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Let P = P* denote the ring of analytic 2w-periodic functions in & on the real axis.
Let S = 8% denote the ring of formal Laurent series in P((e~")), whose coefficients are
defined on a common strip neighbourhood of the real axis. In this paper, we study the
linear differential equation

Le(x)hT (@) + -+ - + Lo(x)h(z) =0,

with coefficients Lg,...,L, # 0 in S. We prove that, after a change of variables z =
p(& + (&) with p € N* and ¢ € PZ, this equation admits a basis of r formal solutions
of the form

h=(pr—1(£)E" "1+ + @o()) exp(€F) exp(a(®)e™ + - + 91 (2)e”),

where ©o,..., 01 € 8%, £ € C and ¥1,... ,1y € PE. This generalizes a well known
result when P is replaced by C.

1. Introduction
Consider the linear differential equation
Lh=L.h") + -+ Loh = 0. (1.1)

It is well known, e.g. (Ince, 1926), that if the coefficients Ly, ... , L, are power series in
C][z]], then there exists a basis of r formal solutions to (1.1) of the form

h = (hrfllog’"_l Z24---+ hilogz + ho)z)‘eP(W),

where hg,...,h, 1 are power series in C[[¢/z]l,p € N*,A € C and P = Pz~ %/? +
.-« + Pz~ /7 a polynomial in C] {’/zj] without constant term. When replacing z by
e~ *, it follows that, if the coefficients Ly,..., L, are in C[[e"*]], then the differential
equation (1.1) admits a basis of r formal solutions of the form

h = (hr—l.’L'Til + 4+ ho)ekzep(ew/z’),
where ho,... ,hrilmrfl € (C[[e*m/l)]]jp c N*,)\ € Cand P € (C[ez/p]em/p‘ This classi-

cal result was generalized in (van der Hoeven, 1997) to the case when the coefficients

T The difference between the dates in the title and on the cover are due to the fact that this paper
was declared to be “uninteresting” after a long period of refereeing. Nevertheless, several people have
asked me for the paper since then, which made me decide to publish this preprint a long time after its
time of writing.
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Loy, ..., L, are transseries. This allows for instance to find bases of formal solutions to
equations like
€T
L(e®) g1 € ! 1998z r _
e + +erfe =0.
'+ ! f

A major actual drawback of the actual transseries theory (Ecalle, 1992; van der Hoeven,
1997) is that it only modelizes “strongly monotonic” asymptotic behaviour, i.e. we do
not allow oscillatory behaviour. In this paper, we make a first step towards the formal
study of asymptotic linear differential equations which do involve oscillation.

In section 3, we start by studying the equation (1.1) when L. =1,L._1,...,Lo € P,
where P = P* is the set of analytic 2w-periodic functions on the real axis in z. Notice
that elements of P are actually defined on a small strip neighbourhood of the real axis.
We show that there exists a basis of solutions to (1.1) of the form h € P[z]e**. We next
study the inhomogeneous equation

Lh=Lh" + ..+ Loh = g, (1.2)

with g € P[z] and show that this equation always admits a solution (and even a very
special, so called “distinguished solution”) in P[z]. This result persists in the case when
L, # 1, modulo a change of variables of the form = = Z + ¢(Z), where ¢ € P? is an
analytic 27-periodic function in Z on the real axis.

In section 4, we consider the case when the coefficients L; are in the set S of Laurent
series in P((e~ ")), whose coefficients are defined on a common strip neighbourhood of
R. We prove that, modulo a change of variables x = p(¥ + ¢), with p € N* and ¢ € P?,
there exists a basis of r solutions to (1.1) of the form

h=(or—1(B)E " + -+ po(F)) exp(£F) exp(tha(&)e™ + -+ - + 11 (F)e”),

where @g,...,pr_1 € ST, € € C and ¢1,... ,9q € P®. We will follow a similar proof
strategy as in (van der Hoeven, 1997), based on the Newton polygon method and distin-
guished solutions. Further generalizations of this result will be treated in a forthcoming

paper.

2. Preliminaries

2.1. THE COEFFICIENTS

Let P be the space of analytic, 27r-periodic functions on the real axis. Such functions
are actually analytic on a strip neighbourhood of the real axis (i.e. a set of the form
{#z € Cle > |Sz|}). Let S be the set of Laurent series f € P((e ")), such that the
coefficients f, are analytic on a common strip neighbourhood of the real axis. Clearly, &
forms a ring. We will denote by v; the valuation of f € S in e™*.

When solving algebraic or differential equations with coefficients in P or S, we will
encounter 2pm-periodic functions with p € N* as well as singularities on the real axis,
which need be circumvented by passing in the complex plane. For these reasons, we will
consider changes of variables

z = p(T + ¢(T)) = py(T), (2.1)

where p € N*, ¢ € P and the mapping 7y : & — & + (&) is bijective in a strip neighbour-
hood of R. Such a change of variables is called a narrowing and a composition of two



Formal asymptotics of solutions to certain linear differential equations involving oscillation 3

narrowings is again a narrowing. Usually, x and & are bound to certain strip neighbour-
hoods U resp. U of R with 7(&) C U and 7y bijective on U. The number p is called the
multiplicator of the narrowing.

Since we will sometimes work concurrently with several variables z, Z, it will be conve-
nient to write P¥ instead of P if we want to emphasize that its elements are 2m-periodic
in z (similarly, we will consider P?, S%, etc.)

ProPoOSITION 2.1. Consider a polynomial equation with coefficients in P*:
P(f)=Puf'+---+Py=0 (Ps#£0). (2.2)
Then there exists a narrowing x = p(Z + ¢(%)), such that (2.2) admits d solutions in P%,

when counted with multiplicities.

ProoF. Without loss of generality, we may assume that P is irreducible. Let v : t
t + 9 (t) be any immersion with ) € P!, such that the resultant of P and P’ does not
vanish on Im ~. Then each solution y; to

Py(x)y” + -+ Po(x) = 0 (2.3)
in a point z¢ € Im -y determines a unique analytic solution f; to (2.2) on Im 7 such that
fi(xo) = y;. Since Py, ... , Py are 2m-periodic, there exists a permutation o of {1,... ,d},

such that f;(zo + 2m) = y,(; for all 1 < i < d. By the uniqueness of analytic continu-
ation and induction over k, we infer that fi(z + 27k) = f,x(;(x) for all z and k € N.
Consequently, if p € N* is such that o? = Id, then fi,..., fq are all 2@p-periodic and
the narrowing x = py(#) satisfies our requirements. [

For each ring R and n € N, let R[z]q be the set of polynomials of degrees at most d
in z over R. In what follows we shall often consider polynomials in S[z] and S[z]4 and
interpret such polynomials as Laurent series in S with coefficients in P[z] resp. P[z]4.

Let €40 denote the set of finite linear combinations p1eMT 4 o e with
O1,y--. 0k € S[z]g and ¢1,...,9, € C. For each polynomial without constant term
P = Pged® 4 .- + Pie® in Ple®], we denote E4 p = Eq0e’’. We define

Ea=EPEur.
P

We will search for solutions to (1.1) in &,._1, modulo a suitable narrowing.
2.2. LINEAR DIFFERENTIAL OPERATORS

Let 0, = % denote the differentiation operator with respect to . Given a linear
differential operator

L=1L,0" + -+ Ly,
we define the derivative L' of L by
L'=r0, '+ -+ L.

For any f and g, we have the product formula

L(fg) = (LH)g + (L')g' + -+ (L0 ). (2.4)
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The operator L is said to be monic, if L, = 1. In that case, %L’ is monic as well. If the
L; are in S, then we will denote by L; , the coefficient of e™** in L; for each %, a.

Given a linear differential operator L and a function A, there exists a unique linear
differential operator Ly, such that

Lyn(f) = L(hf)

for all f. We call Ly, a multiplicative conjugate of L. The coefficients of Ly, are given
explicitly by

Lxh7i = L(Z)h = Z ('Z)Ljh(]z)

j=i

We notice that if L has coefficients in P, then Pe** and P|[z]e*® are stable under L for
each A € C. Consequently, if h € Pe**, then e~** L, has coefficients in P.

Given a linear differential operator L and a function v, we also define L o vy to be the
unique differential operator with

(Lov)(fey)=(Lf)oy
for all f. Such operators are encountered when performing a change of variables x = ().
Setting f = fo~, Lf = (Lf)oyand L = Lo+, we then have f(z) = f(ﬁ:) and Lf = Lf.
The coefficients of L are obtained from the relations

l

@) = @y
F@) = @ @) )
@) = @)@ - @ @) F @)

In particular, if v(&) = & + ¢ for some constant ¢, then £\ (z) = f)(#) and L; = Lo~y
for all j.

3. Linear differential equations with periodic coefficients

3.1. THE MONIC HOMOGENEOUS CASE

Consider the homogeneous linear differential equation (1.1), for coefficients Ly, ...,
L, € P with L, = 1. Let ‘H be the space of analytic solutions to (1.1) on the real axis.
Since L, = 1, we have dim’H = r. Let C be the space of analytic functions on the real
axis and consider the mapping ® : C — C defined by

(@f)(x) = f(z +27).

Since the coefficients of (1.1) are periodic, H is stable under ®. From now on, we will
only consider the restriction of ® to #, which is an isomorphism, since ® is invertible
and H finite dimensional. In particular, all eigenvalues of ® are non zero; let €>™* be such
an eigenvalue. Modulo the change of function h — h/e**, we may assume without loss
of generality that A = 0.

By Jordan’s theorem, the characteristic space associated to the eigenvalue e>™* = 1
can be written as a direct sum of invariant subspaces, each on which there exists a basis
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ho, - .- ,hy,—1 with respect to which @ is represented by the matrix
1 O
1 1
0 1 1

On such a subspace, we have in particular ®hg = hg, whence hg € P. Next, ®hy; = h;+hg
and setting @1 = h1 — ho3=, we observe that ®p1 = h1 + ho — ho“52% = ;. Therefore,
hy € Plz]y. Similarly, for each 1 < j < 19, one has ®p; = ¢;, where ¢; = hj — hj_15=.
By induction on j, it follows that h; € Plz];.

For each A € C, let vy be the dimension of the characteristic space H, associated to

the eigenvalue e*™*. We have just shown that

Hy C ’P[w],,x_le”.

In other words,

THEOREM 3.1. Assume that L. =1 and L,_1,... ,Lo € P. Then the solution space H
to (1.1) admits a basis of elements of the form

h € Pla]y -1 (A € 0),

where vy = dim H N P[z]e** for each A € C. O

3.2. INTEGRATION
LEMMA 3.1. Let g = ¢e?®, with 1 = gz + -+ + by € Plz]q.

(a) If X\ & Zi, then there exists a unique primitive [ g of g in Plx]qe’*.
(b) If X € Zi, there exists a unique primitive [ g of g in P[x]a41, such that ((g)o|1) = 0.
PROOF. Setting f = e, solving f' = g in P[z]e® is equivalent to solving
o'+ Ap=1
in P[z]. We will search for a solution of the form
= parz™ 4+ o

Then we have to solve the following system of equations:

Cur1 +Aparr = 0;
Oyt Ao = ha—(d+ 1)payi;
Yo+ Ao = o — 1.

In what follows, we will denote by a; the coefficient of e~

for each j. If X € ¢Z, then a; = 0.

in the Fourier series of 9;,
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We take pg41 = ﬁade“, whence pg41 =0, if A € Zi. The remaining ¢; are computed
by induction over j = d, ... ,0. We make the induction hypothesis that ¢;1, € P and

that the coefficients of e ** in the Fourier series of (j + 1)¢;j11 and ¢; coincide. Now let
> ke =0 = (j+ Dejn
kEZ

be the convergent Fourier series of ¢; — (j + 1)¢j4+1. Then we take

aj—1 _ Ck i
J Az ikax
j = ——¢ + - e
i j Z ik+ A ’
kEZ,ik+A#0

which is convergent and periodic (in the case j = 0, we understand a;_1/j to be zero).
Since any solution to ¢ + Ap; = ¥; — (j + 1)pj41 is analytic, we have ; € P. The
second induction hypothesis is again satisfied at the next stage, by definition of ¢;.

We have thus shown how to compute a primitive f = e?® of g, with ¢ € P[x]q11.
Moreover, if A € Zi, then @441 = 0 and f € P[z]qe’®. Finally, the primitive of g is unique
up to a constant factor. If A\ ¢ Zi, this implies that f is unique in P[z]4e’* with f' = g.
If \ € Zi, f is unique in P[z]441 with the property that the constant term (poe**|1) of
f vanishes. O

The primitive [ g as constructed in the lemma is called the distinguished primitive of
g. Notice that the mapping g — [ g is injective and linear on P[z]e*®, for each X € C:
this is clear if A ¢ Zi; otherwise, it follows from the fact that (¢ + ¥|1) = (¢|1) + (¥|1)
for all ¢ and 1. Consequently, the mapping [ may be extended uniquely to a linear,
injective mapping from the subvector space of C generated by the the vector spaces of
the form P[z]e*® into itself.

Let us denote by v, : C — N the mapping which associates vy to A. Notice that vy,
factors through C/Zi, since v (A + i) = v (A). We will now study the dependence of v,
on L.

LEMMA 3.2. Let L be a monic linear differential operator in P[0;]. Then

Vrs, = VL + Vp, -
PROOF. Let Z be the solution space to (L3, )h = 0 and for each \ € C, let Z\ C P[z]e?®
be the characteristic space associated to e2™, for ® restricted to Z. Then the distinguished

primitivation [ maps H into Z and H, into Z, for each A € C, while d, maps Z onto H
and 7y onto Hy for each A € C. For each A € Zi, we infer that

vpo,(A) =dimZ, = dim [Hy = dim Hy = v (N).
For A\ € Zi, we get
vpo,(A) =dimZy = dim([Hr & C) =dimHy + 1 = v (A) + 1.

This proves the lemma, since vy, (A) = 1 if A € Zi and vy, (A) = 0 otherwise. [
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3.3. THE MONIC INHOMOGENEOUS CASE

Lemma 3.2 may be generalized as follows:

LeEMMA 3.3. Let L, K be two monic linear differential operators in P[0.]. Then

VLK =V + VK.

PROOF. Let us prove the lemma by induction over the order s of K. For s = 0, we have
nothing to do. Assume that s > 0 and let h be a solution to Kh = 0 in Pe*® for some A
(such a solutions exists always: see section 3.1). We will first assume that h™' € Pe™?e.

Since each solution of h™ 'Ly, f = 0 in P[x]e”** determines a unique solution to Lf = 0
in P[z]e*+M® via multiplication by h, we have

Vnoin (1) = v (i + N) (3.1)
for all 4 € C. Given p € C, we have in a similar way
Vi (1) = vic (1 + N, (3.2)
and
Vh=1(LK) (1) = VLK (1t + A). (3.3)

Since h"'Kh = h™'K4,1 =0, we can factor h~' K, = Q9,. By the induction hypoth-
esis and (3.1), we get

Vh-1r,,0() = vi(p+ A) + va(p).

By lemma 3.2, we therefore have

V(h-1Lyn)(h—1Kxn) (B) = VL (p + A) +va(p) +va, (1)

Applying the lemma again, we also have

Vh-1k,, (1) = va(p) + va, (1)

Combining these two equations with (3.2), we obtain

V(h=1L ) (h—1Kyp) () = vr (i +A) + vk (p+ A).
But
(hileh)(hileh) = hil(LK)Xh,

whence the lemma follows from (3.3) in the case when h~! € Pe=?%.

In general, when e~**} is not invertible in P, we consider a change of variables z =
T +1e, with e € R* sufficiently small, such that h does not vanish on ie +R. Applying the
previous argument to the operators L = Loy, K = Ko~ and LK = (LK) o~y = LK, we
then find v = vj + vz. Moreover, v; = vp, since any solution f € Plz]e’* to Lf =0
determines a unique solution f = f o v € P¥E]e! to Lf = 0. Similarly, Vi = vk and

Vi% = VLK, Whence the lemma. U
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THEOREM 3.2. Assume that L. =1,L,_1,... ,Lg € P and g € P. Then (1.2) admits at
least one solution in Plx],, (o).

PROOF. Assume first that g is invertible in P. Then 8,(¢ 'Ly«,) is a monic operator
with coefficients in P and (8, (97 L«y))(f/g) = (0:(g7'L))(f) = 0, for any solution f
to (1.2). Inversely, there exists a solution h to

9.(9 ' L)(h) = 0, (3.4)

such that g 'Lh = 1: otherwise, Lh would vanish for all solutions to (3.4) and the
dimension of # would be at least r + 1.

Let us now write h = hoe 0%+ - -+ hpe*® with ho, ..., hx € P[z], Ao = 0 and pairwise
distinct \; modulo i. For each j > 0, we observe that g='L(h;);) € P[z]e®, whence
g 'L(h;jA;) = 0. Hence f = hy € P[z] is again a solution to (3.4) and g *Lf = 1. Now
lemma 3.3 implies that

Vam(gfleg)(O) = V!]*leg(O) + 1= VL(O) + ]-7

whence f € P[z],, (0)- This completes the proof in the case when g is invertible in P.
In general, let ¢ € R be such that ¢ > |sup,cp g(7)| and decompose g = ¢ + . Then

c and § are both invertible and by what precedes, there exist solutions to Lf; = ¢ and

Lfy = g in P[z],, (o). Consequently, f = f1 + f2 is a solution to (1.2) in P[z],, o). U

COROLLARY 3.3. Assume that L, =1,L._1,... ,Ly € P and g € Pz]q. Then (1.2) has
at least one solution in P[]y, (0)-

Proor. We prove the corollary by induction over d. In the case d = —1 we have nothing
to do. Assume therefore that d > 0. By theorem 3.2, there exists a ¢ € P[x],, (), With
Ly = gq. Then

L(pz?) = gaz® + d(L'p)x"" + -+ L.

Consequently, g — L(pz?) € P[z]4—1. By the induction hypothesis, there exists a 1) €
Pl#]a4vy (0)—1, sSuch that Ly = g — L(pa?). We conclude that f = pz? + ¢ is an element
in Pzt (0) with Lf =g. U

Let us now show how to privilege a particular solution to (1.2) among the solutions
in P[z]44., (0)- This solution will be called the “distinguished primitive” to Lf = g and
coincides with the distinguished integral if L = 0,. We first recall that P is a Hilbert
space for the Hermitian form defined by

2T

(Flo) =5 [ f@g@de.

For each j > 0, let H; be the vector space of h; € P, such that there exists a solution
h € Plz] to Lh = 0 of the form h = h;jz? 4+ --- + hg. For each f = frz* + - + fy,
we define 7, ,; (f) to be the orthogonal projection of f on H;. Notice that the operator
T 44 18 linear.

THEOREM 3.4. Assume that L, = 1,L,_1,...,Lo are in P and g € P|z]y. Then there
exists a unique solution f in Plx]qy,, (o) to (1.2), such that wp, i (f) =0 for all j. This
solution, which is denoted by L™'g, is called the distinguished solution to Lf = g. The
mapping g — L™ 'g is linear.
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Proor. Let f be a solution to Lf = g in P[z]44,,(0)- Let j be maximal such that
7p.i (f) # 0, if such a j exists, and let h = h;x’ 4 --- + hy be a solution to Lh = 0
with 7, 45 (f) = h;. Then f = f — h is again a solution to (1.2) in P[] 44, (0), but the
minimal index 7 with ﬂLymj-(f) # 0 is strictly smaller than j, if such a j exists. Repeating
the procedure, we therefore obtain a solution to (1.2) with 7y, ,;(f) = 0 for all j.

Assume that f is a second solution to (1.2) with LI, (f) =0for all j. If f # f, then
we would be able to write h = f— f = hjzl +---+ho, with hj #0and 0 = 7, (f—f) =
7L zi (hja?) = hj, which is impossible. Therefore, f=f.

Now consider g1,g2 € P[z] and let fi = L71gy, f» = L™1ga. We have L(f1 + f2) =
g1+ g2 and 7 i (f1 + f2) = 7T 4i (f1) + 7L 23 (f2) = 0 for all j. Consequently, L~" (g1 +
g2) = f1 + f2, i.e. L1 is linear. O

4. Asymptotic linear differential equations

4.1. THE NEWTON POLYGON METHOD

Consider the linear differential equation (1.1), with coefficients Lo, ... ,L, € S. Each
iterated derivative of h may be expressed as h times a differential polynomial h(Y) =
R;(f)h in the logarithmic derivative f = h'/h of h. For instance, Ro(f) = 1, Ri(f) =
fLR2(f) = f2+ f',Rs = f2+3f'f + f". Hence, solving (1.1) is equivalent to solving the
Ricatti equation

Ly Ry (f) + -+ + LoRo(f) =0,

modulo one integration and one exponentiation: h = e/ /. We will use the Newton poly-
gon method in order to solve this equation.

For this purpose, we will actually show how to solve the slightly more general, asymp-
totic Ricatti equation

R(f):LrRr(f)++LORO(f) =0 (Uf >w)7 (41)

with coefficients Ly, ... ,L, € S and integer w < 0 or w = —oo. We recall that vy € QU
{o0} denotes the valuation of f in e~*. Two main types of solutions can be distinguished:
those for which vy > 0 and those for which vy < 0. Actually, the Newton polygon method
will be used in order to reduce the resolution of (4.1) to the case when we only need to
find the solutions with vy > 0. In section 4.2, we will show how to solve this special case
using the results from section 3.

If vy <0, then R;(f) and f7 coincide up to lower order terms for all j, i.e. VR (f)—fi >
UR,(f)- Hence, the first term ce™#* of a solution to (4.1) with vy < 0 must also be the
first term of a solution to the asymptotic algebraic equation

L.ff+ - +Ly=0 (0>vf>w). (4.2)

The exponent p € Q of such a first term can be read of from the Newton polygon and
the coefficient c is a root of a Newton polynomial (see section 4.3), which is an algebraic
equation over P. Furthermore, proposition 2.1 ensures that we may assume without
loss of generality that these “potential dominant terms” ce™"* of f are in §, modulo a
narrowing of x.

Assume that we have determined such a potential dominant term ce ™ #* € S of a
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solution f to 4.1. We then consider the refinement

f=ce ™ +f (v;>p), (4.3)

i.e. a simultaneous change of functions and the imposition of an asymptotic constraint.
Then (4.1) transforms into a new asymptotic Ricatti equation

IN/rRr(f)+"'+EORO(f) =0 (Uf>//')7 (44)

which has again coefficients in S. In section 4.5, we shall see that the recursive application
of this method enables us to find r linearly independent solutions to (1.1) in &,_;.

4.2. DISTINGUISHED SOLUTIONS AND APPLICATIONS

Assume that L, = 1,L,_41,...,Lyp € S and g € S[z]4. Let v, be the minimum of
the valuations of the L; in e™*. We define the dominant part L9°™ of L to be the
linear differential operator with L?"m = Ly, , where L;,, denotes the coefficient of
e L% in L;. We notice that LI, = (Lyeas)3°™ and L™ = (e®2L)4oM for all a € Z.
Given f € S, j € Nand a € Z, we denote 7y, yieaz (f) = T(e-asp, an)dom i (fa), Where
T(e—a® [, az)dom o3 18 a8 in section 3.3. We also denote v, (@) = vpaom(a) = Ve-ao dom (0)

for all a and v (a) = > senve(a—p).

THEOREM 4.1. Let Ly,...,L, € S,g € S[z]q and assume that L™ is monic. Then

there exists a unique solution f to (1.2) in Sd+y+(vL7U ) such that 7 gieas (f) =0 for
L g ’

all o € Z and j € N. We call f the distinguished solution to (1.2) and denote it by L™1g.

The operator g — L™ g is linear.

ProoFr. Without loss of generality, we may assume that v;, = 0, modulo a multiplication
of (1.2) by e"*®. We first observe that vy > v,. Indeed, otherwise Lioevamfvf =0, since

Lf = (L()l(f?vfmfv, + o(1))e~vs*. Consequently, if f, ;a/ is the leading term of f,,, we
would have 0 = 7 ,j.or=(f) = fo;,; # 0.
Let us now show how to compute the coefficients f, , fo,+1,... of f by induction.

Assume that f,,,..., fo—1 have been constructed and that § = g — L(f,,e” %" +--- +
facre”(@=D%) is in Plalatv_y, +-+m—a ((€77)), with valuation vz > a. By theorem 3.4,

fa= (Li()eqw)ilga (4-5)
is the only solution to the equation L™, f, = g in Plelasv_,, +-tve With

ML gie—ae (fa€™ ") = Tpaom  ,i(fa) = 0 for all j. By construction, the valuation of
xe—az’

9= L(fo, e + -+ fae™) = (§ = e L0 fa) = (Lxemow — €72 LG fa)

is at least « + 1.

We conclude that f,,, fo,+1,.-- € Plz], v (—v,) BT€ uniquely determined by the con-
ditions that 7y ,ie—as(fae™*®) = 0 for all j,a and g — L(fy,e™ "% + -+ + foe™*7) has
valuation > « for all a. It follows that f = f, e™"s* + fvgﬂe_(”g"‘l)w +--- is the unique
solution in P[m]dwz(_%)((e—w)) to (1.2), such that 7, 4ieex(f) = 0 for all & € Z and

j € N. Since L°™ is monic, the operator L‘ioeTw is monic for each a. Consequently, the

fa, which are given by (4.5), are defined on the same common strip neighbourhood of R
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as the coefficients of the L; and g. The operator L~! is linear for the same reason as in
the proof of theorem 3.4. [

COROLLARY 4.2. Let Ly,... ,L, € S be such that LI°™ is monic and let dy be the order
of L°™, Then the solutions to (1.1) in E4,—1,0 form a vector space of dimension dy.

PRrROOF. By theorem 3.1, the vector space of solutions to L™y = 0 in Edy—1,0 admits a
basis ¢1, ... ,¢q, of solutions of the form ¢; € P[:z:],,L(,Ai),le’)‘”. Each ¢; determines
a solution

h; = eiAim(GAMLXe—,\im)il (e)‘iwLXe—Aim)(e)‘iw(p,')

to (1.1) in ’P[w]uL(_M)_Hyzr(_)\i_l)e)‘”S C &£4y—1,0 with dominant term ¢;.

We claim that the h; are linearly independent. Assume for contradiction that h =
cthy ++ -+ cqyhq, = 0 for certain constants ci, ... ,cq,, not all zero. We may reorder the
hi,...,hd,—1,suchthat c,...,cr are the non zero constants, for which £\, = --- = R\
are minimal. Then the dominant term of h (as a series in e~* whose coefficients are linear
combinations of elements in P times exponentials e~** with R\ = 0)is c1o1 +- -+ ek,
which is non zero; contradiction.

On the other hand, the dominant term ¢ of a solution to (1.1) in £4,—1,0 necessarily
satisfies L™y = 0. Consequently, we may rewrite ¢ as a linear combination of the h;
plus an asymptotically smaller solution to (1.1). Repeating this procedure, we conclude
that hq,...,hq, forms a basis for the solutions to (1.1) in E4y—1,0. U

COROLLARY 4.3. Let Ly, ... ,L, €S and let dy be the order of L™, Then there exists
a narrowing & of x, such that the solutions to (1.1) in Edy—1,0 form a vector space of
dimension dy.

PROOF. Apply the previous corollary to L/Lgo‘)m, for any narrowing z = i+¢ (¢ € P?),
such that ngm does not vanish for z € R. O

4.3. FINDING THE POTENTIAL DOMINANT TERMS

In this section, we are interested in finding potential dominant terms ce ~** of solutions
to (4.1) with vy < 0. We already noticed that such terms coincide with the potential
dominant terms of the solutions to (4.2).

We say that p with w < p < 0 is a potential dominant exponent of f, if there exist
indices j < k with vy, +jp = vp, + kp and v, +1lp > vy, + jp for all other indices
l. There are only a finite number of such p, which can be read of graphically from the
Newton polygon associated to (4.2); for instance, see (van der Hoeven, 1997).

Given any p < 0, let j be an index such that vg, +Ip > vr; + jp = « for all other [.
Then we call

AN =Ly gerpyAN" + -+ Lo (4.6)

the Newton polynomial associated to p, where L; 5 denotes the coefficient of e=#% in L;.
We call ce™#* a potential dominant term of f, if ¢ is a non zero root (in the algebraic
closure of P) of the Newton polynomial A associated to A\. The multiplicity of ce™H* is
the multiplicity of ¢ as a root of A.

Clearly, if ce™* is a potential dominant term, then p must be a potential dominant
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exponent, since A should contain at least two terms in order to admit a non zero root.
It is also readily checked that the dominant term ce #* of a solution f to (4.1) with
vy < 0 must necessarily be a potential dominant term: otherwise, R(f) would be equal
to A(c)e~** plus lower order terms.

The Newton degree d of (4.1) is the largest index d, such that vp, +dw < v, +jw = a
for all other indices j. It can be shown that this degree either coincides with the largest
possible degree of a Newton polynomial associated to a potential dominant exponent
i < 0, or with the order dy of the dominant part of L, if there are no potential dominant
exponents.

LEMMA 4.1. Let dy be the order of LI°™, Then there are precisely d — dy potential dom-
inant terms ce "* of f with p < 0, when counted with multiplicities.

ProOF. Let 0 > py > -+ > p, be the potential dominant exponents of f. Each potential
dominant exponent y; is determined by two indices j; < k;, which are the first projections
of the extremities of the corresponding edge of the Newton polygon; j; and k; are respec-
tively the valuation and the degree of the Newton polynomial associated to u;, therefore
this polynomial has k; — j; non zero roots. But dg = 71 < k1 = jo < -+ < km_1 = Jm <
k. = d, whence, counting with multiplicities, there are (k; —j1)+- - -+ (km —Jjm) = d—do
potential dominant terms of f. O

4.4. NARROWINGS AND REFINEMENTS

Assuming that we know the potential dominant terms of solutions to (4.1), we now
want to perform a narrowing followed by a refinement in order to find the next terms of
the solutions.

LEMMA 4.2.

(a) There exists a narrowing (2.1), such that all potential dominant terms of solutions
to (4.1) are in S%.

(b) If there exists a potential dominant term whose multiplicity is equal to the Newton
degree d of (4.1), then this narrowing may be chosen with multiplicator p = 1.

(¢) The Newton degree of the asymptotic Ricatti equation (4.1) rewritten with respect
to the new coordinate T is again d.

PrOOF. Part (a) results from an iterative application of proposition 2.1 to all Newton
polynomials associated to a potential dominant exponent of a solution to (1.1).

Now assume that the Newton polynomial A associated to some potential dominant
exponent £ has a root of multiplicity d. Then A(]) is a constant multiple of (A — ¢)?. In
particular, Ag = Lo, and A; = Ly o—, both do not vanish, so that p € Z. Furthermore,
¢ is actually the root of the polynomial P(@~1) of degree one with coefficients in P.
Consequently, ¢ is 27-periodic and meromorphic on R. Therefore, any narrowing (2.1)
with p = 1, such that S+ contains no poles of ¢, meets our requirements in (b).

As to (c), let f(z) = f(&) and L = L o~y. Then (4.1) transforms into an asymptotic
Ricatti equation

LeRo(f) + -+ LoRo(f) =0 (57 > pw), (4.7)
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with coefficients Ly, ... , L, in S* and where & 7 denotes the valuation of fin e~7. Since
each ) (z) is a PZ-linear combination of f'(%),..., fU)(#), each L;(%) is a P*-linear
combination of L;(vy(%)), ..., L(v(Z)). Notice that ¥ ; (,(z)) = pvL,(«) for each j. By the
definition of the Newton degree, o = vy, + dw is such that vp; + jw > a for j > d and
vp;+jw > afor j < d. Consequently, f’i,— > pmin(a—jw,... ,a—rw) = pa—pwj forj > d
and similarly o; > pa — pwj for j < d. Furthermore, 97 ;)1 (v(z)) = P — pw(d + 1),
whence o7 = pur, = pa — pwd. Therefore, the Newton degree of (4.7) is d. U

Lemma (4.2) ensures us that modulo a narrowing, and without altering the Newton
degree of (4.1), we may assume without loss of generality that all potential dominant
terms of solutions to (4.1) are in S.

Given such a potential dominant monomial ce”#* | the change of variables f = ce #*+ f
in the refinement (4.3) corresponds to the change of variables h = e/ «¢™"" b in the linear
differential equation (1.1). Consequently, h also satisfies a linear differential equation,
whence (4.4) is again an asymptotic Ricatti equation; actually, L=e fce*'wLX [ ez

Furthermore, each solution i to Lh = 0 in &£._;, whose logarithmic derivative f =
B[ satisfies (4.4), induces a solution h = e/ ™"k to (1.1) in &._1, whose logarithmic
derivative f = h’/h satisfies (4.1). Indeed, we may take [ ce™#* = e™F¥ (el Dy —pa ) tc €
Pe#e,

LEMMA 4.3. Assume that ce”"* is a potential dominant term to a solution of (4.1) in S.
Then the Newton degree of (4.4) is equal to the multiplicity of ¢ as a root of the Newton
polynomial A associated to p.

ProOOF. Let d denote the Newton degree of (4.1) and let a = vp, + dp. We notice that
vp; +jpu < a for all indices j, by the definition of the Newton degree d. Now using the

fact that Ry(f) and f* coincide up to lower order terms for all j, we may express L; in
terms of the Ly by

n

5 (5) oo+ oo oyt

k=j
= (AY(¢) + o(1))e~(atine,

L;

Denoting by d the multiplicity of ¢ as a root of A, we have in particular Vg, = a+ du,
v, 2+ ju for j > d and vp, > a+ ju for j < d. In other words, the Newton degree
of (4.4) equals d. O

4.5. SOLVING THE HOMOGENEOUS EQUATION

THEOREM 4.4. Assume that we are given an asymptotic Ricatti equation (4.1) of New-
ton degree d. Then there ezists a narrowing & of z, such that (1.1) admits d linearly
independent solutions in Sg_l, whose logarithmic derivatives are solutions to (4.1).

PRrROOF. We prove the theorem by a double induction over r and —w. Clearly, the theorem
holds for » = 0 and for w = 0. Assume therefore that » > 0, —w > 0 and that we
have proved the theorem for all smaller r and all smaller —w with the same r. By
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lemma 4.2(a), there exists a narrowing o of x, such that the potential dominant terms
cre o o epme Fm®o of solutions to (4.1) are in S*°. Moreover, by lemma 4.2(b) if
there exists only one such potential dominant term of multiplicity d, then we may assume
the multiplicator of this narrowing to be 1.

Now consider the refinement f = ¢je %+ f; (v > pp1)- The Newton degree of the

resulting asymptotic Ricatti equation in fl is dq, by lemmas 4.2(c) and 4.3. We have either
dy <d,or p=1and —pu; < —w. In both cases, the induction hypothesis implies that
there exists a narrowing x; of g, such that there exist d; linearly independent solutions
hii,.-. hig to (1.1)in ', which correspond to solutions to the asymptotic Ricatti
equation in fl.

Similarly, for ¢ running from 2 to m, assume that we are given a narrowing z;_; of z;
and consider the refinement f = ;e "% + f; (vfi > pu;). The Newton degree of the

resulting asymptotic Ricatti equation in fz is d; < d. Hence, by the induction hypothesis,
there exists a narrowing z; of z; 1, relative to which there exist d; linearly independent
solutions A1, ..., hiq, to (1.1) in £ |, which correspond to solutions to the asymptotic
Ricatti equation in fz

Finally, by the second corollary of theorem 4.1, there exists a narrowing Z of z,,,
such that (1.1) admits dp linearly independent solutions hq 1, ... , ho,q¢, in 830_170, whose
logarithmic derivatives are solutions to (4.1). By construction, solutions h; ; and h; j:
necessarily belong to different direct summands of €%, for i’ # i. Hence the h;; are
linearly independent. By lemma 4.1, we have d = dy + - - - + d,,,, which concludes the
proof of the theorem. O
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