "̂ is given by "̂(f

j

) = "(f

j

) for 1 6 j 6 n and "̂(g

j

) = z

�1

k

'

j

for 1 6 j 6 r. In

partiular, 'z

�1

k

will be represented in this ring.

For i < k, we take the derivation

^

d

i

on

^

R to oinide with d

i

on the f

j

. As to

^

d

i

g

j

, we

�rst reall that d

i

'

R

j

an be written as a linear ombination

d

i

'

R

j

= a

1

'

R

1

+ � � �+ a

r

'

R

r

;

with oeÆients a

1

; : : : ; a

r

2 R. Then we take

^

d

i

g

j

= a

1

g

1

+ � � �+ a

r

g

r

, so that

"̂(

^

d

i

g

j

) = "̂(a

1

g

1

+ � � �+ a

r

g

r

)

= ("(a

1

)'

1

+ � � �+ "(a

r

)'

r

)z

�1

k

= "(d

i

'

R

j

)z

�1

k

= z

�

i

i

z

�1

k

�'

j

�z

i

= z

�

i

i

�"̂(g

j

)

�z

i

:

For i = k, we let

^

d

k

oinide with z

R

k

d

k

on the f

j

, so that "̂(

^

d

k

f

j

) = z

�

k

+1

k

�"̂(f

j

)

�z

k

. Next,

we take

^

d

k

g

j

= d

k

'

R

j

� g

j

(z

R

k

)

�

k

, and again we obtain

"̂(

^

d

k

g

j

) = "(d

k

'

R

j

)� "̂(g

j

)z

�

k

k

= z

�

k

k

�'

j

�z

k

� '

j

z

�

k

�1

k

= z

�

k

+1

k

�

�z

k

�

'

j

z

k

�

= z

�

k

+1

k

�"̂(g

j

)

�z

k

:

2

Example. From the proposition, it follows that the series (exp z

1

� 1)=z

1

is D-algebrai

in z

1

. In previous settings, no zero tests were available for expressions involving suh

series.

4. Zero tests for D-algebrai series

In this setion, we �x one and for all a representation D-ring R = K[f

1

; : : : ; f

n

℄ as in

de�nition 2.1 and we assume that z

R

1

; : : : ; z

R

k

are elements whih represent z

1

; : : : ; z

k

.

In setion 4.2, we are interested in testing whether a D-algebrai series ', whih an

be represented by an element '

R

in R vanishes. In setion 4.3, we will desribe a simul-

taneous zero test for D-algebrai power series �

1

; : : : ; �

s

, whih an be represented by

elements �

R

1

; : : : ; �

R

s

in R. Throughout this setion, we make the indution hypothesis

that we an answer both questions for D-algebrai power series in less than k variables;

we notie that both problems are trivial for k = 0.

4.1. Differential stabilization

One of the main ingredients for our zero test algorithms is the observation (due to

Shakell (Shakell, 1993) for the one dimensional ase) that the di�erential ideal generated

by '

R

is �nitely generated, sine R is Noetherian. An easy onsequene of this, whih

leads to our zero test algorithm from setion 4.2, is the following:
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Proposition 4.1. Given '

R

2 R, we an ompute a linear di�erential relation

d

r

k

'

R

= a

r�1

d

r�1

k

'

R

+ � � �+ a

0

'

R

; (4.1)

with a

0

; : : : ; a

r�1

2 R.

Proof. The hain of ideals ('

R

); ('

R

; d

k

'

R

); ('

R

; d

k

'

R

; d

2

k

'

R

); : : : stabilizes and we

an hek whether d

r

k

'

R

2 ('

R

; : : : ; d

r�1

k

'

R

) by omputing a Groebner basis of

('

R

; : : : ; d

r�1

k

'

R

). 2

Our olletive zero test algorithm from setion 4.3 will be based on the following, more

general result:

Proposition 4.2. Given �

R

1

; : : : ; �

R

s

2 R, we an ompute generators '

R

1

; : : : ; '

R

r

2 R

for the di�erential ideal (d

i

k

'

j

)

i2N;16j6s

. There exists a r�r matrixM

R

with oeÆients

in R, suh that

d

k

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

=M

R

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

: (4.2)

Proof. We use the following algorithm: we start by omputing a Groebner basis G for

(�

R

1

; : : : ; �

R

s

). Next, as long as there exists an element g 2 G, suh that d

k

g does not

redue to zero modulo G, we ompute the set G

0

of suh elements d

k

g and replae G by

a Groebner basis for G [G

0

. At the end of this loop, the derivative d

k

g of eah element

g in G an be expressed as a linear ombination of elements in G, whih leads to the

expression (4.2). 2

Instead of working with respet with the derivation d

k

only, one an also work with

respet to a �nite set of derivations:

Proposition 4.3. Given �

R

1

; : : : ; �

R

s

2 R and k

0

6 k, we an ompute a set of generators

'

R

1

; : : : ; '

R

r

2 R for the ideal generated by all d

i

1

� � � d

i

l

'

j

, with i

1

; : : : ; i

l

6 k

0

and

1 6 j 6 s. There exists r� r matries M

R

1

; : : : ;M

R

k

0

with oeÆients in R, suh that for

eah 1 6 i 6 k

0

d

i

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

=M

R

i

0

B

�

'

R

1

.

.

.

'

R

r

1

C

A

: (4.3)

Proof. Analogue proof as the previous proposition: now G

0

onsists of those elements

d

i

g whih do not redue to zero modulo G, with 1 6 i 6 k

0

and g 2 G. 2

4.2. A first zero test

Assume that we want to test whether a series ', represented by '

R

2 R, vanishes.

Appliation of proposition 4.1 and evaluation of (4.1) yields a relation

z

(�

k

�1)r

k

Æ

r

' =  

r�1

Æ

r�1

'+ � � �+  

0

';
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where

Æ = z

k

�

�z

k

and where  

0

; : : : ;  

r�1

are D-algebrai power series, whih an be represented by ele-

ments  

R

0

; : : : ;  

R

r�1

in R. This relation an be rewritten as

 

r

Æ

r

'+ � � �+  

0

' = 0; (4.4)

when setting  

r

= �z

(�

k

�1)r

k

.

By proposition 3.4 and the indution hypothesis, we an test whether eah oeÆient

of the form  

i;j

with 1 6 i 6 r�1 and 0 6 j 6 (�

k

�1)r vanishes. Denoting by �

0

; : : : ; �

r

the valuations of  

0

; : : : ;  

r�1

in z

k

, we an therefore ompute

� = min(�

0

; : : : ; �

r

) 6 (�

k

� 1)r:

Now reall the rule (Æ�)

�

= ��

�

for the extration of the oeÆient of z

�

k

in �. Then

extration of the oeÆient of z

�+�

k

in (4.4) yields

( 

r;�

�

r

+ � � �+  

0;�

)'

�

= L; (4.5)

where L is a K[[z

1

; : : : ; z

k�1

℄℄-linear ombination of previous oeÆients  

i;j

with j <

�+ �. Hene, in the ase when the polynomial

	(�) =  

r;�

�

r

+ � � �+  

0;�

does not vanish for a given �, the relation (4.5) yields a reurrene relation for '

�

.

Lemma 4.1. There exists an algorithm to ompute the integer roots of 	.

Proof. Sine 	 6= 0, let �

1

; : : : ; �

k�1

be suh that the oeÆient of z

�

1

1

� � � z

�

k�1

k�1

in 	,

whih is a polynomial P in K[�℄ does not vanish. Then eah root of 	 is in partiular a

root of P . Now we assumed that our e�etive �eld of onstants K is suh that the �nite

number of integer roots of P an be determined. For eah suh a root �, we an hek

whether 	(�) = 0 by proposition 3.4 and the indution hypothesis. 2

Theorem 4.1. There exists an e�etive zero test for D-algebrai power series.

Proof. Let � be the largest positive integer root of 	, as omputed in the previous

proposition. Then for eah � > �, the oeÆient '

�

is given as a linear ombination of

previous oeÆients '

0

; : : : ; '

��1

. Hene, ' = 0 if and only if '

0

= � � � = '

�

= 0. But

this an be tested using the indution hypothesis and proposition 3.4. 2

4.3. An alternative zero test

If several D-algebrai series �

1

; : : : ; �

s

have all to be tested for zero (i.e. suh as in

the reursive step of the proof of theorem 4.1), then it might be interesting to have

a simultaneous zero test, rather than applying the previous zero test sequentially on

�

1

; : : : ; �

s

. In this setion, we therefore desribe a variant of the algorithm from the

previous setion, by starting from the relation (4.2) in proposition 4.2 (or from (4.3) in

proposition 4.3, when taking k

0

= k), rather than (4.1).
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After evaluation, the relation (4.2) beomes

z

�

k

�1

k

0

B

�

Æ

k

'

1

.

.

.

Æ

k

'

r

1

C

A

=M

0

B

�

'

1

.

.

.

'

r

1

C

A

; (4.6)

where M is obtained by evaluation of the entries of M

R

. Now extration of oeÆients

in (4.6) does not immediately lead to a suitable reurrene relation like (4.5). Instead,

we will �rst perform some row operations, so that we get a relation of the form

Az

�

k

�1

k

0

B

�

Æ

k

'

1

.

.

.

Æ

k

'

r

1

C

A

= AM

0

B

�

'

1

.

.

.

'

r

1

C

A

; (4.7)

for some suitable invertible matrix A. Extration of oeÆients in (4.7) will yield the

desired analogue of (4.5).

We obtain the invertible matrix A by starting with A = Id and doing row operations

while maintaining the following properties:

1. The oeÆients of A are of the form z

��

k

, with  2 K and 0 6 � 6 �

k

� 1.

2. The oeÆients of AM are power series in z

k

.

3. For a ertain l > 0, we have d

1

6 � � � 6 d

l

< d

l+1

= � � � = d

r

, where d

i

denotes the

maximal degree in z

�1

k

of the i-th row.

4. The �rst l rows of A

1��

k

�� (AM)

0

are linearly independent.

Condition 2 implies that we obtain the following relation, when extrating the oeÆient

of z

�

k

in (4.7):

[A

1��

k

�� (AM)

0

℄

0

B

�

'

1;�

.

.

.

'

r;�

1

C

A

+ [A

2��

k

�� (AM)

1

℄

0

B

�

'

1;�+1

.

.

.

'

r;�+1

1

C

A

+ � � � = 0:

(4.8)

We will now show that after a �nite number of row operations, we are able to obtain

a matrix A, suh that l = r in onditions 3 and 4. This means that, exept for a �nite

number of � (namely the integer eigenvalues of A

1��

k

� � (AM)

0

), the relation (4.8) is

atually a reurrene relation for '

1;�

; : : : ; '

r;�

.

Lemma 4.2. We an ompute a matrix A, whih satis�es the above four onditions, and

suh that l = r.

Proof. Starting with A = Id and l = 0, we repeat the following proess

� We ompute C = A

1��

k

�� (AM)

0

and determine the rank l

0

of its last p� l rows.

� We permute rows, suh that the l+ l

0

�rst rows of C beome linearly independent,

and we apply the same permutation of rows on A.

� Next, by taking K-linear row ombinations of the l

0

middle rows (from row l + 1

until row l+ l

0

), we make the last p� (l+ l

0

) rows of C vanish, and we perform the

same row operations on A.

� If l+ l

0

< r, we �nally multiply the last r� (l+ l

0

) rows of A by z

�1

k

and return to

the �rst step of the loop with l := l+ l

0

.
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Clearly, throughout this proess, A remains an invertible matrix whih satis�es ondi-

tions 1, 3 and 4. Condition 2 is also preserved, sine we made sure that the last r�(l+ l

0

)

rows of Az

�

k

�1

k

� AM have non zero valuation in z

k

(equivalently, the last r � (l + l

0

)

rows of C vanish).

The loop terminates, sine the rank l

0

is neessarily maximal if d

l+1

= � � � = d

r

= �

k

�1.

Indeed, the last r� l rows of lim

�!1

�

�1

C oinide with the last r� l rows of A

1��

k

in

this ase, whih must have rank r � l, sine A is invertible. 2

Theorem 4.2. There exists an e�etive simultaneous zero test for D-algebrai series.

Proof. We �rst laim that the problem of deiding whether �

1

= � � � = �

s

= 0 is

equivalent to the deiding whether '

1

= � � � = '

r

= 0. Indeed, the �

i

are C[[z

1

; : : : ; z

k

℄℄-

linear ombinations of the '

j

, while the �

j

are C[[z

1

; : : : ; z

k

℄℄-linear ombinations of the

�

i

and their partial derivatives.

Now let A be as in lemma 4.2 and let � be the largest positive integer root of the

harateristi polynomial 	 2 K[[z

1

; : : : ; z

k�1

℄℄[�℄ of A

1��

�� (AM)

0

. We ompute � as

in lemma 4.1. Beause of the reurrene relation (4.8), testing whether '

1

= � � � = '

r

is

now equivalent to testing whether '

j;�

= 0 for all j and � 6 �. Again, we an test this

using the indution hypothesis and proposition 3.4. 2

5. Conlusion

5.1. Complexity issues

We have introdued a large lass of formal D-algebrai power series, whih enjoys many

losure properties and we gave an e�etive zero test for suh series. However, from the

omplexity point of view, our algorithm has two drawbaks. First, it may require a long

time to ompute the relations (4.1), (4.2) or (4.3), sine these omputations both require

ideal stabilization and Groebner basis omputations. Seondly, we have no nie a priori

bound for the largest integer root � omputed in lemma 4.1.

Nevertheless, from a pratial point of view we think that the �rst drawbak is the

most serious one. Indeed, we think that Groebner basis omputations are generially

expensive, while we expet the omputed largest integer root � to be reasonable in

general . It would be interesting to know whether the �rst drawbak an be removed

by using ideas from (P�eladan-Germa, 1997). We also notie that the hard ases in zero

testing are usually when the power series are atually zero. If a power series is non zero,

then a non zero oeÆient an usually be found quite eÆiently using tehniques from

(Brent and Kung, 1978; van der Hoeven, 1997b).

5.2. Power series involving parameters

Let us �nally remark that the algorithms presented in this paper are ompatible with

the \automati ase separation" strategy

y

. This means that we an apply the algorithms

in the ase when the �eld K has the form K = C[�

1

; : : : ; �

l

℄, where C is an e�etive

�eld and �

1

; : : : ; �

l

are a �nite numbers of formal parameters in C.

y

In omputer algebra some authors also use the less suggestive terminology of \dynami evaluation"

instead of \automati ase separation". For a disussion, see (van der Hoeven, 1997a).



10 Joris van der Hoeven

The �eld K is then an e�etive �eld in the sense that at eah zero test P = 0 in K,

we separate the ases when P = 0 and P 6= 0, by interpreting the onditions P = 0 resp.

P 6= 0 as onstraints on the parameters �

1

; : : : ; �

l

. We automatially eliminate branhes

whih ontain ontraditory onstraints (this an be tested for instane using Groebner

basis tehniques). For more details, we refer to (van der Hoeven, 1997a).

The ompatibility of the zero test algorithms in this paper with the automati ase

separation strategy stems from the fat that the only potentially in�nite branhes in

the omputation tree orrespond to the imposition of an in�nite number of polynomial

equalities (and no inequalities). But in suh a hain of onstraints, all onstraints an be

dedued from a �nite number, sine C[�

1

; : : : ; �

l

℄ is a Noetherian ring.
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