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Consider an effective differential ring A of computable power series in K[[z1, ..., z]]
for some field K and assume that we have an effective zero-test for elements in A.
Consider a system of algebraic partial differential equations Pi(f) == P,(f) =0
with Py, ..., P,€ A{F}. If f€K][[z,..., 2] is the unique solution to this system of
equations with suitable initial conditions, then we obtain a new effective differential
ring A{f} of computable power series when adjoining f to A. Under a mild additional
hypothesis, we will describe a zero-test for elements in A{f}.
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1. INTRODUCTION

There exist essentially two approaches in computer algebra for the computation with formal
solutions of systems of ordinary or partial differential equations.

The first approach is based on the theory of differential algebra [Rit50, Sei56, Ros59,
Kap57, Kol73, Bui92|. We start with an effective differential field I with derivations
di, ..., d, and enrich F with the formal solution to a system P, ..., P, € F{F'} of dif-
ferential polynomials. From an algebraic point of view, this formal solution lies in the
differential quotient ring F{F'}/{ Py, ..., P,} of F{F'} by the perfect ideal {P, ..., P,}
generated by P, ..., P,. The theory of differential algebra is well-established and admits
an effective counterpart: see [Bou94| for an overview. In particular, there exists a zero-
test in F{F'}/{ P, ..., Pp}.

In practice however, a simple function such as f(x) = e is not just the solution to
the differential equation f’= f, but it also satisfies the initial condition f(0)=1. When
taking into account initial conditions, non-zero elements in F{F'} /{ Py, ..., P,} may vanish
when we consider them as functions. For instance, assume that we redefine f(z)=e* to
be the unique solution to f”= f with f(0)=1 and f/(0)=1. Then f’— f is non-zero as
an element of F{f}/(f"— f), even though f’— f vanishes as a function.

In certain cases, it may therefore be necessary to consider a second approach, in which
the new functions are defined to be solutions to systems of differential equations with
initial conditions. Since most functions which arise in this way are analytic, it is natural
to systematically work with computable power series.
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More precisely, given an effective field K, a multivariate power series P € K[|z, ..., 2k]]
is said to be computable, if there exists an algorithm which takes ¢ € N* on input and which
outputs the corresponding coefficient P; of 2% in P. The set K[[z1, ..., 2&|]°°™ of such series
forms a differential ring, even though K[[z1, ..., z]]°°™ does not come with a zero-test.

Now assume that we are given an effective subring A of K[[z1,..., 2£]]°™ and let [F be
the quotient field of A. We wish to extend A with power series solutions f € K[[z1,..., zx]] <™
to systems of partial differential equations P, ..., P, € F{F'}. In the ordinary differential
case, the coefficients of f can generally be computed as a function of the equations P, ..., P,
and a finite number of initial conditions in K. In the case of partial differential equations,
the initial conditions are taken in A NIK[[z1, ..., 2] ™ with k' < k.

When extending A with the solution to a system of differential equations which satisfies
explicit initial conditions, an important problem is to decide whether Q( f) =0 for a given
differential polynomial ) € F{F}. In the case of ordinary differential equations, there
exists a variety of algorithms to solve this problem [DL84, DL89, Sha89, Sha93, PG95,
PG97, vdHO1, vdHS06, vdHO2|; see [vdH02| for a discussion. Progress in the case of partial
differential equations has been slower and the best currently known result [PG02] reduces
the zero-test problem to the Ritt problem concerning the distribution of the singular zeros
of a differential system among its irreducible components. In fact, questions related to the
zero-test problem quickly tend to be undecidable:

THEOREM 1. [DL84, Theorem 4.12] There does not exist an algorithm to decide whether
a linear partial differential equation over Qlzi, ..., zx] has a power series solution
in Cl[z1, ..., 2] -

In this paper, we propose a zero-test in the partial differential case, which is based
on a generalization of the technique from [vdH02, vdHS06]. In a nutshell, assume that f
is the unique solution to Pi(f) = -+ = Pp(f) with Py, ..., P, € F{F'} and explicit initial
conditions. In order to test whether Q(f) =0 for Q € F{F'}, we first simplify the system
of equations Pi(g) = -+ = Py(g) = Q(g) using the theory of differential algebra. At the
end, we obtain a new system of equations R1(g) =---= R,(g) =0. If we can show that this
system admits a solution g which satisfies the same initial conditions as f, then the fact
that Pi(g) = = Pp(g) =0 implies f =g and Q(f)=0. If Q(f)# 0, then it suffices to
expand Q(f) sufficiently far in order to find a non-zero coefficient.

The main difficulty is to ensure the existence of a suitable solution g to the reduced
system Ri(g) = --- = R,y(g) = 0, which may be highly singular. The main part of this
paper is devoted to further reduce the system Rj(g) =--- = R,(g) = 0 together with the
initial conditions into an asymptotic normal form (called an asymptotic basis). If this
asymptotic normal form is non-contradictory, then we will guarantee the existence of
a solution in a suitable field IL of power series with logarithmic coefficients. In order to
make our zero-test work, we thus have to assume that f is also the unique solution in IL
to Pi(g) =---= Py(g) =0 with the prescribed initial conditions. Fortunately, this is only a
mild additional hypothesis.

Let us outline the structure of the paper. In section 2, we start with some quick
reminders on so called grid-based power series. For a more detailed treatment, we refer
to [vdHO06, Chapter 2].

In section 3, we review the elementary theory of differential algebra. In order to lighten
notations, we will only consider equations in one differential indeterminate. In section 3.6,
we also introduce Ritt co-reduction in the “dual setting” where differential operators in
F[dy, ..., di] are replaced by operators in IF[[dy, ..., dg|]. This dual setting was considered
before in the linear case [vdHO7].
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In section 4, we next switch to the case when we work over a field F of grid-based power
series K[z 221 D K[[21, ..., 2] with a suitable monomial ordering on zi%--- zJX. This
field comes with natural valuation preserving derivations ¢; = z; 9/0z;. More generally,
for suitable A, ..., \r € R~ = {x € R: > 0}, we will consider more general derivations
d; = 2% §;, where 2% is an infinitesimal monomial. Since F is a field of series, it is
naturally to study the dominant parts of differential equations, which gives rise to a theory
of “asymptotic differential algebra”.

Although a general theory of asymptotic differential algebra is somewhat difficult to
design due to the possible presence of infinite powers of initials and separants in the
asymptotic analogue of Ritt reduction, a systematic theory can be developed in the case
of “quasi-linear differential ideals”. We will define and outline the basic properties of such
ideals in section 5 and prove the existence of zeros in K[log 21, ..., log 2] [z 227 in the
case when the derivations are d1, ..., d.

Starting with the equations R1(g) =---= R,(g) =0, we next have to put the equations
in quasi-linear form. This is automatic for the derivations d; = z*®§; if z® is sufficiently
small. Using a suitable process of asymptotic dualizations and changes of derivations, we
will show in section 6 how to end up with a system of quasi-linear equations w.r.t. d1,..., 0.
In section 7, we will give algorithmic counterparts of this construction and show how this
can be used to elaborate our zero-test.

When applying the algorithm from this paper in the ordinary differential case, we notice
a small difference with [vdH02, vdHS06]. In the present paper, we expand sufficiently far so
as to make the equations in the reduced system quasi-linear. This simplifies the existence
proof of solutions, but may require expansions up to a higher order than what was necessary
before. Indeed, the previous algorithms relied on a theoretical result [vdH02, Theorem 3|
for the existence proof (see also [vdH06, Chapter §|).

2. GRID-BASED SERIES

For convenience of the reader, we will briefly recall the definition of grid-based power series,
as well as some notational conventions. For a more detailed exposition, we refer to [vdHO6,
Chapter 2].

Let K be an arbitrary ring of coefficients (IK is usually a field) and 90t a totally ordered
multiplicative group (one may also consider partially ordered monoids). The ordering =<
on M is called an asymptotic dominance relation and we call 9 a monomial group. A subset
& C M is said to be grid-based if & C {my, ..., m;, }* n for some infinitesimal monomials
my, ..., My €M ={meM:m <1} and an arbitrary monomial n€ M. Here &* = {m;--- my;:
my,...,m; € S, ke N} for any G CIN~.

A grid-based series is aformal sum f=3" oo m fin with fi,€ K and grid-based support
supp f={meM: fi,#0}. For reasons which will become clear later in the paper (when K
will be allowed to be a non-commutative ring of operators), we multiplied m on the right
with its corresponding coefficient fi,. The set KI9MT of grid-based series forms a ring
(and a field if K is a field).

Any non-zero grid-based series f € K[ admits a unique dominant monomial 0y €N
(the maximal element in its support) and a corresponding dominant coefficient cy= fy,. By
convention, ¢ =0. The dominance relation < may be extended to K9] by setting f< g
if f=0or f#0 and g# 0 and 9y <94 This notation further extends to the case when
feKIMI and g€ LIMI for different rings K and L. We also write f<gif f<xg=<f
and f < g if f< g but g4 f. Sometimes, it is convenient to use Landau’s notation and
write f=0(g) or f=o0(g) instead of f=< g resp. f<g.
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A family (fi)ic; € KIIMD! is said to be a grid-based or summable, if U,e; supp fi is
grid-based and {i € I: f; m# 0} is finite for each m € 9 (notice the double index convention

fi,m=(fi)m). In that case, its sum F' = Zie] fi with Fi,= Zie] fi,m is again in KT .

3. DIFFERENTIAL ALGEBRA

3.1. Selection of the admissible ordering

We assume that the reader is familiar with basic results from differential algebra. Let IF be a
field with a finite number of derivations dj,...,d;. We assume that the space Fdy+--- +1F dy,
is closed under the Lie bracket; the d; are not required to commute. We will denote

D={di=d'---d*:iy,...,iy € N}.
Let A1, ..., \; be fixed Q-linearly independent numbers in R~ with

It is easy to construct such A, ..., Ay starting with any vector g = (1, e, ..., e*~1) of
@Q-linearly independent real numbers, it suffices to produce a sufficiently precise rational
approximation v = (v, ..., ) € Q¥ of p and take \; = p;/v;. We define a partial ordering <
and a total ordering < on D by

AL dd = i <A Nk < gk

di<di = X-i<)\-j.

The total ordering < is admissible in Ritt’s sense.

3.2. Ritt reduction
We will restrict our attention to the ring IP = F{F } = F[D F| of differential polynomials
in one single indeterminate F. Given P € P\ IF, we will write vp € D F for its leader, Ip
for its initial and Sp for its separant. The relation (1) ensures that vg, 4, p=vq,q, p for all
i,7. Let A€ (P\TF)? a vector of differential polynomials and denote

Ha = {I4,S% - I{ S i1, jiyesip, jp € N}

HA = IA1SA1"'IAPSA;>€HA'
Given P € P, Ritt reduction of P w.r.t. A yields a relation

HP=0O©-A+R, (2)

where H € Ha, R is reduced w.r.t. A and ® € P[d|? is a vector of linear differential
operators. We understand that @- A=01 A1+ - +0,A,. In particular, if A is a Rosenfeld

basis (i.e. if {A1, ..., Ap} is a coherent auto-reduced set), then Ritt reduction of the
A-polynomial of A; and A; (i < j) gives rise to a relation
H (Sa,d*A;— S, dPA;)=0- A (3)

We will call (3) a critical relation. It can be rewritten in the form ¥; ;- A=0.

3.3. Additive and multiplicative conjugation

Given a P €P and ¢ €IF, there exist unique differential polynomials P, ,, Py, € IP, called
additive and multiplicative conjugates of P, with the properties that

Pio(f) = Ple+f)
Pxo(f) = Plef)
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for all ¢ €F. These notions naturally extend to vectors and operators €2 € IP[d]; for instance,
( ZaelNP Qa da)Jmp - ZaeNp Qa,+<p d®. We have

vp,, = vp vp,, = vp
Ip,, = Ip .ty Ip., = Ipxe
SP+<P = SP7+<)0 SPX(p = SP7><SO

Consequently, if P Ritt reduces to R modulo A, as in (2), then P, , and Py, Ritt reduce
to Ry, and Ry, modulo A, resp. Ay, with

HipPrp = O4p-Aypt Ry

HypPrp = Oxgp-Axpo+ Ry

In particular, if A is a Rosenfeld basis with critical relations ¥; ;- A =0, then so are A,
and Ay, with critical relations ¥; ; y,- Ay, =0resp. ¥; ; v, Ax,=0.

3.4. Change of derivations

Another important construction is to change the derivations. Assume that

d; = o;d!
di = 7;d;

for certain oy, 7; € F#. Then any differential polynomial P € [P can be rewritten into
a differential polynomial P’ € P’ = IF[D’ F] with respect to the derivations dj, ..., dj, and
vice versa. Similarly, any operator © € P[d] can be rewritten as an operator in ©' € P'[d'].
We again have

vpr = vp
Ipr = Ip
Spr = Sp

Consequently, if P Ritt reduces to R modulo A, as in (2), then P’ Ritt reduces to R’
modulo A’, with

H'P'=©"-A'+R.

In particular, if A is a Rosenfeld basis with critical relations ¥; ;- A =0, then so are A’
with critical relations ®; ;- A’ =0.

3.5. Linear systems

Let Py, =IF[d] F be the set of linear homogeneous differential polynomials. A differential
ideal I CIP is said to be linear, if it is generated by I NIPy,. Given P € P, we will denote
by Pin and P, its linear and constant parts. We also denote Pyj= P — Pjin, — Pest-

Given P € P7 its initial and separant Ip = Sp € K7 are equal and invertible. Ritt

lin»

reduction of P € Py, with respect to a system A € (Ian)p yields a relation
P=©®-A+R (4)

with ® € F[d] and R € IPy;,. Similarly, the A-polynomial of two polynomials in IP?fn is again

in Pjiy. In fact, Py, as a F[d]-module is isomorphic to the skew-ring F[d]. This leads to

the alternative interpretation of (4) as the reduction of P w.r.t. A in the theory of non-

commutative Groebner bases. Similarly, A-polynomials correspond to S-polynomials and

Rosenfeld bases to Groebner bases.
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Applying Buchberger’s algorithm to a linear system A € (IP?ién)p, we thus obtain a Rosen-
feld basis B € (]an)q with [A] = [B] = {B}. Any linear differential ideal I may be
represented as [ =[B]={B} for such a basis B.

From now on, we will freely use the concepts of Ritt reduction, critical relations, etc.
for operators in IF[d]. Given a Rosenfeld basis L € F[d]? and i < j, let ¥; ;- A=0 be the
critical relation for L; and L;, with ¥; ; € F[d]. Let ¥ be the matrix whose rows are the
vectors W; ;. It is well-known that these rows generate the module of ¥ € F[d]|? with
¥ . A=0. In other words, we have a natural exact sequence

Fld]® -2 Fld]E - F[d] — F[d] /(A) — 0, (5)

where
(p(A:\I/iJHALj) = ZAi,j‘I’i,j-

7/7]
YA Li— Ai) = Y AL

3.6. Ritt co-reduction

Assuming that IF is a field of constants for d, we can also consider the natural power series
analogue IF[[d]] of IF[d], and apply the theory of standard bases. It will be convenient to
regard this as a dual theory.

More precisely, given L € [F[[d]], we will call the smallest variable d* occurring in L its
co-leader vi. The corresponding coefficient is called the co-initial I or co-separant S7T.
Ritt co-reduction of L w.r.t. A€ (IF[[d]]7)? yields a relation

P=© A+R (6)

with © € F[[d]] and R € P[[d]] such that v}, g v}; for all i. If A is a Rosenfeld co-basis, then
Ritt co-reduction of the co-A-polynomial of A; and A; with i < j yields a co-critical relation

\Ilid‘-A:O

with ¥; ;€IF[[d]]. Denoting by ¥ the matrix of co-critical relations, we again have a natural
exact sequence

F([d])® £ F[ld)) - - F([d]] — Flld]]/(4) — 0.

The process of Ritt co-reduction can be generalized slightly beyond the linear case.
More precisely, let P* = IF[[D F]]po be the set of series P in the infinite number of
variables D F', such that P is polynomial in each particular variable in D F. Now let
A € (F[d] F)P be a linear system. We say that P € P* is co-reduced w.r.t. A if its co-leader
V =vp does not satisfy v}, IV for any i. In the contrary case, we may consider P as a
polynomial Py Vd4...4 Pyin V and write

P=(I4) ' P;Vi1d>A;+ P, (7)

for the unique o with V =d*v},, with degy P < d. After a finite number of such steps, we
obtain a relation

P=dd*A;+ Q, (8)

where @ does no longer depend on V' and v > V. Continuing the same process on @
as long as @ is not reduced w.r.t. A results in an infinite sequence of eliminations which
converges to a relation

P=0O-A+R, (9)
where © € P*[[d]]? and R is co-reduced w.r.t. A.
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4. ASYMPTOTIC DIFFERENTIAL ALGEBRA

4.1. The function field and its derivations

Given formal indeterminates z1, ..., 2, let 61, ..., dr denote the valuation-preserving partial
derivatives

0
51 =z 8_22
Let U=Q(A1,..., \x) and let p be a vector of U-linearly independent positive real numbers.

We give 3 =2V ... 2% the structure of a monomial group by
Zi<Ziepi>p-j.
Notice that 3 is isomorphic to an additive subgroup of R. From now on, we will assume
that IF is a field of grid-based series of the form
F=K[I3T,

where K is a differential field for the derivations 41, ..., dg.

REMARK 2. Most results in this paper still hold if we replace U by any subgroup of R which
contains Q(A1, ..., \x) and for any dominance relation < on 3=z - 27 with 2y, ..., 2, < 1.
However, proofs by induction over grid-based supports in 3 generally have to be replaced

by transfinite induction proofs.

Given 8% < 69 in A =61 - 6F and 2® < 1 in 3, we will have to consider generalized
Newton slopes between terms d* F and 287 F'. Both terms can be “equalized” modulo the
change of derivations d = (2*1% 1, ..., 2** §;), where

If d+ 4, then the monomials 2ME 2% are all infinitesimal, and we have

Kr =

[di,dj]:)\jﬁiz)‘indj*)\i IQjZAjndi—<1 (10)

for all 7, j. In other words, although the d; do not commute, they do commute from the
asymptotic point of view. Similarly, if d # §, then each derivation d; asymptotically
commutes with elements a € K in the operator ring F[d] =F[d, ..., dg):

dia —ad;=6;(a) 22" < 1. (11)

4.2. Dominant differential ideals

Let D = {d* i € N*} be as before. Any differential polynomial P € P =K I3 [DF] can
also be considered as a series P=3 s m Py in the ring

$=K[DF]|[31 2P.

Similarly, an operator © € $[d] can be considered as a series O ="

D =K[DF]|[d][3].

mesn M Om in the ring

Recall our convention to multiply monomials in the series on the right with the corre-
sponding coefficients.
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Because of (10), the set IK[D F] is not necessarily stable under differentiation. It will be
convenient to introduce the commutative differential ring IK[D F] obtained through formal

substitution of di, ..., dy by pairwise commuting variants di, ..., dy. The corresponding
bijection P+ P between K[DF| and K[D F], with inverse P — P, satisfies

diP=d; P+o(1),

forallie{1,...,k} and P€ K[DF]. If d+# 4, then (11) implies that K is a field of constants

for the derivations d. Given P € %, we will denote Dp =¢p. This notation is extended to
differential ideals I of $ using

D[:{DP:PGI}.

The set Dy is clearly an ideal of K[DF]. Assume that D;% 1. Given p € Dy, there exists a
P €1 with p= Dp. Replacing P by 0131 P, we may assume without loss of generality that
P=1, whence P= p+ FE with £ <1. Now we have Jip#o and d; £ <1 for all 7, whence
di P=d;p+ o(1) and dip= Dy, p € Dy. This proves that Dy is a differential ideal, called
the dominant differential ideal of 1.

REMARK 3. If I is a radical differential ideal, then Dy is not necessarily radical. For
instance, if we take k=1, d=4 and I = {(F — 2z ') (F — 2 %)}, then D;=[F?.

A differential ideal I of 5 is said to be strong, if it is closed under grid-based summation.
Since 3 is archimedian, the strong differential ideal [[I]] generated by a differential ideal
I C% is just the completion of I:

([I]={fe$:Vme3,3feS, f— f<m}. (12)

It follows that Dy;jy= D;. Any strong differential ideal I of $ is clearly a D-module. The
contrary is not always true: taking k=1, the D-module generated by f2, (6 f)2, (62 f)?, ...
does not contain f2+ z (5 f)2+ 22 (62 f)2+---.

PROPOSITION 4. Let I C % be a D-module such that Dy is finitely generated. Then I is
a strong differential ideal.

PROOF. Let P,..., Pp€ I with Py<---< P,<1 be such that Dy is generated by Dp,,..., Dp,.
Given @ € I, we claim that there exists an operator ® € DP with

supp® C & =CEsuppQ
QS = (SuppPlu--.Usuppppu{z)\llﬁ’.“’z)\kl{,})*

such that Q = ©® - P. We compute the coefficients @, of ® by induction over m € &.
Assume that O, , with Q = Q — ©._ - P <m has been computed. Then supp Q C & and
Q € 1. Since Dy is generated by Dp,, ..., Dp,, there exists an operator Q € IK[D F'][d] with
Qm=1Q - P;. Taking ©®, =1, it follows that () — @x- P <m, so the induction hypothesis
is satisfied for the next monomial m >=m in &. By induction, we thus compute an operator
® € D? which satisfies ) — O P <m for all m e &. It follows that Q=0 - P.

Having shown our claim, let (Q;);jes € I 7 be a grid-based family. Then there exists
a family of operators (0;);es € (DP)? with Q; =0, - P and supp ©; C (supp Q,) & for
all j € J. For each m € 3, and using the facts that {n € &:n>m} is finite and (Q;);es is
grid-based, there are only a finite number of indices j € J with @; > m. Consequently,

(©;)jey is a grid-based family and >-,; Q;=(3_,c, ©;)- Pl O
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REMARK 5. We do not know yet whether the dominant differential ideal of a finitely
generated D-module is necessarily finitely generated as well.

4.3. Asymptotic reduction

Let us consider a vector A = (Ay, ..., Ap) C 3P with D4, ¢ K for each i. A series P € 3 is
said to be asymptotically reduced w.r.t. A if Dp is Ritt reduced w.r.t. Da= (D4, ..., Da,).

Due to the presence of H in (2), a similar division technique as for standard bases will
not always work in the case of asymptotic reduction: infinite sequences of partial reductions
may give rise to infinite powers of initials and separants. Nevertheless, we will now show
that the mechanism does work in the special but important case when all initials and
separants are 1.

We say that A is normal if A;<1 and IDA,. = SDA,. =1 for all i. Given P €8, we claim
that there exists an expression

P=©-A+R, (13)

where © € DP satisfies ® < P and R is reduced w.r.t. A. We will call ® and R the quotient
and remainder of the asymptotic reduction of P w.r.t. A. The coefficients of ® and R are
computed by induction over the grid-based set

G = (supp AU {zM*%, ..., 2M%1)*supp P.
So let m € & and assume that we computed @, and R, for all n>m, in such a way that
P=0©,,-A+P, (14)

with supp PC®and P <xm. We may assume without loss of generality that Px=m (if
P <m, then we may simply take @, =0). Ritt reduction of D s w.r.t. D 4 yields a relation

Dp=Q-Da+5,
with QE]K[I?F][&]” and S € K[D F]. In view of (10) and (11), we get
Pa=0-A1+5+8 (15)

with Q € K[DF][d]?, S € K[DF] and S < 1 with supp S C {z%%, ..., 2**}* Taking
O,,=Q, it follows that

— @ ALP

= P-mB@, A

= m§+P<m+mQA<1+m§

aeiilav

If S # 0, then P is reduced w.r.t. A and the construction stops. Otherwise, we have

supp P C & and P < m and the induction hypothesis is satisfied for the next mono-
mial m € 6.

We will say that A is quasi-normal if Ip,, = Sp,, € K# for all 7. In that case, let
B;=A;/([d" F] A;) for each i, where d"" F is the leader of D4, and [d" '] A; the coefficient
of d" F in A;. Then B = (B, ..., Bp) is normal and we call it the normalization of A.

REMARK 6. If A is not quasi-normal, then the same argument still leads to a relation
HP=0O -A+R,

with H € CH[\LI CHS\IA1 Cﬂl\ip CHS\IAP whenever the reduction process stops. However, we no longer

obtain a nice relation in the case when P reduces to 0.
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4.4. Asymptotic co-reduction

As we did in section 3.6 for Ritt reduction, it is natural to introduce asymptotic co-
reduction, the dual notion of asymptotic reduction. Since 14 64 62+ --- cannot be applied
to z, we will assume d+# 4. The set

$* = K[[D Fl]po1 L3T
plays the role of $ in the dual setting. Similarly, operator algebra
D* = K[[D F]]pa[d]] L3T

is the natural counterpart of ID. In a similar way as before, one introduces the commutative
variant K[[D F|]po of K[[D F]]pol- Again, the dominant part D; C K[[D F]|p of a
differential ideal I C $* is a differential ideal.

Any series P € $* can also be regarded as a series in the variables D F' and z, with
a support supp’ P which is a subset of § ={d** F ---d* F 3: a1, ..., ar € N, 3 € 3}. A
subset & C § is said to be admissible if it occurs as the support of a series in $*. A family
(P))ier € ($*)" is said to be summable if |, supp’ P; is admissible and {i € I: P;# 0} is
finite for each f € §. In that case, >, ;P € $*. A differential ideal I of $* is said to be
strong if it is closed under infinite summation.

Let $f,, be the set of series in $* which are strong linear combinations of monomials
dF---d* F3€§ of weight a1+ +ay p+ -+ ap 1+ + o, i at least w. The strong
differential ideal [[I]] generated by a differential ideal I C $* coincides with a suitable
completion of I:

[I]={f€$:¥me3,VweN,3f€8* Je€$r,,, f — f —e<m}. (16)

It follows that Dy = [[Dj]]. Any strong differential ideal of $* is a D*-module. Any
D*-module I C $* such that Dy is strong and finitely generated as a strong differential
ideal, is a strong differential ideal.

Consider a vector A € ($%)P with D, ¢ $ for all i. We will say that A is co-normal,
if A; <1, IT)Ai = SEAi =1 and Dy, is linear for all i. Given P € $*, we say that P is
asymptotically co-reduced w.r.t. A if Dp €K or v}y, gvp for all i. In a similar way as above,
asymptotic co-reduction of P w.r.t. A yields a relation

P=©-A+R,
where © € (ID*)? satisfies ® < P and R is co-reduced w.r.t. A.

5. QUASI—LINEAR DIFFERENTIAL IDEALS

5.1. Asymptotic bases

Let A € $” be normal in the sense of section 4.3 and assume that D4, is linear for each i.
We say that A is an asymptotic basis, if D 4 is a Rosenfeld basis and if each pair (A;, A;)
with ¢ < j satisfies an asymptotic critical relation

d*A;—dPA;=0©- A, (17)

where o, 3 € N and ® € D are such that d Dy, — ci'BDAj = Dg- D4 is a critical relation
for Dy, and Da;. We call d* A; — ds A; the asymptotic A-polynomial of A; and A;. We
will denote by X the matrix formed by the ¢=p(p —1)/2 row vectors ¥; ; € DP, such that
¥; ;- A=0is an asymptotic critical relation.
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More generally, we say that A € 8P is an asymptotic basis, if A is quasi-normal and if
its normalization is an asymptotic basis in the above sense.

LEMMA 7. Let A € P be a normal asymptotic basis and ¥ € DP. Then there exists an
operator ® € D? such that ¥ —® - W A.

Proor. We will construct ® by induction over the grid-based set
® = (supp AU {2M*%, ... 2%} )*supp ¥,

Let m € & be such that ®. , has been computed. As the induction hypothesis, assume
that m>=W¥- A, supp P, C & and

U=U_& ,-T<m.

Since ¥ - A <m, we have ¥,,- D 4 =0. Hence, the exactness of (5) implies the existence of
a vector V' with entries in K[D F|[d], such that ¥,,=V - %;. Taking ®,=V, we have

V=Pv-&_,-X<m
and supp \il C &. By induction over &, we obtain a vector ® with ¥ —® - X g¥-A. [

COROLLARY 8. The strong D-module of operators ¥ € DP with ¥ - A =0 is generated by
the rows of X. O

COROLLARY 9. Let A € 3P be a normal asymptotic basis. Then the strong differential ideal
generated by A is given by [[A]]=DP- A and coincides with the set of P €% which reduce
asymptotically to 0 w.r.t. A.

PROOF. Given P =¥ - A € D? - A with P # 0, the lemma implies that there exists
an operator ¥ =W — & - X with P =¥ - A and ¥ < P. In particular, Dp € [D 4], so
that [[A]] = DP - A, by proposition 4. Furthermore, Dp € [D 4] implies that P is not
asymptotically reduced w.r.t. A. Now let R be the remainder of the asymptotic reduction
of P w.r.t. A. Since R € [[A]], the above argument shows that R =0. O

A differential ideal I of $ is said to be quasi-linear if Dy is linear.

PROPOSITION 10. Let I be a strong differential ideal of 5. Then the following conditions
are equivalent:

a) I is quasi-linear.

b) I admits a normal asymptotic basis.

PRrROOF. Assume that [ is quasi-linear. By definition, there exists A € $? with A; < 1,
Da, e K[d|F, I4,=Sa,=1 for each i, and such that D 4 is a Rosenfeld basis. Given i< j, we
claim that asymptotic Ritt reduction of the asymptotic A-polynomial of A; and A; yields
an asymptotic critical relation (17). Indeed, the remainder R of the asymptotic reduction
must vanish, since Dr € D= D4) and Dp is reduced w.r.t. A. We thus get a relation (17).
Furthermore, Ritt reduction of d*D4 —dPDpw.r.t. Da yields d“Ds—dPDg=De-Da,
which is thereby a critical relation for D4, and D Aj-

Inversely, assume that I admits a normal asymptotic basis A. Given P € I, corollary 9
implies that P reduces to 0 modulo A. In particular, Dp € [D 4] and [D4] is a linear
differential ideal. (]
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5.2. Asymptotic co-bases

It is rather straightforward to dualize the theory from the previous section. Let us briefly
state the dual versions of the main results, while omitting proofs.

Let A € ($*)? be co-normal in the sense of section 4.4. In particular, D4, is linear for
each 7. We say that A is an asymptotic co-basis, if D 4 is a Rosenfeld co-basis and if for
each pair ¢ < j, we have an asymptotic co-critical relation

d*A;—dPA;=0©- A, (18)

where ., 3 € N* and ® € D* are such that d* D4 —dP D= Dg- D 4 is a co-critical relation
for D4, and D 4;. We will denote by X the matrix formed by the ¢=p(p —1)/2 row vectors
¥, ;€ (D*)?, such that ¥; ;- A=0 is an asymptotic critical relation. A differential ideal I
of $* is said to be quasi-linear if Dy is linear.

PROPOSITION 11. Let A be a co-normal asymptotic co-basis. The strong ID*-module of
operators W € (D*)P with ¥ - A=0 is generated by the rows of 3. O

PROPOSITION 12. Let A € ($%)P be a co-normal asymptotic co-basis. Then [[A]]=(D*)P- A
coincides with the set of P € $* which co-reduce asymptotically to 0 w.r.t. A.

PROPOSITION 13. Let I be a strong differential ideal of $*. Then the following conditions
are equivalent:
a) I is quasi-linear.

b) I admits a co-normal asymptotic co-basis.

5.3. Solving quasi-linear equations with respect to 6

In this section, we consider an asymptotic basis A in the special case when d =d and K is
a field of constants for 8. We will show the existence of solutions to the equation A(f)=0
in the ring K[log z] [31, where K]log z] = K[log 21, ..., log 2].

LEMMA 14. Let A € (K[0]F & K[log z])? be a Rosenfeld basis. Then there exists an
f €Kllog z] with A(f)=0.

PrOOF. Applying the tangent cone algorithm to Ay, we obtain a matrix ® with coef-
ficients in IK[[d]] such that © - Ay, € (K[8] F)? is a Rosenfeld co-basis. We claim that
g = —0 - A is compatible with @ - Ay, in the sense of [vdHO7, Section 3.2|, i.e. that
¥ . g=0 for any ¥ e KJ[[4]]? with ¥ - O - A}, =0. Indeed, let 3 be the matrix of critical
relations for the Rosenfeld basis Ayy,. Since K[[d]] is a flat ring over IK[], the exact sequence

K[d]* — Kld]*» — K[d] — K[d]/(Ajn) — 0
transforms into an exact sequence
K[[d]]* — K[[d]] 4" — K[[d]] — K[[d]] /(A1) — 0.

In other words, given ¥ € K[[§]]¢ with ¥ - © - Ay, = 0, there exists a ® € K[[d]]* with
¥ -O=®- 3. It follows that

V.0 Ay T.g=0.0-A=3-3-A=0.
In [vdHO7, Section 4.2, we have shown how to compute a solution in KJlog z] to

©- A(f)=0-A(f) —g=0.
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Now Ay, is in the strong ideal generated by © - Ayy, so there exists a matrix O with
coefficients in K[[d]] with © -0 Aj, = Ajj,. Consequently, there exists a matrix ® with
entries in K([[d]] and @ - ©® —Id=& - . We conclude that @ - @ - A—A=d-X-A=0
and A(f)=0©-©-A(f)=0. O

PROPOSITION 15. Let A € $P be an asymptotic basis. Then there exists an f € K[log z] [3]1]
with A(f)=0 and f<1.

PrOOF. We may assume that A is normal. We compute the coefficients f, of a solution
f € K[log z][[31 with supp f € & = (supp A)* by induction over m. We have f; = 0.
Given m € &, assume that f, has been computed for all n > m, in such a way that
Ay xmest S App xm=m for o= fi . We have

A+<p,><m,cst

QYN
3

3

AJer,Xm,lin

A
3

A+<p,><m,hi

and each asymptotic critical relation
0%A;—6PA;=0-A
gives rise to a relation
5a‘4i,+e0,xm_5ﬁAJ,+¢,Xm:®'A+e0,Xm-

Extracting dominant parts, it follows that Da, ., is a Rosenfeld basis. Moreover,
Ao xmlin = Alin,xm + o(m), whence Da_, .. € (K[0]F @ K[log 2])P. By lemma 14,
it follows that Da, ., admits a solution g € Kllog z]. Taking fm =g and ¢ = fem,

we have supp A1 C & and Ay; xmest < Atg,xm, 50 the induction hypothesis is ver-
ified for the next monomial in &. O

6. PROVING QUASI-LINEARITY

6.1. Initial quasi-linearity

LEMMA 16. Let A € PP be a Rosenfeld basis w.r.t. d= (2 "6y, ..., 2% 6;,) and let d™ F be
the leader of A; for eachi. Assume that A; cst=0 and A;=d" F +o(1) for alli. Consider

the critical relation

H(Sa,d*A; —S54,dPA;)=©- A (19)

obtained by Ritt reduction of SA]. d* A; — Sy, dP Aj; modulo A. Then © < H. Moreover,
if Ia,= 14, ., +0(l4,) for each i, then A is an asymptotic basis.

PROOF. Let Rop= S4,;d* A; — S, dP Aj. The process of Ritt reduction yields a sequence
of relations

HpRp: Qp d" Aip+Rp+17 (20)

obtained by pseudo-division of R, by d77 Aj,, considered as polynomials in the common
leader V =d™*"» F of R, and d™ A; . In particular, R, 1 is free from V. At the end of
the reduction process, we have R, =0 for some gq.
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Let us proof by induction over p that @, < H, R;, and thus R,11 < Hp R;,. From
valy (D grr Ai,,) =1, we deduce v =valy(Dg,q» Aip) > 1. Let C be the coefficient of V" in
Qpd™ A;,. Then C' is also the coefficient of V¥ in Hy Ry, since Ry is free from V. In
particular, Q,d" A; =< C < Hy R,. Telescoping the relations (20) for p=0,...,q — 1, we
get O <X H.

The hypothesis A; =d™ F + o(1) implies in particular that Sa, =1+ o(1). If we also
have I, = Ia, ., + o(I4,) for each i, then H = Hes + o(H), whence (19) can be divided
by 0 and rewritten into an asymptotic critical relation. U

PROPOSITION 17. Let A be a Rosenfeld basis w.r.t. § and assume that f € T satisfies
A(f)=0, but Ha(f)#0. Then there exist m,n€ 3 and d=(2*1%61, ..., 2 "% 5;), such that
A7 . xn 15 an asymptotic basis w.r.t. d.

Proor. Consider the Rosenfeld basis B = Ay w.r.t. §, which satisfies B; st =0 for all ¢.
Let 0™ F be the leader of B; for each i. Since Hp cst # 0, the coefficient [6™ F|B; € IF of
0" F in B; does not vanish. Taking z* sufficiently small, we have [d" F| B; > [d® F'| B; for
all s# r;. From now on, let us consider the entries of A and B as differential polynomials
in d. Modulo a multiplicative conjugation by a sufficiently small n € 3, we may assume
without loss of generality that B; = B 1in + o(B;) for all 4, while preserving the fact that
[d" F|B; >~ [d® F] B; for all s+ r;. Modulo a division of each B; by [d" F|B;, we are thus
in a position where B satisfies the conditions of lemma 16. We conclude that B is an
asymptotic basis w.r.t. d, and sois B_y_  =A,y_  for any m<1. O

6.2. Dualization

In this section, we assume that d=+ §. Given a strong differential ideal I C 8, the dualization
of I is the smallest strong differential ideal I* C $* which contains I.

LEMMA 18. Given a strong quasi-linear differential ideal I C %, its dualization is again
quasi-linear and we have D= D7.

PrROOF. Let A € 8P be an asymptotic basis for I and let 32 be the vector of critical relations
for A, giving rise to an exact sequence

K[d]|"® — K[d]P4 — K[d] — K[d]/D; — 0. (21)

Since K[[d]] is a flat ring over K[d], we also get an exact sequence
K([d]]"® — K][d]] 4 — K[[d]] — K][d]]/D; — 0. (22)

Now consider an element P =W - A # 0 with ¥ € (D*)?. We claim that we may rewrite
® =Q- X+ E in such a way that E < P. Indeed, using the exactness of (22) instead of
the exactness of (5), this is proved in a similar way as lemma 7. Our claim implies that
Dp=D=-Djy€e D? This shows that D(ID*)P.A = DT

Now consider a matrix € with entries in IK[[d]] such that B=- A is normal and Dp
is a Rosenfeld co-basis. We claim that B is an asymptotic basis for (D*)P- A. Indeed, as
in the first part of the proof of proposition 10, asymptotic co-reduction of the asymptotic
co-A-polynomial of B; and B; with i < j yields an asymptotic co-critical relation for B;
and Bj. Our claim and proposition 12 imply that I* = (D*)P- B = (ID*)?- A is quasi-linear.
We conclude that Dy« = D(p+r. o= D7. O

LEMMA 19. If I CS is a strong quasi-linear differential ideal, then so is I*.
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PROOF. Assume that Dy is generated by Ly, ..., L, € K[d]F. Then Dj is again generated
by Li, ..., Lp. O

6.3. Changing derivations

We will now study what happens to quasi-linear differential ideals when changing the
derivations. Given two systems of derivations

d = (2M%4y,..., 2 % 5)
d = (2M%5, ..., 22 5))

with 2%, 2% <1 we will write d’ <d if 2 < 2", In that case, we have
BCHCIC(3),

where $'=K[D’ F][3]1 and ($')*=K[[D’F]]polL3] denote the natural counterparts of $
and $* for d’. More generally, we will use primes when working with respect to d’.

From now on, let A € ($*)? be an asymptotic co-basis. For each i, let d"* F be the co-
leader of D4,. The largest d’' < d for which DY, is not reduced to a single term for some i,
is called the next critical derivation. If A is also quasi-normal w.r.t. d’, then it follows in
particular that (d')™ F is the leader of D4, for each i.

LEMMA 20. Let A € ($%)? be an asymptotic co-basis w.r.t. d and let d’' < d be the next
critical derivation. Assume that D)y, is linear for each i. Then A € ($')P is also an
asymptotic basis w.r.t. d'.

Proor. Without loss of generality, we may assume that A is co-normal w.r.t. d. We will
denote by A’ the normalization of A w.r.t. d’. Let us prove that any element P € [A]
asymptotically reduces to 0 w.r.t. A’. In particular, this will imply that the asymptotic
A-polynomials of the form (d')* A} — (d')P A} asymptotically reduce to 0 w.r.t. A’, and
thereby give rise to the required asymptotic critical relations for A’.

Assume for contradiction that there exists a P € [A], such that Dp is reduced w.r.t. D/y,.
We may even assume that DJp is totally reduced w.r.t. Dy, i.e. that each variable Ve D' F
with Upr, < V for some i has been eliminated from Dp. Since A is an asymptotic co-

basis w.r.lt. d, asymptotic co-reduction of P yields a relation P =@ - A. Let us prove by
induction over m € supp © that m ©,,- A <’ P. This yields the desired contradiction, since
this would imply P=0 - A <’ P, by strong linearity. L

Let P=P— @, - A~'P. Then Oy, is the quotient of the co-reduction of Py w.r.t. D 4.
Consequently, starting with R; = P, there exists an infinite sequence of equations

Ri=m®;- A+ Rip1 (R € K[DF]lpo[d]]"),

each of which is induced by a partial co-reduction of the type (7), and such that
On=>_ &
i

More precisely, let V =d® F' be the co-leader of R;  and write R; m = R m.d Vi ..+
R; mo. Then there exists an index j with V =dP v}, |, ®; j= (RimaV? /14, ) dP and
®; ;y=0 for j'# j. Assuming that R; ~' P, we must have m R; y 4V <'P since Dp. = Dbp
is totally reduced w.r.t. Djg and Djp, 1 ainvolves (d)2F((d)*PFr)= D, - Combined
with the fact that d® A; =<'V, this yields m ®;- Ax'm R; ;n V¢ <'P and R;11~'P. In
other words, our hypothesis P ~’ P implies m ®;- A <’ P for all i, whence m © <’ P. [
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REMARK 21. The lemma admits an alternative proof based on the fact that the asymptotic
co-critical relations for A w.r.t. d obtained by asymptotic co-reduction of the asymptotic
co-A-polynomials continue to provide asymptotic critical relations for A w.r.t. d” < d
which are sufficiently close to d. Using lemma 10, it follows that A is an asymptotic basis
w.r.t. d”. If d’<d"”, then asymptotic reduction of the asymptotic A-polynomials w.r.t. d’
yield new asymptotic critical and co-critical relations w.r.t. d”, which allows us to continue
the process with d” instead of d. It can be shown that d’ is reached after a finite number
of steps.

7. ALGORITHMS

Given an effective ring K, we recall that a multivariate power series P € K|[[z1, ..., zx]] is
computable, if there exists an algorithm which takes ¢ € N* on input and which outputs
the corresponding coefficient P; of z*in P. The set K[[z1, ..., 24]]°™ of such series forms
a differential ring. Although K is usually a field, it is also allowed to take a non-commu-
tative ring of operators for K.

Given an effective monomial group 9, a grid-based series P € IK[IMT is said to be
computable if there exist infinitesimal my, ..., m,, € MM and n € M, as well as a computable
series P € R|[z1, ..., zt]], such that P = P(my,...,m,,) n. We denote by IK [T ™ the ring
of such series.

The definition of computable power series applies in the obvious way to differential
operators ® € KJ[dy, ..., di]]. More generally, a series P € K[[D F|]po is said to be
computable, if there exists an algorithm which takes a monomial M = (d** F') --- (d® F)
on input and which outputs the corresponding coefficient Py;. We denote by K[[D F]|pol
the ring of such series.

Throughout this section, we will assume that A and p as in sections 3.1 and 4.1 have
been fixed and that U is an effective field with an effective zero-test. For instance, we may

take U= Q(e) and p;=r'.

7.1. Asymptotic bases for linear differential ideals

Assume that K is an effective field with an effective zero-test. Let 3 = 2] - 2z}, F =
KI3D%™ and P=F[AF]. Consider a Rosenfeld basis A € P! | such that the leaders of
the A; are known (remind that we do not have a zero-test in IF). Then we may apply the
theory from section 6 in order to find an asymptotic basis for [A] w.r.t. 4.

Algorithm asymptotic_basis(A)
Input: a Rosenfeld basis A € Pf with known leaders.
Output: an asymptotic basis for [A].

Step 1. [Initial asymptotic basis|
Let d™ F' be the leader of A; for each <.
Take d sufficiently large, such that [d™ F| A; = [d® F] A; for all ¢ and s+ r;.
By lemma 16, A is an asymptotic basis w.r.t. d.
Go to step 4.

Step 2. |[Dualization]
Normalize A.
Compute D 4 € (K[d] F')P with respect to d.
Using the tangent cone algorithm, find a Rosenfeld co-basis B € (IK[[d]]*°™ F')? for D a.
For each B, let ®; € (K[[d]]°°™)? be such that B;=®;- D a.
Replace A by (®1-A,..., 8, A).
By lemma 18, A is an asymptotic co-basis w.r.t. d.
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Step 3. [Change derivations|
Compute the next critical derivation d’ and replace d by d’.
By lemma 20, A is an asymptotic basis w.r.t. d.

Step 4. [Done?|
If d=4, then return A.
Otherwise, go to step 2.

REMARK 22. It is readily checked that none of the computations with the series requires
the use of a zero-test in IF. For instance, in step 1, it suffices to compute the coefficient
[6° F] A; up to the order of [0" F'| A;: if [0° F| A; < [6" F| A;, then [d™ F] A; > [d® F] A; for
all d. Similarly, for the computation of the next critical derivation d’ in step 3, it suffices
to evaluate [0° F] A; up to the order of [6™ F] A;, where 6™ F’ stands for the co-leader of A;.

THEOREM 23. The algorithm asymptotic_basis is correct and terminates.

PRrOOF. The correctness being ensured by lemmas 16, 18 and 20, it suffices to prove the
termination. Let d',d?, ... and A', A% ... be the successive values of d and A at the start
of step 2. For each d’ and j € {1,...,p'}, let (d")"™ F be the leader of Az, and consider the

i
p'L
chains, which implies the finiteness of the sequence. O

anti-chain S* = (v, ..., ;) € (N¥)?". Then S', S, ... forms a decreasing sequence of anti-

7.2. Ensuring ultimate quasi-linearity

The argument from the proof of proposition 17 can be generalized so as to provide asymp-
totic bases w.r.t. §. More precisely, let us consider a Rosenfeld basis A € PP with H4 #0
and whose leaders are known. If [A 4] is quasi-linear for a sufficiently small m=2z*<1,
then we will show how to compute such an m and an asymptotic basis [Axm]. If the
algorithm fails, then we will provide a proof that Acg+ 0.

Algorithm ql_asymptotic_basis(A)

Input: a Rosenfeld basis A € PP with H4+# 0 and known leaders.

Output: an asymptotic basis for [A | for some m=2z*<1 or
fail and a certificate that Acs # 0.

Step 1. [Initial asymptotic basis|
Let d™ F' be the leader of A; for each <.
Take d sufficiently large, such that [d™ F| A; = [d® F] A; for all ¢ and s #7r;.
Replace A by A«m, where m <1 is sufficiently small such that D 4 is affine.
Go to step 4.

Step 2. [Dualization]
Normalize A.
Compute D 4 € (K[d] F)P with respect to d.
Using the tangent cone algorithm, find a Rosenfeld co-basis B € (K[[d]]*™ F))4 for D a.
For each B, let ®; € (K[[d]]°°™)” be such that B;=®;- D 4.
Replace A by (®1-A,..., 8, A).

Step 3. [Change derivations|

Compute the next critical derivation d’ and replace d by d’.

Replace A by Ay, where m < 1 is sufficiently small such that D 4 is affine.
Step 4. [Done?|

If DA cst# 0, then return fail.

If d=4, then return A.
Otherwise, go to step 2.
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THEOREM 24. The algorithm ql_asymptotic_basis is correct and terminates.

PrOOF. The algorithm is a perturbation of the algorithm asymptotic_basis from the
previous section. In steps 1 and 3, lemmas 16 and 20 can only be applied under the
condition that DA st # 0, in which case the previous correction and termination proof
generalizes. Whenever D 4 st 0 in step 4, this implies in particular that Acs # 0 for the
input basis A. O

7.3. Existence of zeros revisited

Until now, we have not really used the fact that the derivations are allowed to act in a
non-trivial way on K. In the next section, we will work over IK Lz z;ICU_ 11 [[z;?]] instead
of IK[L3T. This requires some adaptations of proposition 15.

PROPOSITION 25. Let K be a field of constants for & and consider an asymptotic basis
A€ ((K[0]F)I3TD @ K[log z] L31)?. Then A(f)=0 admits a solution in K[logz|[L[3]1.

PrOOF. This is proved using a straightforward adaptation of the proof of proposition 15. [J

PROPOSITION 26. Let K be a field of constants for d and consider a Rosenfeld basis
A€ (KI3D[0]F @ Kllogz][31)P. Then A(f)=0 admits a solution in K[log z] [3T .

ProoOF. Using a procedure similar to ql_asymptotic_basis, we may compute a monomial
m =1 in 3 such that [[A x| is quasi-linear w.r.t. §. Indeed, since A admits no non-linear
terms, instead of choosing m < 1 such that D 4 is affine in steps 1 and 3, we may now choose
m = 1 sufficiently large such that D4 is linear. By proposition 25, [[Axm|] admits a zero g
in K[log z] [31. It follows that f= g/m is a solution to A(f)=0. O

Assume now that we wish to work over K T2y zF 1 [zF1 instead of KI31. This
fits in our setting by taking IK = k31 for a constant field k and a copy 3 =2\ --- ¥ of

3 with §; = 2¢£ on K. The variables Z; and z1, ..., 21 will simply be ignored.
PROPOSITION 27. Let k be a field of constants for 8. Denote IK = k[ zl --- Y ;1 and
L =k[log 2] 27 2Y 1. Consider an asymptotic basis A € K TzYTP. Then there exists

an f € LLzPT with A(f)=0 and f <1 as a series in z.

PrOOF. The proof is analogous to the proof of proposition 15. We first notice that the
absence of the variables z1, ..., zx_1 from A implies their absence in the asymptotic critical
relations and during all computations in the proof. This time, the Rosenfeld basis B =
Da,, .. lies in (K[6] F © LL)? instead of (K[6] FF @ K[log z])P. By proposition 26, the
equation B(g) = 0 admits a solution in kflog Z] Lz --- ZYT. Since Z; does not occur
in B (regarding log Z, and Zj as separate variables), the constant term [2)]g € L of ¢
w.r.t. Zx is again a zero of B. This ensures that the analogue of the proof of proposition 15
goes through. O

7.4. A zero-test in extension rings with solutions to PDEs

Let k be an effective field with an effective zero-test. Assume that we are given an effective
differential subring A of k[[z1, ..., z5]]°°™ for § with an effective zero-test. Assume also
that the coefficients of f € A as a series in z; are still in A and that there exists an
algorithm to compute them. These coefficients lie in the effective differential ring A’ =
ANKk[[z,..., 2] C kL2 2t 11. We will denote by K C k2" -z ;T the quotient
field of A’. In view of the previous section, we may apply the theory from this paper for
series in the field F =K [ 31 ™, where 3 = z}g.
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Let P € A[AF] be a partial differential equation with a solution f € k|[z1, ..., z]]<™
and coefficients [2}] f € A°. Assume that there exists an order ng such that the equation

Pij(e)=0  (e<") (23)

admits only ¢ = 0 as a solution in k[log z] [z --- zY 1 [zYT. This is typically the
case when P is sufficiently non-singular, so that the coefficients of f in z; are given by
a recurrence relation. The differential ring A[A f] is clearly a subring of k[[z1, ..., z5]] ™.
We will now give an effective zero-test in this ring.

Algorithm zero_test(Q)
Input: a polynomial P € A[AF).
Output: true if P(f)=0 and false otherwise.

Step 1. [Initial order]
Set n:=np+1 and £:={P,Q}.

Step 2. [Rosenfeld basis|
If Q(f) = z; then return false.
Compute a Rosenfeld basis A € A[A f]? for £.
Let Z be the subset of Z € {Ia,,S4,,...,1a,,S4,} with Z(f) < 2.
If Z+ & then set £={Ay,...,Ap} U Z and repeat step 2.

Step 3. [Certification]
If ql_asymptotic_basis(AJrf,XZgo) does not return fail, then return true.

Step 4. [Increase order]
Set n:=2n and £:={P,Q}.
Return to step 2.

THEOREM 28. The algorithm zero_test is correct and terminates.

PROOF. Let us first prove the correctness. If the algorithm returns false, then we clearly
have Q(f)# 0. If the algorithm returns true, then the ideal [A, ; , .no] is quasi-linear in

step 3. By proposition 27, this implies the existence of a zero § € K[log z] [zV - 2T [z{'T

with ¢ < 1. Since Ha(f)#0, any solution of A ¢ is also a solution of P, ¢ and of Q4. It
follows that P, y(e) =0 for e =2;°d < z;,°. But we assumed that ¢ =0 is the only solution
o (23). It follows that Q4 ¢(e) = Q(f)=0.

Let us now prove the termination. For a fixed order n, the loop in step 2 terminates
because the successive rankings of A are lower and lower. If Q(f)#0, then we clearly have
Q(f) = 21 for a sufficiently large n. If Q(f) =0, then, for a sufficiently large n, we have
Z(f)#0=Z(f) =z} for all Z considered in step 2. Consequently, the successive values of
A in step 2 all satisfy A(f)=0. When entering step 3, we therefore have A , . 20,05t =0,
whence ql_asymptotic_basis does not return fail. 0

8. FINAL NOTES

Several remarks can be made about the generality of our zero-test. In order to avoid
unnecessary complications of the notations, we have presented our algorithm in the case
when we adjoin a single solution to a partial differential equation with initial conditions. Of
course, the theory of differential algebra also works for differential polynomials in a finite
number of indeterminates. It should be straightforward to generalize our zero-test to the
case when we adjoin several solutions at the same time.
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Similarly, we may replace the single equation P(f) = 0 by a system of equations
Pi(f)="--=Py(f)=0. In that case, the initial conditions generally lay in the ring A=
ANKk][z1,..., zx/]]™ for some k' < k. In particular, this requires to take F =K [[z}gﬂ w2V,
where K is the quotient field of A®.

We assumed that e = 0 is the unique solution in k[log z] [z --- z_ ;1 [zT to (23).
This condition is usually met in practice and in particular when Cauchy-Kovalevskaya’s
theorem applies. Nevertheless, the condition can probably be weakened to the existence
of a unique solution in k[log z|[[z]] or some ring in between. In order to prove such a
result, one would have to carefully study the supports of the series which arise during our
computations. We notice that the existence of a unique solution in k[[z]] is a minimal
requirement. However, in view of results such as theorem 1, it might be hard to escape
from the intrusion of logarithms. As a matter of fact, the proof of this theorem fails if we
replace K[[z]] by K]log z][[z]].

It is appropriate to notice one important advantage of our setting: we only required A
to be an effective subring of k[[z1, ..., zx]]°®™ with an effective zero-test. Such rings can be
constructed via a tower of extensions of k of the type considered in section 7.4. However,
A does not necessarily have to be of this type. For instance, in the case of ordinary
differential equations, we know that the series f in z occurring in Stirling’s series for I'(z 1)
is differentially transcendental over Q). We may thus take A =Q{ f}.

Even though the proof of the new zero-test might seem complex, we notice that the
actual algorithm is actually quite simple and can expected to be reasonably efficient.
Indeed, apart from the usual (inevitable?) step of computing Rosenfeld bases over FF, we
only have to apply the tangent cone algorithm a few times for series over the simpler field K.

Several points of a more theoretical interest might deserve further study. First of all,
we made a few artificial hypothesis on A and g, which one may try to remove as much as
possible. More importantly, it would be nice to have a genuine theory of asymptotic differ-
ential algebra, which goes beyond the quasi-linear case. In the continuation of [AvdDO04],
such a theory might even work for more general “asymptotic functions fields” than our fields

of grid-based series IK[3].
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