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Chapter 0

Introduction

0.1 Exemples introductifs

Cette these est en premier lieu une contribution a I"automatisation du calcul infi-
nitésimal. On vise la résolution de systémes asymptotiques, c’est-a-dire de systémes
d’équations fonctionnelles, qui outre les opérations algébriques usuelles font inter-
venir des relations asymptotiques d’équivalence et d’inégalité.

Un exemple simple est 1’équation

xe’ =y
en z, ot x tend vers l'infini. Cette équation intervient par exemple en combinatoire
dans I’étude asymptotique des nombres de Bell. En termes plus algébriques, elle est
équivalente au systéme asymptotique

re’ =y;
1 < 2.
[ci <« désigne la relation de domination de Hardy. Les systémes asymptotiques
généralisent les systémes d’équations avec des perturbations, dont ’exemple
BP4at+y=0;
xr<1;
y <1,
intervient dans 1’étude d’un point cuspidal en * = y = 0. Naturellement, ces
exemples sont trés simples et peuvent étre traités a la main de facon relativement

aisée. Mais la nécessité d’une démarche plus universelle devient plus apparente
lorsque 1’on considére un systéme asymptotique comme

(fInf—a)+e9=0;
(g° = J) - =2 =0;
x » 1.

Dans cette thése nous développons des outils suffisamment puissants pour résoudre

10



0.1. EXEMPLES INTRODUCTIFS 11

un tel systéme de facon entiérement automatique. En particulier, nous pouvons
affirmer que ce systéme n’admet qu’un nombre fini de solutions.

Plus généralement, on étudie des systémes asymptotiques qui font intervenir la
dérivation, voire méme la composition fonctionnelle. Outre des équations linéaires
du style

"= f 4 e f =a® (x — 00),

on envisage des équations non linéaires comme
W'+ W?=¢e* (x — 00).

ou
x 2
f/f/// _ f//2 _e° f — 7 (l‘ — OO)
On peut également considérer des systémes différentiels plus complexes avec parame-
tres, perturbations et /ou contraintes asymptotiques, dont voici un exemple:

f‘2 _ eax2—|—bxf/ =q;
g —ax’fg+blogaf = e";
1l < .

Pour les exemples ci-dessus, nos algorithmes permettent & nouveau de déterminer
de facon entiérement automatique leurs ensembles de solutions.

Nous avouons avoir choisi des exemples un peu orientés: comme le lecteur le
constatera, aucun d’entre eux ne fait intervenir des phénomeénes oscillatoires. Nous
dirons que nous nous sommes restreints & des systémes asymptotiques fortement
monotones. Bien que ceci soit un désavantage majeur de la théorie actuelle, nous
avons tout de méme franchi quelques premiers pas vers une théorie plus générale, qui
incorpore ce genre de phénomeénes. En particulier, nous verrons comment calculer
les limites inférieures et supérieures a 'infini d’une fonction comme

_ 2sina? —sin(2®/(x — 1))

3+ siner? — sin(ex? 4 1)'

()

Plus généralement, on est capable de déterminer automatiquement les comporte-
ments limites possibles d’une fonction comme

2

1,2 SN T i o _ el,sm 2z sin 1,2

€

fl@) = ['(log x log log  sin 5z) ’

pour & — oo et sous la contrainte sinz < 1. Finalement, on sait trouver toutes les
solutions de certains types d’équations différentielles linéaires comme

log :1;6_9”2f’" + (6290 + ") " =27+ (1 + x_r(l’))f = sin(F(eem)).

Enfin, il convient de noter que pour des raisons qui seront développées davantage
plus bas, il est recommandable de passer par ’étude de systémes asymptotiques
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fortement monotones, avant de s’attaquer au cas général: premiérement, le cas
fortement monotone comporte déja un grand nombre de difficultés qu’il faut résoudre
de toute facon. Deuxiémement, la théorie générale s’appuiera vraisemblablement sur
les méthodes développées pour le cas fortement monotone.

0.2 Historique et introduction générale

Apres 'acceptation du formalisme rigoureux de ’analyse moderne, les aspects plutét
concrets du calcul infinitésimal n’ont pas connu un développement aussi explosif que
I’analyse classique. Cependant, a I’époque de Newton, on concevait souvent le calcul
infinitésimal comme un calcul plutét concret sur des séries formelles. Aujourd’hui, ce
point de vue est encore partagé par beaucoup « d’utilisateurs » de mathématiques,
qui souvent ne voient pas en quoi la rigueur e-¢ leur est utile dans leurs calculs. Or,
comme nous allons le montrer ci-dessous, derriére ce point de vue quelque peu naif se
cache une formidable théorie, dont certains aspects n’ont pas tellement évolué depuis
I’ére de Newton. Cette théorie, initiée par Ecalle, s’appelle la théorie des fonctions
analysables (voir [Ec 92]). Retragons maintenant les origines de cette théorie.

0.2.1 La théorie de resommation

La premiére source des fonctions analysables est la théorie de resommation, dont les
débuts se situent deés I’époque d’Euler, qui étudia la série formelle

fla) =2 (=1 nla",
n=0
laquelle ne converge qu’en * = 0 au sens usuel. Par une intuition remarquable,

il parvint a calculer des valeurs non triviales de cette série. Evidemment, ceci est
absurde au sens moderne de la convergence ; mais la série f vérifie ’équation différen-
tielle

P F(@) + f(2) = o, 05)
et il fait sens de parler de solutions de cette équation. En privilégiant une solution
particuliere a cette équation, on peut donc évaluer f en des points différents de zéro.

A la fin du dix-neuviéme et au début du vingtiéme siécle, on a beaucoup cherché
a donner des sens plus précis a des séries divergentes comme f. L’introduction de
la méthode de Borel a été particulierement importante: elle consiste a appliquer
d’abord l'opérateur de Borel formel Y- f,2™ — 3 f,a™/n!, et puis 'opérateur de
Laplace a la somme convergente du résultat. Ce procédé produit une fonction f
qui vérifie 'équation différentielle (0.5). Ce procédé a la propriété importante de
préserver I’équation différentielle vérifiée par f.

Apres une période de silence relatif, la théorie de la resommation a recommencé
a intéresser les mathématiciens vers la fin des années soixante-dix, avec 'arrivée
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des résultats de Ramis, Balser, Ecalle, Braaksma, etc. (voir [Ram 93] et [Bal 94]
pour des discussions). Un des aspects les plus importants des nouvelles méthodes
de resommation et multisommation, est la stabilité de la classe des fonctions resom-
mables par de nombreuses opérations algébriques, comme les opérations de corps, la
dérivation, la composition, etc. En particulier, dans une théorie idéale on s’attend
a ce que toutes les fonctions ayant une source naturelle (c’est a dire des solutions
d’équations différentielles ou fonctionnelles, des transformées intégrales, etc.) soient
resommables.

0.2.2 L’analyse asymptotique

Une deuxiéme source de la théorie des fonctions analysables est la théorie des
développements asymptotiques. Dés son introduction par Du Bois-Raymond, Poin-
caré et Stieltjes, de nombreuses fonctions non développables dans 1’échelle ordinaire
apparurent. Pour remédier & ce défaut, Hardy étudie dans [Har 11] les L-fonctions
(qui apparaissent par ailleurs déja dans les travaux de Liouville (voir [Li 1837], [Li
1838])) comme étant des fonctions construites & partir de R et = par les opérations
de corps, 'exponentielle, le logarithme et composition par des fonctions algébriques
réelles. La plupart des fonctions ayant une source naturelle admettent des dévelop-
pements asymptotiques dans 1’échelle de ces L-fonctions.

Apres avoir introduit les L-fonctions, Hardy a démontré un théoréme essentiel :
les germes des L-fonctions a I'infini forment un corps différentiel totalement ordonné.
En autres termes, ’ensemble des L-fonctions forme un corps stable par dérivation, et
le signe de toute L-fonction f(x) reste constant lorsque a tend vers 'infini. Bourbaki
(voir [Bour 61]) a postulé cette propriété comme la base d’'une nouvelle théorie: un
corps de Hardy est un corps différentiel de germes de fonctions a l'infini. Cette défin-
ition donne en particulier une premiére formalisation au concept de comportement
asymptotique fortement monotone, dont nous avons parlé dans la section précédente.
Ensuite on a établi divers théorémes de cloture pour les corps de Hardy (voir [Bour
61], [Rob 72|, [Kho 83], [Ros 83al, [Ros 83b]). Par exemple, étant donnée une fonc-
tion f dans un corps de Hardy H, il existe un corps de Hardy H' qui contient H et
INE

Malheureusement, la théorie classique des développements asymptotiques, méme
dans des échelles généralisées comme ’échelle des L-fonctions, admet deux inconvéni-
ents importants. Premiérement, cette théorie manque de propriétés de cloture sous
différents types d’opérations: si f et ¢ sont deux fonctions ayant le méme dévelop-
pement asymptotique, la fonction f — ¢ n’admet pas nécessairement un dévelop-
pement asymptotique. Deuxiémement, en faisant le développement asymptotique
d’une fonction, on a tendance & « perdre » de I'information : lorsque ’on développe
la fonction

1 1
100, _,—logz
Tt Tl r  x?
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100 —log=  (leci est d’autant plus nuisible, que ce terme

on a « perdu» le terme e
détermine 'ordre de grandeur de la fonction tant que x < €.

La théorie des corps de Hardy admet quant & elle aussi plusieurs inconvénients.
Premiérement, il peut étre assez difficile de montrer qu’une fonction f donnée appar-
tient a un corps de Hardy: pour cela, il faut vérifier que le signe de tout polynéme
différentiel en f est constant a l'infini. Deuxiémement, puisque les fonctions appar-
tenant & un corps de Hardy sont condamnées a ne jamais s’annuler au voisinage
de l'infini, il est difficile de s’imaginer une théorie plus générale qui incorpore des

fonctions oscillantes.

0.2.3 La genése des transséries

Par les critiques formulées ci-dessus, on en vient a la troisiéme source de la théorie
des fonctions analysables: le calcul sur des séries formelles. En effet, puisque les
séries formelles sont des objets entierement formels, elles ne souffrent d’aucun des
inconvénients mentionnés ci-dessus. Le prix & payer est qu’elles n’ont pas toujours de
signification analytique. Mais c’est 1a ot intervient I'idée majeure de la théorie des
fonctions analysables: on s’intéresse surtout aux séries formelles « ayant une source
naturelle ». La théorie de la resommation permet alors de donner un sens analytique
a ces objets formels. Cependant, puisque 1’on veut étendre autant que possible cette
classe de «fonctions ayant une source naturelle », on ne peut pas se contenter de
travailler avec des séries formelles ordinaires. D’ou la justification principale de
I'introduction des transséries (voir [Dahn 84], [DG 86] et [Ec 92], la terminologie
“transsérie” étant da a Ecalle), qui sont des expressions formées & 1’aide de R, x, les
opérations de corps, 'exponentielle, le logarithme, et surtout un opérateur somme
d’arité infinie. Les transséries généralisent en particulier les L-fonctions.

Etant donné que la puissance du calcul sur les séries formelles s’est montrée dans
de nombreux domaines au fil des siécles, il est surprenant de constater qu’il a fallu
attendre si longtemps I'introduction des transséries. Cependant, les transséries ont
quelques précurseurs, que nous allons tenter de présenter briévement.

Tout d’abord, pour la division et la résolution des équations algébriques, il a
fallu autoriser des séries avec des puissances négatives et fractionnaires: les séries de
Laurent et de Puiseux. Au début de ce siecle Hahn a considéré des exposants encore
plus généraux: il montre dans [Hahn 07| qu’étant donné un groupe commutatif
totalement ordonné X et un corps K, 'ensemble K[[X]] des séries f = 3 cq for
a support bien ordonné est naturellement muni de la structure de corps totalement
ordonné. Ce résultat a été étendu par Higman dans [Hig 52] au cas ot (G n’est plus
que partiellement ordonné et non nécessairement commutatif, et ot les séries ont des
supports belordonnés. Pour I’étude de solutions formelles d’équations différentielles
et & différences, on a également introduit la notion de séries formelles comportant
des logarithmes (voir par exemple [LoRo 89)]).

Ecalle, qui utilise les fonctions analysables dans sa démonstration de la conjec-
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ture de Dulac, s’est davantage intéressé a la resommation des transséries qu’a leurs
propriétés algébriques. De plus, Ecalle se limite a I’étude de transséries fortement
monotones en une variable, parce que la démonstration de la conjecture de Dulac
repose précisément sur ce caractére fortement monotone. Dans la partie A de cette
thése, nous nous sommes alors proposé de donner une contribution a la théorie al-
gébrique des transséries, d’étudier des transséries en plusieurs variables, ainsi que
de préparer la route pour ’étude des transséries « faiblement oscillantes ».

Comme résultats principaux, il y a d’abord la mise en place d’un formalisme
rigoureux pour 1’étude de transséries a différents types de support. Utilisant ce
formalisme nous apportons la réponse & une conjecture de Hardy (voir [Har 11]; nous
notons que notre résultat a été démontré indépendamment dans [MMV *]). Ensuite,
nous nous intéressons aux équations fonctionnelles, et nous proposons un algorithme
théorique pour la résolution d’équations différentielles algébriques dans les transsé-
ries fortement monotones. Finalement, nous introduisons des transséries en plusieurs
variables et des transséries faiblement oscillantes. L’idée majeure derriére cette
introduction est que les transséries faiblement oscillantes sont en fait des transséries
en plusieurs variables dans lesquelles on substitue aux variables des composants
oscillants.

0.2.4 L’aspect effectif

Une derniére source majeure de la théorie des fonctions analysables est le constructi-
visme. En effet, les calculs sur les transséries, ainsi que les méthodes de resommation
déployées pour leurs donner un sens analytique, sont toujours entiérement construc-
tifs. Cependant, entre le constructivisme théorique et la mise en place concréte
d’un logiciel de calcul formel, susceptible de faire ces calculs de facon entiérement
automatique, il y a un grand écart, en particulier parce que les transséries sont des
objets de nature infinie.

Les premiers algorithmes dans cette direction, qui dépassent la manipulation des
« vulgaires séries de Taylor », sont dus & Shackell. Il a commencé par s’intéresser
aux développements asymptotiques des fonctions exp-logs, qui sont des fonctions
construites a partir de x et R par les opérations du corps, I’exponentielle et le log-
arithme. Travaillant dans le cadre des corps de Hardy, il obtient dans [Sh 90| le
premier algorithme pour déterminer la limite d’une fonction exp-log a I'infini, mod-
ulo ’existence d’un oracle pour tester si une fonction exp-log est nulle au voisinage de
I'infini. Pour ce faire, il utilise des formes imbriquées et plus tard des développements
imbriqués, qui sont en quelque sorte des objets & mi-chemin entre des limites et des
transséries complétes. Le principal probléme que 1’on rencontre dans ce domaine est
celui de «1’annulation indéfinie » : un algorithme de développement « brutal » ne
termine pas sur un exemple comme

1 1

l—al—e=® | —g1
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Il est alors nécessaire de trouver la bonne échelle de développement {z%e?*|a, 3 € R}
et de développer d’abord par rapport a e”, les coefficients de ce développement étant
des transséries eux-mémes, dont on garde des représentations exactes. Aussi, cet
exempleillustre & nouveau I'intérét de considérer des développements asymptotiques
plus généraux que ceux qui sont employés classiquement.

Aprés ce premier algorithme de Shackell, il y a beaucoup d’autres résultats
qui ont suivis: d’abord, Shackell met au point la technique « des ombres et des
fantomes » pour donner un algorithme de développement complet (au sens des
transséries) pour les fonctions exp-logs dans [Sh 96| (toujours modulo I'oracle men-
tionné plus haut). Des résultats allant dans ce sens ont été obtenus par Salvy dans sa
thése [Sal 91|. Il y obtient aussi des résultats concernant la cloture algébrique réelle et
I'intégration. Ensuite, Shackell revient aux développements imbriqués pour lesquels
il donne un procédé infini pour déterminer les types de développements imbriqués
possibles des solutions a une équation différentielle algébrique donnée (voir [Sh 92]).
En collaboration avec Salvy il obtient également un algorithme pour calculer des
développements imbriqués d’inverses fonctionnels dans [SS 92| et des résultats en
vue du traitement des fonctions implicites (voir [SS 96]). Ceci a notamment des
applications dans le calcul d’intégrales (voir [Sal 91]).

Notre premiére contribution au calcul effectif sur des transséries est de simplifier
I’algorithme de Shackell pour 'obtention du développement complet d’une fonction
exp-log. Pour ceci, nous nous sommes basés sur les travaux de Gonnet et Gruntz
sur les calculs de limites (voir [GoGr 92|, [Gr 96]). Ensuite, nous avons raffiné cet
algorithme de sorte que 1'on n’a plus besoin que d’un oracle pour tester la nullité
de constantes exp-logs. Par ailleurs, ce probléme des constantes est trés profond, et
nous y reviendrons plus loin.

Nos principaux résultats concernent le développement de fonctions exp-logs avec
parameétres, la résolution de systémes asymptotiques, la résolution d’équations algé-
briques différentielles, et quelques premiers pas vers le traitement des transséries
faiblement monotones. En simplifiant, nous démontrons dans le chapitre 11, qu’étant
donné un oracle pour tester si un systéme d’équations et inégalités exp-logs admet
une solution, il existe un algorithme pour trouver les développements asymptotiques
génériques de transséries exp-logs en plusieurs variables, solutions d’un systéme
asymptotique exp-log. Dans le chapitre 12, nous montrons comment résoudre dans le
corps des transséries fortement monotones des équations différentielles algébriques
dont les coefficients sont des fonctions exp-logs (par exemple). Dans le cas des
équations différentielles linéaires, nos résultats généralisent des résultats plus classi-
ques (voir [DDT 82] par exemple). Enfin, le chapitre 14 fournit un premier pas vers
le traitement de transséries faiblement oscillantes.
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0.2.5 Outils de calcul formel

Tous les algorithmes de développement asymptotique mentionnés plus haut présup-
posent la possibilité de faire des calculs exacts sur les transséries, en plus d’en
extraire les coefficients. Or ceci a posé de nombreux problémes en calcul formel:
comment décider par exemple qu’une série fabriquée a partir de fonctions transcen-
dantes usuelles est nulle? Et méme, comment décider si une constante exp-log est
nulle?

Ces deux problémes ont fait 'objet de recherches intensives ces derniéres années.
Au départ, il y a les travaux [Li 1837] et [Li 1838] de Liouville sur les fonctions exp-
logs. Risch est le premier & exploiter ces travaux d’un point de vue algorithmique
et il démontre le théoréeme de structure de Risch (voir par exemple [Ris 75]). Ces
travaux permettent en particulier de tester si deux fonctions exp-logs sont identiques
au voisinage d’un point ou elles sont toutes les deux définies (modulo un test a zéro
pour les constantes exp-logs).

Dans [DL 89], Denef et Lipshitz montrent de fagon plus générale le théoréeme
suivant : soient fi,--- , f, des séries formelles & coefficients dans un corps effectif, qui
vérifient des équations différentielles algébriques « non singuliéres ». Alors il existe
un algorithme pour décider si un polynéme P en fi,---, f, induit la série formelle
nulle. Malheureusement, leur solution est basée sur la décomposition d’un idéal dans
un anneau de polynémes en idéaux premiers, ce qui est un probléme trés couteux.
Shackell propose d’autres approches dans [Sh 89| et [Sh 93b]. L’algorithme le plus
prometteur dans ce domaine est dii & Péladan-Germa (voir [Pél 95]), et traite méme
de séries formelles en plusieurs variables. Dans 'annexe D, nous donnons encore
d’autres approches, un des algorithmes ayant été obtenu en collaboration avec A.
Péladan-Germa. On y étudie aussi les solutions de systémes d’équations implicites.

Un probléme beaucoup plus profond est de tester si des constantes exp-logs (voire
des constantes transcendantes plus générales) sont zéro. Ceci n’est pas étonnant,
dans la mesure que 'on ne sait méme pas si des constantes « simples» comme
e + 7 sont transcendants. A ce titre nous mentionnons 'importante conjecture de
Schanuel :

Conjecture 0.1. (Schanuel) Si ay,---,«, sont des nombres compleres Q-
linearement indépendants, alors de degré de transcendance

trdeg(@ (Q[alv T, Oy, €Oé17 ) ean])

est au moins égal a n.

Cette conjecture exprime entre autres 1'idée (voir [CP 78], [Mac 91]) qu’il n’existe
pas de relations « non triviales » entre les constantes exp-logs (c’est & dire, des rela-
tions qui ne se déduisent pas des lois habituelles sur I'exponentielle et le logarithme).
Plus récemment, Richardson a donné un test a zéro pour des « constantes exp-logs
implicites » modulo la conjecture de Schanuel (voir [Rich 95]): soient ¢1,--- ¢,
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des constantes, qui sont les uniques solutions locales « non singuliéres » d’un sys-
téeme d’équations exp-logs, alors il existe un algorithme pour tester si la valeur d’un
polynome P a coefficients dans Q en (¢q,- - ,¢,) est nulle, modulo la conjecture de
Schanuel. De plus, 'algorithme, s’il termine, rend toujours le résultat correct. En
outre, en cas de non terminaison, les entrées fournissent « en quelque sorte » un
contre-exemple concret & la conjecture de Schanuel.

Bien que les résultats précédents nous permettent en théorie de résoudre des
problémes trés généraux, dans la pratique il est souvent nécessaire de recourir a des
méthodes plus heuristiques pour des raisons d’efficacité (voir aussi la discussion dans
la section D.4.4). Pour ces méthodes heuristiques, il est particuliérement import-
ant d’avoir des méthodes rapides d’évaluation de fonctions spéciales & de grandes
précisions. A ce titre, nous avons inclus ’annexe C. Nous remarquons aussi, qu’au
moins dans tous les exemples qui nous sont connus, les algorithmes heuristiques
ne cessent de fonctionner que lorsque 1’on recontre des phénomeénes importantes
d’annulations numériques. Un exemple notable est I’évaluation de

(610—1000 . 1)101000‘

Il est décevant de constater que la plupart des systémes de calcul formel renvoient
la valeur zéro a cette évaluation. Une approche pour la résolution de ce probléme a
été proposée dans [VAH 95a]; voir aussi la conclusion de cette these.

0.3 Algébre asymptotique

Dans la partie A de cette theése nous étudions d'un point de vue théorique les as-
pects purement formels du calcul infinitésimal, et du calcul asymptotique. Ce sujet,
que nous avons qualifié d’algébre asymptotique, se fonde sur les transséries, que
nous définissons d’une facon aussi générale que possible, et dont nous étudions les
propriétés.

0.3.1 Les différentes transséries

Les transséries forment une généralisation des séries formelles, en autorisant I'intru-
sion récursive d’exponentielles et de logarithmes. En voici un exemple simple:

e et foke™ /a4 4 o log™* pet e ekt [Py 3y log™* pet T ket P
. . . b
. e s L. )
ou x tend vers l'infini. Les transséries se rencontrent naturellement lorsque 'on

cherche des solutions formelles & des équations différentielles non linéaires dans le
voisinage d’une singularité « explosive ». Un exemple simple est 1’équation

=12+ fr (0.6)
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qui admet comme solutions toutes les transséries finies de la forme

x

= ae™".
En modifiant 1égérement (0.6):
I =17+ 1+
les solutions deviennent vite plus complexes; en voici une:
f:€e$+ie—2xe—e$+““

On peut également envisager des équations fonctionelles plus générales, comme

f(2) = =4 F(a) 4 ), (0.7)

qui admet
1 1 1
f = St el M
T T T
1 1 2 2
elog2x + 6210g2x + €4log2x + 6810g2x -t
1

elog4 z + 6210g4 z

comme solution particuliére.

Comme on 'expliquera avec plus de détails ci-dessous, un probléme majeur que
I’on rencontre lors de la définition des transséries est que leurs « différentes origines
naturelles » (équations différentielles, équations aux différences, transformations in-
tégrales, etc.) induisent des types différents de transséries. Dans les chapitres 1
et 2 nous présentons une étude détaillé de ces différents types de transséries. Nos
conclusions principales sont les suivantes:

— Il existe trois types principaux de transséries: les transséries réticulées, les
transséries bien ordonnées, et les transséries imbriquées de force supérieure.
Chaque type est caractérisé par des propriétés de cloture quant a la résolution
d’équations fonctionnelles.

— Il n’existe pas de corps de transséries, qui soit a la fois stable par sommation
infini et par exponentiation. En revanche, il existe un tel corps, si 'on se
restreint a des sommations dénombrables.

— Les corps des transséries réticulées et bien ordonnées (de profondeur loga-
rithmique fini) sont stables pour la « résolution fortement monotone » d’équa-
tions différentielles algébriques. Ce résultat semble se généraliser au cas des
équations fonctionnelles générales dans le cadre des transséries imbriquées de
force supérieure.
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Séries formelles. Commencons par 'étude des généralisations classiques des séries
formelles. Par analogie avec la définition des algébres de polynémes sur un groupe
quelconque, on souhaiterait définir des séries généralisées en prenant les monémes
dans un groupe X quelconque. Le probléme majeur ici est la définition du produit
de deux séries. Pour que cela devienne possible, il faut supposer 'existence d’un
(quasi-)ordre partiel sur X, et imposer des conditions sur les supports des séries.
Higman a démontré dans [Hig 52] qu’il suffit de demander aux séries d’avoir des
supports belordonnés, pour que 1’on puisse définir les opérations habituelles sur les
séries. Dans le cas ot X est totalement ordonné, ceci revient & exiger des supports
bien ordonnés; par ailleurs, ce cas avait déja été considéré par Hahn dans [Hahn
07].

Disposant des résultats généraux de Hahn et de Higman, on peut se demander
si ce genre de supports se rencontre dans des problémes concrets. Considérons pour
cela les séries suivantes:

f — 1_|_x—1_|_x—2_|_$—6_|_$—3_|_x—6—1 —|—$_4—|—$_6_2—|—$_5—|—$_26—|—"';
g = 1—|—$_10g2—|—$_10g3—|—$_10g4—|—$_10g5—|—"';
h — 1—I—x_1/2+$_3/4+$_7/8—|—""|‘$_1+$_3/2+$_7/8+"'—|—$_2+ ...... ;

R

le groupe de monomes étant X = z*, c’est-a-dire le groupe formel de puissances

réelles de . Nous avons

1

l—zt—g—e

f=

donc f est en particulier la solution d’une équation différentielle algébrique a coef-

Y

ficients dans R. Nous avons
g(e”) = ((x),
ot ( est la fonction ¢ de Riemann. Finalement ¢ = h(x — 1) satisfait I’équation aux
différences
Y(x) =2+ (V).

Bien que f ne soit pas une série de Puiseux, nous observons que le support de
f est contenu dans le sous-groupe Z + eZ finiment engendré de R. Or Grigoriev et
Singer (voir [GS 91]) ont démontré qu’il s’agit ici d’une propriété générale, résultant
du fait que f vérifie une équation différentielle algébrique sur R. Dans cette these,
on montrera méme un peu plus: le support d’une solution ¢ & une telle équation est
toujours inclu dans un ensemble de la forme a;N+- - -+a,N+b (ay,--- ,a, > 0); nous
disons que supp ¢ est réticulé. Nous notons qu’un sous-ensemble bien ordonné de R,
qui est inclus dans un sous-groupe finiment engendré de R n’est pas nécessairement
réticulé. L’intérét des séries réticulées est qu’elles se représentent comme des séries
de Laurent en plusieurs variables, dans lesquelles on substitue des monémes dans X
aux variables.

Les exposants en 27! des éléments successifs dans le support de ¢ tendent vers
+o00. En particulier le type d’ordre de supp g est w, le plus petit ordinal dénombrable.
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Plus généralement, considérons I’ensemble de séries dont le support n’admet pas de
borne supérieure, a moins d’étre fini (de telles séries apparurent pour la premiére fois
dans [LC 1893] sous une forme légérement différente). Comme ’ensemble des séries
réticulées, cet ensemble forme également un corps. Les développements asymp-
totiques de certaines fonctions spéciales nécessitent ce genre de supports. De plus,
ces séries peuvent encore étre implantées de facon relativement aisée a 1'aide de
I’évaluation paresseuse (voir |[Gr 96]), bien qu'une approche naive puisse entrainer
des augmentations dramatiques en complexité (voir la section 7.3).

Le dernier exemple montre que des supports bien plus généraux peuvent ap-
paraitre, dés que I'on considére des équations aux différences. En particulier, nous
observons que le type d’ordre de supp h est w?. La théorie effective des séries avec
des supports bien ordonnés généraux est bien plus complexe que celles des exemples
précédents. Pour une approche, nous renvoyons vers [VdH 94al.

<>

Venons en maintenant & l'introduction des transséries. Les transséries sont
définies récursivement comme des séries généralisées, ou le groupe totalement or-
donné X des transsmondmes est un groupe d’exponentielles formelles de transséries
« plus simples », les transmonoémes « les plus simples » étant des logarithmes itérés.
Comme on I’a montré plus haut, on peut envisager plusieurs types de supports pour
ces séries généralisées, les choix les plus restrictifs ayant des avantages calculatoires,
et les choix les moins restrictifs ayant des avantages au niveau des propriétés de
cléture.

Transséries réticulées. Dans le chapitre 1, nous considérons des transséries
dont les supports sont réticulés, c’est-a-dire inclus dans un ensemble de la forme
ull\l---ufm, ou 11y,--- ,1, sont des transmonoémes infinitésimaux, et mr un trans-
monoéme arbitraire. Par exemple, tout germe & 'infini d’une fonction exp-log déter-
mine une transsérie réticulée. En voici une

2 —x 2 2 2 2
ex—l—e 2 ex ex ex x
=" + + +ot— 4

1 —log™'a logz ~ log?x er  logxe”

dont le support est contenu dans log_Nxe_NxexZ).

Une propriété importante de la définition des supports réticulés est la finitude de
n. D’un point de vue asympotique elle affirme qu’il existe une échelle qui est générée
par un nombre fini d’éléments dans laquelle on peut exprimer la transsérie. En fait,
on peut méme exiger de plus que les logarithmes de ces générateurs (sauf un) sont
de nouveau exprimables par rapport & la méme échelle: c’est grosso modo I’énoncé
du théoréeme de structure démontré dans le chapitre 1. Dans la partie effective de
cette these ce genre d’échelles joue un réle trés important.

Une autre conséquence importante des transséries réticulées est qu’elles se ma-
nipulent bien d’un point de vue effectif, & nouveau grace aux conditions de finitude.
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Pour cette raison, nous ne considérons que ce type de transséries dans la partie B
de cette these.

Finalement, le corps des transséries réticulées admet d’excellentes propriétés de
cléture. Notamment, il est stable par dérivation, intégration, composition et inver-
sion fonctionnelle. En outre, il est stable pour la résolution d’équations différentielles
algébriques, tant que I'on n’introduit pas des phénomeénes oscillants. En conclusion,
les transséries réticulées sont suffisamment générales pour couvrir la majorité des
applications de 'algebre asymptotique et, en plus, elles présentent des avantages
calculatoires.

Transséries bien ordonnées. Cependant, les transséries réticulées ne suffisent
b

plus, dés que 'on considére des équations fonctionnelles comportant la composition,
ou des transformations intégrales complexes. Pour cette raison, nous introduisons
dans le chapitre 2 des transséries aux supports bien ordonnés. Ceci ne se fait qu’au
prix d’une technicité accrue: nous avons besoin de méthodes sophistiquées de la
théorie du belordre (voir 'annexe A), rien que pour définir la dérivation et la com-
position fonctionnelle pour de telles transséries.

De surcroit, cette théorie plus générale introduit de nombreuses pathologies.
Premiérement, il n’existe pas de corps de transséries qui est & la fois stable par
I’exponentielle, le logarithme et la sommation infinie. Deuxiémement, des transséries
convergentes comme

f= sl de e 47 4. (0.8)
ne sont pas analytiques, mais seulement quasi-analytiques (voir [Ec 92] pour plus
de détails). Troisitmement, on n’a pas toujours la stabilité par 'intégration. Par
exemple, I'intégration de

1

_ —logz—loglogz—logloglogz—-- 0.9
rlogxloglogx - - ‘ (0.9)

nécessite l'introduction d'un « itérateur » du logarithme (voir plus bas et [Ec 92]).

Néanmoins nous isolons dans le chapitre 2 le corps des transséries bien ordonnées
de profondeurs exponentielle et logarithmique finies. Cette classe ne présente aucune
des pathologies mentionnées ci-dessus, et on exclut en particulier des transséries
comme dans (0.8) et (0.9). Nous montrons dans les chapitres 4 et 5 que cette classe
est stable pour la résolution des équations différentielles algébriques.

Plus généralement, mais nous le démontrons pas dans cette thése (voir aussi la
conclusion), cette classe est stable pour la résolution d’équations différentielles aux
différences algébriques, ot les opérateurs aux différences sont des compositions a
droite par des transséries d exponentialité zéro : ce sont des transséries g telles qu'une
contraction suffisamment itérée A="¢g de g est asymptotique a z. La contraction A~!
est définie par f — log of oexp. En particulier, on peut prendre g =z + 1, g = qz,
ou g = 2™, et traiter les équations aux différences les plus fréquentes.
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Transséries imbriquées et de force supérieure. Comme nous ’avons souligné
plus haut, I'intégration d’une transsérie g comme dans (0.9) nécessite I'introduction
d’un itérateur du logarithme : un itérateur d’une transsérie f < x est une transséries
f* vérifiant

* ok
)= (f(x) + 1.
Les itérateurs successifs log™, log™, - - - du logarithme ne sont pas des transséries au
sens habituel. Néanmoins, nous discutons dans la section 2.7 la construction de
corps de transséries de force supérieure, qui comprennent ce genre de transséries.
Une autre source d’instabilité des corps de transséries considérés plus haut provi-
ent de la résolution d’équations comme
2
flw) = et itoma),

ou log, désigne le logarithme itéré deux fois. Pour résoudre cette équation, il faut
recourir a des transséries imbriguées du style

2 -
2 log4 2
2 6log2 z+e

De telles transséries seront étudiées davantage dans la section 2.7.

Transséries en plusieurs variables et transséries faiblement oscillantes.
Au dela des transséries fortement monones en une seule variable, on peut considérer
des transséries en plusieurs variables, et les transséries « faiblement oscillantes ».
L’idée « force » derriére 'introduction des transséries faiblement oscillantes est que
ce sont des transséries fortement monotones en plusieurs variables, dans lesquelles
on substitue des composantes oscillantes aux variables. De ce point de vue, on
comprend pourquoi 1’étude approfondie des transséries fortement monotones est
essentielle pour aller plus loin. Ceci explique aussi la restriction principale de cette
thése, qui peut paraitre arbitraire au premier abord.

Dans le chapitre 6 nous étudions les transséries en plusieurs variables et faible-
ment oscillantes d’un point de vue théorique. Nous donnons différentes voies de
généralisations pour les différents types de transséries. Plutét que d’établir une
théorie profonde, nous étudions les premiéres conséquences des différents choix pos-
sibles. En particulier, on verra que les transséries Noethériennes en plusieurs vari-
ables (qui généralisent les transséries bien ordonnées) doivent étre définies avec beau-
coup de soin, si 'on veut que les dérivées partielles existent sur tout ouvert d’un
espace affine. Nous montrons aussi qu’il y a un certain écart entre 1’algébrique et
I’analytique dans la définition des transséries faiblement oscillantes et complexes.
Nous montrons finalement que les transséries réticulées et fortement monotones
gardent toujours un sens dans un petit voisinage de 'axe réel & l'infini (dans le
plan complexe des transséries).
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Dans le chapitre 11, nous établissons une théorie effective pour les transséries
réticulées en plusieurs variables, que nous discutons de facon plus détaillée plus bas.
Ce chapitre peut étre lu indépendamment du chapitre 11, qui n’a pas d’applications
dans cette these.

0.3.2 La résolution d’équations fonctionnelles

Dans les chapitres 3, 4 et 5, nous considérons la résolution d’équations algébri-
ques, différentielles linéaires et différentielles algébriques dans les transséries. Nous
donnons des algorithmes théoriques (et non des procédés infinis) pour déterminer
toutes leurs solutions (et non seulement les débuts potentiels de solutions).

Nous employons systématiquement deux techniques classiques: la méthode des
polygones de Newton et la linéarisation. Dans le cas des équations différentielles
algébriques, la deuxiéme méthode consiste a se ramener soit & des équations « quasi-
linéaires », soit a des équations de Riccati d’ordre inférieur. A titre historique, nous
remarquons que les polygones de Newton furent inventé par Newton dans [New
1671], mais il ne les utilisa pas pour donner toutes les solutions & une équation
donnée. Pour cela, il a fallu attendre Puiseux (voir [Pui 1850]). Dans le cas des
séries formelles, les polygones de Newton furent utilisés pour la premiére fois pour
résoudre des équations différentielles dans [BB 1856] et [Fi 1889]. Plus récemment,
ils sont réapparus dans [GS 91| et [Cano 93].

Nous traitons les deux techniques de facon détaillée, car leur application a la
théorie présente est nouvelle, et comporte un certain nombre de subtilités qui ne
sont pas toujours mentionnées dans des traités classiques:

L’approche de Smith et améliorations. D’abord, nous notons que la méthode
classique des polygones de Newton est un processus a prior: infini. Ceci présente
des problémes calculatoires lorsque 1’on considére des équations du genre

2 1
_ —1f+ = —e "

- 1 —a (1 —a1)?

En effet, en appliquant brutalement la méthode classique, on trouve successivement
les termes 1,271, 272,- -+ de f, sans s’apercevoir que cette équation n’admet pas de
solution dans les transséries !

Une approche pour ce probléme fut donné par Smith (voir [Sm 1875]), et consiste

a trouver d’abord les solutions de I’équation dérivée

Maintenant, au lieu de substituer 1+ f a f, puis 1—|—:§_1 +faf, ete. dans la méthode
classique de Newton, on substitue directement ¢+ f & f, ot ¢ = (1 —271)~! est une
solution de I’équation dérivée. Nous pensons que cette approche est aussi importante



0.3. ALGEBRE ASYMPTOTIQUE 25

que la méthode de Newton elle-méme et nous ['utilisons systématiquement pour
garantir la terminaison de nos algorithmes. Dans le chapitre 3, nous ’améliorons
méme, en I'incluant en quelque sorte directement dans la méthode des polygones de
Newton elle-méme. Ceci entraine d’importantes simplifications techniques pour les
généralisations de la méthode de Newton considérées dans cette these.

Les supports des solutions. La méthode de Smith n’est pas seulement import-
ante & titre calculatoire: elle intervient aussi pour démontrer des propriétés sur les
supports des solutions. En effet, lorsque les coefficients d’une équation différentielle
algébrique sont réticulés, bien ordonnés ou de profondeurs logarithmiques finis, il
n’est pas évident a priori qu’il en est de méme pour ses solutions. La méthode
de Smith avec nos améliorations peut alors étre utilisée pour réduire en un nombre
fini d’étapes la résolution d’équations différentielles algébriques asymptotiques ar-
bitraires a la résolution d’équations dites quasi-linéaires.
Un exemple d’une équation quasi-linéaire est

f=e 4+ 7 (f =)

L’idée est que les termes non linéaires sont asymptotiquement négligeables, lorsque
I’on prend e™* comme terme dominant pour f. Ensuite, la quasi-linéarité est préser-
vée lorsque ’on retranche ce terme dominant de f et on résoud la nouvelle équation.
En itérant, on obtient alors une solution de I’équation (comme on montrera dans le
chapitre 5), qui est dite distinguée’. Bien que le développement de cette solution
distinguée ne puisse étre calculé que par un procédé infini en général, nous avons
déja atteint deux objectifs. Premiérement, on dispose d’une description précise
d’une solution (au moins du point de vue théorique). Deuxiémement, en vue de
ce qui précéde, il suffit de démontrer que le support de cette solution posséde les
propriétés voulues, pour pouvoir conclure qu’il en est de méme pour toute solution
de I’équation différentielle algébrique originale.

La difficulté principale est donc de démontrer I'existence des solutions distinguées
et que leurs supports vérifient les propriétés souhaitées. Dans le cas des équations
différentielles algébriques, on tombe alors sur un probléeme difficile, qui est d’exclure
la possibilité de 'intrusion de logarithmes itérés arbitrairement souvent. Pour cette
raison, nous avons introduit un nouvel invariant discret, que nous appelons la régu-
larité de Newton. Cet invariant est borné par l'ordre de I’équation, et augmente
chaque fois qu’un nouveau logarithme apparait lors du calcul des termes successifs
de la solution distinguée.

Les polygones de Newton généralisés. Pour traiter des équations différenti-
elles algébriques, il faut évidemment adapter la méthode classique des polygones
de Newton. Une approches pour cela avait déja été proposé dans [GrSi 91| lors

!Nous notons que de telles solutions était déja calculées de fagon systématique par Newton (voir

[New 1671]).
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de cas plus restreints. L’idée dans tous les cas est de décomposer le polynéme
différentiel en composantes homogeénes et de considérer les valuations de ces com-
posantes. Malheureusement, ceci ne donne pas directement un polygone de Newton
avec des propriétés adéquates dans notre cas. En effet, déja dans le cas trés simple
de l'intégration :

x

f/_ee :07

x . . . . . . .
e n’est pas le premier terme d’une solution de I’équation. Par ailleurs, il existe des

équations différentielles comme

f1" = =0,

dont les monoémes dominants potentiels de solutions ne correspondent pas a des
pentes du polygone de Newton, mais seulement & des droites « admissibles » qui les
coupent en des points extrémaux.

Pour cette raison, nous introduisons un nouvel artifice: la conjugaison multipli-
cative. Plus précisement, au lieu de définir un véritable polygone de Newton, nous
considérons Deffet de la substitution f = nf dans Péquation différentielle algébrique
P(f) = 0, ot 1y désigne un transmonoéme. En fonction de I’équation P(uf) ainsi
obtenue, nous donnons alors de fagon indirecte un critére, pour dire quand 11 cor-
respond & une pente du polygone de Newton ou & une droite admissible qui le coupe
dans un point extrémal. Ces pentes sont toujours en nombre fini; les droites admis-
sibles correspondent & des (presques) solutions des équations de Riccati associées
aux composantes homogénes de P.

En conclusion, il existe donc toujours quelque chose comme un polygone de
Newton, mais on ne peut pas «le tracer » directement en regardant les monémes
dominants des coefficients de P.

0.4 Asymptotique automatique

0.4.1 Les fonctions exp-logs

Le probléme le plus naturel d’asymptotique automatique, qui dépasse substantielle-
ment le cadre des « vulgaires développements en série de Taylor », est celui du
développement des fonctions exp-logs. La résolution de ce probléme est & la fois
nécessaire et une source de nouvelles techniques pour traiter des cas plus complexes.

Le premier algorithme. Le premier algorithme pour manipuler automatiquement
les (germes de) fonctions exp-logs & I'infini fut donné par Shackell dans [Sh 90], et est
basé sur I'utilisation de « formes imbriquées ». Un exemple d’une forme imbriquée
est donné par

f = exp exp(— log z exp(log log log”(3 + o(1)))).
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Bien que ce premier algorithme de Shackell permette de contourner le probléme de
I’annulation indéfinie (voir la section 0.2.4), il se limite (grosso modo) au calcul de
limites et est peu efficace dans la pratique (voir [Gr 96]).

Les développements complets. Dans [Sh 91], Shackell donne une deuxiéme ap-
proche, qui ne présente pas ces désavantages, et qui conduit a des développements
complets au sens des transséries. Dans le cadre du calcul des limites, une vari-
ante de cette approche fut retrouvée indépendemment par Gonnet et Gruntz dans
[GoGr 92], et implantée par Gruntz dans Maple V.3 (voir [Gr 96]). Nous avons
adapté I'algorithme de Gonnet et Gruntz dans [VdH 94b| pour obtenir a nouveau
des développements complets. Bien que plus ou moins équivalent a 1’algorithme
donné par Shackell dans [Sh 91], nous y introduisons la notion importante de « base
normale » (voir aussi la section 7.2.2), qui joue un role clé dans la suite de la partie
B de cette theése.

Grosso modo, les bases normales sont des ensemble finis B = {6y,---,6,} qui
génerent des échelles asymptotiques S = {67 -+ - 62" |y, - -+ , a, € R}, satisfaisant
a quelques conditions supplémentaires. Ces conditions facilitent les manipulations
effectives de fonctions exp-logs développables dans cette échelle. De surcroit, les
bases normales se laissent construire efficacement de fagon dynamique (une idée qui
remonte a [Sal 91]). Par conséquent, on obtient rapidement une échelle naturelle
dans laquelle une fonction exp-log peut se développer & l'infini. La présentation
de I'algorithme [VdH 94b] fut encore améliorée dans [RSSV 96|, pour donner un
algorithme réunissant simplicité, efficacité et la possibilité d’obtenir des développe-
ments complets.

Représentations cartésiennes. Cependant, deux problémes importants ne furent
pas traités dans [RSSV 96]: comment réduire le probléeme du développement des
fonctions exp-logs au probléme des constantes (voir aussi la section 0.2.5), et com-
ment séparer des ordres de grandeurs tres différents dans une méme échelle. Le
second probléeme est illustré par I’exemple suivant :

1 1
f=1— - —. (0.10)

T — T

ot N est trés grand (disons N = 10'%°). Bien que cette fonction se développe a
linfini par rapport a ’échelle 7%, lalgorithme dans [RSSV 96] prend un temps
O(N) pour calculer le premier terme de f.

Dans [VAH 96a] (voir aussi le chapitre 7), nous avons résolu les deux problémes
en introduisant un autre concept clé de la partie B de cette thése: les représentations
cartésiennes. Dans I'exemple précédant, ceci revient & représenter 2! et 2=V par
des variables formelles z; et z5, et & développer f a la fois par rapport & z; et z,.

Voici une liste des avantages des représentations cartésiennes:
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— Leur utilisation évite des annulations massives dans la méme échelle.

— FElles permettent de réduire des questions sur des séries réticulées générales &
des questions sur des séries formelles. En particulier des questions de tests a
ZE10.

— FElles ont des avantages calculatoires: puisqu’elles sont des séries de Laurent en
plusieurs variables, les algorithmes efficaces de calcul avec des séries formelles
s’appliquent (multiplication par dichotomie, par FFT, les algorithmes de Brent
et Kung, etc.)

Fonctions exp-logs dépendants de parameétres. Le premier avantage des re-
présentations cartésiennes mentionné dessus est d’autant plus important, quand on
autorise les fonctions exp-logs & dépendre de parameétres. Fn effet, en considérant N
comme un parameétre, 'utilisation des représentations cartésiennes garantit alors la
terminaison du calcul du premier terme de f dans ’exemple (0.10), contrairement
a 'algorithme présenté dans [RSSV 96].

Plus généralement, le développement de fonctions exp-logs dépendant de parame-
tres peut nécessiter la séparation de plusieurs cas: soit f = e pour z — oo.
Alors f se développe comme f = ¢, f = ¢ ou bien f = 1 + ¢ + %ezm + -
suivant que A > 0,A = 0 ou A < 0. Dans la section 8.3 (voir aussi [VdH 96a]),
nous donnons un algorithme, pour développer des fonctions exp-logs f dépendant
de parameétres, qui sépare ce genre de cas de fagon automatique. Cet algorithme
présuppose ’existence d’un oracle pour tester la consistence de systémes d’équations
exp-logs sur les constantes.

Néanmoins, il est important de noter qu’une partie importante de ce résultat
subsiste sans cet oracle: I'algorithme donne alors une liste, toujours finie, de cas, et
le développement de f pour chaque cas. Ces cas sont déterminés par des contraintes
exp-logs sur les parameétres, et deux-a-deux exclusif. L’oracle est seulement utilisé
pour déterminer quels cas peuvent réellement apparaitre. Nous précisons aussi, que
I’on n’a pas besoin d’un test a zéro pour les constantes exp-logs non plus.

Les algorithmes ci-dessus reposent sur une technique importante, et utilisée
fréquemment dans cette these, de séparation automatique des cas. En termes d’infor-
matique théorique ceci correspond a du non-détermisme ou de la programmation
logique. Cette technique apparut pour la premiére fois en calcul formel dans
[DDD 85|, et est aussi connue sous le nom d’évaluation dynamique.

0.4.2 Systémes de séries formelles en plusieurs variables

Dans le chapitre 11 nous montrons comment résoudre des systémes de transséries
en plusieurs variables. A cause de la complexité de notre méthode, nous considérons
d’abord dans le chapitre 10 le cas plus simple de systémes de séries formelles en
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plusieurs variables. Les techniques développées dans ce chapitre nous reserviront
pour le traitement du cas général.

Comme toujours, I'ingrédient principal de notre algorithme de résolution est une
généralisation de la méthode de Newton, avec les compléments discutés dans la
section 0.3.2. Cependant, pour pouvoir appliquer cette méthode, il a fallu résoudre
de nombreux problémes techniques; décrivons les brievement :

La méthode de Newton lexicographique. Dans la méthode classique de New-
ton, nous considérons des séries formelles f(xy,23) en deux variables, que nous
décomposons
f = Z foz(x2)x?
aelN

Chaque f,(x2) admet une valuation en x5, et ces valuations déterminent le poly-
gone de Newton. Dans le cas d'une série f(xq,---,x,) en plusieurs variables, nous
pouvons toujours décomposer

f = Z fa(x%"' ,J}p)l'?,

aelN

mais en général, les f, (w2, ,x,) ne sont pas réguliers, donc elles n’admettent pas
de valuations. Ici, une série est dite réguliére si elle admet un terme dominant
unique.

Modulo des « raffinements » (voir la section 0.3.2), il est néanmoins possible de
distinguer un nombre toujours fini de « régions » sur lesquelles les f,(xq, -+, x,)
sont réguliéres. Par exemple la série 23 — x5 n’est pas réguliere en général, mais
elle l'est, si 3 < a3 (c.a.d. que z3 est négligeable devant x3), ou zj <« z3. En
général il est nécessaire pour cela de résoudre de fagon approchée les équations
falza, -+ ,2,) = 0. En effet, dans I’exemple de dessus, il faut entre autres traiter le
cas ou z3 est trés voisin de x3. Dans ce cas, il faut faire le changement de variables
Ty = :1;2/2(1 + a}) avec , < 1 pour rendre z3 — z3 réguliére.

Ainsi, on voit que pour résoudre I'équation f(xy,---,2,) = 0 en xy, il faut
non seulements appliquer la méthode de Newton & f en x;, mais aussi de facon
lexicographique a ces coeflicients itérés en x4, - -+, 2,_;. Il se trouve qu’un traitement

uniforme pour cela est possible, ce qui est 'objet de la section 10.4.

Les systémes de contraintes asymptotiques. On vient de voir qu’en général,
les coordonnés xy,--- ,z, de la série f vérifient des contraintes comme 3 < z3.
Nous les appelons des contraintes asymptotiques et ce concept rentre naturellement
dans le cadre des systémes asymptotiques, dont on a parlé dans la section 0.1. Dans
le chapitre 10, les contraintes asympotiques considérées sont toujours de la forme
{ x?l...wgp < 1; (0‘11)

w?l...xapx

P b

et on parle de contraintes expo-linéaires. En fait, il s’agit de contraintes linéaires,
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mais écrites sous forme multiplicative. En particulier la théorie de la programma-
tion linéaire permet de tester si un tel systéme de contraintes est consistant ou
contradictoire.

Représentations cartésiennes. Car les séries qui interviennent lors de la résolu-
tion d’un systémes de séries formelles en plusieurs variables ne sont pas nécessaire-
ment des séries formelles, nous avons besoin de les représenter par des représentations
cartésiennes. Une série comme (1 — x1/x2)7", ol ; < x2 peut par exemple étre
représentée par (1 — 2)7!, ol z = 1 /2y € S(p) 4s)-

Or pour appliquer la « méthode de Newton lexicographique », il faut pouvoir
développer une série en fonction des vraies coordonnées xy,---,z, et non seule-
ment en les variables z1,- -,z de sa représentation cartésienne. Nous n’avons pas
d’algorithme pour faire cela en général, mais dans la section 9.4 nous introduisons les
pseudo-coefficients, que nous pouvons calculer, et qui sont suffisamment proches des
véritables coefficients pour que la méthode de Newton lexicographique s’applique
encore.

Communautés locales effectives. Pour garantir que toutes les représentations
cartésiennes qui interviennent dans les calculs intermédiaires puissent se faire de
fagon effective, il faut formuler les propriétés effectives de cloture que la classe
des séries (en fait les représentations cartésiennes) considérées doit posséder. Pour
pouvoir appliquer la méthode Smith, il est en particulier nécessaire que cette classe
soit stable pour la résolution d’équations implicites.

Dans la section 9.3, nous introduisons les communautés locales effectives qui sont
précisément les classes de séries qui possédent les propriétés de cloture appropriées.
Dans la section D.5.3, nous montrons que la classe des séries D-algébriques est
une communauté locale effective (les séries D-algébriques étant grosso modo des
solutions d’équations différentielles algébriques dans les séries). En particulier, cette
classe contient les séries fabriquées a 1’aide de la plupart des fonctions spéciales, et
en particulier les séries exp-logs. La classe des séries convergentes sur R est un
autre exemple d'une communauté locale (non effective). En particulier, la plus
petite communauté locale qui contient les séries exp-logs ne contient que des séries
convergentes. Dans le chapitre 11, ceci entrainera que les solutions de systémes
d’équations exp-logs sont toutes convergentes.

0.4.3 Systémes de transséries en plusieurs variables

Lorsque 'on considére des transséries en plusieurs variables au lieu de séries formelles
en plusieurs variables, les difficultés techniques se multiplient encore. En plus des
méthodes exposées dans la section précédente, nous utilisons de facon systématique
les bases normales. Décrivons briévement les points essentiels :



0.4. ASYMPTOTIQUE AUTOMATIQUE 31

Les systémes de contraintes asymptotiques. Outre les contraintes de la for-
me (0.11), nous considérons aussi des contraintes de la forme

P (0.12)

{x?l...xgp_«xll...xﬁp'
R I ﬁl B
xl wpp/\wl [Epp

dans le chapitre 11. Ici f <& g, si log|f| < log|g| et f = g, si log|f] < log|g|.
Ces relations expriment que f est d’une « échelle plus faible » resp. « de la méme
échelle », ou dans les termes de Shackell que f a une «classe de comparabilité
inférieure » & ¢, resp. f est «de la méme classe de comparabilité » que ¢. Par
exemple x = :1;10100, mais T <K , pour x — oo. Dans la section 8.4, nous
montrons que l'on peut toujours décider si ce genre de systémes plus généraux de
contraintes sont consistants.

loglogz

Les bases normales. Au lieu de travailler avec une grande base normale B, nous
travaillons plutét avec p bases normales By, --- , B,, une pour chaque coordonnée
&1, - ,2,. Le jeu est alors d’introduire le moins possible de nouveaux éléments
dans B = By U --- U B, lors de la résolution d’un systéme de transséries. Plus
précisément 'introduction d’un nouvel élément dans B; doit toujours étre compensée
par I’élimination d’un élément dans B; pour un 7 < j. Mais une telle élimination
compense autant d’insertions dans B ,--- , B;, avec j1, -+, 51 > 1 que I'on souhaite.

Cependant, il faut de 'astuce pour arriver a cette fin. Une de ces astuces est la
suivante: lorsque 1’on veut résoudre une équation comme

re® =y, (0.13)

avec x,y » 1, il faut en particulier déterminer la classe d’équivalence de a (pour
=<). Notons que xe” — y s’exprime par rapport a la base normale B = By U By =
{z7', e} U {y~'}. La facon la plus simple de faire serait de prendre le logarithme
de I’équation (0.13):

r+ logx =logy,

et de constater que = < logy. Cependant, le calcul de ce logarithme nécessite
'insertion de log™ x et log™ y dans B.

Pour contourner ce probléme nous remarquons que x <& €7, et pour que xe” <
y, 1l faut en particulier que €” =< y, donc x < logy. Ceci permet & nouveau de
déterminer la classe d’équivalence de x, mais cette fois-ci sans insérer log™' # dans
B. De plus, puisque ze” = y, nous obtenons ¢” < y/logy, et aprés plus de calculs,
il devient possible de réécrire € en fonction de y,logy et loglog y seulement. On
peut donc éliminer e” de By et le rajout des deux logarithmes log™" y et log™" log y
est compensé par cette élimination d’un élément de Bj.

Ultra-régularisation. Pour pouvoir (entre autres) extraire les pseudo-coefficients
d’une transsérie en plusieurs variables, les variables de sa représentation cartésienne
doivent étre ultra-réguliéres : grosso modo, ceci veut dire que ces variables représen-
tent des transmonémes dont les classes de comparabilité sont bien déterminées. Par
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conséquent, nous montrons dans le chapitre 11 comment « ultra-régulariser » des
transséries, et comment conserver cette propriété lors des calculs.

Reésultats principaux. Le résultat principal du chapitre 11 est un algorithme de
résolution de n’importe quel systéme de transséries qui admettent des représenta-
tions cartésiennes dans une communauté locale effective fixée. Comme dans le cas
de 'expansion de fonctions exp-logs paramétrées, on suppose l'existence d’un oracle
pour tester la consistance de systémes exp-logs sur les constantes. Néanmoins, en
absense d’un tel oracle, nous avons quand méme un algorithme presqu’aussi fort,
comme dans le cas des fonctions exp-logs dépendant de parameétres.

De plus, on remarque que 'oracle ne concerne que la consistance de systémes exp-
logs sur les constantes, méme si la communauté locale contient les développements
asymptotiques d’autres fonctions spéciales que 'exponentielle et le logarithme. Cette
observation justifie d’une autre maniére la place spéciale accordée aux fonctions exp-
logs dans I"asymptotique automatique, une chose qui est souvent surprenante pour
les gens extérieurs du domaine. En effet, lorsque l'on calcule avec des formes closes
il n’y a point d’intérét a accorder une place si spéciale aux fonctions exp-logs.

En appliquant notre résultat principal & des communautés locales précises, nous
obtenons divers théorémes: 1’algorithme peut s’utiliser en particulier pour résoudre
des systemes asymptotiqes d’équations exp-logs en plusieurs variables, mais on peut
aussi traiter des systémes de transséries bien plus générales en prenant la classe des
séries D-algébriques comme communauté locale effective. De facon théorique, nous
pouvons aussi considérer les communautés locales de toutes les séries convergentes ou
de toutes les séries. Dans le premier cas, il s’ensuit que toute transsérie, solution d’un
systéme de transséries convergentes, est convergente elle aussi. Dans le deuxiéme
cas, nous avons une description théorique de I’ensemble de solutions d’un systéme de
transséries. Enfin, on obtient la stabilité par composition et inversion fonctionnelle
des différentes classes de transséries.

0.4.4 Les équations différentielles algébriques.

Dans le chapitre 12, nous rendons réellement effectif ’algorithme du chapitre 5 pour
résoudre des équations différentielles algébriques a coefficients dans les transséries,
dans le cadre des transséries réticulées. Comme les solutions d’une équation différen-
tielle dépendent des conditions initiales, la solution asymptotique générique d’'une
telle équation doit faire intervenir des parameétres. La particularité de notre al-
gorithme est qu’il détermine lui-méme les paramétres qu’il convient d’introduire et
qu’il calcule la solution générique en fonction de tels paramétres.

Le traitement effectif souléve, comme toujours, un certain nombre de difficultés
supplémentaires. Discutons les briévement ici.

L’oracle pour les constantes. Dans le cas des équations différentielles algébriques,
nous avons besoin d’un oracle pour les constantes encore plus fort que dans les
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chapitres 8 et 11: nous supposons que nous pouvons tester la consistance de n’impor-
te quel systéme du premier ordre formé & partir des rationnels (disons), les opérations
du corps, 'exponentielle, le logarithme et la relation d’ordre. Dans [VdD 84|, van
den Dries montre que de tels systémes ne se raménent pas toujours & des systémes
exp-logs comme dans les chapitres 8 et 11. Un exemple de cette situation est donné
par la formule

y>0 A Jw(wy=a A z=ye"). (0.14)

Néanmoins, nos résultats subsistent dans un sens plus faible sans 'oracle, comme
expliqué dans la section 0.4.1 & propos des fonctions exp-logs paramétrées.

Théorémes de stabilité. Dans le chapitre 5, nous avons montré comment résoudre
des équations différentielles algébriques quand les coefficients sont des transséries
bien ordonnées. Nous montrons dans la section 12.3 que si les coefficients sont
réticulés, alors il en est de méme pour les solutions.

Calculs effectifs avec les solutions distinguées. Le point le plus délicat du
chapitre 12 est le calcul exact avec les solutions distinguées. Plus précisément, si
les coefficients d'une équation quasi-linéaire vivent tous dans un corps différentiel
effectif T de transséries, on souhaiterait pouvoir étendre ¥ avec la solution distinguée
f de I’équation. Bien que nous disposions d’une caractérisation de f, en regardant
son support, cette caractérisation ne permet pas toujours de résoudre se probléme.

Dans le chapitre 12, nous résolvons ce probléme en introduisant des solutions
semi-distinguées. Ces solutions sont définies de facon dynamique, et elles remplacent
les solutions distinguées f dans les cas ot I’on n’est pas capable d’effectuer un test a
zéro dans 'extension de ¥ par f. Ce traitement est assez délicat et nous renvoyons
vers le chapitre 12 pour plus de détails. Un aspect bizarre de cette théorie est que
I’on sait calculer avec des solutions génériques d’équations différentielles algébriques,
mais pas avec des solutions particuliéres !

0.4.5 Des comportements asymptotiques oscillants

Nous allons discuter ici les résultats du chapitre 14, qui forme une premiére contri-
bution au calcul asymptotique général en présence de phénomeénes oscillants.

L’algébrique versus D’analytique. Dans le cas des comportements fortement
monotones, les propriétés analytiques des transséries coincident — pour ce que
I’on en sait — avec les propriétés algébriques. Pour la version la plus simple des
transséries faiblement oscillantes, ceci n’est pas toujours le cas. Considérons par
exemple la relation

1
[(z +2)’

2 —sinx —sinexr >
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qui est analytiquement valide pour tout x suffisamment grand, a cause du dévelop-
pement en fraction continue de e. En revanche, dans les modéles les plus simples
de calcul avec des transséries faiblement oscillantes, cette relation n’est pas tou-
jours vraie, mais plutét indécidable. On peut néanmoins imposer ce genre de re-
lations dans le modéle algébrique, mais il faut des connaissances extérieures, non
algébriques, pour cela; ici, ce role est joué par la fraction continue de e.

Etant donné qu’il ne va pas de soi que I’algébrique et I’analytique coincident,
il est important d’étudier dans quels cas on a correspondance. Le premier résultat
du chapitre 14 régle ce probléme dans un cas non trivial. En effet, considérons
des fonctions exp-logs (ou d’autres transséries réticulées ayant un sens analytique)

fi(x), -, folx), positives & linfini. Si ¢ est une fonction sympathique (disons
algébrique) sur [—1,1]%, on peut se demander quelles sont les limites supérieure et
inférieure de @(sin fi(x), -+ ,sin fo(x)). Il se trouve que la réponse a cette question

peut étre donnée de fagon effective en n’utilisant que des calculs algébriques. Ceci
se démontre en généralisant un théoréme classique de Bohr, Sierpiriski et Weyl sur
la distribution uniforme, disons des progressions arithmétiques de pas irrationnel

modulo un (voir [Kok 34|, [KN 74]).

Développements de fonctions sin-exp-logs. Plus généralement, au lieu de ne
calculer que des limites supérieures et inférieures, on peut se demander comment
développer des « fonctions sin-exp-logs » a l'infini. Il faut, pour cela, utiliser les
résultats ci-dessus et ’algorithme du chapitre 11 pour calculer les développements
génériques de transséries en plusieurs variables. Bien qu’en toute généralité, ceci
nécessite des oracles trés puissants pour répondre a des questions d’approximation
diophantienne, nous donnons dans la section 14.5.2 une approche qui pourrait per-
mettre de traiter la plupart des cas que 'on rencontre dans la pratique, et ceci
seulement & 'aide de I'oracle employé dans le chapitre 11.

Et au dela des fonctions sin-exp-logs ? Dans le chapitre 14 nous discutons enfin,
mais pas en détail, 'extension de nos résultats a certains types d’équations différen-
tielles, et nous soulévons quelques problémes qui restent a résoudre. Grosso modo
nous savons assez bien traiter & présent le cas ou 'on considére des développements
par rapport aux transmonémes fortement monotones, mais avec des coefficients qui
sont des fonctions analytiques en des sinus de transséries fortement monotones.
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Chapter 1

(GGrid-based transseries

1.1 Introduction

In this chapter we define grid-based transseries. Thereby, we lay the theoretical
foundation for most algorithms of part B of this thesis, and provide the basics for
the further development of “asymptotic algebra” as a subject on its own. Trans-
series were first introduced in [Dahn 84], [DG 86] and [Ec 92] in order to describe
very general types of strongly monotonic asymptotic behaviour near infinity. This
means that the functions we consider do not present any oscillatory phenomena at
infinity. It can be seen as the algebraic counterpart of the theory of Hardy fields
(see |[Bour 61], [Har 10], [Har 11|, [Ros 83]), which is also frequently used in the field
of automatic asymptotics.

In fact, we think that the theory of transseries is more natural as a foundation for
automatic asymptotics, because of its algebraic nature. Actually, the theory serves
as an algebraic model for our computations. The advantage with respect to the
former model of Hardy fields is that there is no need to establish any analytic lemmas
in order to justify computations which are essentially algebraic. As a consequence,
it is possible to solve certain types of functional equations, which had not previously
been solved using the theory of Hardy fields. Moreover, the notion of a transseries is
easier to generalize: in chapter 6 we will consider transseries in several variables and
transseries with weakly oscillatory (in contrast to strongly monotonic) behaviour at
infinity. Finally, resummation theory can be used to recover the analytic properties
of transseries in many cases (see [Ec 92]), although we will not be concerned with
this here.

Let us now come more specifically to the contents of this chapter. In section 1.2
we study ordered rings. In section 1.3 we introduce grid-based series, which gen-
eralize classical power series. Grid-based power series satisfy a strong finiteness
condition on their supports. This condition is verified for many practical purposes
(including the theory of algebraic differential equations), and simplifies a lot of com-
putations. However, it is sometimes necessary to consider more general types of

37
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supports, which will be done in the next chapter. In section 1.4 we define the notion
of an asymptotic scale in the context of grid-based series.

In section 1.5 we introduce grid-based transseries. The transseries form a totally
ordered field, in which we have an exponentiation, a logarithm and an infinite sum-
mation operator. In section 1.6 we proceed with the study of some asymptotic
properties of the field of transseries. In particular, we introduce the concept of nor-
mal bases and we prove a structure theorem. In the last section we define most of the
common operations on transseries, that is the differentiation w.r.t. =, composition
and functional inversion. We conclude this chapter by giving a natural solution to
a conjecture of Hardy.

Throughout this chapter, we will frequently use order theoretic concepts. For
definitions and elementary properties, we refer to appendix A.

1.2 Ordered rings

An ordered semigroup is a semigroup X, together with an ordering <, which is
compatible with the multiplication — i.e. = <y A 2/ <y = 22’ < yy'. An
ordered ring is a ring A, together with an ordering <, which is compatible with
the ring structure. This means that <y A 2’ <y =+ <y+y,0<1,
and 0 <z A 0 <y = 0 < zy. Such an ordering is characterized by the set of
positive elements. Let A be an ordered ring. An ordered A-algebra is a morphism
of ordered rings A % B — i.e. an increasing morphism of A into an other ordered
ring B. In particular, A itself is an ordered Z-algebra.

Let A % B be a totally ordered A-algebra. The absolute value |z| of z € B
is defined by || = x if © > 0, and |x| = —a otherwise. We denote & < y, if
|Az| < |pyl, for some p € A and all A € A, and we say that x is negligible w.r.t.
y. Similarly, we denote @ < y, if || < |Ay|, for some A € A, and we say that
x is dominated by y. Instead of Hardy’s notation, one often uses Landau’s
notation, according to which we write @ = o(y) resp. @ = O(y) instead of v < y
resp. * <X y.

If + < 1, then we say that = is infinitesimal. If 1 < z, then we say that z
is infinitely large. If @ < 1, then we say that = is bounded (and z is said to
be unbounded if not). The sets of infinitesimal resp. bounded elements of B
are denoted by B° resp. B?. We also define + < y & 2 <y A y =<2z, and
r ~y & x—y <Kz Both relations are equivalence relations. Elements x in A
with x < 1 are called Archimedian. If all non zero divisors in B are Archimedian,
then we say that B is Archimedian. In particular, an ordered ring is said to be
Archimedian, if it is Archimedian as a Z-algebra.

For the definition of the last asymptotic relations, we need a preliminary. Any
commutative group G can be seen as a Z-module. If G is multiplicative, then Z acts
on (G by exponentiation, and we say that (G is a group with Z-powers. More generally,
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if R is any ring, then a group with R-powers G is an R-module, whose underlying
group is multiplicative, and such that R acts on G by exponentiation. We also say
that G is an exponential R-module. If G is ordered and R is an ordered ring, then
we say that GG is an ordered group with R-powers,if | <z A 0 <a= 1< z°.
Similarly, a totally ordered field with R-powers is a totally ordered field K,
whose multiplicative ordered group of strictly positive elements K has R-powers.
Assume now that A and B are totally ordered fields with R-powers, such that
(2y)* = 2%y, for all z € Af, y € Bf and a € R. We denote & = |z| and 7 = 1/|z|,
for @ € B* with 1 < |z] and || < 1 respectively. The comparability class over
R of an element x € B* is the set of y € B*, such that there exist o, 3 € R}, with

E)
F < y* and § < 8. We write wx=py if v and y have the same comparability class.
We also write <& py, if 2% < yP, for some # € R and all o € RF. If this is the
case, then we say that @ has a smaller comparability class than y over R (indeed,
the relation <« determines an ordering on the set of comparability classes). If no
confusion about R can arise then we will denote xp and <<Kp by = resp. =& .

Remark 1.1. The above definitions of the asymptotic relations <« , =<, etc. are
only valid in the case when B is totally ordered. However, as we will see in the
next section, these asymptotic relations can often be introduced without having an
ordering on B. Constructions such as completions and methods like the Newton
polygon method can also be carried out independently from orderings. In fact, it
is possible to introduce the concept of “asymptotic orderings” in a more axiomatic
way, but this point of view will never be used in the rest of this thesis.

An asymptotic ordering on a ring A is a transitive relation <, such that for
each y € A, the set {z € Az < y} is an additive subgroup of A, and such that
r Ly =z L yz, for all z,y and z in A. If A is a field, then < is determined
by the additive subgroup {z € Alx < 1}. The relations <« and =< from above
are asymptotic orderings. However, we notice that an asymptotic ordering is not
necessarily an ordering. Indeed, << is not a strict ordering, since 0 << 0. The
relation =X is only a quasi-ordering. Other examples of asymptotic orderings will
be encountered in this thesis each time we extend the definitions for <« and <.
Yet some other examples can be given, and we refer to [VdH 94a, p. 16].

1.3 Grid-based series

1.3.1 Algebras of grid-based series

Let X be an ordered commutative multiplicative semigroup. A subset I' C X is said
to be grid-based, if we have

DS, (1.1)
formy > 1,--- 1y, > 1 in X, and a finite subset III of X. It X is a group, which is
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generated by the set of elements which are strictly superior to 1, then we can take
a singleton for ITI. Moreover, we have

I Cp™...ql-p) (1.2)
for certain 1y > 0,--- .1, > 0 and p € Z in this case. We remark that a grid-based

subset of X is necessarily Noetherian by Dickson’s lemma (see page 306).

Proposition 1.1. Fach finite subset of X is grid-based. If I' and I are grid-based
subsets of X, then so are ' UT’, T'1". Moreover, if m = 0, for all iy € T', then
oy {m - |y, -+ 1, € '} ds grid-based.

Proof. All assertions except the last one are trivial. So assume that I' is a positive
grid-based subset of X, and let my,--- ,m,, IIl be such that (1.1) is satisfied. We
claim that ITI may be taken equal to {0}; from this we trivially deduce that I'" is
grid-based. Let g be in III. By Dickson’s lemma, the final segment of N™ of those

(a1, ,an), such that o -+ -~ > 1, is finitely generated. Let 1,41, -+ 1,
be those elements of X of the form uj' - -’ m, where (ay, - ,a,) is one of the
generators mentioned above, and where 1 runs over ITI. Then we have I' C 1’ - - - 11,
which proves our claim. O

Now let (' be a ring. We denote by C'[LX<] or by C'[X] the set of mappings
from X to C with grid-based support, and we call it the set of grid-based series
in C over X. Here the support of a mapping ¢ : X — C is the set suppp = {1 €
Xle(m) # 0}. Such mappings are also denoted by sums 3, c x ¢u1. More generally,
we say that a family (f;)ier of elements in C'[X] is a grid-based, if J;c; supp f;
is grid-based, and if {¢ € | € supp fi} is finite for each w € X. If (fi)ies is such a
family, then we define

D fi= (Z fi,u) IL. (1.3)

el neX \iel
The elements of X are called monomials and the elements of C' coefficients; X
itself is also called a monomial group If f € A and 11 € X, then we say that f is
the coefficient of 11 in f and we say that f,11is a term occurring in f.
Let us show that C'[LX1 can naturally be given the structure of a (C-algebra.
First of all, ¢' and X can be embedded canonically into C[LX1, by ¢+ ¢- 1 resp.
1w— 1-1. Let f and g be in A. Then we define

f+g= Yoo (fat g

mEsupp fUsuppg

Similarly, their product is defined by

fg = Z fugmum-

(m,1m) Esupp f Xsupp g
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To see that fg is well defined, we first observe that supp fg C (supp f)(supp g).
Furthermore, each set of pairs (1, 1) which give rise to the same monomial i forms
an antichain for the product ordering on supp f x supp g. Hence such sets are finite
by proposition A.2(d). We leave it to the reader to verify that A is indeed a ring for
these operations.

We denote by CILXT° resp. CIXT° (see below for a justification of these
notations) the sets of series f € CLXT1 such that m > 1 resp. 1 > 1 for all
i € supp f. Now let ¢ € C[[t]] be an ordinary power series. Then ¢ induces an
application ¢ o - from CLX1° into CLXT°, defined by

pof= > Phitctba frp o farty (1.4)
w1k e (supp £)©

Using proposition 1.1 and the corollary of Higman’s theorem (see page 307), ¢ o f is
seen to be well defined as in the case of the multiplication. Moreover, the association
@ — o-is a morphism of algebras. As an application, we observe that any element
of 1 + C'LX1” is invertible. In the case when C' is a field and X a totally ordered
group, we therefore conclude that C'[X] is a field. Indeed, let m be the smallest
element of the support of a non zero f. Then we can write 1/f = (fun) ™' (f/ fur) '
As another application, we remark (assuming that ¢’ O Q) that we can take the
exponential of any infinitesimal series, and the logarithm of any element in 1 +
C'LX1°. Moreover, exponentiation and logarithm are inverse one to another.

Example 1.1. Let A be an ordered commutative group and z a formal infinitesimal
variable. We denote by z# the formal multiplicative group, which is isomorphic to
A (via the isomorphism a ++ 2%). We call C'[z*] the ring of grid-based series over
C in z along A. If no confusion about A can arise, then we also denote C'[24] by

CIL=1.

We can define grid-based series in several variables zy,- - | z, along A in different
ways. First, we can give Zf‘ X oo X Zﬁ the natural product ordering <,,,4. In this
case

C[I:Zl7-.- ,Zn:[l = C[I:(ZIA X oeee X Zﬁ)gprod]]

is said to be the ring of grid-based series over C'in zq,--- , z, along A. Secondly, we
can give Zf‘ X oeee X Zﬁ the lexicographical ordering <;.,.. In this case

C[[Zl’ ,Zn:[l = C[I:(ZlA X oeee X Z;?)glem]]

is said to be the ring of lexicographical grid-based series over ' in zy,--- , 2, along
A. We have C'lzy,--- , 2,01 € ClLz;--- 2,1, where the inclusion is strict if C' is
non trivial and n > 1:

21

2
1_|_@-|_%—|---- € CLzy; 220\C L2, 221.
1
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It C is a field, and A is totally ordered, then C'[[zy;--- ;2,1 is a field. Finally, we
can consider the ring C'[z1 --- [z,1, which contains C'[[zy;--- ;2,1. Again, this
inclusion is usually strict:

3

2
1—|-ﬁ—|-2—22,—|-2—;—|-"' € Cllz 1 [zD\C Lz 22T

1.3.2 Asymptotic relations

The set of minimal elements of the support of a series f is said to be its set of
dominant monomials. If this set consists of a singleton, the unique minimal
element is said to be the dominant monomial of f, and we denote it by my. In
this case f is said to be a regular, and we also define ¢; = Ju; to be its dominant
coefficient and 7/ = ¢ymy to be its dominant term. Each series f can be written
as a finite sum of regular series. Indeed, let {my, - ,m,} be the set of dominant
monomials of f. Then we write

[ = Z Z Jul. (15)
t=1 e My, M)\ (M1, M)
Here we recall that (F) C X denotes the final segment generated by a subset F
of X.

Let us now suppose that X is totally ordered. Then all series in C'[X1] are
regular. If C' is an ordered ring, then we give C'[X1 the structure of an ordered
C-algebra, by setting f > 0if f # 0 and ¢y > 0. If C' is a totally ordered ring, then
sois C'[X].

Warning 1.1. It should be noticed that the ordering on the monomials in X is
precisely the opposite from the ordering on X, considered as a subset of C'[X1. For
instance, if C' = Z and X = 24 in example 1.1, then 2z <x 22, although = >cAT 22
In cases where confusion might arise, we will usually precise that the monomial 11 is
smaller than the monomial m1, if i1 <y m. Moreover, monomials are usually denoted
by the Cyrillic characters 1y and m. Nevertheless, the reader should always be aware
of this warning.

In the previous section we introduced the asymptotic relations <« , =<, =< and
~ for totally ordered algebras. We will now give equivalent definitions in the case of
CLXT, when both ' and X are totally ordered. In fact, these alternative definitions
can still be used when C' is no longer ordered, and X only partially ordered. In
particular, this will justify the above reintroduction of the notations C'[X1° and
CIXT°.

We say that f is infinitesimal, if and only if 1 < supp f. Similarly, f is
bounded, if and only if 1 < supp f. The relations < resp. =< are defined by
f<ge feClXT% resp. f € gCIXT9, and we respectively say that f is
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negligible w.r.t. ¢ and that f is dominated by ¢g. We say that f is asymptotic
to g, if f <Xg=<f, and we write f < ¢g. We say that f is equivalent to g, if
f—9g =< f, and we write f ~ g.

If X is totally ordered, then we still have some other characterizations of < ,
<, xand ~ fRge M >yM, [XgE v >N, [ X9 S M =M, and
f~g & ¢y = ¢ymy. Here My = 4oox, by convention. We can also make
some more definitions. If m; = 1, then we define its limit to be limf = f;. If
M; > 1, we set lim f = 0. If My < 1, we define lim f = Foo¢, depending on the
sign of ¢;. An unbounded series (which is necessarily infinitely large) is said to be
purely unbounded , if there does not exist any 11 € supp f with 1 < 1. The set
of purely unbounded series together with 0 is denoted by C [LXT". Then we have
the canonical decomposition CIXT = CIXT1" & C @ CILXT*, and we denote by
f = f"4 f°+ f* the corresponding decomposition of an element f € C[XT. We
also denote fT = T+ f° and fl: fe+ ft.

Assuming that X is a totally ordered group with R-powers, for some totally
ordered ring R, we can also give some alternative definitions of < and =<g. Again,
we denote 7 = 1, if 1 < 1, and T = ! otherwise. Then the comparability
class over R of an element f € ('[LX1] is the set of g € B, such that there exist

a,f € Rf with vy < 1\’/1?3Y and M, < M? We denote fx<pg, if f and ¢ have the
same comparability class over R. We also denote f—<&<Rgg, if for some 3 € R} and

all @ € R we have 1\?3} < M7, and we say that f has a smaller comparability class
than ¢ over R. Indeed, it can be verified that <« induces an ordering on the
compatibility classes over R. If no confusion about R can arise, then we denote
Xp= = and Kp = .

1.3.3 Quasi-ordered monomial groups

A quasi-ordered group (with R-powers) is defined in a similar way as an ordered
group (with R-powers), by replacing “ordering” by “quasi-ordering” (see page 304)
in the definition. For certain purposes (see chapters 10 and 11), it is useful to
extend the notion of grid-based series to the case when the monomial group X
is only quasi-ordered. It is easily checked that all what has been said in the two
previous sections generalizes to this case, when systematically replacing “ordered
group (with R-powers)” by “quasi-ordered group (with R-powers)”.

Let X be a quasi-ordered monomial group, and U its subgroup of elements 11 with
i = 1. Selecting a “natural right inverse” #~! for the projection 7 : X — X/ =, we
obtain natural inclusions

v CILX/ =1[U] — CLX]

and

vy : COX]T — CUILX/ =1,
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by setting

" ( oy fu,mum) = > > famm !

neX/=mel neX/=mel

and

Vz( Z Z fu,mﬁ_l(H)Ul) = Z Z JomTI

neX/=melU neX/=mel

However, these inclusions are generally strict in both cases. For instance, let X =

2222 with 1 < 2 and 1 < 22 but z; = z5. Then we have U = (z3/z1)% and

X/ == 72, Take n71(Zr ) = 21 for all k. Now 1/(1 — z; — z3) is in C'LXT but not
k!

—k
in imwy, and Yen(z2/21)%20% is in C[U]LX/ = 1 but not in imws.

1.4 Asymptotic scales

1.4.1 Invertible series

Let R O Z be a totally ordered ring and ¢’ O R a field with R-powers. In this
section we will only consider monomial groups with R-powers. Often, such groups
X satisfy the condition

' z1l=nxl,

for all ;€ X and o € RY. If this is the case, then we say that the ordering on X
is non degenerate and the invertible elements of C'[X] can be characterized as
follows:

Proposition 1.2. Let X be a non degenerately ordered monomial group with
R-powers. Then a series f in CLX1 is invertible, if and only if [ is regular.

Proof. First observe that if <'2<is any other ordering such that X< is a monomial
group, then C[XST C CIX<'1. Hence, if f € CILXST is invertible in CTXS'T,
then f is invertible in C [X<'T, and both inverses coincide.

Now if iy € X is neither superior nor inferior to 1 for <, then < can be extended
into a total ordering <’ on X, for which 11 > 1, and for which X remains a monomial
group. We first observe that we can define an intermediate ordering <; by

m >; 1 & Ja,fERT m* > 1,

for which X remains a monomial group, and for which 1 > 1. This intermediate
ordering extends into a total ordering by a classical argument, using Zorn’s lemma.

Now assume that f # 0 is a series whose set of dominant monomials (for <)
contains more than one element. By what precedes, we can construct extensions <’
and <" of < into total orderings (such that X< and X<" are monomial groups),
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for which the dominant monomials of f are different. Hence the inverses of f in

CILXST and CIX<"] are different, so that f can not be invertible in C[XT. O

Remark 1.2. The condition on X is necessary: if X is the multiplicative group

{1, 2} with 2% = 1, then (v2 + 2)(v/2 — x) = 1, although /2 + x is not regular.

1.4.2 Asymptotic scales and extension by strong linearity

Let X be any monomial group (with R-powers). If f is a regular series in C'[X1T),
then we can define f@, for any o € R. Indeed, we write f = cjms(14¢), with e < 1
and take f* = c¢jmip, 0 ¢, where p, = 1+ az + a(a — 1)2%/2 4+ --- € C[[z]]. A
multiplicative subgroup 5 of regular series with R-powers of C'[X] is said to be an
asymptotic scale, if the mapping S — X;1 — wy is injective. In this case, the
ordering on X induces an ordering on S by 11 < 1 & My <x My. The regularity
condition is motivated by proposition 1.2, since the elements of an asymptotic scale
are in particular invertible.

Proposition 1.3. Let S C CILXI be an asymptotic scale. Then CLS]T is
naturally embedded in C'[X].

Proof. Let f = ) cs fuimm be an element of C'[LS1. We have to prove that
> mes fmim is also well defined as an element of C' LX), i.e. that the family ( fi 1) mes
is grid-based. We have

SuppSf - MT"'Mf{mnﬁ-lv"' 7H-IN}7

for certain my, - -+ ,my in S, with my, -+ ,m, > 1. We can write oy = ¢;m;(1 + &),
for each ¢, with ¢; € €', vy = My, and ¢; < 1. We have suppx ¢; C ull\l---ul,f, for
certain my,--- ,m; > 1 and all 2. The sum f = 7 o5 fuIn can be rewritten as

N
F=3 > fareanymit - mrm, (1.6)

j=n+1 ag,-,an€N

by choosing privileged oy, -, a,,7 with m = oy - o gy, for each m € 5.
Expanding ui;* = ¢ ;" (1 + ;)™ for each ¢, we deduce that
suppx f C gy M (Mg, o My I

Moreover, each element of suppx f corresponds only to a finite number of terms in
the sum (1.6) by Dickson’s lemma (applied to N* x N**),

Finally, the set of dominant monomials Dx of f € C[ST w.r.t. X is given by
Dx = {ay|m € Ds}, where Dg is the set of dominant monomials of f w.r.t. S. In
particular, Dy = ¢if and only if Ds = ¢, since S = X; 11 — My, is injective. Hence
the natural mapping C'[ST — C'[X] is injective. g
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Remark 1.3. If the mapping S > X is not injective, then we still have a natural
mapping from C'[LST — C'IL[XT, but this mapping is not necessary an embedding.
In this case it is also possible to take a family (1mg)ses of elementsin C'[[X1, instead
of a subset S C C'[X1]. In each of these cases, we say that the resulting mapping
CLST — CIXT] is obtained by extension by strong linearity. Notice finally
that extension by strong linearity naturally carries over to the case when X is only
a quasi-ordered monomial group.

If CIST = CIX1, then the mapping S = X is bijective, and we call it a
scale change. If B is a basis for X as an exponential R-module, then m™*(B) is
a basis for S (such bases are also called asymptotic bases). Hence, scale changes
are determined by base changes in this case. Inversely, if we have a basis B for S,
then the embedding C'[LST C C'[X] is entirely determined by its restriction to B
(where we make take S as in the above remark).

1.4.3 Explicit base change formulae

We will now give some explicit formulae in the case when X admits a finite basis
B = {z1, - ,2,}. These formulae are mainly useful in part B of this thesis and
this section may temporarily be skipped by the reader. Let ¢q,---, g, be regular
infinitesimal elements of . = C'[X] and denote M = Clgy,---,¢9,1 = CL5T,
where S = R™ has the natural product ordering. We will now give an explicit
formula for the natural mapping M — L, which can be seen as a right composition
with (g1, -+, gm). It will be convenient to use vector notation for this. This means
that we denote 2 = (21, -+ ,2,) and g = (g1, -+ , gm). We write 2% = [t - 20",
for (aq,--- ,a,) € R*. Then the support of a series f in L can be seen as a set of
vectors supp f. If f is regular, then we denote by g, the minimal element in the
support of f. This element is said to be the dominant vector exponent of f. We
also denote by p, the matrix whose columns are g, ,--- , g, . Matrix multiplication
is denoted by -.

We can write ¢; = ¢;z%9 (1 + ¢;), for each ¢, with ¢; € C and ¢; < 1. If fe M
then its composition f o g with g is given by

fog=3 fac®sHo (1 4+e)™ - (L+em)"",

whence

f og = Z Z Z Ca7ﬁ1717...7ﬁm7km ZNg~z)z-I-,(‘31,1-I—~..-I—,(‘3m,/lcm7 (17)

& ke k€N By 1 Bk

where

(&3] Ay,
Co‘wﬁl,lv"'w@m,km — faco‘ (kl) e (k )51”3171 e gmw@m,km .
m
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This formula often remains valid, if S is given a stronger ordering. It suffices that
the matrix multiplication with g, maps grid-based supports in M into grid-based
supports in L. In particular, if gy << -+ <& ¢,,,, then M = CLg1;- -+ ;g1 embeds
into L = C' Lz ;2,1.

Assume that L = C[Lzy;--- ;2,0 and M = CLLgy;--- 59,1, with
g1 =< 0 =<K Gne

For computational purposes it is sometimes useful to have explicit formulae for
composition in terms of expansions w.r.t. z,. Indeed, we can see L as a subset of
ClLz;-- 32,10 [2,0. The support of an element of C'[zy; - ;2,-11 [z,] is then
considered as a subset of K. The minimal element of the support of a non-zero
series f is denoted by p s, and we call it the dominant exponent or valuation of
f. Right composition with () (for n = 0) is just the identity mapping. If n > 0, we
have

fo(glv"' 7971)22 Z fan,~~~,a19?1"‘gzn-

Ap X1y Qn—1

Now, let 1 < ¢ <n—1. If we put ¢; = gio + ¢, we have

a;
. . 1 .
g = g [ 1+ — > gipl
O{Z i_ki ﬁzl‘l‘ +ﬁzk
= Z (k')giojo Z gl{yﬁi,l‘ glﬁzk
1

Ky Bi v 5B k; €SUPP]

Similarly, if we put ¢, = z#o» (gn,ugn +4.),
o)
qn n an—kn HgnGn ! R ﬁn,1‘|‘"'+ﬁn,kn
ol g P D D A A et
kn n Bn,1s P, ky ESUPD Gy,
Furthermore, for fixed a,, and k;, we have
Eydee Atk
ot + 1fan

Fon
P Parn

n—1

o (91,0, tet 7gn—1,0)-

Z fozn,m,oz H ,920 ki =

1y, On—1

Putting everything together, we obtain

folg,++,0.) = Z Z Cs.an gzagf" ZhononFOL1F+nkn

an B11, B kn

where

! e d kitetkp_
C - 91751,1 gnﬁn,kn o™ 1fozn
ﬁvan -

Rl kel b gk

n—1

o (91,0, tet 7gn—1,0)-
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If z4,--+ ,z, and g1, -+, g, correspond to normal bases (see section 1.6), then the
above formulae may be simplified. In fact, in this case, we have ¢; = g0, for
1 < ¢ < n—1. Hence, the above formula reduces to
f o (917 - 7gn) — Z Z Cﬁ,an g;w;;jn Zggnan+ﬁl+~..+ﬁk7 (1.8)
An B, 0k
where . .
UATRERY A
O = 2= £ 0 (grs 3 Gnto)

In particular, no partial derivatives are involved in this formula.
Still assume that L = C'[Lzy;--- ;2,0 and M = CLgy;--- 59,1, with
g1 =< 0 =<K Gne

We claim that right composition with (g1, -, ¢,) admits an inverse. In other words,
the equation f o (g1, -+ ,¢,) = h admits a unique solution in L, for each h € L.
We give a method to compute f using vector notation. As before, we write ¢; =
¢;z"9i (1 4 ¢;) for each i. Now let
['= p," - (supph + (suppe; U--- Usupp 5n)o).

Let us show that f og = h admits a solution with supp f C I', by computing
the coefficients of f by well-founded induction over a € I'. More precisely, our
induction hypothesis assumes that we already computed the fg, for 8 < a and that
the equation (f 0 g)y = h is verified for all v < p, - o, whatever we might take as
coefficients fg, for 8 > a.

We start with a = u;”“-uh for which the induction hypothesis is trivially verified.
Next, let v = g, - . We must have

(f © g)’Y = Z Z Ca—(51,1+"'+ﬁm,km)vﬁl,lv"'ﬁm,km = h’Y'

ki km €N By 1 Bk,

By the induction hypothesis, fq is well defined by this formula. Next, we observe
that the first &’ > a, such that (f og)ug.a/ might be non zero, is the smallest upper
bound of e in I'. Hence, the induction hypothesis is satisfied again, if we replace
a by o', and we obtain a solution f by induction. Finally, as right composition
by a fixed ¢ is a field homomorphism, whose kernel is easily seen to be trivial, the
solution f must be unique in L. Actually, it can easily be checked that there exists
a g™ with f=hog™ for all h.

1.5 Grid-based transseries

We will give purely algebraic variants to the definition of the field of grid-based
transseries as given by Ecalle in [Ec 92]. Actually, we give two equivalent definitions,
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the first one of which corresponds to Ecalle’s definition. In this chapter we restrict
ourselves to transseries with grid-based support and we shortly call them grid-based
transseries ; for more general definitions, we refer to the next chapter.

Let R be a ring. We say that R is a partial exp-log ring, if there exists a
partially defined mapping exp : R — R*, which satisfies exp0 = 1 and exp(z +y) =
exp x expy, for all  and y, for which the identity make sense. Here we understand
that whenever exp is defined for two values among z, y and = + y, then it is for the
third. We remark that exp xexp —z = 1, for all x such that either exp z or exp —z
is defined. Given a partial exp-log ring R, we define the logarithm to be the partial
multivalued inverse of the exponentiation. If exp is totally defined, then we say that
R is an exp-log ring. A derivation on R is a derivation d on R as a ring, such
that d(expx) = (dx)expx, for all # € domexp. An ordered partial exp-log ring
is a partial exp-log ring with an ordering, such that + > 0 & expz > 1, for all
x € domexp. In particular, log is univalued. If the ordering is total, then the image
of exp is strictly positive. An ordered exp-log ring is an ordered partial exp-log
ring R, for which exp is defined on R and log on R}. We remark that a totally
ordered exp-log ring is necessarily a field.

It will be convenient to adopt the notations log, resp. exp, for the k-th iterated
logarithm resp. exponential. Here k can be taken in Z, with the conventions log, x =
exp,t = x and log_, = exp,. More generally, let p = po---pr be a word in C*.
Then we define the logarithmic monomial log, x by log, z = 27 - - -logi* . The
multiplicative group of logarithmic monomials is denoted by log .« x.

From now on we assume that we are given a fixed totally ordered exp-log constant
field ' and we will only consider totally ordered monomial groups with C-powers.
Given such a group X, we remark that whenever we defined exp f for all elements f
of a subgroup A of the additive group C'[XT", then we can canonically extend this
definition to AGCHCIXT* by exp f = exp fTexp fCexpoft, where f = fT4 fe+ f+

is the canonical decomposition of f.

First construction. Let M denote the totally ordered monomial group M =
(1/2)¢, with the same ordering as on C. Here z represents a variable which in-
tuitively tends to infinity. The first step of the construction yields a sequence of
monomial groups

Ey CELC Ey C -

each of which is naturally embedded in the next one. The construction of this
sequence corresponds to the insertion of new exponentials and proceeds by induction
(see also example 1.2 below).

We start with Fy = M. Assume now that we have constructed our sequence up
to . Then we set

Ery1 = M x exp(C I]:Ek]]T).



50 CHAPTER 1. GRID-BASED TRANSSERIES

Here exp(C LE:T T) consists of the formal exponentials exp f for f € CLE,17; hence,
exp(C I]:Ek]]T) is a formal multiplicative monomial group which is isomorphic to the
additive group CLE,QT. Furthermore, M x exp(C [ED)" is ordered lexicograph-
ically: 1 < (m, ), if either 1 < my, or mp = 1 and 1 < 1. We finally have to check
that Fj is naturally included in Eji;. This is clear for £ = 0. In general, C'[[LE;] is
naturally included in C'[F;_;1 by extension by strong linearity.

Example 1.2. The first monomial groups FEy, £y and F; are given by

Ey = A{a%a e Ol
By = {2750 e O, f € CLEIY;
E, = {z"facC,feCLEIY.

. xT -1 _ x —2_ x4 ...
For instance, ¢® t* ¢ T& 7"+ ¢ [,

Now consider the inductive limit of the sequence of embeddings of totally ordered
partial exp-log fields C [Ey] — C[E,T — - --. This limit is denoted by C%°9 [[211,
and we call it the field of alogarithmic grid-based transseries' over C' in z.
Alternatively, one can see C*°9 [zl as a field C' [ET of grid-based series, by taking
FE = U,en En. The reason for this is that any grid-based subset of £ is a grid-based
subset of Ej for some k. We also remark that the exponentiation is totally defined
in C*°9 [[z1. We claim that we can naturally embed C'*°¢ [z into C'*°? [ log x10.
Roughly speaking, this embedding stems from the systematic replacement of x by
€87 Let us now give a more detailed description:

We already have a formal isomorphism between C*°9 [[z1] and C*°?[[ log =TI,
by systematically replacing = by log . This isomorphism, which will be denoted by
-olog, maps f to folog. Now the natural embedding of C*°9 [[x1] and C*°9 [ log x1l
maps C'[Er]l into C[Eryq0logll, for each k. For & = 0, we send monomials
x¢ € Fy to monomials exp(clog ) € E; olog and extend by linearity. For k& > 0, we
use induction and send monomials z¢ exp(f) € M x exp(C'[Er_11") to monomials
exp(clogz + f) € exp(CLEy ologTT). Again, we extend by linearity. We observe
that for each monomial in C'**¢ [z, the logarithm of its image under the embed-
ding is defined. Hence the logarithm of the image of any strictly positive element is
defined.

We finally consider the inductive limit of the sequence
CalOg M1l — CalOg I]Ilog zll — CalOg [IIlog2 zll — -

of totally ordered exp-log fields. This limit is denoted by C'[[zIl, and we call it
the field of grid-based transseries over (' in x. The logarithmic depth of a
transseries f is the smallest k& with f € C%°[[log, +11. Often, when no confusion

! Alogarithmic means “without logarithms”
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can arise, we will use the alternative notation T = C'[Lz1l , and call it (abusively)
the field of transseries. Again, C'[[zIl can be seen as a field of grid-based series,
since C'[[z1l = C LI, with Il = KU EologU---, for the same reason as above.
Elements of I are called transmonomials.

Second construction. Instead of constructing alogarithmic transseries first, we
can also start with the construction of logarithmic transseries. More precisely, we
call [Lol with Lo = loggc« x the set of logarithmic transseries. In a similar
way as above, we define the Ly by Lyi1 = exp(C I]:Lk]]T), using induction over k.
Again, we can canonically embed L into Lii; by sending 11 to explogm. Finally,
we consider the inductive limit of the sequence

CH:LOJ] —>C|IL1:|] — -

which happens to be isomorphic to C'[[z]: the equivalence of both constructions
is due to the finiteness condition in the definition of grid-based sets. In the next
chapter we will see that both constructions are no longer equivalent for well-ordered
supports.

The smallest number r such that f € C'[LL,] is called the exponential depth
of a transseries f € C'[[xll. The set C'[[L,.] is also denoted by C,[LxIl. More
generally, we denote by C*[[21l the set of transseries whose logarithmic depth is
bounded by k, and whose exponential depth is bounded by r.

Example 1.3. Let us give some explicit examples of transseries. The following
transseries is in fact a series in R [1/21:

1

l—zt—2

- :1—|—$_1—|—$_2—|—$_6—|—$_3—|—$_6_1—|—$_4—|—$_6_2—|—$_5—|—$_26—|—"'.

2=t

. 2701 . . .
The transseries ¢ /(1 ) can be rewritten as an infinite sum

2 | 2 _ 2 36 _ 2
ex/(lac ):eex—l—x_l_ex leac—l—x_l_?x 2€x—l—x_|___‘
The transseries
em/(l—x_l) Pt lettr2e7 4.

€ = €

can not be rewritten in a similar way, because ¢*/(1 — 2~!) belongs to TT. In fact,
¢"/(1=271) ig a transmonomial of exponential depth 2. The above transseries are all
finite transseries, i.e. they all belong to the smallest exp-log subfield of R [Tl
which contains z and R.

Example 1.4. The transseries

1+ (logz)e ™ + 2!(log® z)e™* + 3!(log® z)e ™ 4 - - -
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has logarithmic and exponential depths 1.
Example 1.5. The supports of

fio= a7 T T 4
o = T e H e 4
f3 — 1+$€_$+$2!€_2$+$3!€_3x+"'

are well-ordered, but not grid-based. Hence fi, fo and f; are not transseries in the
sense of this section, although f; and f; satisty simple difference equations. In
chapter 2.2, we will develop the theory of transseries with well-ordered supports.
Finally,

L bot2a® 0

is not a transseries at all, because its support is not well-founded (since © — o).

1.6 Normal bases and the structure theorem

In this section T denotes the field of grid-based transseries in x over C'. We state
without proof the following easy characterizations of the asymptotic relations ~,
<, X ,x, %« and x=:

J~g e (og|f)f = (log gt A /gl = fg.
f =< g (log|f)t < (loglg))".
f =g (log|f)t < (log|g])T.
f=gs (log|f)" = (log |g])"
[ =g < log|f| < loglgl.
=g & log|f] <loglgl.

SEENAN Rl

In section 1.4 we discussed asymptotic scales. For computational purposes special
types of asymptotic scales are particularly important when dealing with transseries.
In fact, such asymptotic scales are given by asymptotic bases which satisfies some
additional conditions. In section 1.4 we already met an application of this concept
(see formula (1.8)), and in part B of this thesis normal bases will be of a crucial
importance.

A linearly ordered set B = {64, -+ ,6,} of positive infinitesimal transseries is
called a normal basis, if the following conditions are satisfied:

NB1. 6 % -+ < 0,.
NB2. n>0and 6; = exp; 'z for some [ € Z.
NB3. For all 1 > 1 we have log6; € C'[[6y;--- ; 6,1, where log 6; = 6;x.

The integer [ in condition NB2 is called the level of the normal basis B. Given
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a normal basis B, we say that a transseries f can be expanded w.r.t. B if f €
CL6y;---;6,1. Equivalently, we say that B is a normal basis for f.

Example 1.6. The sets

By = {:1;_1, e ", 6_902, e_xs}

and
— 2 z -1
B2 — {h]g 1 T, 17 o log x7 x7 e’ /(14 )}

are both normal bases. The set By = {27, ¢™"t° "} is not.

Remark 1.4. There are some slightly different alternatives for the definition of
normal bases. Notably, the condition NB2 can very well be omitted: we only
use it to “standardize” our expansions with respect to the privileged transseries or
“coordinate function” x. In higher dimensions, the condition NB2 does not admit
an analogue, unless we have a privileged system of coordinates (see chapter 6).

It is also possible to replace NB3 by the slightly weaker condition that log 6; €
CL61;---;6;_11 for all : > 1. Although this leads to less “canonical” expansions,
for all our applications this weaker condition would also be sufficient. Inversely, we
can make the extra requirement that — log 6; is a transmonomial for each ¢. Normal
bases with this property are called canonical bases. Canonical bases do not admit
higher dimensional analogues. This is due to the fact that the “coordinate function”
x is heavily involved in the definition of transmonomials; actually, we should rather
speak of transmonomials in x.

Having fixed a normal basis B = {61,---,6,}, we will usually denote elements
Joof CL6y;---;6,1 by series f = 3, ., fon,0 07" -+ 00", Alternatively, we
use vector notation instead and write f = Y, fo0%. Sometimes it is also useful
to see f as a series in 6, with coefficients in C'[[64;---;6,_11, and we write f =
>oa, Ja, 0n. This last representation makes it often possible to solve problems by
induction over n, while using NB3. Other interesting properties of normal bases
are that they are stable under upward and downward movements (see section 1.7.2),
and that C'[6y;--- ;6,1 is stable under differentiation (see section 1.7.1) for each ¢,
if B has level zero or one. We have the following structure theorem:

Theorem 1.1. (Structure theorem) Let [ be a transseries and let By be a
normal basis. Then there exists a normal basis B for f which contains By.

Proof. Let [ be the level of By. We can write f € C*°9 [ exp, 211 for some I’ € Z.
If ' < [, then we insert exp;' x,--- ,exp;, @ into By. Therefore, we may assume
without loss of generality that {’ = [; hence, we can write f € Cglogl]IeXpl:L']]] for
some k. We now prove the theorem by induction over k: if & = 0, then we have
nothing to prove. Assume therefore that we proved the theorem up to & > 0.
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Since the support of f is grid-based, we can write supp f C e#1%. .. e¥s% for cer-
tain strictly negative @1, -+, ¢, € Cj [2z1". By applying the induction hypothesis
for ¢1,--- ,¢,, there exists a normal basis B’ = {6},---,86/,} for ¢, -+ ,¢,, which
contains By. Now consider the following theoretical algorithm:

Algorithm add(g, B)

INPUT: A negative infinitely large transseries ¢ and a normal basis B =
{61, -+ ,6,}, such that ¢ can be expanded w.r.t. B.

OUTPUT: A normal overbasis of B for €.

STEP 1. if ¢ is bounded, then return B.
STEP 2. if there exists e € B\{6,} such that ¢ < g,

then set ¢ := g — atp, where a = limg/¢, and return add(¢’, B).
STEP 3. otherwise , let i* be such that g =< &;x.

Set gt := g, neiv times and g~ =g —g™*.

7_'+ )
return B U e 1971,

To prove the termination of add, it suffices to observe that no infinite loops can
arise from step 2, since @ gets smaller and smaller for <« during such a loop, while
B remains fixed. Let us now prove the correctness of add. The computation of the
decompositions g = ¢gT 4+ ¢~ guarantees that BUe 19"l is a normal basis at the end of
the algorithm. Since ¢~ is necessarily bounded in such decompositions, ef = A
can indeed be expanded w.r.t. this normal basis. Whenever ¢ = at) + ¢’ in step 2,
the same thing holds by induction.

Now we apply the algorithm for the ¢;, by executing B := add(g, B) for each
g € {e1,- , .}, starting with B := B’. This yields a normal overbasis B =
{61,--+,6,} for {expey,--- ,expp,}. We claim that f can be expanded w.r.t. B.

Indeed, €91, - | €% are infinitesimal elements in C'[[64;--- ;6,1. Using the results
from section 1.4, we therefore have a natural embedding of C'[e**,---  €e%?] into
C64;---:6,10. O

Remark 1.5. Intuitively speaking, gt and ¢~ correspond to the parts in the
exponential which we do not resp. do expand in step 3 of add. If we decompose

g=4q + gl instead of ¢ = g™ + ¢g~, then we obtain the analogue of the theorem
where “normal basis” is replaced by “canonical basis”.

1.7 Common operations on transseries

In this section T denotes the field of grid-based transseries in x over . We show
that we can define a natural derivation, composition and functional inversion on T.
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1.7.1 Differentiation and composition

To define the derivation, we proceed along the same lines as in the first construction

of T. For f € CLEy], we define the derivative of f w.r.t. = (over C') by

= (Z fal’_a) = _?1 Z afer™.

acl aeC

Assuming that we defined the derivation w.r.t. = on C'[LFE; I, we define it on
CLEk1 by

fr= ( > fuu) = > fu(log m)'m.
)

n€z—C exp(CLE,IT n€z—Cexp(CLFE;1T)

If the support of f is contained in I' = ull\l_p- -1 7P, then the support of f/ is

contained in (supp logmy U --- U supp logu,)['. Finally, we define (f ologa) =
(f' ologz)/z, for f € C*[[log, 1. The so defined mapping T — T; f — [ is a
derivation over (', as is readily verified (see the next chapter for an explicit proof in
a more general context).

The composition of f € T with a positive infinitely large transseries g € T
is defined in a similar way. If f € C[LFyll, we consider the natural embedding

CL(1/9)°T 5 T (see proposition 1.3) and the natural isomorphism C'[(1/2)“] i
C[L(1/g)°1, which corresponds to the substitution of by g. Then we define f o
g = @((f)). Assume now that we defined f o g, for f € CLFED. Then we
define (exph) o g = exp(h o g), for h € CLE,DI". Using induction over k, we
observe that these (exp h) o g form an asymptotic scale S. Hence we have a natural
embedding of C'[LS] into T. We also have a natural mapping from C'[[E;] into
C[[ST, obtained by substituting 11 € £,y with o g. The composition of these two
mappings determines the right composition by g on C'[E;y;1. Finally, we define
(folog)og=fo(logog).

Let us mention some properties of o. First of all, o, = -0 ¢ is a difference
operator for any ¢ € T%. This follows directly from the fact that o, is defined
as an inductive limit of ring homomorphisms. It is also readily verified that o is
associative, by using a double induction (see the next chapter for an explicit proof
in a more general context). The above two properties are summarized by saying
that o is a composition. We also have (f o g) = (f' 0 g)¢’, and we say that o is
compatible with the derivation. We finally have fo(g+h) = fog+(f'og)h+---,

whenever both sides of the equation are well defined.

1.7.2 Upward and downward shiftings

It is interesting to study the action of the group of iterated logarithms and exponen-
tials by left or/and right compositions on T. Right compositions by exp resp. log
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are also referred to by upward shiftings (resp. downward shiftings) or upward
movements (resp. downward movements). The upward (resp. downward) shift
of f € T is denoted by f1 (resp. fl). We observe that 1 and | are scale changes
which preserve the set of transmonomials. In chapters 4 and 5, we will see that
upward shiftings are particularly useful for differential calculus, where they allow to
make transseries alogarithmic.

Other interesting related operations are the dilatation T £ Tt;f—expofo

log and the contraction T} Ay T+:;f — logof o exp. We claim that after a
suitable number of contractions, any transseries f > 0 can be represented by A™F f =
exp;z + ¢, with [ € Z and ¢ < 1. Indeed, it suffices to take the exponential depth
plus one for k. The integer [ = expol is called the exponentiality of f. Hence, by
using only left and right composition with exp and log we can recover TT from the
transseries of the form x + ¢, where f is infinitesimal.

Let f and g be in TL. If fT < g', then exp f < expg, and in particular
(exp f)T < (exp g)'. Assume that the exponentiality of f is strictly smaller than g’s.
Then we have (log;, = o f o exp, z)T < (log, x 0 g 0 exp, x)T, for k sufficiently large.
Hence, (fToexp, )T < (gToexp, )T, by what precedes. Consequently, fT < g', since
downward shifting is a scale change of T which preserves the set of transmonomials.
Similarly, we have f <« g and f <& ¢, using the characterizations of <« and -
from the beginning of the previous section. In particular, we have my » Mg ¢, for
any f € Tt.

1.7.3 Functional inversion

Proposition 1.4. Any positive infinitely large transseries g € TY admits a
functional inverse ¢ € T foro.

Proof. Modulo some left and right compositions with exp and log, it suffices to
show this in the case when g = x(1 +¢) with ¢ <« 1 and ¢ can be expanded w.r.t. a
normal basis B = {61, - ,6,} of level zero. If n = 1, then we claim that ¢ admits
an inverse [ in C'[z~'1. Indeed, its straightforward to check that the equation

v = Zf—z(1+ae+(;)52+---).

aeC x

admits a solution f with supp f C a(supp 5)0, by using well-ordered induction.
The general case is proved by induction over n. Taking n > 1, our induction
hypotheses are the following:

(a) There exists a functional inverse fy to go, when expanding g w.r.t. &,.
(b) Denoting 6; = &, , 6,1 = 6,1 0 fo0, we have fo € CL[6¢;---;6,_11.
(¢) CL6y;---;6,-11 is stable under differentiation.
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Writing 6~n = 6, 0 fo, we have for each 1 <1 < n:
6i 0 go = 6; + 6.6 + — 6”52

where £ = g9 — x if ¢+ = 0, and otherwise ¢ = gy — g, i times . Hence, right

composition with go maps C'[6;;--- ;6,1 into C'[6;;--- ;6,1. Similarly, denoting
d=g—goand n = foo(go+9)—x, we have n € C'[64;---;6,1.
Now let i = f o go. We have (fogo)o foo(go+ ) =x. Hence, we can write

ho(x+4n)= Zh o) + (ha®))n+ - =x.

aeC

Again by well-ordered induction, this equation admits a solution h whose support
in 6, satisfies supp h C (supp 77)0. In other words, h € C'[64;--- ;6,_1106,1. To
prove that & is in C'[[64;---;6,1, we need to consider vector supports.

We first observe that supp ¢’ C supp ¢+ A, for any ¢ in C'[64;--- ;6,1, where
A =supp log6; U---Usupp log6,, C C'[[64;---;6,_11. Again using well-ordered
induction it can now be checked that

supp h C supp « + (supp”n + A)O.
It follows that f = ho fo € CI6y;---;6,1. Finally, CL[6;;--- ;6,1 is stable

under differentiation, because {61, --,6,} is a normal basis of level 0. Hence,
C'I6;;--- ;6,1 is stable under differentiation, since 6an = (&6 ofo)fy. This completes
the induction. O

Remark 1.6. It may be noticed that the “easier proof” of the above proposition in
[Ec 92] (page 139) fails in general, because of the counterexample g = z+1/x +¢~¢

1.7.4 On a conjecture of Hardy

To illustrate the formalism of transseries at work, we claim that the innocently
looking property 1 from section 1.6 forms the key in the solution to a conjecture of
Hardy (see [Har 11]), which states that the functional inverse of log x log, = is not
asymptotic to any L-function for + — oco. In other words, the conjecture states that
there is no function, built up from R and z using the exp-log field operations and
left composition with real algebraic functions, which is defined and asymptotic to
the functional inverse of log x log, x in a neighbourhood of infinity. Shackell proved
in [Sh 93¢| the slightly weaker assertion that the functional inverse of log,  log, « is
not equivalent to any L-function.

As our proof uses the theory of transseries, we will take for granted that the
analytic properties of transseries coincide with their algebraic counterparts; this is
indeed the case, because all the transseries we consider are convergent (see the-
orem 11.6). We will also use the following facts:
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(1) (xlogx)™ is not an L-transseries.
(2) The unbounded part fT of an L-transseries is again an L-transseries.

Of course, an L-transseries is the transseries counterpart of an L-function. The
first fact was already proved by Liouville in [Li 1838]. For the second fact, see
proposition 9.10.

Theorem 1.2. The functional inverse of logxlog, x is not asymptotic to an
L-transseries.

Proof. To prove our claim, we first observe that A™?zlogz = x + log(1 + x/e”).
By what precedes, @ 4 log(1 + 2 /¢”) admits a functional inverse

—I—% ERI]::I:_l;e_QU]].
el’

Now

x x
e/ = ¢ (1——‘|—T—|—"') eRMx e
er e
and ¢ € ¢ "R [x*; e *1. In particular, we have (eef)T — ¢’ Since
f= (log log exeem)mv = (exeem)mv 0 exp 0 exp
and since (h o exp)t = k' o exp for all transseries &, we therefore obtain

(log(log = log, 2)™)" = (x log x)™.

Hence, if (logxlog,z)™ were equivalent to an L-transseries g, then (xlog )™
would be equal to the unbounded part (log ¢)t of log g, which is an L-transseries by

(2). This is impossible by (1). O
Actually, we have a more general theorem:

Theorem 1.3.  Let [ be a positive infinitely large transseries, which is not an
L-transseries. Let k resp. v be minimal, such that f € C¥9[log, 1. Let [ =
expo f — k be the exponentiality of f minus k. Then for alln > r — [ 4 2, the n-th
iterated dilatation A™f of f is not asymptotic to an L-transseries.

Proof. It suffices to prove that (A""'f)T = A"~1f. We prove this by induction
over r — [. If r = [, then any transseries in C%°¢[log, =1 is negligible with respect
to ef. In particular,

1
Af _ efTologef olog c C;l_ll_olg [I:logk x:l] T

If r > [, then expo Af = expo f, Af € C**[log,,, =] and the result follows by
induction. O
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Notice again that theorem 1.3 is purely algebraic; resummation techniques are
generally needed to let the algebraic assertion coincide with its analytic counterpart.
For instance, using these techniques, it can be shown that e!(*) is not asymptotic to
any L-function, where I'(z) = ¢,

Notice also that the bound n > r — [ — 2 in the theorem is sharp.

Remark 1.7. We have learned recently, that theorem 1.2 was proved independently
by Macintyre, Marker and van den Dries in [MMV *|. They use a similar technique
and the analogue of proposition 9.10 used in their proof has been established by
Ressayre in [Res 93].
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Chapter 2

Well-ordered transseries

2.1 Introduction

In this chapter we introduce the concept of well-ordered transseries, thereby general-
izing the grid-based transseries from chapter 1. Transseries of this type are naturally
encountered as solutions to functional equations like

f(2) = = F@) 4 (),

or as explicitly given expressions like

g(r) = 26_“’"-

The price to be paid is that the classical operations, i.e. derivation, composition
and inversion, are more technical to define. In fact, most of this chapter is devoted
to a correct definition of well-ordered transseries and these classical operations.

In section 2.2, we introduce power series with Noetherian supports. In section 2.2
we define well-ordered transseries . However, we will see that there does not exist a
totally ordered exp-log field of transseries, which is stable under infinite summation
in the most general sense. However, we shall see that any exp-log field of transseries
is included in a larger field of transseries which is stable under infinite summation,
and vice versa.

In section 2.3, we prove a fixed point theorem for transseries.

In sections 2.4 and 2.5 we define the classical operations on transseries, namely
differentiation, composition and inversion.

In section 2.6 we describe the compactification of the “transline” and establish
a characterization for transseries intervals.

Finally, we will show in section 2.7 that some strongly monotonic solutions to
very general systems of functional equations can not be represented by transseries
in the sense of section 2.2 and we discuss further extensions of the concept of a
transseries.

61
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2.2 Well-ordered transseries

2.2.1 Algebras of Noetherian series

The definition of a well-ordered transseries is similar to the definition of a grid-based
transseries, with this exception that the analogue of the identity T = C'[I1] does
not hold anymore. Indeed, we essentially needed the built-in finiteness condition in
the definition of grid-based sets to prove this identity. As a consequence, larger and
larger fields of transseries can be defined by transfinite induction. Apart from this
major difference, the construction follows the same lines as in sections 1.3 and 1.5.
We will therefore content ourselves to indicate the changes, and we leave the details
to the reader. A review of Noetherian orderings is available in appendix A.

As in section 1.3, we first assume that C' is a ring of constants, and X a commut-
ative ordered semigroup. We denote by C[[X<]] or by C[[X]] the set of mappings
from X to C' with Noetherian support, and we call it the set of Noetherian series
in ' over X. Such mappings are also denoted by sums 3,y @y11. More generally,
we say that a family (f;)ier of elements in C[[X]] is Noetherian, if {J;c;supp f; is
Noetherian, and if {¢ € I|m € supp f;} is finite for each i € X. Given such a family,
we define 3.7 fi by (1.3).

As in section 1.3, we give C'[[X]] the structure of a C-algebra (instead of proposi-
tion 1.1, we use proposition A.2(c), proposition A.2(d). If X is totally ordered, then
C[[X]] is even a field, by using A.3 to Higman’s theorem; in this case, elements of
C[[X]] are called well-ordered series. The asymptotic relations < , <X, x, ~, =
and —« are also introduced in a similar way as before.

Remark 2.1. It was first observed by Higman (see [Hig 52]) that C[[X]] is a ring,
and even a field if X is a totally ordered group and (' a field. In fact, X does not need
to be commutative, but for our purposes we can restrict ourselves to commutative
semigroups.

Example 2.1. By analogy with example 1.1, we can consider the (product order-

ing, resp. lexicographical ordering) variants C[[z{, - -+ , z7}]] resp. C[[zf4- -+ ;22]] of
ClLz,--- , 2,0 and C'[Lzy;--- 2,1, for a fixed ordered commutative group A. This
time, there exists an isomorphism between C[[2;- -+ ; 24]] and C[[2Y]] - - - [[22]].

The definition of asymptotic scales needs some special care in our present
context. This is because the proof of proposition 1.3 essentially used the finiteness
condition in the definition of grid-based sets. However, if we add the condition
that for each well-ordered subset W of S, the family {m},ew is Noetherian, then
the analogue of proposition 1.3 does hold. Asymptotic scales which satisfy this
additional condition are said to be of well-ordered type. Asymptotic scales in the
former sense are said to be of grid-based type.

Let us finally remark that the ring C[[X]] has been studied from an algebraic
point of view by Ribenboim and others (e.g. see [Rib]). For instance, C'[[X]] is an
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entire ring, if and only C is entire and X is cancellative and torsion free. He also
gives sufficient conditions for C[[X]] to be a Noetherian ring. We believe that his
results are also valid for C'[ X, but we have not checked it.

2.2.2 Well-ordered transseries

Assume now that we are given a totally ordered exp-log constant field €' of charac-
teristic zero, and a totally ordered monomial group X. The analogues of the two
constructions from section 1.5 can again be carried out, but in both cases, the res-
ulting field T is not complete (T is a complete field of transseries, if T = C[[]],
where II is the set of transmonomials in T; complete fields are the only ones which
are stable under well-ordered infinite summation). Moreover, both constructions are
not equivalent anymore. Indeed, f = x+4log x+log, x+- - - is not an element of T, if
we apply the first construction. However, f € T if we apply the second construction,
since f € C[[loggw x]].

In fact, as we shall see below, it is not possible to construct a complete totally
ordered exp-log field of transseries. However, we will show that how to construct
fields which are closed under exponentiation, by analogy with the second construc-
tion from section 1.5. Then we obtain larger and larger fields of transseries, by al-
ternating closure under exponentiation and closure under infinite summation. The
transfinite induction we use for this generalizes the transfinite induction used by
Conway to construct non standard numbers (see [Con 76]).

Closure under exponentiation and logarithm. Let X be a totally ordered
monomial group. Assume that C[[X]] is a totally ordered partial exp-log field. We
say that C[[X]] is admissible, if the logarithm is defined for all strictly positive
elements, and if we have exp f = exp fTexp fCexp f+, for all f € C[[X]] such that
exp f or exp fTis defined. Assuming that this is the case, let us show how to extend
C[[X]] into a totally ordered exp-log field.

The construction proceeds by induction, starting with Xg = X. Next, let £ > 0
be given and assume that we have given C'[[X}]] the structure of an admissible totally
ordered partial exp-log field. Then we define Xy, = exp(C[[X]]"), and we embed
X into Xpy1 by sending 11 to explogu. Finally, we consider the inductive limit of
the sequence C[[Xo]] = C[[X1]] — - -+, which satisfies our requirements.

Transfinite extensions. In general, the inductive limit of C' [ X, — C[X;1 —
- is strictly included in C'[[X,]], where X, is the inductive limit of Xo — X7 — ---
(we recall that w stands for the smallest infinite ordinal number). Moreover, C[[X,]]
is also an admissible totally ordered partial exp-log field. We can therefore repeat
our construction with X, instead of X.
By using transfinite induction, we can even go much further. Indeed, we define
Xop1 = exp(C[[X,]]N), for any ordinal a. For limit ordinals, X, is by definition
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the inductive limit of all X5 with 8 < o. The corresponding inductive limit of the
C[[Xg]] has the structure of a totally ordered exp-log field.

Well-ordered transseries Now take the totally ordered group log.. x of logar-
ithmic monomials in « for X in the previous construction. Then we denote C[[X,]]
by C¢[[[x]]], and call it the field of well-ordered transseries of exponential
depth < a. The exponential depth of a transseries f is the smallest ordinal «
with f € C¥[[[x]]]. For limit ordinals e, the inductive limit of all fields C[[Xj]], with
B < ais denoted by C¥_[[[z]]], and is the totally ordered exp-log field of transseries
of exponential depth < a.

Alogarithmic transseries We define the logarithmic depth of a transseries to
be the highest iterated logarithm “occurring” in its expansion: mimicking the first
construction of grid-based transseries, we build the hierarchy of fields of alogarithmic
transseries C%[[[z]]] of exponential depth < a, for each ordinal a, and the induct-
ive limits C,[[[2]]] of C¥°9[[[x]]] — C¥°9[[[logz]]] — ---. Then the logarithmic
depth of f is the smallest k, with f € C%°[[[log, z]]]. We extend the notations
CH[[=]]] = C¥9[[[log,, z]]], C=¢[[[z]]] = Cull[z]]], etc. Hence, the analogue of the
first construction from section 1.5 yields C[[[z]]] = C£¥[[[z]]], and the second one

yields C¥[[[z]]] = C2,[[[]].
Example 2.2. The following is a transseries of exponential depth w:
e+ + e + -

The transseries

exp,, <\/§ + eVioga + expyy/log, x + - )
has exponential depth w + n. The transseries
r+loge 4 log, a4+ - -
has infinite logarithmic depth.

Some results from chapter 1 can be adapted in a straightforward way to our
present context. In particular, the properties 1-5 from section 1.6 still hold. The
paragraph in section 1.7.1 about upward and downward movements, contractions
and dilatations is also easily transposed. In particular, we still have my 3 Mo, ¢, for
positive infinitely large transseries f.

2.2.3 Closure properties

In what follows, by a field of transseries over ', we shall always mean a field of
transseries T of the form Cg{[[x]]], Cp[[[x]]], C2sll[x]] or Ccp[[z]]]. Here a < w and
[ are ordinals, and (3 is a limit ordinal in the last two cases.



2.2. WELL-ORDERED TRANSSERIES 65

Proposition 2.1. Let [ be a transseries of finite logarithmic depth. Then [ has
at most countable exponential depth.

Proof. It suffices to consider the case when f is alogarithmic. Let us first prove by
induction that each alogarithmic transmonomial 11 of exponential depth d satisfies
I - expy_; . This is clear for d = 0. Assume that we have proved the assertion
up to d (not included). Let m be the dominant monomial of logx and assume
that M = exp,;_, . Then 1 <« m X exp,_, x for each u1 € supp logu. Hence the
exponential depth of each 1y € supp logm is bounded by d — 2, by the induction
hypothesis. But this means that the logarithmic depth of 11 is bounded by d — 1.
This contradiction shows that we can not have m < exp,;_, x. Therefore, log <
M B exp,_, T, whence 11 % expy_; T.

Now let II be the set of alogarithmic transmonomials of finite exponential depths.
We must show that C[[LL]] is stable under exponentiation. Let f € C[[IL]]. Since
ef = efTefcefi, we must show that fT has finite exponential depth, and we may
assume without loss of generality that fT # 0. Now let d be the exponential depth
of the dominant monomial M of fT. Then we have 11 <& exp, +1 T, for all monomials
i € supp fI. By what precedes, this means that the exponential depth of fT is
bounded by d + 2, whence the exponential depth of e/" is bounded by d + 3. g

As a consequence of the above proposition, the fields C2[[[z]]] and Cg{[[z]]]
reduce to C2[[[z]]], if @ < w and # > w. Similarly, the fields Ccs[[[z]]] and Cs[[[z]]
reduce to C[[[z]],if # > w. The next proposition shows that no other such collapses
take place:

Proposition 2.2. The field CZ[[[x]]] is strictly contained in C¥[[[z]]], for o < 3.

Proof. Consider the sequence (f,)a, with f, € C¥[[[z]]], defined by transfinite
induction: we take fo = —2% For each ordinal a, we take f,4, = f, — e/
For limit ordinals «, we let f, = statlimg_,, fs (see page 67 for the definition of
stationary limits). It is easily verified that whenever 8 < a, then f, & C¥[[[z]]].

Actually, the ordering on ordinals is even reproduced by the sequence.

olog

Now we have classified the fields of transseries, their respective closure properties
are listed in table 2.1 below.

Remark 2.2. Although the table shows that there are no fields of transseries
which are stable under logarithm, exponentiation and well-ordered summation, there
do exist fields of transseries which are stable under logarithm, exponentiation and
countable well-ordered summation. Indeed, for each totally ordered monomial group,
we may consider the field C'[[X]], of countable well-ordered linear combinations of
monomials in X. Note that if the cardinal number of €' U X is at least 2¥, then
the cardinal numbers of C'U X and C[[X]], coincide. Consequently, if we perform



66 CHAPTER 2. WELL-ORDERED TRANSSERIES

‘ ‘ Infinite summation ‘ Exponentiation ‘ Logarithm ‘

Cyl[[]] v

Clll=]]] v

Colll=]l] v v

Ca[[=]]] v
Cll[=]]] v v
Culll=]] v v
Cll=]]] v v
O[] v v

Table 2.1: Closure properties of the different types of fields of transseries.

the construction from the previous section with fields of the form C'[[X]], instead of
C[[X]], the corresponding transfinite sequence of fields C'¥[[[x]]]. is stationary, since
the cardinal numbers of these fields are all the same. The limit of the sequence is
stable under logarithm, exponentiation and countable summation.

2.2.4 Tree representations of transseries

Let us show that each transseries f over (' in x has a natural tree representation
Ty. It fis an iterated logarithm, then T is a leaf labeled by f. In the other case,
we write a transseries f as a well-ordered sum of transmonomials f = >~;c;c;m;. Let
1 = ¥, for some purely unbounded ¢;. Now assume that each ¢; admits a tree
representation T,,,. Let U; be the tree obtained by substituting the root of T} by ;.
Attaching the U, together to a new root, labeled by f, and in the order determined
by I, we obtain the tree representation of f. For an example, see figure 2.1.

Proposition 2.3. Fach well-ordered transseries [ over C admits a tree represent-
ation Ty, which is well-founded.

Proof. Let f =) ",c;ciy be as above, with 1; = €% for each . If f is a finite linear
combination of iterated logarithms, then T, admits a tree representation for each
7, by definition. Hence, f admits a tree representation of depth < 2.

It f has exponential depth zero, then ¢, is a finite linear combination of iterated
logarithms for each :. Hence, T, admits a tree representation for each ¢, by what
precedes. Hence, f admits a tree representation of depth < 3.

Now assume that f has exponential depth o and that we have proved the pro-
position for all strictly smaller exponential depths. Then T, admits a well-founded
tree representation for each I. Hence f admits a well-founded tree representation
Ty. Indeed, any infinite path in 7; would yield an infinite path in one of the T,,,,
which is impossible. This completes the proof, by transfinite induction. O
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/\

2

ey prHog -
er’ x logz log,
/ A
22 logx 52 log x
logz loga log x

$2
Figure 2.1: The tree representation of f = ¢ /(1=1/#) 4 cotlogwd-

Tree representations provide good mental pictures for transseries, and will be
useful for the combinatorial definitions of the derivative of a transseries and the
composition of two transseries. Notice that the root plays a special réle in a tree
representation.

2.3 The fixed point theorem

2.3.1 Stationary limits

Let T be a field of transseries. We say that a transseries f € T is a truncation
of another transseries ¢ € T, and we denote f J g, if f =g or f =3, ., guit, for
some transmonomial 115. This relation clearly determines an ordering on T, which
has the following properties:

(a) 09 f;
(b) fAh ANgdh=fdgV g/,

for all f,g,h € T.

Proposition 2.4. Let T be a complete field of transseries. Let (f;)ier be a family
of transseries in T, where I is totally ordered. Let T be the set of transseries f, such
that for all iy € supp [ we have [ — fi; < 11 for all sufficiently large 1 € 1. Then T
admits a unique maximal element for <, which is called the stationary limit of
(fi)ier and denoted by statlim;ey f;.
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Proof. Let f # f bein T'. The dominant monomial m of f — f must be in supp f,
in supp f, or in both. Assume that a1 € supp f. Then we have f — f; < u for all
sufficiently large 7. If 1y € supp f, then we also have f — f; = f — f; + (f f) <
for all sufficiently large i. Consequently, 1 » w1, whence f < f. Similarly, we find
fa f, if M € supp f We infer that 7" is totally ordered for <. In particular, a
maximal element of T, if it exists, must be unique.

Now let f,f e T and let i € supp f, 11 € supp f be monomials with o < . If
f < f, then we clearly have i € supp f. Otherwise, f < f and f — f < I, since
it € supp f. Hence, we again have 11 € supp f. Now consider the set S = User supp f
is well-ordered. Let 1 € supp f for some f € T. By what precedes, all {m € Slu <
i} C supp f. We deduce that S does not contain infinite decreasing sequences.
Therefore, S is well-ordered.

Given 11 € 5, there exists an f € T with 11 € supp f, and the coefficient ¢, = f;
obviously does not depend on the choice of f. We claim that [ = 37, s, is a
maximal element in 7' for <. Let f € T. Since supp f is an initial segment of 5,
and ¢; = fy for all it € supp f, we have f <. Hence, [ is maximal for <, if [ is
in T'. Now given 11 € supp [, there exists an f € T with 1 € supp f. Then for all
sufficiently large i, we have [ — f; = (I — f) + (fi — f) << m, since f < [. O

A subset U of T, is said to be complete, if the stationary limit of any sequence
with values in U lies again in U. A field of transseries is complete in the new sense,
if and only if it is complete in the old sense: if T = C5*[[[z]]] or T = C5¥[[[x]]], for
some 3, then z,x 4+logx, x4+ logx +log, x,- -+ is a sequence in T without stationary
limit (in T). If 3 is a limit ordinal, then the sequence (f,)a<g from proposition 2.2
is an example of a sequence in T = C'Z; without stationary limit.

We state without proof the following easy closure properties of complete sets:

Proposition 2.5. Let U be a complete set. Then
(a) {f € U|f < e} is complete, for all ¢ € T*.

(b) Uw is complete, for all transmonomials 1.
(¢) If I is a set of transmonomials in T, then U N C[[L]] is complete.

2.3.2 The fixed point theorem

Let U be a complete subset of a field of transseries T. Let ® be a mapping from U
into U. We say that ® is a contraction, if

Vigel ®(g)—@(f) <g— [ (2.1)

Then we have the following theorem:

Theorem 2.1. Fixed point theorem Let U be a complete non empty subset of
T. Then any contraction ® : U — U admits a unique fized point.
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Proof. Define a transfinite sequence (f,), of points in U as follows:

fo = An arbitrary point in U;
Jot1 = (I)(fa)§
fo = st%t lim fj for limit ordinals o.
—Q

We claim that the stationary limit f of this sequence is a fixed point for ®.
Actually, we will show by transfinite induction that the sequence f,1; — f, is
strictly decreasing for —< ; this will imply that f,41 = f, for all « > |T|. If

fa+1 7£ fom then
fat2 = for1 % for1 — fa (2.2)

immediately follows from (2.1). Now assume that « is a limit ordinal and that we
have proved the induction hypothesis for all 5 < a. This implies in particular, that
fyv = f3 X fap1 — fs for all B < v < a (by a second, straightforward transfinite
induction). Consequently, f, — fs =X fst1 — f3, whence foy1 — fo41 < far1 — f5,
by (2.1). Similarly, we have f, — fs41 =X fat2 — fs41 < fo41 — fs. Together this
yields

foz-l-l_foz'«fﬁ-l-l_fﬁv (23)

as desired.
Now let f' # f be a second point in U with ®(f') = f’. Then we have f' —
fXf=f=df)—@f) = f —f=<f —f. This contradiction proves the

uniqueness of the fixed point. O

Remark 2.3. By analogy with classical fixed point theorems, one might expect
the fixed point theorem to be very useful in the resolution of functional equations.
Unfortunately, this is usually not the case, and even when the fixed point theorem
can be applied, direct proofs are often shorter. Nevertheless, the transfinite approx-
imation technique used in the proof is very powerful, and we will often use it in
what follows.

2.4 Differentiation of transseries

Let us fix a field of transseries T over (. In this section we show that T can
naturally be given a derivation over . This derivation extends the derivation
defined in section 1.7.1 for grid-based transseries. Given f in T, we would like to
define " = df /dx by transfinite induction, setting (log;, «)" = 1/x---log,_, x, and
(Ygertcg€?) = Y ert cg¢'e?. Of course, elements of C' are sent to zero. The hard
thing to show is that f’ has well-ordered support. Instead of showing this directly,
we give an alternative combinatorial definition of f’, based on the tree representation
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of f. Moreover, this combinatorial derivative has the properties mentioned above.

B>

Consider a path P from a child of the root to a leaf in the tree representation
Ty of f. Let mp;y,- -+ ,1p|p| denote the labels of the consecutive nodes on this path,
with np|p| = log, 2. We denote

P = [upy, - ,1upp|l;

cp = fup,l (log HP,I)up,z T (log HP7|P|_1)HP,|P|;
Op = Lpy---LOp|p|;
np = 1p/x---log, .

Now we define [’ by
P Y et (21)
Pepath(Ty)

where path(7) denotes the set of paths in T from a child of the root to a leaf.

Example 2.3. Let us illustrate the definition (2.4) on the example f = ST or
The paths from a child of the root to a leaf in T are

[37 2 e2 2], [ 23, log 2] and [¢”, ].

The contributions of these paths to f” are respectively
105+ €250 2, 156+ 13 log ¢ /w log x and "z /x.
Indeed, f/ = 10"+ e2r 4 15577+ 32 4 e

In order to prove that f’ is well defined by (2.4), we show that the ordering <
on paths defined by P < @ & up < 1, is Noetherian (remind warning 1.1: the
ordering on transmonomials is opposite to the ordering on transseries). The main
problem here is that it can happen that for paths P and ) with np; < 1191, Wwe do
not have P < ). For instance, take f = e +V% 4 ¢, P = [ V", | /z,log x| and

Q = [e*, e, x]. However, we have the following:

Lemma 2.1.  Let f be a transseries in T and let P £ Q be paths in Ty with
npy < 1. Assume that |Q] = 2. Then |P| > 2 and ng» € supp logup;.

Proof. Let log, » and log, x be the labels of the ends of the paths P resp. (). Let
us first treat the case when |P| > 2 and p = ¢. We have

@ _Op1 - Op)p
g I Lo, Q|
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Using that P £ @) and the fact that up; <1 for j > 1, we deduce

np1 2 Q1 - 1g,|Q|- (2.5)

Assume now that 19 were not in supp logup;. Then g € supp logup; /g1,
since

supp lognipz C supp lognp: U supp log(mipz /mp).

Recall that for any infinitely large transmonomial m, we have mr < ' for each
it € supp logut. Hence,
1/(lQ1-1)
Op1
(—) < HQ.j»

0.1

for each 5 > 2, by induction over j. Consequently,

Op1
— <IQ2 - UQQ)
iV

which contradicts (2.5).
Assume now that |P| > 2, but p # ¢. If p > ¢, then we formally extend the path

Q to
Q = [HQ,lv' T 7HQ,|Q|—1710gq$7‘ o 710gp l’]

We observe that this extension does not alter u’Q nor 1g;. This ensures that the
same arguments as in the case when p = g can be applied. The case p < ¢ is treated
similarly, by formally extending the path P.

Assume finally that |P| = 1 and let us come to a contradiction. Again, we
formally extend the path P to the path

P :=log,z,--- ,log, z].

Then the same arguments as before can be applied, to yield ng» € logmp;. Hence
g2 = log,,, v and |Q] = 2. Consequently, mp /11, = log, x/11g1 < 1 leads to the
desired contradiction. O

Theorem 2.2. The ordering on the set of paths in the tree representation Ty of a
transseries f € T is Noetherian.

Proof. Suppose that the conclusion of the theorem were false, and let Py, P, - - -
be a bad sequence of paths (see page 307). Using proposition A.1(d) (page 305), we
may assume without loss of generality that 1p ; <11p, 1 < -+ -. Clearly, we can not
have |P;| = |P;| = 1 for two different indices ¢ < j. Hence, for all sufficiently large
i =1 >1, we have |P;| > 2.

By lemma 2.1, we deduce that |P1| > 2 and up, 5 € supp logup, 1, for each ¢ > .
Hence, Q; = [tip, 2, -+ ,1p, |p,|] is a path in logip, 1, for each such . Moreover, we
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observe that mp = my 1p, 1, for each 7 > I. Consequently, Qr, @141, -+ is a bad
sequence of paths in Tlogupl,m since ip, 1 < pr, 10 <

Repeating the argument, we can therefore construct an infinite sequence f; =
fyfas---, with fiyq € logu; and 1; € supp f;, for © > 1, and where none of the
fi 1s an iterated logarithm. The existence of such a sequence contradicts the well-
foundedness of T'. O

The theorem justifies our definition (2.4) of the derivative f’ of a transseries
f € T. Let us now show that the mapping f ~ [’ is indeed a derivation. Its
linearity is clear. We also notice that (e/)’ = f’e/ for all transmonomials ¢/. Now
by linearity, we only have to show that (iy1,) = mjm + mym} for transmonomials
m; and 1m,. Writing m; = e/t and my = €2, we have (e'72) = (f; + fo)'e T2 =
(ef1)ef2 4+ ef1(ef2) ] again by linearity and the fact that (ef) = f’e/, for each purely
unbounded transseries f. The results of this section can be rephrased in

Theorem 2.3. The relation (2.4) defines a derivation on the field of transseries.
O

2.5 Composition and inversion of transseries

In this section we introduce composition and functional inversion for grid-based
transseries, thereby generalizing section 1.7.1.

2.5.1 Functional composition of transseries

In this section, we define the composition f o g of a transseries f by a positive
infinitely large transseries g € T2, for some fixed field of transseries T. In the
next section, we give necessary and sufficient conditions for T to be stable under
composition.

As in the case of the derivation, we would like to define f o ¢ by transfinite
induction, setting log, x 0 g = log; g, and (X errene™) 0 g = S pert cne. The case
when f € C¥[[[z]]] will be treated in a direct way. However, to show that f o ¢ has
well-ordered support in general, we will give an alternative combinatorial definition
for the composition. Again, this definition will be equivalent to the definition by
transfinite induction.

3>

Let us first show that f o g is well defined, if f € Cg[[[z]]]. For each k& > 0, we
can write log, g = ¢ (1 +¢eg), for ¢, € C, an infinitesimal ¢; and a transmonomial
M. Then we have

& &
supp log, ., ¢ C My -+ - Mp*(suppeo)” -+ - (suppey)”,
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for each word p € C* over C'. Moreover, there exist ko € N and [ € Z, such that
cpMy = log, x, for k > ko. Hence

(suppex)’

supp €x+1 © ] )
OZpiiy1 T

for k > ko (see page 307 for the notation (supp 5k)T). By induction we get

1 1 ¢ 1 f
&
ISP SIS ¥
10gk0+1+1 z 10gk+1 z 10gk0+1+1 T 10gk+l+1 z
Hence
&
1 1
sSupp &g g Sko = (Supp 5k0)<> ) P 3
10gk0+l+1 z 10gk0+l+1 z 10gk0+l+2 z

for each k > ko. We deduce that if supp f = {log, .., .x[t € I}, then

Pn

Po,: Pry—1,

supp f 0 g C So = {my oM 0T € I} (supp 50)0 -+ (supp 5k0—1)05k0-

) ; Pro—1,i
Moreover, My % My = ---, so that the ordering on {MSOJ . -Mkoo_1 '

duces the ordering on {log, .

i € I} repro-
z|i € I'}. Hence, fog has well-ordered support.

Pho—1,i

<>

Consider the tree representation Ty of C¥[[[z]]]. A g-labeled tree in T} is a
finite tree L, together with a mapping 7 : L — T and a labeling a — A, of the leafs
of L, with the following properties:

LT1. pred(r(root(L))) = root(T}).

LT2. 7(pred(a)) = pred(7(a)).

LT3. a € leaf(L) = 7(a) € leaf(T}).

LT4. If a =1 b for the natural ordering (see page 308) on L, then 7(a) =7, 7(b).
LT5. If 7(a) is labeled by log, « for a € leaf(L), then A, € supp log, g.

Here pred(a) denoted the predecessor of a node a. We remark that 7 is not neces-
sarily injective. For each « in L, we denote by 1, the label of 7(a) and by ¢, its
coefficient in log pred(a) (resp. pred(a), if a = root(L)).

Assume now that for some ordinal o we have shown that fogis well defined for all
f € Cy[ll=]]], with 3 < a. Then the mapping ¢ which associates the transmonomial
(79" to a transmonomial e” in C¥[[[+]]] is a morphism of ordered groups. Let L be
g-labeled tree in Ty and L’ a subtree of L. Let r be the root of L', and LY,---, L/
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ze¥4x

Ty

ret+x

7\
/\

x log «

Figure 2.2: Illustration of a g-labeled tree in T (see example 2.4)

its children r. To L', we associate

. { ¢-(logy g)y,, if n =0 and i, = log, x;
L=

1 : :
acrerr ey ifn #0;

. = H Ha s

a€L\leaf(L')
)\L’ = H )\a;
a€leaf(L’)

oy, = ().

We say that L is admissible, if i}, < 1, for each strict subtree L’ of L. We order
the set admt,(7T) of admissible g-labeled trees in Ty by L < L' & nj < 13,. We
define f o g by

fog= > crp(nr )AL (2.6)

Leadmty(Ty)

In order to prove that f o g is well-defined, it suffices to show that the ordering <
on admt,(7Ty) is Noetherian.

Example 2.4. Let f = ¢ ™ and g = 2 + /T + 377 + He™?*. In figure 2.2, we
have illustrated a sample admissible g-labeled tree L in Ty. We have

and
H% = (xe$+\/5)2€(l’+\/5)(5$+ﬁ+3€ﬁ+1)e—5x‘
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Lemma 2.2. Let f be a transseries in T and let . L M be admissible g-labeled trees
in Ty, with Woot(r) < Woot(M), @nd Ay < Apr. Assume that M has size |[M] > 2.
Then |L| = 2 and there exists a child M’ of the root of M, such thal ey €

supp log I-Iroot(L) .

Proof. Assume that the conclusion of the lemma were false. Then

I—];root(L)

Troot(M?) € supp log )
Troot(M)

for each child M’ of the root of M. Hence,

( Troot(L) ) M=
I—];root(M') > | — )
I—];root(M)

for each such M’. Using structural induction, we deduce that

1/(IM]|-1)
m, > (uroot(L) ) :
I—];root(M)

for any a € M\root(M ), whence

OV = Whoot(M) ] Ta > Heoot(r) = LL-
a€M\root(M)

This yields the desired contradiction, since 11}, = ¢(mar) A > p(p)Ap = 3. O

Theorem 2.4. The ordering on the set of admissible g-labeled trees in the tree
representation Ty of a transseries f € C¥[[[x]]] is Noetherian.

Proof. Suppose that the conclusion of the theorem were false, and let Ly, Lo, ---
be a bad sequence (see page 307) of admissible g-labeled trees in Ty. We say that
such a bad sequence is admissible, if Mo4(z,) < Trooy(r,) < -+ and Ay, < Ap, < -+
Recall that Az, is either in Sy (if L; consists of a leaf only), or in {m € Sp|m < 1}°.
By proposition A.1(d), we can extract from each bad sequence an admissible bad
sequence. An admissible sequence is understood to be minimal, if for each ¢, and
each admissible bad sequence Ly,--- , L;, L’ 4,--+, Li ,,--- the number of children
of the root of L!_, is strictly superior to the number of children of the root of L.
Without loss of generality, we may assume that Ly, Lo, - - - is a minimal admissible
bad sequence. From the minimality hypothesis, we deduce that the number of the
children of the root of L; increases, as ¢ increases. We claim that for all sufficiently
large ¢ > [ > 1, the root of L; has at least one child, whence |L;| > 2. If this were
not so, then all L; would be roots whose images under 7 are labeled by iterated
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logarithms. But this is impossible, since supp g U supp log ¢ U supp log, g U - -+ s
well ordered by the discussion at the beginning of this section.

Applying lemma 2.2, we deduce that |L;| > 2 and for each ¢ > I there exists
a child M; of the root of L;, such that ooy € supp 10g Moy(r,)- Let L) be the
admissible g-labeled tree obtained from L; by deleting M;. We claim that the induced
ordering on {L}, L ,---} is Noetherian. Assuming the contrary, there exists an
admissible bad sequence L. , L’ ,---. Let k be such that 7; is minimal, and consider

217 12

the sequence Ly, , Li 1, L; , L;k_l_l, -+, This sequence is also an admissible bad

sequence, contradicting the minimality hypothesis. Indeed, we observe that L;»J >
L;, for each j, since uj’wi > 1 and uj’: = uj’:, uj’w .

By proposition A. 1(d) we can extract an increasing sequence L; , L ,---, from
Ly, Ly q,--+. Using again that uL = uL, uM for each j, we conclude that M;,,
M,

i, + 18 a bad sequence of adm1881ble g- labeled trees in Tiogn,,,,,,,- Repeating the
argument, we obtain a contradiction as in the proof of theorem 2 2 O

Corollary. The composition f o g is well defined by (2.6), for all transseries
f e C¥[[[x]]] and all ordinals .

2.5.2 Properties of functional composition

We now state some properties of the composition, leaving the proofs of (a), (¢) and
(f) as exercises for the reader.

Proposition 2.6. Let f € C7[[[z]]] and g € (Cf,/[[[x]]])j_o Then

(a) Right composition o, with g is a strong difference operator, i.e.

(Zfi)og:Zfiogv

el el
for all Noetherian families (f;)icr.
(b) (fog)oh = fo(goh) for all positive infinitely large h.
(¢) (fog)=g(fog)

(d) Let ¢ < 1 such that ¢ < ' /u, for all monomials 1y # 1 in the support of f.
Then

fo(:z;—l—as):f—l—f/es—l—%f/%?—l—---. (2.7)

Here ¢ < 1 < 1 /1t holds in particular, if expon < 0.

(e) fogé€ Cf,/,/[[[x]]], where o = min(a 4+ o, max(a, o) + w) and " = min(F +
g w).

(1) expolf o g) = expo f + expog.
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Proof. We prove (b) using a double transfinite induction. We may assume without
loss of generality that 3 = w, and that g and h are both in T} . Assume first that
f =logz. If g =log;z, then we clearly have associativity. In the other case, we
write g = ¢;My(1 4 ) and

log(goh) = log (chg oh (1 +> eqmo h))
Jif

= log gy + logmo h + log (1—|—Z€uuoh)
i

log gn + (logm) o b + log (1 —I—Zasuu) oh
Jif

= log (chg (1 + Zsuu)) oh = (logg)oh.
Jif

The induction hypothesis is used to write down the identity log(mo k) = (log M) o h.
[terating the obtained identity, we deduce that log,(g o h) = (log, g) o h, for all ¢
and k. For more general f, we use a second transfinite induction and write

(quu)O(goh) Y o (goh)
= qu(uog)Oh

(o))
I
This concludes the proof of (b).

The hard part of (d) is to prove that the right hand side of (2.7) is well defined.
To do this, we shall use the concept of Noetherian operators from section A.4.
Let X be the set of couples (1,n) where 17 is a transmonomial with it = 1 or
e <1/ and n € N. We order X by (m,n) < (m,m) < ne” < me™. Let ¢ be
the strictly extensive choice operator on X, which sends (1, n) to the set of couples
(m,n + 1), with o € supp . From theorem 2.3, we deduce that the operator v
is actually Noetherian (apply the theorem to 3, cp 11 for each well-ordered set of
transmonomials IT). Hence, the operator ¥* is Noetherian, by theorem A.4.

We have a natural injection ¢ : supp f — X;m+— (11,0). Let £ = com.(1+6). An
element in J*(¢(supp f))(supp 5)0 is represented by a chain 1y € supp f 1y, -« 11,
of monomials with 1,4y € supp 1, for all 7 and a chain 1y, - - - , my,, of monomials in
the support of 4. If n = m, then we associate to such an element (1, mx) a term

f— / .« . o / n n .« . o
() = Juo Do u; 0,1, BnCe M, Oy Oy -
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If m # n, then we take T uy = 0. Clearly, the mapping (I, mx) — Ty is increas-
ing. Therefore, the sum 3, . Ty is well defined, since 9*(¢(supp f))(supp 5)0 is
Noetherian. But this sum is nothing else than the right hand side of (2.7). We leave
it as an exercise for the reader to prove the equality (2.7).

The only non trivial thing to prove in (e) is the bound o’ < max(«,d') + w.
We may assume without loss of generality that ¢ = x 4 ¢, with ¢ < 1, by means
of a finite number of left and right compositions with exp and log. Let us prove by
induction over [ that if supp f contains only monomials with exponentiality < [, then
we may take o < max(a,o’) + 1. If [ = 0, then this results from (d). Otherwise,
let 11 = ¢¥ be a monomial in supp f. Then the exponentialities of the monomials in
supp ¢ are all bounded by [ — 1 by the induction hypothesis, whence the exponential
depth of €¥ 0 g is bounded by max(a, ') + 1. We conclude by the strong linearity of
0.

In the general case, we decompose f as a sum f = fo+ fi + fo + -+, where the
monomials in supp fo have exponentialities < 0, and the monomials in supp f; have
exponentialities [, for each [ > 0. By what precedes, the exponential depth of f;0g¢
is bounded by max(ea, a’) + [, for each [. We now infer (e) from the strong linearity
of o,. g

Using proposition 2.6(e), we can now characterize those fields of transseries T are
stable under composition: T = CF[[[z]]] is stable under composition, if and only if
§€{0,<w,w}, and b € {0,<w} orh =< a with @ = a+w. In the cases when such
a field contains log x and exp x, then we say that T is a stable field of transseries.
Summarizing, we have proved:

Theorem 2.5. Let T be a stable field of transseries. Then the relation (2.6) defines
a composition on T, which is compatible with the derivation. O

2.5.3 Functional inversion of transseries

Theorem 2.6. Let T be a stable field of transseries. Then each g € TY admits a
functional inverse for o in T.

Proof. Modulo a finite number of left and right compositions of ¢ with exp or log,
we may assume without generality that ¢ = = 4 ¢, for some ¢ < 1. We will denote
by k resp. A the exponential resp. logarithmic depth of g.

We first consider the case when all monomials in the support of ¢ have exponen-
tiality < 0 or fixed exponentiality [. Then we define the sequence (f,) by transfinite
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induction:

Jfo =
Ja1 foz_(faog_x)ofoz§

fo = st%t lim fg, for limit ordinals a.
—Q

Using our hypothesis on &, it can be verified by transfinite induction that the ex-
ponential and logarithmic depths of the f, are bounded by & resp. A, so that the
stationary limits are well defined. Indeed, this follows from proposition 2.6(d), by
noticing that the exponentiality of f, — x is either < 0 or equal to [ for all a > 0.

We claim that f, o g = x, for a sufficiently large (whence g o f, = ). It suffices
to show that f, 09 — a2 <« fzog — x, for all 8 < a, with fz0g # . Indeed, this
implies that f, o ¢ = @ for @ > |T|, where |T| denotes the cardinal of T.

We first observe that for any infinitesimal §, we have § ~ § o (@ 4 ¢). Hence

forr0g—v=foog—a—(faog—x)o(faog) X faog—u.

For a limit ordinal «, let § < v < a. We have

(fpog—a)—(fyog—x)~ faog—a~(fgog—x)o(fs0g),

whence fz—f, ~ (fsog—x)ofs. Passing to the limit, we deduce fz— f, ~ (fzog)o fs.
Hence

(feog—a)—(faog—a)~ fsog—a~(fsog—2)o(fsog),

so that f,og—a <« fzog— .

In general, we decompose g = v +¢cg+c1+¢e3+ - -, where the exponentialities of
the monomials in supp ¢ are bounded by 0 and the exponentialities of the monomials
in ¢; are equal to [ for each [ > 0. By induction on [, we now have functional inverses
fo, f1s fo, -+ for o +eg, v+ 0+ €1, + €0 + &1 + 2, - - respectively:

fiyr = fio(z +ero fi)™;

here (z+¢;0 f;)™ is defined by what precedes. We also observe that the exponential
resp. logarithmic depth of f; is bounded by & + [ resp. A for each [. Hence f =
stat lim;_, o, f; exists and yields the desired functional inverse of g. Indeed, if fog # =z,
then for any [ € N, the exponentiality of f og —x < f;0 g — x would be at least [.
But this is impossible. O
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2.6 Transseries intervals and compactification

Any totally ordered set E has a natural topology, called the interval topology,
whose open sets are unions of open intervals. We recall that an interval is a subset
I of E, such that for each * < y < z with x,z € I, we have y € I. An interval
is said to be open, if for each © € [ we have: z is minimal resp. maximal, if and
only if x is minimal resp. maximal in K. We observe that an increasing union of
open intervals is an open interval. Hence, any open set U of £ can be represented
as the (generally infinite) disjoint union of intervals, by considering the largest open
interval I, C U for each z € U.

Now consider a field of transseries T with the interval topology. T is “very” non-
Archimedian, whence disconnected and non compact. A natural question is how to
characterize intervals in T. Now open intervals in R are all of the form |a, b[, with
a < b,and a,b € RU{—00,00}. Hence, extending R with {—oc0, o0} yields a simple
description of the intervals of R. Moreover, RU{—o00, o0} is a compactification of R.
We claim that an analogue of this holds for T, but much more new values need to
be inserted. We will first give an abstract construction in section 2.6.1 which works
for any so called continuously totally ordered set. In section 2.6.2 we particularize
the obtained results for the transline T.

2.6.1 Compactification of continuous total orderings

Let F be any totally ordered set, and denote by I(E) the set of its initial segments,
ordered by inclusion. Let ~ be the equivalence relation on I(E) defined by I ~ J &
|I A J| < oo, where |I A J| denotes the cardinal of I\.J U J\I. This equivalence
relation is compatible with the ordering on [(F). Hence, we have a natural ordering
on = [(E)/~. We also have a natural mapping i :  ~ I, from E into F, with
I, = {y < x}. We say that the ordering on F is continuous, if for each + <y € £
there exists a z € F, with * < z < y. This is always the case when F is a totally
ordered field.

From now on we assume that <g is continuous. We first observe that [, A [, is

infinite, for any x # y in F, so that 7 is an embedding. Let us show that =30
i.e. that the natural mapping j from F into £ is an isomorphism. Let I < J
be in E. Then there exists + € J\I. At least one of I,\I and J\/, must be
non empty. If y € I,\I, we have [ < [, < [, < [, < J for any y < z < .
Similarly, if y € J\ I, then [ < I, < J for any < z < y. We conclude that the
ordering on F is continuous, whence j is injective. Next, let I be in I(E). Consider
U=Uype V€IE). Then Iz~ I and I = j(U).

Let us now show that FE is connected. Assume the contrary. Then FE is the
disjoint union of two open sets, whence the disjoint union of at least two non empty

open intervals. Let Iy < I3 be summands of this partition. Writing

E = Uxeh] - XOF, l‘] I ml’eh]xv OOE[v
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we observe that we may assume without loss of generality that £ = I;111,. Consider
U= Uves, V € I(FE). We have either U € I, or U € I,. In the first case, U would be
a maximal element of I; different from E. In the second case, it would be a minimal
element of I, different from ¢. This gives us the desired contradiction.

Let us finally show that F is compact. It suffices to show that from a covering
(I,)aca of E with open intervals we can extract a finite subcovering. This is done by
the following procedure: let z¢ = g_b be the minimal element of E. For each k > 0, we

inductively define zy; = Urer, V. We remark that we either have x4 = F,

ZE€la
or I, < xj4q, for any a with 2 € I,. We claim that x, = I for k sufficiently large.
Suppose the contrary and consider x = Ug_,, Us. There exists an a with z € I,,.
Since [, is open, there exists an y < x in [,. By the definition of z, there exists an
n with y < z,. But then z, and z,.; < F are both in I,, which contradicts the
fact that x,,1 = I or I, < z,4,. Having proved the claim, we successively choose
Qg, -+, 0, such that z; € I, (0 <4 < k), and I, N1, # @ (0 <i<k). Thisis
possible by the construction of the z;, and we have £ =1, , U---U I,,.
We have proved:

Proposition 2.7. Let IV be set with a continuous total ordering. Then

() E=ZE.
(b) E is connected.
(¢c) E is compact. O

2.6.2 Compactification of the transline

Let T be a field of transseries and II the subset of transmonomials. We will give a
concrete description of T. Besides ' and T which are naturally embedded into T,
T contains also two special elements cor = sup T and 1/coc = sup{f € T|f < 1}.
If T is not complete, then let T denote the smallest complete subset containing T of
a complete field of transseries T’ which contains T. T is also natural embedded in
T, and consists precisely of those elements f in T’, such that for any ¢ « f we have
geT.

Let us now show that the usual field operations, exponentiation and logarithm
extend to T. Any increasing function ¢ : I — T on an interval I of T naturally
extends into an increasing function % : I — T by @(sup J) = sup ¢(J), for all initial
segments .J of I. Indeed, this yields a function from [ into T since each element
in I\ can be represented uniquely in such a way. In particular, this shows that
exponentiation and logarithm naturally extend to T. Right composition with a fixed
infinitely large transseries is also defined on T.

In a similar way, decreasing functions ¢ : [ — T naturally extend into decreas-
ing functions 7 : I — T by ®(sup J) = inf ¢(J). In particular, opposites (—f) and



82 CHAPTER 2. WELL-ORDERED TRANSSERIES

inverses (f~! for f # 0) are defined in T. Furthermore, the derivation is strictly
decreasing on infinitesimal intervals, whence it can be extended to the compactific-
ations of such intervals. Finally, functional inversion on TZ naturally extends to
T+.

Addition and multiplication also extend to T: addition is defined by sup I +
supJ = sup I + J for all initial segments [ and J of T. Similarly, multiplication
on TT is defined by sup I'supJ = sup IJ for all initial segments I and J of TT.
Multiplication is extended to T by (—z)y = x(—y) = —(zy) and (—2)(—y) =
xy. We notice that T does not possess much algebraic structure. For instance,
oor + cor = cor, whence T is not even a group.

To characterize T, only one type of elements can still not be constructed from
T,?, oot and 1/oo¢ by using the above operations. Consider an expansion of the
form

wo + )\oewl—Mle%Hw ‘ ) (2.8)

where the @; are transseries in T, and the A\; non zero constants. If T is stable under
exponentiation, then such expansions can be interpreted as elements in T in the
following way: for each i, let I; be the initial segment of T with maximum

Pq

wo + )\Oewrl—he ’

Then the expansion (2.8) can either be interpreted as the element sup ey U;s; L
or supU;en(;>; i in T. In general, both interpretation yield different elements in
T. Nevertheless, for what follows, we will only consider canonical expansions:
We say that an expansion of the form (2.8) is canonical, if the following condi-

tions are satisfied:

(a) A = %1 for each 1.

(b) ¢; is purely unbounded for each ¢« > 0.

(c) for each ¢ and each 11 € supp ;, there exists a j > ¢, such that for all ¢» with

supp @; <i supp ¥, we have
‘¢]+w

I - e%‘+1+/\i+16 a

Given a canonical expansion of the form (2.8), both its interpretations as elements
in T coincide. Moreover, for each ¢ and each 11 € supp ¢;, we have

T ePitl +Aigrefitl Fthipoe

Here f < g for f,g € T if cog|f| < |g| or f =g =0.
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In fact, we extend the notion of canonical expansions to certain other elements
in T: first, +oor, elements of T and elements of the form ex (ce C\C,m € 1) and
(¢t 1/o00)u (¢ € C i € IT) are defined to be canonical expansions of themselves.
Now assume that we are given ¢ € T and a canonical expansion ¢ of g € T, such that
g << 11 for each 11 € supp ¢. Then the expression ¢ + ¢ is by definition a canonical
expansion of ¢ +g. If ¢ is purely unbounded and g » 1, then the expression e#*+7
is by definition a canonical expansion of de®*9.

Theorem 2.7. Fach f € T admits a unique canonical expansion of one of the
following types:

I. feT.
1. f == :|:OOT.
@r+An
1L f = go 4 e51%° A€ C\C, nell.
.<Pr+(>\ri1/ooc)1—l
IV. f =gy £ en1Ee A €0, me Il
V. f=poten® o e T\T.

VI f = o + eaplzl:e%:te .

Proof. Let us describe a theoretical algorithm to compute the canonical expansion
of f. If f € T or f = £oor, then we are done. In the remaining case, let I be the
initial segment of T with sup I = f and let A = statlimyerg. Since f ¢ T, we have
h € T. Distinguish the following cases:

1. The dominant monomial of h — ¢ is constant, for g € [ sufficiently large.
2. We are not in case 1, and I < h.
3. We are not in case 1, and g > h for some g € [.

In case 1, we consider the set J of dominant coefficients of g — i, where we take
g € [ sufficiently large, so that its dominant monomial m is constant. Then J is
an initial segment of (', which admits a lowest upper bound sup.J # —oo¢ in C.
If supJ € C, then we have f = h + (supJ — 1/oo)m. If supJ & C, then we have
sup I = h + (sup J)m.

In case 2, h — g is positive for all g € I, so that the dominant monomial of h — ¢
increases (remind warning 1.1), when ¢ approaches sup I. Consider the set [ of
logarithms of dominant monomials of i — g, for ¢ € I. We recursively determine
inf L. We haveinf I # —oor, since f # h € T. If sup L has the form sup L = ¢+oo¢,
with ¢ € TT, then f = h — coce?. In the other case, we have f = h — ™%, Notice
that the case sup L = ¢ + ¢ with p € TT and ¢ € C\{oo¢} is excluded.

In case 3, i — g is negative for all sufficiently large ¢ € I, so that the dominant
monomial of g—h decreases, when ¢ approaches sup . Let L be the set of logarithms
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of dominant monomials of ¢ — h, for g € I with ¢ > h. We recursively determine
sup L. If sup L has the form sup L = ¢ — oo¢, with ¢ € TT, then f = h+ (1/occ¢)e?,
In the other case, we have f = h + e*"P¥. Notice that the case sup L = ¢ + ¢ with
© € TTand ¢ € C\{—o0oc¢} is excluded.

In the case when the theoretical algorithm terminates, we clearly obtain a canon-
ical expansion for f of type I, I, III, IV or V. If the algorithm does not terminate,
then we obtain an expression of type VI: the successive values of & in the algorithm
determine ¢g, @1, --. The signs are determined by the successive cases considered
in the algorithm (case 2 versus case 3). The uniqueness of canonical expansions of

types I, 1L, ITI, IV, V and VI is trivial. g

Example 2.5. The sequence log z,log, z,log; x, -+ admits coc € C as a limit.
The sequence z,z%, 23, - - admits e as a limit. The sequence x + =/ log z, x +
x/log, ¥, x+x/logs x+-- - admits (14+1/00¢ )z as alimit. The sequence e$2,exp(:1;2—|—

ol ), exp(x? + exp(logs x + clos 7)), -+ - admits

oo log x

2 -
2 logy @+ -
$2+610g2 x+e

[=¢ (2.9)

as a limit. The sequence x,x + logx,x + loga + loglog x,--- in C[[[z]]] admits

—

x+loga +logloga + -+ in C[[[x]]] as a limit.
The above theorem also yields a classification of transseries intervals:

Proposition 2.8.  Let I be a non emply interval of T. Then there exist unique
f<g€T, such that I has one and only one of the following forms:

I I=]f g[nT.

II. I =1fg[NT, with f € T.

Hr 1 =]f,g)NT, withgeT.

. I=[f,g]NT, with f,g € T. O

Our notation for elements in T and transseries intervals might for example be
useful in complexity theory: for a given problem, the set of complexities of algorithms
(representable in T') which solve this problem form a final segment F' of T. We define
inf /' to be the complexity of the problem in T. Similarly, one defines the type
of a real number in T, which is studied in the field of Diophantine approximations.

2.6.3 Nested forms and nested expansions

In his automatic expansion algorithms, Shackell (see [Sh 93|) systematically uses
nested forms and nested expansions: any non zero non Archimedian transseries
f can be written in a unique way f = +exp((logfz)g) (s,t € N, ¢ = =1,
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d € C*, g > 0), where g << log,x, d > 0 unless s = 0, and d # 1 unless
s = 0 or t = 0. Performing this operation recursively yields a nested form
[ = £expi((log;, )---expi*((log,, x)g)), where g tends to a finite limit /. Re-
peating this procedure once again for ¢ — [ yields a nested expansion for f.!

Nested forms are useful for estimating the order of growth of a transseries. In
particular, the limit of a transseries can be deduced from its nested expansion,
whence its usefulness for limit computations. However, much information is lost,
even in the case of nested expansions. For instance, the nested expansions of 141/x+
1/a*+--- and 1 +1/ax+1/2* 4+ --- 4 e are the same. For a similar reason, nested
expansions do not yield equivalents: consider for example f = exp(e”/(x — 1) 4 ).
Finally, a transseries like © + ¢™%, whose “usual” expansion is finite, has an infinite
nested expansion.

By what has been said in the previous section, we observe that nested expan-
sions are special instances of expressions of the form (2.8). Consequently, nested
expansions determine (and should be considered as?) elements in T.

2.7 Complements

Certain, very general, functional equations admit solutions with a “strongly mono-
tonic flavour” (Hardy field solutions, for instance), which are not representable by
transseries in the sense of the previous sections. In this section we discuss pos-
sible extensions of the theory of transseries to cover such cases. Our presentation is
informal; the generalized transseries we discuss only occur in quite “pathological”
cases. Actually, their introduction is mainly motivated by the quest for a completely
general theory.

2.7.1 Nested transseries

The first class of equations which does not admit solutions in any of the fields of
transseries previously studied admits the following representative example:

fla) = e Hflos ), (2.10)
The natural transseries solution of this equation would be given by a “nested ex-

pansion”

2 .
2 log4 2
2 6log2 z+e

f=e

Although such expressions do not belong to any field of transseries in the classical

(2.11)

'We note a slight difference between our definitions and Shackell’s in the case when f is Archi-
median: for us the nested form of f would just be f. Shackell requires one more term of the nested
expansion for the nested form of f.
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sense (see the previous section), it is plausible that fields of generalized transseries
can be constructed, which contain f as a transmonomial.

Actually, one might be tempted to generalize the concept of a transseries by
allowing tree representations which are not well-founded. However, to avoid para-
doxes, an additional condition need be imposed on such tree representations. Indeed,
consider the functional equation

gla) = e Fallos =) Hlog, (2.12)

A “natural” transseries solution would be

2 -
2 log2 .T+€10g4 z+ - tlogs $+log3 x
g = ex +e 82 —I—logav7
and one would like to think of ¢ as a transmonomial. However, the above formula
is misleading, because there exists a solution to (2.12) of the form

g=Ff1+¢)
Indeed,
logg = 2+ g(log,x) + loga
= 2’ + f(logyz) + e — 3?4 -+ =log f + log(1 + ¢),
whence

f(log, )e(log, x) + loga = — 1% + - -

and we find a solution

SI SI
e’ et 626

= e ey

The point is that we should forbid transseries whose tree representation contains

an infinite path such that an infinite number of nodes on the path admit branches
to the right hand side. Such “transseries” will be called ill-founded, while the
remaining valid ones, like f, will be called nested.

Remark 2.4. It is interesting to notice that ¢ < 0, whence ¢ is smaller than f.
Actually, a similar phenomenon is encountered when considering transseries whose
terms are ordered in the wrong way. For instance, let

o=--Fa?+a+1,

which seems to be positive. However, o satisfies ¢ = z¢ 4+ 1, and the correct
transseries solution to this equation is

which is negative.
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2.7.2 Transseries of positive strength

Another source of instability for the fields of transseries constructed in this chapter
is revealed by considering iterators of positive infinitely large transseries of non zero
exponentiality: consider the equations

exp™(x + 1) = exp(exp™ x) (2.13)
and
log™(x) = log™(log x) + 1. (2.14)

Any Hardy field solution to one of these equations has an order of growth which
is superior to any iterated exponential resp. inferior to any iterated logarithm. In
particular, such a solution can not be represented by a transseries in the sense of
the previous sections, although it has a definite “strongly monotonic flavour”.

Solutions exp* and log™ are resp. called iterators of the exponential and the
logarithm. The reason is that they enable us to define fractional iterates of the
exponential and the logarithm:

exp,x = exp (log”x+ a);

log,z = exp*(log”z — a).

More generally, even more violently increasing functions are obtained by repeatedly
taking iterators of exp:

exp™(z+ 1) exp(exp™());
exp™(z+1) = exp (exp™(x));

Similarly, one defines log™,log™, ---. We also notice an alternative, formal way of
introducing log™ and its repeated iterators, by means of integration:

» 1
log"z = / ;
rlogzlogyx---

1
1 sk — / .
o8 zlogz---log”xloglog”x---logyx -’

A natural question is now to construct a field of transseries C[[[[x]]]], which
contains exp* z,log™ x,exp™ x, -+, and which is stable under derivation, composi-
tion, etc. Moreover, we want each transseries in C[[[[x]]]] to be a well-ordered sum
of transmonomials of bounded strength. Here the strength of a transseries f is
defined to be the maximal number s, such that exp*” or log* occurs in f.
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The main difficulty we encounter here, is the characterization of transmonomials.
Our criterion is as follows: if f is a positive infinitely large transseries in C[[[[z]]]]
and s € N, then exp*” f is a transmonomial, if and only if for each decomposition

f=f"+/f with0# f* a f we have

s
(exp=*)'f+

The problem with this criterion is that the construction of exp*” f requires the
preliminary construction of exp*™ f*, (exp* )/ fT,---, for each strict truncation 0 #
ft < fof f. Nevertheless, we have checked the possibility of constructing C[[[[z]]]
using our criterion, by alternating inductive closures and applications of Zorn’s
lemma. Because of its technical character, we plan to come back to this construction
in a future paper.

Remark 2.5. As usual, we have only been concerned with the algebraic side
of the story. Another interesting question is to construct solutions to equations
like (2.13) and (2.14) at infinity. Hardy already constructed continuous solutions to
similar equations, but his solutions are not even differentiable. Ecalle constructed
in [Ec 92] so called quasi-analytic solutions, which are in particular Hardy field
solutions. Here we recall that quasi-analytic functions generalize analytic functions
in the sense that they still admit derivatives up to any order and unique quasi-
analytic continuations along the real axis. Unfortunately, no criterion is presently
known to privilege particular quasi-analytic solutions to (2.13) and (2.14).% In any
case, Ecalle proved that such a criterion can not be entirely algebraic (i.e. involving
+,-,d/dxz, 0, etc.): this is his theorem of “indecernability”. For more details about
iterators, growth orders and “the Grand Cantor” we refer to [Ec 92].

2.7.3 Conclusion

Summarizing, the transseries from section 2.2 do not suffice to represent the strongly
monotonic solutions to very general systems of differential difference equations. The
source of troubles lies in the consideration of functional equations involving compos-
itions with transseries of non zero exponentiality. We have shown two extensions of
the concept of a transseries: nested transseries and transseries of positive strength.
We conjecture that it is possible to construct fields of transseries which are stable
under the strongly monotonic resolution of any system of functional equations, by
combining these two extensions. In table 2.2 we have summarized the natural origins
of different types of transseries in terms of the kind of functional equations which
can give rise to it.

?We notice that given an iterator log™ of the logarithm, we have another iterator
log™e = log™  + p(log” «),

for any periodic function ¢ # 0 of period 1.
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type origin

Puiseux algebraic equations

grid-based algebraic differential equations

strength 0 functional equations, where only right compositions

with transseries of exponentiality zero are allowed

positive strength composition equations (see [Ec 92])

nested, positive strength | any functional equations

Table 2.2: Natural origins of transseries of a given type.

Let us finally notice that instead of considering more general transseries, it might
also be interesting to study types of transseries between grid-based transseries and
well-ordered transseries. Consider for instance those well-ordered transseries f with
recursively well-ordered support: i.e. supp [ C II for some set II of trans-
monomials, such that for all ¥ € I we have supp ¢ C II. The set of recursively
well-ordered transseries is an exp-log field, stable under derivation, composition and
the resolution of many systems of functional equations. However,

o0

S
=1

is an explicit example of a transseries whose support is not recursively well-ordered.
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Chapter 3

The Newton polygon method

3.1 Introduction

Almost all techniques for solving asymptotic systems of equations are explicitly or
implicitly based on the Newton polygon method. In this section we explain this
technique in the elementary case of algebraic equations over the ring of grid-based
series R = C'LX] or well-ordered series R = C[[X]], where C' is a constant field
of characteristic zero and X a totally ordered monomial group with Q-powers. In
the subsequent sections, we will consider more and more general types of equations
over the transseries. Notice also, that all “computations” we perform in this chapter
are theoretical; for more details about the effective aspects of the Newton polygon
method and its extensions, we refer to chapters 11 and 12.

3.2 The method illustrated by examples

In this section, we show how to apply the Newton polygon method to two specific
examples. This will familiarize the reader with the basic concepts and some sub-

tleties of the method. Let us first consider the equation

23

P =S P = 4 2P+ =2 4 P o f =0 (3)

1—=z

Assume that the Puiseux series f = cz# + --- € CL29T with ¢ # 0 and p as
dominant exponent is a solution to this equation, and let

o =min{3, g+ 1,20, 3, 4p, 500 + 4,60 + 3}

Since f is a solution, we in particular must have

[Za] (Z3f6—|—z4f5—|-f4_2f3—|—f2—|— 7 _Zzzf‘|‘ IZ—Z) =0. (3.2)

By the choice of a, we have [Z“]Pifi = Pm_mci, for each ¢, and P; ,_,; # 0 for some 1.

90
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In view of (3.2), this implies that P, ,_,; # 0 for at least two indices i. Consequently,
« occurs at least twice among the numbers 3, 41, 2p, 3, 4pe, S +4, 640+ 3, whence

U € {27 1707 _%}

Graphically, these possible values of p can be determined by considering the
Newton polygon associated to (3.1), which is defined to be the convex hull of all
points (f%, z¥) with v > pp,. We have illustrated the Newton polygon associated
to (3.1) in figure 3.1. The diagonal slopes

(1,2%)=(/, 2) (n = 2);
(f,2) =(/%1) (n=1);
(f21)—=(41) (n=0);
(SH1)—=(f%2%) (n=—3).

correspond to the possible values of . These values are also called the potential
dominant exponents of f, where we consider f as an indeterminate solution
o (3.1).

For given p € Q, the equation (3.2) is actually a non trivial polynomial equation
in ¢ over C, which we call the Newton equation associated to u. Hence, there are
only a finite number of possible values for ¢, which are listed below as a function of
ik

w=2 c=-—1;

w=1, c=-1;

p =0, ¢=1 (double solution);

p=2, ce{-ii}.
The corresponding possible values for cz# are called the potential dominant terms
of f.

For given c¢z* € C2%, we can now consider the equation p(f) = 0 which is ob-
tained from (3.1), by substitution of f with cz# + f, where f satisfies the asymptotic
constraint g7 > p. For instance, if ez = 12°, then we obtain:

P(f)=22F0+(62") " + (152" + 52" + 1) f* + (202° + 102" +2) 2 + (152° + 102 +
D+ (627 + 52"+ 2/(1 =22+ 21+ 27+ (21 + 27+ 2) /(1 = 27) = 0. (3.3)

The potential dominant monomials of solutions f to (3.3) are found by the same
method, except that we now require the potential dominant exponents g of f to
satisfy the additional condition g > p. The Newton polygon associated to (3.3) is
illustrated in (3.2).

<z>

The above discussion illustrates that instead of studying polynomial equations
P(f) = 0, it is more appropriate to study polynomial equations P(f) = 0, which
satisfy additional constraints p; > v (the case of usual polynomial equations is
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zung

P

fN
Figure 3.1: The Newton polygon associated to the equation

S+ AP =2+ /(1= 4+ (1—2) =0

I\
=)

JFN
Figure 3.2: The Newton polygon associated to the equation

2F0 4 (62°) 5 + (152% 4+ 524 + 1) f* + (202° + 1024 + 2) 2+
(152 + 1021 + 1) f2 4+ (62 + 521+ z/(1 = 22) f+ 2 + 22 + (2P + 22 + 2) /(1 — 2%) = 0.

This equation is obtained from the equation in figure 3.1 when substituting f = 1+f.
The potential dominant monomial we chose corresponds to the horizontal slope.
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recovered by allowing p; = —oc0). Then the above method yields a way to transform
such equations into new equations P(f) =0, with f = ¢+ 1, o > s hf >V 2 flg.
Such transformations are called reﬁnements which are said to be admissible, if
P is either divisible by f, or if there exists a potential dominant monomial relative
to P(f) = 0.

Unfortunately, the process of computing potential dominant terms and their
corresponding refinements is generally infinite and even transfinite. Hence, we only
obtain necessary conditions for Puiseux series f to satisfy P(f) = 0 by this process.
On the other hand, not all coefficients of a solution f to P(f) = 0 need to be
determined in order to determine f itself: we merely want a suitable description
for f. In our case, solutions to P(f) = 0 are represented by refinements as above,
for which P(f) = 0 (uj > ©7) has a unique solution. This leads to the question of
finding a sufficient condition to guarantee this. It turns out (see the next section)
that a sufficient condition is that p(f) =0 (/,Lf > 1) be quasi-linear. This means

that either P is divisible once by f, or the equation p(f) = 0 admits a unique
potential dominant exponent, whose associated Newton equation has degree one.

<>

Returnmg to our example equation (3.1), we observe that the refinements f =
—2 4 ff = =24 f,f = =iz 4 [ resp. f = iz¥? 4 f are quasi-linear (i.e.
the corresponding equations in f obtained from (3.1) are quasi-linear). The case
f=1+4f (Mf > 0) necessitates one more step of the Newton polygon method: this

yields the quasi-linear refinements f = 1 — i\/z + fresp. f=1+ iz + f with
> % Hence we obtain a complete description of the set of solutions to (3.1). The

first terms of the expansions of the solutions are given by:

fr = _22_|_...;

Jin = —z2+4-;
fin = 1=z 4y
frv = 142240
fr = —i2_3/2—|-"' :
fvr = i2_3/2+"'

As explained in greater generality in chapter 8, the parallel process for computing
these solutions can be represented conveniently by a labeled tree: the root of the tree
is labeled by (3.1), its inner nodes by non quasi-linear refinements of (3.1), and the
leaves by quasi-linear refinements of (3.1). This computation tree is illustrated in
figure 3.3.

In some cases, quasi-linear refinements are harder to obtain. Consider for in-
stance the equation
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f==2+ [ T=—atf f=14]f=—iz ¥ ff=izl+],
> 2 p>1 pp>0  pp>=3/2  pp>-=3/2
VRN R
f=1—iz' P ff=14iz'" 4 f,
py>1/2 py>1/2

Figure 3.3: Computation tree associated to (3.1).

(f _ g:l Zl—l/k)2 _ .2 (3.4)

over C[[z9]]. In this case, iterated application of the ordinary Newton polygon
method does not yield a quasi-linear equation after a finite number of steps. This
is due to the fact that the respective Newton equations all have the same degree 2
and roots of maximal multiplicity 2. Therefore, an additional trick is applied: we
take the first derivative

2f =Y 217 =0
k=1

of the equation (3.4) w.r.t. f, which is quasi-linear, and which has a unique solution
o = i A-1/k
k=1

Now, instead of performing the usual substitution f =1+ f, we perform the substi-
tution f = o+ f. This yields the equation f? = 22 (/,Lf > 0). Applying one more step

of the Newton polygon methods yields the admissible refinements f=z4f (/Jf > 1)
and f = —z —I—JEN (/Jf > 1) for f. In both cases, we finally obtain a quasi-linear equa-

z 2 z 2 =
tion 2z + f =0 (/Jf > 1) resp. equation —=2zf + f =10 (/Jf > 1) in f. In the
next section, we will show that this trick generally applies, and that the resulting
method always yields a complete description of the solution set after a finite number
of steps.

Remark 3.1. The idea of using repeated differentiation in order to handle almost
multiple solutions has been used for the first time in [Sm 1875]. The idea has also
been used in computer algebra before (see [Ch 86] and [Gri 91]). Our contribution
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has been to incorporate it directly into the Newton polygon process, as will be shown
in more detail in the next section.

3.3 The general method

Let C' be a constant field of characteristic zero and X a totally ordered monomial
group with @Q-powers. Having illustrated the Newton polygon method on some
specific examples, we now turn to the general case of a polynomial equation

P.f"+--+FP=0(f<u), (3.5)

with coefficients in C[[X]], subject to the constraint f << u for some u € X. A
potential dominant monomial of f relative to (3.5) is a monomial it <« v in X,
such that there exist 0 < i < 7 < nand m € X with Pif =< juj = mand Pr® < m
for all other k. Graphically, potential dominant monomials correspond to diagonal
slopes of the Newton polygon associated to (3.5), which is by definition the convex
hull of all points (7,1) with iy < P,. To each potential dominant monomial 11 we
associate the equation

Mpy(c) = Pd,m/udcd + 0+ Powm =0, (3.6)

and mp,, is called the Newton polynomial (relative to (3.5) and ). A potential
dominant term of f relative to (3.5) is a term cu, where 11 is a potential dominant
monomial of f relative to (3.5) and ¢ € C* a non zero root of the corresponding
Newton polynomial. Notice that there are only a finite number of potential dominant
terms relative to (3.5).

Proposition 3.1. Let f = ¢pmyp+ -+ be a non zero solution to (3.5), where ¢y
and My are the dominant coefficient and monomial of f. Then cpmy is a potential
dominant term of f. O

The Newton degree d of (3.5) is defined to be the largest degree of the New-
ton polynomial associated to a potential dominant monomial. By convention, the
Newton degree is defined to be the valuation in f of P, if there exist no potential
dominant monomials relative to (3.5). If d = 1, then we say that (3.5) is quasi-
linear. The previous proposition implies that (3.5) does not admit any solution, if
d = 0. The next proposition is a sort of implicit function theorem, which shows that
quasi-linear equations admit unique solutions.

Lemma 3.1. If (3.5) is quasi-linear, then it admits a unique solution f in C[[X]].
This solution satisfies supp f C S, where

S =

M(Fy) (supp Py supp P ... (supp Pn)M(Po)n_l)o
M(P)\ m(Fy) — m(Py) ()" :
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Proof. The set S C X is well-ordered, by Higman’s theorem (see page 307). Let
us now prove the existence of a solution to (3.5), by computing the coefficients f,.
For this we use transfinite induction over 11 € 5, and simultaneously prove that

PUY ful) < (P

o’ >

The existence and uniqueness of fy(p,)/u(p,) is guaranteed by the quasi-linearity
of (3.5). Assume that 1 € S is given, and that the induction hypothesis is satisfied
forall o % min S.

Let ¢ = > » o fwi'. By the choice of 5, we have

n

supp P(¢) € |J(supp P)(supp )’

=0

Cz

C Ulsupp P)S

=0

( P1)Z+1 )Si
1=0

Pr)S.

We claim that P(¢) = m(P;)n. Let o' % 1 be in S and denote ¢ = 3" 5 v fur1t”.
By the induction hypothesis, we have P(y) < m( P ). Furthermore, ¢ — ¢ < 17,
whence

N
=

-

z

P(p) = P()+ P'(¥)o(') + LP"()o(u'®) + - --
= P()+ o(m(P)1r) + (M(Pl)zu’z/M(Po)) 4.
= P() + o(m(Py)r').

It follows that P(p) < m( Py )i, for all i » 1 in S. This proves our claim.

Taking fu = (P(¢)/P'(¢))n, the induction hypothesis is clearly satisfied for .
For a similar reason as above, we have P(f) <« m(P )i, for all i’ in S. Since
supp P(f) C m(Py)S, by the choice of S, we therefore have P(f) = 0. Now consider
the equation )(g) = 0 with ¢ < u, which is obtained by substitution of f by f+g¢
n (3.5). We have Qy = 0, and @Q; » Q,u'~" for all 7. Hence, Q(g) = 0 does not

admit potential dominant monomials, whence g = 0 is its unique solution. g

A refinement is a change of variables f = ¢ + f with ¢ < 4, together with
the imposition of a constraint ¢ »= & » f on f. Such a refinement transforms (3.5)
into a polynomial equation in f:

Pofid- 4+ P=0(f =), (3.7)
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where

b PO > (’:) Pooh—, (3.8)

k=1

for each i. The Newton degree of the refinement relative to (3.5) is by definition the
Newton degree of (3.7), and the refinement is said to be admissible if its Newton
degree is strictly positive.

Lemma 3.2.  Let c1 be a potential dominant term of f relative to (3.5). Then
the refinement f = e+ f (f < 1) is admissible relative to (3.5), and its Newton
degree is the multiplicity of ¢ as a root of the Newton polynomial associated to 11.

Proof. Let d be maximal such that P;u? is maximal for < and denote m =
v Py)u?. Then we have

P = =PY(cn)

= Mpy (e)mun’ + ofmu'),

for all 2. In particular, denotmg the multlpllclty of the root ¢ by d, we have P~
m;~ . Moreover, for all 1= d we have P, < mr ¢, Hence, for any ¢ > d and T o < 1,
we have Pu < P 1!, This shows already that the Newton degree of P(f) =0 1s
at most d.

Let us now show that the Newton degree of p(f) = 0 is precisely d. If e is a
root of (3.5) of multiplicity d, then we have nothing to prove. Therefore, we may
assume Wlthout loss of generality that P; # 0, for a certain i < d. Take i such that

= \/M ( d(f)) is maximal for < . Then 11 < 11 is a potential dominant
monomial for P(f) = 0, and the associated Newton polynomial has degree d. O

If one step of the Newton polygon method does not suffice to decrease the Newton
degree, then two steps do, when applying the trick from the next lemma:

Lemma 3.3. Let d be the Newton degree of (3.5) and let 11 be a potential dominant

monomial of f relative to (3.5). If mpy admits a unique root ¢ of multiplicity d,
then

(a) P (p) =0 has a unique solution with ¢ < .
(b) The refinement f = ¢+ f (f < my,) is admissible relative to (3.5).

(¢c) The Newton degree of any refinement f=¢+7 (f <« 4) relative to (3.7) is
strictly inferior to d.
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Proof. Notice first that the equation P~ () = 0 is quasi-linear, since taking the
derivative of an equation corresponds to translating the associated Newton polygon
by one place to the left. Hence, (a) follows from lemma 3.1. The proof of (b) is
analogue to the proof of lemma 3.2. To prove (c), we first observe that Py =
PU=D(p) = 0. Tt follows that if 1 is a potential dominant monomial of f relative
to p(f) = 0, then mp , ; ; = 0. In particular, there do not exist a # 0,3 # 0 with
Mp (€) = a(é — B)4. In other words, Mp . does not admit roots of multiplicity d.
We conclude by lemma 3.2. O

Theorem 3.1. Let C be an algebraically closed field of characteristic zero and X
a totally ordered monomial group with Q-powers. Then both C[[X]] and CLXT are
algebraically closed.

Proof. Consider the following theoretical algorithm:

Algorithm polynomial_solve
INPUT:  An asymptotic polynomial equation (3.5).
OuTPUT: The solutions to (3.5).

STEP 1. Let d be the Newton degree of (3.5). If P is divisible by f?, then separate
the following two cases:

A. Return 0.
B. Proceed with step 2.
STEP 2. Compute the potential dominant terms cyiy,---,¢,1, of [ relative
to (3.5).

STEP 3. If v = 1 and ¢; is a root of multiplicity d of the Newton polynomial
associated to 11y, then proceed with step 5.

STEP 4. For each 1 < ¢ < v, apply polynomial_solve to the equation obtained
from (3.5), by refining f = e + f (f < 11;). Collect and return the so
obtained solutions to (3.5)

STEP 5. Let ¢ be the unique solution to PU=V(p) = 0 (¢ < u). Apply
polynomial_solve to the equation obtained from (3.5), by refining f =
o+ f (f < ¢). Return the so obtained solutions to (3.5).

The correctness of polynomial_solveis clear; its termination follows from lem-
ma 3.2 and lemma 3.3(c). Since C' is algebraically closed, all Newton polynomials
considered in the algorithm split over C'. Hence, polynomial_solve returns d solu-
tions to (3.5) in C[[X]]. If u is the formal monomial with i <« u for all iy € X,

then we have d = n. Indeed, let i be such that = "3/m(P;)/m(P,) is maximal

for <« . Then 1 is an potential dominant monomial for (3.5) and its associated
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Newton polynomial has degree n. We conclude that C[[X]] is algebraically closed.
Finally, if the coefficients of P are all in C'[X1, then all computations take place

in C'[X71, because of the bound for supp f in lemma 3.1. We infer that C' [X] is
also algebraically closed. O

Corollary I. Let C be a real algebraically closed field and X a totally ordered
monomial group with Q-powers. Then both C[[X]] and CLX] are real algebraically
closed.

Proof. By the theorem, a polynomial equation of degree n over C[i][[X]] admits
n solutions (counting with multiplicities) in C[¢][[X]]. Moreover, each root ¢ which
lies in C[7)[[X]]\C[[X]] is imaginary, because C[[X]][¢] = C[¢][[X]] for such ¢. The
proof is analogue for C'[XT]. 4

Corollary ILI. The field C [29T of Puiseux series over an algebraically closed resp.
real algebraically closed field C' is algebraically closed resp. real algebraically closed.
O

3.4 A simple generalization

The restriction for P in (3.5) to be a polynomial is essentially superfluous for the
method, and P can actually be replaced by any series in C[[X, fZ]] or C [X, fZ1.
However, in this case we have to exclude those potential dominant monomials which
lead to Newton polynomials of infinite degree. We notice that once we have chosen
such a potential dominant monomial for the main equation (3.5), then this problem
does not reappear for the refinements, because of lemma 3.2.

Let us also remark that, incorporating the above extension, there exist natural
examples where the main equation has an infinity of potential dominant monomials.
Such examples are constructed by considering certain types of difference equations.
For instance, consider the system

{ o(x, f) =+ fo(a?, )
@(xvf) = 07

where f is infinitesimal and z infinitely large. This system is equivalent to the
equation

42 f 4t =0,
This equation can be solved by the Newton polygon method and we find an infinite
number fo, f1, f2,- - of solutions, with f; ~ —z~2".



Chapter 4

Linear differential equations

4.1 Introduction

Let € be a totally ordered exp-log field of constants. We will show how to solve
linear differential equations

L(f) =g, (4.1)

where L is a linear differential operator

r

0 0

with coefficients in the field T = C,[[[«]]] of transseries of finite logarithmic and at
most countable exponential depths.

We focus on the case when the coefficients of L are purely exponential,i.e. in
Te? = C°9[[[expz]]]. In this case, L maps the space T**[z] into itself, and we shall
show that L admits a linear right inverse L™'. The general case when the coefficients
of L are in T will then be recovered by the use of upward shiftings. In sections 4.3
and 4.4, we prove the existence of a distinguished linear right inverse L', and give
a theoretical way to compute the distinguished solution L='g to (4.1). Intuitively
speaking, the distinguished solution to a linear equation is the simplest solution,
which does not depend on the solutions to the homogeneous equation. For instance,
in the case of integration (L = d/dx), the distinguished solution is precisely the one
which corresponds to taking zero for the integration constant. We will also present
a characterization for L™! in section 4.4.

In section 4.5, we turn to the resolution of the homogeneous equation

Lh =0. (4.3)

The solutions of this equation form a finite dimensional totally ordered vector space
H over C, which admits a basis hy < -+ < hy (see lemma 8.1). Using the dis-
tinguished right inverse L™!, it will then be sufficient to determine the dominant
monomials of hy,--- , hy.

100
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Finally, in section 4.6, we outline how the theory of this chapter generalizes to
the case when we also allow oscillating solutions to (4.1). In this case, we show that
the vector space of solutions to (4.3) has maximal dimension r.

When we restrict ourselves to linear differential equations with coefficients in
rings of formal power series, then our results are more or less analogous to classical
results: the introduction of formal local solutions for linear differential equations
goes back to [Fab 1885]. The first algorithms are due to Della Dora, Tournier,
and others (see [DDT 82], [Tour 87]). Their work is based on theoretical results of
Malgrange and Ramis, who introduced Newton polygons in this context (see [Ram

78], [Mal 79]).

4.2 Preliminaries

For the purpose of differential calculus, we will need variants of the asymptotic
relations <« , < and < modulo <& h perturbations: let f, g and i be transseries
with h # 0. We denote f <, g (or f = ox(g)), if for all ¢ <K h we have f < ©g.
Similarly, we denote f =, g (or f = On(g)) resp. f <4 g, if f K @g resp. f < g
for some ¢ <& h. We state without proof the following easy properties:

Proposition 4.1. Let h € T*. Then

(a) =X, is a quasi-ordering on T and <, ils associated equivalence relation.
(b) For fized g, the set of f with f <, g resp. [ =Xu g forms an additive group.
(¢c) f<ngs flg=<nl foral f,g €T, and similarly for <, and =<, .

Let L be an arbitrary linear differential operator (4.2) with coefficients in T.
Then its dominant monomial (L) is defined by

M(L) = mjx{MLov U 7MLT}‘

4.2.1 Multiplicative conjugation

(GGiven a non zero transseries h, there exists a unique linear differential operator Ly
such that

Lun(f) = L(AS)

for all f. We call Ly, a multiplicative conjugate of L. The coefficients of Ly
are given explicitly by

Lyni = Z (].)Ljh(j_i)- (4.4)

— \ 1
J=
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Notice also that Lyp,n, = Lxn, xn, for all hy, hy € T
Proposition 4.2. Ifh » x, then

M(Lxh) =p hM(L)

Proof. By the hypothesis that A 3= z, it follows that h{) <, h for all 7. In partic-
ular, (4.4) yields
Lni =5 hna(L)

for all ¢, whence Mm( Ly ) =< M({). Let m be the highest index for which L, <, m(L).
Then (4.4) yields
Lxh,m = hLm + Oh(hM(L))

In other words, M(Lyp) #=p m(l). O

4.2.2 Upward shifting

To solve the equation Lf = g, it may be necessary to perform one or several upward
shiftings. For this purpose, we define the upward shifting L1 of L by

(L)1) = LT,

for all f. In other words, solving the equation Lf = g is equivalent to solving the
equation (LT)(f1) = gT. The coefficients of L1 are given explicitly by

(L) = Y Coje™ (L), (4.5)

i=i

where the C;; are constants, determined by

(f(log x))W) = > C; a7 9 (log z).

We have (; ; = s;;, where the s;; are the Stirling numbers of the first kind. Upward
shifting is compatible with multiplicative conjugation, in the sense that

Lth = (LT)Xth (4-6)

for all non zero transseries h.

Proposition 4.3. For all 1,57 € N, we have

zjjck,j(@'ﬂ)k _ it

!
=0 1.
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Proof. Consider the operator L = Z-. The solution space of the homogeneous

Az * .
equation associated to the operator LT, (4. admits e=(i+1)z ...

Hence, this operator factorizes

ag .. a .
LTXS(HM:A(a—x‘H‘l'J)“'(a—x‘l'l‘l'l)a

and by looking at the coefficient of 2=, we find that A = ¢™. It follows that

e~ )7 a5 a basis.

Az ?
i+ 7)!
LTXS(HJ)E,O = ( il )
On the other hand, we have
LTk == de‘e_]l’,

for all k£, by (4.4). Hence

i
Lyt g = 9 Crj(i + )5,

k=0

by (4.5). 0

4.3 Dominant monomials of distinguished solutions

Let L be a linear differential operator (4.2) with coefficients in T*? and consider
the equation (4.1) for f,g € T*?[x].

Theorem 4.1. There exists a unique transmonomial 1w € TP, such that
My /M(Lyy) € 2.

Proof. The uniqueness of 1 trivially follows from proposition 4.2. Let us therefore
prove its existence. Let (1, ), be the transfinite sequence of monomials, defined by

n, = 1
Mot = o exp (7(log(ty/3a(Lyu,))))s i agy /5 Li,) € 2
g = exp (stat lﬁimlog 1,), for limit ordinals f3;
a<

here 7(logm, /M(Lyy, )) denotes the dominant term of log M, /M(Lyy, ). Intuitively
speaking, this transfinite sequence corresponds to the computation of the successive
terms of log . We will show by transfinite induction that for all 3:
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— If o < 3, then log, < log 1.
— Vacsupp logrg My Xex M(Lxy, ).

This will imply in particular that ar, /s Ly, ) € 2, for some ordinal a, since the
length of the sequence (1,), cannot exceed the cardinal number of T“?[z], as a
result of the first assertion. The induction hypothesis is clearly satisfied for 3 = 0.
Assume now that for some 3 > 0, the induction hypothesis is satisfied for all smaller

3.

Successor ordinals. Assume that 3 = o+ 1 and a,/M(Lyy, ) € =™, Let 11 denote
exp(7(log(sy/M(Lxn, )))), so that My <y (L, ). Since Ly, = Ly, xm, We have

M(LXH/S) X (L, ),

by proposition 4.2. Hence,

My < M(LXuﬁ).
More generally, My <co M(Lyy,) for all u € supp logng, since ¢ #= m. Therefore,
both induction hypotheses are satisfied at stage [3.

Limit ordinals. Assume now that 3 is a limit ordinal. Given u € supp logug,
there exists an o < (3, with u € supp logu,. By the induction hypothesis, we have

My Xeu M( Ly, )
We also have 1y /11, <& u, since 1, < 3. Therefore,
M(Lxms) <ew M( Ly, ),

by proposition 4.2, whence the second induction hypothesis is again satisfied at stage
(. The first one is trivially satisfied. O

With the notations from the theorem, let m,/m(Lyy) = z°, and let 5 be min-
imal, such that M(Lyy) = M(Lxy,;). Then ¢ 4+ j is unique with the property that
M( Lz'7) = a1, In the next section, we will show that there exists a “distinguished
solution” f to (4.1) with a; = mz'*/. Since this solution will be denoted by L~'g,
we denote mz-1, = ma't/ by anticipation. Furthermore, the dominant coefficient of
a solution to (4.1) with m; = mp-1, is necessarily given by cp-1, = Cg—Lfn/CLyno
i.e. the quotient of the dominant coefficients of g — Lf, and Ly, 0. We will denote
TL-1y = CL-1gM[—1,.

The mapping My — My-1, preserves << :

Proposition 4.4. [If g1 < go, then Mp—1, << Mp-1y,.
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Proof. Modulo considering gl_lLXML_ instead of L, we may assume without loss

lg .
of generality that my-1,, = ¢1 = 1. If g2 < 2*, then we are done by the definition of
Mp-14,. If g2 % 2, then mp-1,

and my < logmz-1,

, =g, G2, by construction (indeed, 1y = exp(7(loggz))

, in the construction of L™g, whence mp-1,, = m =< ¢3). O

We also have compatibility with upward shifting:

Proposition 4.5. Let g be a non zero transseries. Then

(@) M(1)=1g1 = Mp-1,T

(0) (Lo, s 1) = 21((Lixas, -y To)-

Proof. Let ¢ be such that m,/a* € T*P, and let j be such that mp—1, = ma't,
with m € T*?. By construction, j is minimal such that a(Lyy) = M(Lyy ;) = M, /2"
From (4.5), we deduce that

(Lxal)r = e_ijXHJT(CkJ +o(1)), for k < 75
(LuuT)r =< €77 Lyy T, for k> j.

It follows that
M((LXHT)Xe(HJ)E) =, T
Using (4.6), we get

L1 1) = 35,1 (17)
The above relations for the (Ly,T)x also imply that

(LXML—lgT)O = (LXHT)Xe(HJ)r,O

r

= S (L thili ) e

k=0

j .

= (Z Cr(i+ ) + 0(1)) (LxuT)ie™.
k=0

By proposition 4.3, we infer that 0 is the smallest index k, with M(LML_lgT) —

M((Lxn,_, T)r). Together with (4.7), this implies that azp-154 = yp-1,7T. ]

L=1lyg

It is finally natural to ask for which monomials M there exists a ¢ # 0 with
Mp-1, = M! Recalling that Ay < -+ < h, form a basis for the solution space H
to the homogeneous equation (4.3), we have the following characterization of these
monomials:

Proposition 4.6. Let m be a transmonomial in T?[z]. Then a necessary and
sufficient condition for the existence of a non zero transseries g € T“Plx] with
Mp-1, =M, is that M & {mp, -+ , M5, }.
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Proof. We will only prove the necessity of the condition here; the sufficiency will
be proved in the next section. In view of the proof of the previous proposition, we
may assume without loss of generality that m(Lyy) = M(Lyuo) = My, modulo one
upward shifting. Then for any h € T*?[z] with h < M, we have

Lh = Lyy(h/m) = CL a0 ChMy + o(mMy) # 0,

where ¢, , resp. ¢, denote the dominant coefficients of Lyyo resp. h. Hence, h
cannot be a solution to (4.3). O

4.4 Computation of distinguished solutions

Theorem 4.2. There exists a right inverse for L.

Proof. Let us show how to compute a solution to (4.1) for fixed g. Let (f.)a be
the transfinite sequence of transseries in T“?[x], defined by:

Jfo =0
fa+1 = foz—l_TL—l(g—Lfa)v lfoOé%ga

fs = stat lﬁlm fo for limit ordinals (3.
a<

We will show by transfinite induction that for all 3:
— If o < 3, then f, < f3.
— Yuesupp fs Lfs —g < Lu.

This will in particular imply that f, = ¢ for some o < |T**?[z]|, since the length of
the sequence (f,), can not exceed the cardinal number of T*?[x]. The induction
hypothesis is trivially satisfied for # = 0. Assume now that # > 0, and the induction
hypothesis is satisfied for all smaller 3.

Successor ordinals. Assume that 3 = a+1 and Lf, # g. Denote i1 = 77,1 (,_11,).
Since er-1(,-1f,) is a constant, we have

L(cp-1(g-1ay)m) = Liu(CL-1(9-11a)) = Lxn0CL-1(g=Lfa) = Co=LfaMg—Lfa-

In particular, L < g — Lf,, whence i1 < u for all u € supp f,, by proposition 4.4
and the second induction hypothesis. Hence, the first induction hypothesis is satis-
fied at stage 3. As to the second, let u € supp fs: then either u = 11 or u € supp f,
and Ly < g — Lf, < Lu. In both cases,

g—Lfsg=9g—Lfs— LXH,OCL—l(g—LfQ) <g—Lf, X Lu
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Limit ordinals. Assume that 3 is a limit ordinal and let u € supp f3. Then there
exists an o < 3 with u € supp f,, and by the induction hypothesis, we have

LfW —g =< qu
for all @ < v < 3. Now we have

Lfs—g=(Lfs—9)+ > (Lfw1i—g)—(Lf —9)

agy<p

by the strong linearity of I and the fact that § is a limit ordinal. This implies the
second induction hypothesis at stage [3; the first one is trivially verified. O

In what follows, L' denotes the right inverse of L as constructed in the above

proof. By construction, the dominant monomial of L71g coincides with m;-1, as

g
defined in the previous section. The operator L' satisfies the following character-

istic property, for which we call it distinguished:

Proposition 4.7. L7! is the unique right inverse of L, such that supp L™ g N
{Mh17 T 7Mhs} = gbe?“ all g€ Texp[x].

Proof. By the necessity of the condition in proposition 4.6, we infer that we never
have 11 € {my,,- - , My, } during the construction of f = L™'g. By a straightforward
transfinite mductlon over a, it follows that f, N {nmp,, -+ vy, } = @ for all a.
Assume now that Lf = Lf = g, with supp f N {Mhl,"' My} = supp f N
{™p,, -+ ,my, = @ Then L(f f) =0, whence f — f is a linear combination of
hi,+-- ,hs. Since, supp (f f)ﬂ{Mhl,--- Mp} = ¢, we get f = f, whence the

uniqueness of L_l. O
Corollary I. The operator L= is linear. O
Corollary II. Let m & {mp,,, - ,Mp.} be a transmonomial in T"?[x]. Then there

exists a transseries g € TP[x]* with vp-1, = M.

Proof. Taking ¢ = Lm, we have m — L™'g € ker L. If m = L7'g, then we are

clearly done. Otherwise, we have M % -1, € {mp,, -+, ) T — L7g <
then L='¢ =< m and we are done. The other case is impossible, since we cannot have
_19€{Mh17"' 7Mhs}' ]

It follows that H = ker L admits a supplement

T"[«]/H = {f € T*[z][supp f N {aapy, -+ 3.} = B}

in T**?[z], which is distinguished in the following sense:
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Proposition 4.8. The operator L determines an isomorphism
T ]/ H — T"[x],

whose inverse is given by L. O

Let us now consider upward shifting of linear differential operators and there
right inverses:

Proposition 4.9.  For all linear differential operators (4.2) with coefficients in
Te*?z], we have L='1 = L17".

Proof. This is a routine exercise, since upward shifting commutes with all opera-
tions used in the construction of L=!, and in particular with the computation of the
dominant monomials of solutions by proposition 4.5. g

From proposition 4.9, it follows that we can extend theorem 4.2 and proposi-
tion 4.8 to the case when L is an arbitrary linear differential operator with coeffi-
cients in a field of transseries T with finite logarithmic depth:

Theorem 4.3.  Let L be a linear differential operator (4.2) with coefficients in
T. Let hy < -+ <K hs be a basis for the vector space of solutions to (4.3). Then L
determines an isomorphism

T/H — T,

where
T/H: {f € T|Suppfm{Mh17"' 7Mhs} = gb}

The inverse L™ of L is linear.

Proof. Let g € T. For [ large enough, g1, and the coefficients of L1, are in T,
where 1, denotes the [-th iteration of 1. Then f1, = (L1,)"*(g1,) is well defined, and

we have Lf = g. Moreover, supp f1, 0 {ap, T, ,™mu T} = @ by proposition 4.8.
Consequently, f € T/H. Finally, f = L™'¢g does not depend on the choice of [, by
proposition 4.9. Consequently, L™! is linear by theorem 4.2. O

Corollary. There exists a unique integration operator [ on T, such that ([ f) = f
and ([ f)° =0 for all f € T (here we recall that ([ f)° denotes the constant part of

JF). U

We have already shown that if f € T*? then [ f € T*?[z]. Actually, a slightly
stronger assertion holds:
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Proposition 4.10. [If f € T®? then [ f € T*? + (Cx.

Proof. Assume that [ f & TP 4 C'x and let u be the biggest monomial in supp f
for <, with ([ f)a € T*?U{x}. Let ¢ = f =3 o o fu- Then we have m, € T?,
while m([ ¢) & T*? U {x}.

If m, = 1, then we must have m( [ ¢) = = and we are done. Otherwise, there exists
a unique transmonomial 1y € T*? with m((0/0%)xy) = M, by theorem 4.1. Since
M, = &, we have M((0/0%)xy) = M((0/0%)xno), whence m(f m,) = 1. Therefore
M([ @) = 1 by construction: contradiction. O

4.5 Solving the homogeneous equation

Modulo upward shiftings, it suffices to show how to find the solutions to (4.3) in
the case when L has coefficients in T**?. Moreover, in order to compute a basis
hy << -+ =< h, it suffices to find the dominant monomials of hy, -, h,. Indeed,
given the dominant monomial my,; of h;, we take

hi = Mp,; — L_lLMhl..

A special case in which dominant monomials of basis elements are easily determined
is the following:

Proposition 4.11.  Assume that Lo < m(L), and let i be minimal such that
L;<m(L). Then 1,--- 2"~ are dominant monomials of solutions to (4.1).

Proof. Let m = 27 and h = v — L' L, with 0 < j <i—1. We claim that m;, = .
Since j < i, we have Lm < M(L). Therefore, in the construction of mp-17,, we
have 1y <« 1. Since logmy < log, for all o > 1, it follows that vy -17,, < M. Hence
h ~ w1, which proves our claim. O

The idea is now to determine those monomials 11 € T“”, such that Ly, <
M(Lyy), and to prove that all vy, can be obtained from proposition 4.11, after
multiplicative conjugation by such a 1. For this, we look at the Riccati equation
associated to (4.3), which is an algebraic differential equation

LoRo(h) + Ly Ry(h) 4+ LyRy(h) + - -+ L, R.(h) = 0 (4.8)

in the logarithmic derivative h of h. Here the R; are determined by b = Ri(h)h;
for instance,

Ro(il) = 1

Rl(il) iL;

Ry(h) h?+ 1,
(h)

= WP 3hh 40"
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In the case when h 3+ x, we have h(9) =j h, whence RZ(iL) =kl + O;L(iﬁ) for all
i. Therefore, (4.8) becomes “quasi-algebraic”:

Lo+ Lih + Loh*(1 4 o(1)) + - - + L.A7(1 + o(1)).

In particular, the dominant monomial of any solution h is in T**?. On the other
hand, if h =< x is a solution to the homogeneous equation, then (k) is determined
via proposition 4.11:

Proposition 4.12. If  is a solulion to (4.8) with h =& x, then m, = @' for some
i € N. Moreover, L; < (L) for all 7 < 1.

Proof. Decompose h = @z, with ¢ < z, and assume that & & 2. If A € N, or
1 < A, then we have

7

R < ot
Otherwise, we have x¢ < 1, 2¢ <K x and

A = (2p)pa
In both cases, we thus have At <, 2~ for all 7. Since the coefficients of L are all
purely exponential transseries, it follows that no cancelations can take place in (4.3):
contradiction.

Therefore, we have h = ' for some 7 € N. Let j be the smallest index with
L; < wm(L). If j were smaller or equal to ¢, then we would have

LoRo(h) + LyRy(h) + LyRy(h) + -+ 4 L R.(h) < L R;(h) < m(L)ax™,

since the coefficients of L. are purely exponential transseries. Consequently, we must
have 5 > 1. O

Putting together the above results, we get:
Proposition 4.13. [f h is a solution to (4.3), then my, € T*Pz™.

Proof. Assume the contrary. Then h ¢ T°"P; otherwise fiL € T*? 4+ Cx, whence
h € T***. Let u be the biggest transmonomial in suppiL for <, such that u & T?
and define p =37 o | iLu.

Let us first assume that exp(f ) » x. Then h— @ is a solution to the Riccati
equation associated to the equation L, exp( [ w)iL = 0. Since this Riccati equation is

quasi-algebraic, the dominant monomial of h— @, which is u, lies in T*?. Contra-
diction. )
In the remaining case, the solution hexp(— [ 1) to the equation L, exp(fu)h =0

satisfies M(h exp(— 1)) = 2° for some i € N by proposition 4.12. This leads again
to the desired contradiction. O
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In view of the fact that the h; has been chosen such that h; = my,, — L' Ly, for
all 7, the above proposition immediately implies the following theorem:

Theorem 4.4.  Assume that L has coefficients in TP, Then any transseries
solution h to (4.3) is in T*P[x]. O

Although the above theorem describes the structure of the solutions to (4.3), it
does not provide a theoretical way to construct the solutions. Therefore, we will
now briefly describe how the algebraic Newton polygon method can be adapted to
solve the Riccati equation (4.8). More details in a more general context will be given
in sections 5.4 and 5.5.

First, we notice again that we only have to determine the dominant monomial

of each h € {hy,--- ,hs}. Instead of (4.8), we will consider Riccati equations with
an additional asymptotic constraint:
LoRo(h) + Ly Ry(h) + LyRy(h) + -+ 4+ L R.(h) = 0 (h < =) (4.9)

It h =< x, then h is given by proposition 4.11 and proposition 4.12. In the other
case, the Riccati equation (4.9) is quasi-algebraic, and we define potential dominant
monomials, Newton degree etc. as in the algebraic case, by neglecting the o(1)-
terms. However, we restrict our attention to non infinitesimal potential dominant
monomials, since we assumed h > .
Now a refinement ) N
h=p¢+h(h<p)

corresponds to a multiplicative conjugation

L(P) = Ly () (F = exp( [ ).

Therefore h again satisfies an asymptotic Riccati equation of the form (4.9), which is
solved by transfinite induction (in a similar way as in theorem 4.2). Actually, we can
reduce the necessity of transfinite induction to the case when the asymptotic Riccati
equation is quasi-linear, by using a generalization of the trick from lemma 3.3. For
details, we refer to section 5.5.

4.6 Oscillating solutions

The theory of linear differential equations is the only one, which can be fairly easily
generalized to include oscillating solutions. In this section, we briefly present the
main differences that such a generalization introduces w.r.t. the theory from the
previous sections. The main reason why the generalization is possible is that we allow
oscillating behaviour in the space on which L operates, but not in the coefficients of

L itself.
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4.6.1 Notations

Let C be a real algebraically closed totally ordered exp-log field. Then K = C +:C
is algebraically closed, as well as T=T + 4T and Tewp — Texp + ¢ TeP,

Given ¢y, -+ , %, € TN\{0}, we may formally extend T with €1, , e, Then
R = T[e“pl, -+, €] is a differential ring, when taking (e'¥7) = i;/);e“pﬂ for each j. In
what follows we will always assume that we have either ¢;/ /¢, € C or ¢ % 1, for all
J" # J; this can always be accomplished, by replacing the ; by linear combinations
of them. The elements in R can be decomposed in two ways:

Polynomial decomposition. Since elements in R are polynomials, we first have
the following trivial decomposition:

f = Z fkhm7kn€i(k1¢1+"'+kn¢n)7

kyyee ik

N

with coefficients fy, ... x, in T.

Asymptotic decomposition. Each element f in R can also be written uniquely
as a sum

f = quuv

where the 11 ranges over transmonomials in T and the coefficients f;; are in

K[, .- ).

Y

In particular, the asymptotic relations < , << , etc. naturally extend to R.

4.6.2 Distinguished solutions

Consider the linear differential equation (4.1), where the coefficients of L are in Tmp,
and ¢ € Texp[x]. Let hy < .-+ << hy denote a basis for the solution space of the
corresponding homogeneous equation (4.3) in Te*#[z]. Then we have the following
straightforward generalization of theorem 4.2 and proposition 4.7:

Proposition 4.14. There exists a unique strongly linear right inverse L™ for L,
such that supp L™ g N {my,,, -+ v, } = @ for all g € TP[x]. O

This right inverse L™! can be extended to T?[z][e®", - - - , €] (with the nota-
tions from section 4.6.1) as follows: for each g € TP[x]e!F¥rtFhntn) with K, ...
k, € N, we take

Y

L—lg — (e_i(klwl+"'+knwn)lj k114 +knin)

g)-

1/ _—4%
Xei(k1w1+~~+knwn)) (6 (
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Next, we use linearity

L—l( Z gkhm7knei(k1¢1+...+kn¢n)) — Z L_l(gkl,m,knei(klwl-l—m-l_k"w"))
k17...,kn kl,"',kn

to extend L~ to T”p[:p][ei%, e ,e“/’"].
For elements f in T[z]e/(F¥1t+kavn) it is convenient to define the oscillating

dominant monomial

for each ky,--- ,k, € N. Then we have:

Proposition 4.15. There exists a unique basis hy,--- , hy for the vector space of
solutions in TP[z][e'?1, - - | €*"] to the homogeneous equation (4.3), which satisfies
the following hypotheses:

(a) For each j, there exvist ky,--- ,k, € N, such that h; € T”p[aj]ei(k“/“"'“""k"w").
(b) With the notations from (a), we have

h; = si(h;) + L Lsa(hy).

Proof. Let h # 0 be a solution to (4.3). Then for each ky,--- ,k, € N with
hM(h),kl,m,kn # 0,

h[kl, cee ,kn] = l\N/I(hk17...7kn) + L_ILI\N/I(hk17...7kn)
is a solution to (4.3). Moreover, we have

B h— S clhygo i hlkr, - k] < b

kyyee ik

Now the vector space H of solutions to (4.3) is finite dimensional. Hence, repeating
the argument on A’, we may write h as a linear combination of solutions to (4.3) in
Uk eee e Tewp[g]etkrvit+hntn) In other words, we have

H = @ H[klv"'vkn]v

ki, kn
where
H[kh ce 7kn] = Hn Texp[x]ez(k“pl"'“'*‘knd/n)
for each hy,- -+, h,. By lemma 8.1, there exists a basis of pairwise incomparable (for

<) elements for each H[ky,- - , k,]. Replacing each such basis element h by 11(h) +
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L='L5i(h), we obtain a basis for H with the desired properties. The uniqueness of
this basis is trivial. O

Let us now turn to the general equation (4.1), where the coefficients of L are in
T and the coefficients of g in T[e*¥", - ,e'¥"]. Using upward shifting in a similar
way as before, we obtain the following theorem:

Theorem 4.5. Let L be a linear differential operator (4.2) with coefficients in 'TF,
and let 1y, -+ %, be in TN\{0}. There exists a unique basis of the vector space H
of solutions to (4.3) in T[e'V1,--- | €] which satisfies the following properties:

(a) For each j, there exvist ky,--- ,k, € N, such that h; € Tei (k1w +-+knibn)
(b) With the notations from (a), we have

h; = st(h;) + L Lsa(hy).

Furthermore, L determines an isomorphism
Tl en)/H — T, - ¥,
where
T, e/ H = {f € T[e", - e ]lsupp £ N {3y, -+, 5.} = @)

The inverse L= of L is linear. O

4.6.3 Solving the homogeneous equation

Let us now consider the homogeneous equation (4.3), where we assume that the
coefficients of L are in T,

Proposition 4.16.  There exist transseries ¥y, ¢, € (Te*P)™\{0}, such the
vector space of solutions to (4.3) in T[z][e¥, -+, e¥"] has dimension r. O

Proof. Consider the analogue of the theoretical transfinite algorithm at the end
of section 4.5 to compute the set of dominant monomials of solutions to (4.3). Let
m be minimal such that m(L) < m(L,,) in (4.9). If w > 1, then {1,--- 2™ '} is
precisely the set of dominant monomials of a solution h =< « to (4.3), by suitable
generalizations of proposition 4.11 and proposition 4.12.
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On the other hand, since K is algebraically closed, there are exactly d — m
potential dominant terms ci for h with i »= 1, where d is the Newton degree of (4.9).
For each such dominant term ci1, the refinement

iL:CLI—I-;L(;L-«LI)

leads to a new asymptotic Riccati equation associated to the equation
exp( [ € CMYL o poagh =0 (h < exp( [ e™),

which has coefficients in Te?. By a suitable generalization of lemma 3.2, the Newton

degree of this asymptotic Riccati equation in his precisely the multiplicity of ¢ as a
root of the Newton polynomial associated to 1.

By transfinite induction, it follows that there are precisely » monomials of the
form me¥* with 13 € Texp[x], such that v, = e+ for some h € H. a

Modulo upward shiftings, we have proved the following:

Theorem 4.6. Let (/.3) be a homogeneous linear differential equation of order r
with coefficients in T=T+ 1T, where T is a field of transseries of finite logarithmic
depths over a real algebraically closed totally ordered exp-log field of constants. Then
there exist transseries 1y, -+ ,, € TN{0}, such that the vector space of solutions
to (4.3) in T[e“pl, o+, %] has dimension 1. O
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Chapter 5

Algebraic differential equations

5.1 Introduction

Let C be a totally ordered exp-log field of constants and T = C,[[[z]]]. In this
chapter we study the asymptotic algebraic differential equation
Py = 3 Poeif® - (fO) =0(f <), (5-1)
20, ir EN
of order r, with coefficients in T. P is also called a differential polynomial. We
will give a theoretical resolution algorithm, and bounds for the logarithmic depths
of solutions.

Questions of a similar nature were studied before by Strodt, Grigoriev, Singer
and Shackell: in [Str 77], Strodt establishes a bound for the logarithmic depths of
solutions (without exponentials) of certain first order differential equations. This
work was based on earlier work in [SW 71]. Grigoriev and Singer proved in [GS
91] that the exponents of power series solutions to (5.1) are contained in a finitely
generated group, if P has power series coefficients. In chapter 12, we will prove
a similar theorem for transseries, using the techniques from this chapter. Finally,
Shackell described in [Sh 92| an infinite process for obtaining the possible forms of
nested expansions of solutions to (5.1).

The methods we use to solve (5.1) are classical: namely the Newton poly-
gon method (see [New 1671], [Pui 1850], [BB 1856], [Fi 1889]) and linearization.
However, several technical difficulties arise, which were absent in the purely algeb-
raic case (see also the introduction). In section 5.3, we give present the differential
version of the Newton polygon method. In section 5.4 we show how to compute
distinguished solutions to “quasi-linear” equations. In particular, we show that at
most r+ 1 upward shiftings are necessary to make the distinguished solutions purely
exponential, if the coefficients of the quasi-linear equation are. Finally, we present
the theoretical resolution algorithm in section 5.5 and obtain bounds for the logar-
ithmic depths of solutions, using the bound mentioned above, and bounds for the
size of the computation tree.

116
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5.2 Preliminaries

5.2.1 Different decompositions of P

Let P be the differential polynomial from (5.1). We will usually adopt vector nota-
tion and denote

& = ... (f(f’))ir;

el = i+ +in,
for all 2 = (ig, -+ ,7,). Then the decomposition

P(f) =32 Pift (5.2)
of P is called the natural decompositzon P. Another decomposition of P is given
by

P(f) = P) 4o+ B -
Pf) = Zy= Bi(f) (0 <9 < p), '
where p is the degree of P. We call it the decomposition of P into homogeneous
parts.
In some cases, it is more convenient to decompose P as a sum

P(fy= Y Pioyf ... flen,

w1 <KWl |
where w € {0,--- ,r}* is a non commutative word of length < p and
Ww)j = {1 <k <lwl|we =J}]

However, this formula presents the disadvantage of being asymmetricin wy, -+, W,
therefore we usually prefer the following symmetric version:

_ ] .. e
PD=Z (g i) T

” 0, "

This latter formula is conveniently rewritten as
P(f) =3 Bu ™, (5.4)

where

|w] )_1
Pw = ( . Pz w)s
! i(W)o i(w)w)
el = ),

We say that (5.4) is the decomposition of P along orders. The total order of
P is defined to be the maximal number p such that there exists a w with ||w]|| = p

and P, # 0.
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5.2.2 Additive conjugation

Given a transseries h, there exists a unique differential polynomial Pyj such that

Pin(f) = P(h+[)

for all f. We call Py), an additive conjugate of P. We have Py, 41,y = Piny 11,
for all hy,hy € T.

Using a generalized Taylor series expansion, we obtain the following explicit
formula for the coefficients of P,;:

1

Pypi = = PO(h), (5.5)
2!
where
t!o= le-eql
PO ol p

In expanded form, this yields

Ppi=3" (”.)hu—“Pj. (5.6)

g>i \?

Proposition 5.1.

(a) If h <1, then Mm(Pyy) = M(P).
(b) If h < 2 for some 1 € Z, then m(Pyy) Xeo v P).

Proof. Assume that h < 1. By (5.6), we clearly have P ; < m(P) for all e,
whence M(Py;) < M(P). On the other hand, if ¢ is chosen maximal for < with
M(P) = M(FP;), then (5.6) implies that m( Py ;) = Pi + o(m(P)). This establishes

(a); (b) is proven in a similar way. O

5.2.3 Multiplicative conjugation

(Given a non zero transseries h, there exists a unique differential polynomial Py
such that

P (f) = P(h])

for all f. We call Py, a multiplicative conjugate of P. We have Py, 1, = Pxn, xh,
for all Ay, hy € T™.
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To get an explicit formula for the coefficients of Py, we decompose P along

orders:
P(hf) = > Bry(h )]
= 2B (T)h[T‘“’]f[ )
T wgT b
where

It follows that

r
th,[w] = Z ( )h[T_w]P[T]. (5.7)

w
TZ2W
In particular, we notice that multiplicative conjugation acts by homogeneous parts,
ie.
Pyni = Pixn,

for all 1.
The dominant monomial m(P) of P is defined by

M(P) = max Mp;.

In the purely exponential case, we have the following straightforward generalization
of proposition 4.2 to the homogeneous algebraic case:

Proposition 5.2. [fh # x and P is homogeneous of degree i, then

M(th) =p hZM(P)

5.2.4 Upward shifting
The upward shifting P of P is defined by

(P = PUNT,

for all f. Upward shifting is compatible with multiplicative conjugation, in the sense
that

thT = (PT)th- (5.8)
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For all non zero transseries h.
The coefficients of P are again determined most conveniently, when decompos-
ing P along orders:

P(f)=P(ftllogz)) = 2 B/ (log 2))!"
— ZP ZC —||T|| fT)

wgT

where

Cwﬂ' = Cwlm T CW|w|7T|T|7

and where we recall that the constants C;; are determined by

(f(log z))( ZC”:L' 7 fO(log x). (5.9)

Actually, C;; = s;;, where the s;; are the Stirling numbers of the first kind. It
follows that

Z Core (P, (5.10)

for all w. Notice also that upward shifting naturally commutes with additive and
multiplicative conjugation.

Proposition 5.3. For all P # 0, we have m(PT)/m(P)T = €”.

Proof. Since 1 acts by homogeneous parts, it suffices to consider the case when P
is homogeneous. Let T be maximal for < such that m(P7)) = m(P). Then (5.10)
yields

Pl = Prge (L o(1)).
(5.10) also yields

for each w. Hence m(P)te~I"ll* < m(P1) = m(P)T. O

5.3 The differential Newton polygon method

Let us come back to the equation (5.1). Except in the last paragraph, we assume
in this section that it is purely exponential, i.e. u and the coefficients of P are
purely exponential. Let 11 € T*? be a transmonomial. The differential Newton
polynomial associated to 11 (relative to (5.1)) defined by

Mpy (€ ZPXMMPXH . (5.11)
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The purely exponential Newton degree of (5.1) is the highest degree d of the
differential Newton polynomial associated to a monomial i € TP, The algebraic
Newton polynomial associated to 1 is the algebraic part of mpy, i.e.

M?D{i(c) = Z PXLI,(’i,O,~~~,0),M(P><u)ci'
1

In what follows, by Newton polynomial, we mean differential Newton polynomial,
unless stated otherwise. We notice that mpy(c) = 0 < M?;{i(c) =0, for c € C.

We say that a monomial 1 € T*? is a potential dominant monomial of f,
if 1 < u and mp, admits a solution ¢ € C*. In that case, ciy is called a potential
dominant term of f. Furthermore, i (resp. cxy) is said to be classical, if the
algebraic Newton polynomial M?D{i is non trivial. The multiplicity of ¢ as a root
of (5.11) is the smallest integer ¢, such that there exists a z with ||z|]| = ¢ and

v (e) 0.

5.3.1 Classical potential dominant monomials

The classical potential dominant monomials are analogous to the potential dominant
monomials encountered in the algebraic Newton polygon method. In particular, they
are finite in number as follows from the following:

Theorem 5.1.  Assume that P, P; # 0 with i # j. Then there exists a unique
transmonomial 1y € TP, such that M(Pyy,;) = M(Pxy,j)-

Instead of proving theorem 5.1, we will prove a slightly stronger assertion, which
will be useful in section 5.4. Actually, the prootf — which is very similar to the proof
of theorem 4.1 — is merely given for convenience of the reader. The transfinite
induction procedure we use also yields a theoretical way to compute the classical
potential dominant monomials.

Theorem 5.2.  Assume that P has coefficients in TPlx]. Let P, P; # 0 be
given with 1 < j. Then there exists a unique transmonomial i € TP, such that

M(qu,i) ez M(qu,j)-

Proof. The uniqueness of 11 trivially follows from proposition 5.2. Let us therefore
prove its existence. Let (1, ), be the transfinite sequence of monomials, defined by

n, = 1
Mot = HaexXp ;5(m(log(s( Pang i) /M(Prng i), 3 (P ) /31 Ping i) %2 1
g = exp (stat lﬁlm logm, ), for limit ordinals 3.
a<

We recall that 7(f) stands for the dominant term of f. We will show by transfinite
induction that for all 3:
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— If o < 3, then log, < log 1.
— Vacsupp logig M(Puyg,j) Xew M(Png,i)-

This will imply in particular that the length of the sequence (1, ), cannot exceed the
cardinal number of T*?[z]. The last term of this sequence satisfies the requirement
of the theorem. The induction hypothesis is clearly satisfied for 3 = 0. Assume now
that for some > 0, the induction hypothesis is satisfied for all smaller 3.

Successor ordinals. Assume that 3 = a+1 and Pyy, ;/Pyn, : € =''. Let 1 denote
exp ﬁ(T(log(qua,j/qua,i)))- Since Pyy, = Py, xm, we have

M(mes,j) - mj—iM(PXHaJ)
M(Picrg,i) h M( P i)’
by proposition 5.2. Hence,
M(qu,a,j) asi M(PXH,BJ)‘

Furthermore, M( Pyy,; ;) Xew M(Pxyg i) for all w € supp logmig, since e #= m1. Hence,
both induction hypotheses are satisfied at stage [3.

Limit ordinals. Assume now that 3 is a limit ordinal. Given u € supp logug,
there exists an o < (3, with u € supp logu,. By the induction hypothesis, we have

M(qua,j) Heu M(quoui)'
By proposition 4.2 and using that g/, <& u, we also have
M( Py ) ew M( Py, )

Therefore, the second induction hypothesis is again satisfied at stage 3. The first
one is trivially satisfied. O

5.3.2 Non classical potential dominant monomials

There are two types of non classical potential dominant monomials of f: those for
which the differential Newton polynomial is non homogeneous, and those for which
it is. In the first case, we obtain a characterization by applying theorem 5.1. In order
to characterize the non classical potential dominant monomials of f of the second
type, we look at the Riccati equation associated to the corresponding homogeneous
part of P.

More precisely, let 11 be a transmonomial, whose associated Newton polynomial
is homogeneous of degree 1. Then we consider the equation
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Rpi(f) = > Piki(f) =0 (5.12)

i =i

in the logarithmic derivative f of f, where
Ry, iny(f) = Be (f) -+~ By (f),

with the notation from section 4.5. We call (5.12) the Riccati equation associated
to (5.1) at degree i. We notice that the order and the total order of Rp; are both
strictly smaller than those of P. Now we have:

Proposition 5.4. Let i € TP with i < 1 be a monomial whose associated
Newton polynomial is homogeneous of degree 1. Then 11 is a non classical potential
dominant monomial of f, if and only if the equation

~

Rpita(f) =0 (f < 1) (5.13)
has strictly positive purely exponential Newton degree.
Proof. Assume first that 11 is a potential dominant monomial of f. Since Mp «y(¢) =

PXH7(¢707...70)7M(pXH)ci = 0 for all ¢ € C*, we must have M(PXH7(¢707...70)) < M(P). Trans-
ferring this relation to the Riccati equation, we obtain

M(Rpii0) < M(Bpita)- (5.14)
Let 7 be such that m(Rp; 4+4,;) = M(Rp;+4). Unless Rp; 1q0 = 0 (in which case we

are clearly done), there exists a unique transmonomial g € T such that

M(Rpi yijxm) = M(RP; i,0,xm),

by theorem 5.1. The degree of the Newton polynomial associated to my relative
to (5.13) is therefore strictly positive. Moreover, m < 1, by (5.14) and proposi-
tion 5.2.

On the other hand, if 11 is not a potential dominant monomial of f, then we have

P i0, 0Py 7 0, whence
M(Bpita0) = M(Rpita)-
Using proposition 5.2, it follows that
M(Bp; ta,xm0) = MURP 4i,m),

for all my <« 1 with g € T*?. Consequently, the purely exponential Newton degree
of (5.13) is zero. O
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5.3.3 Refinements

Now we know how to determine potential dominant terms, let us show how more
terms of potential solutions are obtained. A purely exponential refinement (re-
lative to (5.1)) is a change of variables together with an asymptotic constraint

f=e+f (=), (5.15)
where @ < ¢ € T“?. Such a refinement transforms (5.1) into
Pro(f)=0(] < 9. (5.16)

We say that the refinement (5.15) is admissible, if the purely exponential Newton
degree of (5.16) is strictly positive. By convention, (5.15) is said to be admissible re-
lative to the equation 0 = 0(f << ). Clearly, if (5.16) admits a solution, then (5.15)
must be admissible. The following generalizes lemma 3.2:

Lemma 5.1. Let f = ¢+ f (f < @) be a purely exponential refinement relative
to (5.1), and let cr be the dominant term of . Then the purely exponential Newton
degree of (5.16) is equal to the multiplicity d of ¢ as a root of (5.11).

Proof. Let ¢ be an index with [|#]| = d, such that ngl)u(c) # 0. From (5.6) it follows
that:

M(qu,-l-w/u,i) = M(Pxy);
M( P tomi) X M(Pyy), for all 5

M( Py to/my) =< M(Pyy), forall g with ||7]] < d.

To see that the purely exponential Newton degree of (5.16) is bounded by d, let
1 < 11 be a monomial in TP, Then

M(P+w7xuw‘) = M(qu,-l-w/u,xm/u,j)
Zagn (/1) M Pt u)
Kufn (/1) M(Prg pou i)
< (/) (P i)
i/ M(Pxn,—l—np/u,xm/u,ci)
= M(P-I—tp,XLLI,Ci)

for all j > d.
On the other hand, for each j < d, there exists a unique transmonomial my; €
Te*?, such that

M(qu,-l—w/u,xmj/u,j) = M(Pxn,—l—ap/u,xm]/u,ci)'
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Since M(Pun,+o/nj) < MLy 4oy i), it follows that m; < 11 for each such j. Taking

J such that m; is maximal for <, the degree of mMp, ., is precisely d, as in the
proof of lemma 3.2. g

Corollary 1. The purely exponential refinement f = ¢ + f (f < ) is admissible,
if and only if cu is a potential dominant term of f relative to (5.1).

Proof. Immediate consequence of part (a). O

Corollary II. For each 3 with [|3]] < cZ, the purely exponential refinement [ =
o+ f (f < ) is admissible relative to the equation PY(f) =0 (f < ).

Proof. Immediate consequence of the previous corollary, by observing that the
Newton polynomial associated to 1, relative to the equation PU(f) =0 (f =< ) is

precisely ME;JL O

5.3.4 Upward shifting

Proposition 5.5.  The purely exponential Newton degree of (5.1) is bounded by
the purely exponential Newton degree of the equation PT(f1) =10 (f1 < ul).

Proof. Let i € T*? be a monomial with 1 < 4, such that mp, has degree d. Then
we claim that Mps «ypere has degree d as well, whence the proposition.

We first deduce from (5.10) that
M( Py T) = M(PXH’i)Te_jix,

for each ¢, where j; is minimal such that there exists an w with |w| = ¢, ||w|| =
Ji and M(Pyy) = M(Pyyfw)). Moreover, we have ||w|| = j; for each w such that

M( Py fw)T) = M(Pxn,i 7). Applying (5.7), we deduce that
M(PXH)Te(ir_ji)x

(Pong )Yl
M((PXH,dT)Xe”)

for each ¢ < d with M(Pyy) = M(Pyy,i). Since M(PyyiT) Koo M(PyyT) for all other

7, we deduce that

M( (P T) xers )

X

Pt

(P1)xutersi =X (PT) xuters
for all 7. Ol
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Proposition 5.6. Let ir € TP, Then

M?DZ%HT = M?D{i. (5.17)

Proof. Decompose mp, along orders, and let + be minimal, such that there exists
an w with Mpy w] # 0 and ||w|| = i. By (5.10), we have m(PxyT) = m(Pyy)te™™

and

Mpt .t = Z Z CQ.u,‘rl\/IP,u,[‘r]c[w]- (518)

llwl|<é T2w.[|7][=

In the case when i = 0, this relation clearly yields (5.17). In the other case, we have

M?D{i = 0. Furthermore, we observe from (5.9) that Cy; = 0 for all j > 0, whence

Cor = 0 for all 7 > 0. Consequently, M?DZ%HT = 0 as desired. g

Corollary.  The transmonomial w € T? (resp. cu € T?) is a potential dom-
inant monomial or term of f relative to (5.1), if and only if ' (resp. cuf) is a
potential dominant monomial (resp. term) of f1 relative to the equation PT(fT) =
0 (fT =< utl). Moreover, 1y resp. cr is classical if and only if ul resp. cuf is. O

5.3.5 The general case

Assume now that the coefficients of P and u are in T. The results from the previous
section enable us to extend our terminology for the purely exponential case to the
general case. For instance, in view of proposition 5.5, the purely exponential Newton
degree of

P (1) =0 (f1 < aty) (5.19)

is defined and remains constant for all sufficiently large [; this constant d is called
the Newton degree of (5.1). Yet another example: given a monomial i € T,
its [-th iterated upward shifting it is either always or never a potential dominant
monomial of 1, relative to (5.19) for sufficient large [. In the first case, we say that
11 is a potential dominant monomial of f (relative to (5.1)). In a similar fashion,
we extend the notions of potential dominant terms, refinements, and so on. In this
more general terminology, lemma 5.1 and its corollaries generalize to:

Proposition 5.7. Let f = o+ f (f < ) be a refinement relative to (5.1), and
let c1t be the dominant term of ¢. Then
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(a) The Newton degree d of (5.16) is equal to the multiplicity of ¢ as a root
of (5.11).

(b) The refinement f = o+ f (f < ) is admissible, if and only if cxy is a potential
dominant term of f.

(¢) For each 3 with ||7]] < d, the refinement f = o + f (f« @) is admissible
relative to the equation PO (f) =0 (f < ).

4

5.4 Quasi-linear equations

The equation (5.1) is said to be quasi-linear, if its Newton degree is one. To emphas-
ize quasi-linearity, we will write L(f) = P(f) — Py in this section. Putting g = Fo,
(5.1) becomes

Lf =g (f < ). (5.20)
Here we use the notation “L” instead of “L” in order to emphasize that £ is not a
linear, but merely a quasi-linear differential operator. We will show that there exists
a quasi-linear analogue L™' of the distinguished right inverse L=' from section 4.4.
In order to generalize, we have to cope with one additional difficulty, which did
not exist in the linear case: consider for example the quasi-linear equation

f/_l_e—acff//:1_|_€—em (f‘« 690/2).

The distinguished dominant term of f is x, and after the refinement f = = +
f(f ~ 1), we obtain
JE/ + xe—x}?// + e—zxff// — "

Now the distinguished dominant term of f is 2='e=*"~7, which is not in T*?[z].
Therefore, repeated appearance of this phenomenon might in principle necessitate
the introduction of iterated logarithms of arbitrary strength. Nevertheless, we will
associate a new invariant to quasi-linear equations: the Newton regularity. This
invariant is bounded by the order of the quasi-linear equation, and strictly increases

each time the above phenomenon occurs.

5.4.1 Notations

It is convenient to use notations based on the linear case: we denote £;,, for the
homogeneous part of degree one of £, and L,.s = L — Ly,. We denote L; =
Liin; instead of L ,... oy for all 7, where we notice that this notation invalidates the
notation from (5.3). In case of additive conjugation, we remove the constant part,
i.e.

Lyof = Ue+[) - Ly



128 CHAPTER 5. ALGEBRAIC DIFFERENTIAL EQUATIONS

Hence (5.20) becomes . .
Liof=9— Lo (f <),

after the refinement f = ¢ 4 f (f < ). Finally, it will be convenient to introduce
the abbreviations

Lailf) = Lof 4+ Lif®
and
Loi(f) = Ligpn [ + -+ + Lo SO,
forall 0 <: < 7.

5.4.2 Dominant terms of distinguished solutions

Lemma 5.2.  Assume that L and g have coefficients in T?[x], such that m(L) is
purely exponential and (L) <o My. Let j be minimal such that m(L) = m(L;) and
let i be such that my/y(L) < x*. Then (cgi!/ep, (i + 7))a™™ is a classical potential
dominant monomial for f relative to (5.20).

Proof. We proceed in a similar way as in proposition 4.5. We first deduce

from (5.10) that

(£ = e TE(Chj+o(1)), for k < jj
M(L— L)) =< e Lt

It follows that

M(Lypits T) = M, T (5.21)
The above relations for the coefficients of L1 also imply that

(wa”'ﬂ T)O = (LT) xeli+i)z g

r

= SO+ )

k=0

J
= [ X Crii+ )" +o(1) ) (L1)je.
k=0
By proposition 4.3 and (5.21), we infer that the algebraic Newton polynomial N
associated to e and relative to the upward shifting of (5.20) is given by
(i )"

7!

N\ =

cp A — ¢y

Since this polynomial is not homogeneous, the potential dominant term
(eqt!/(ep, (i + 7))+ of f corresponding to its unique solution is classical. O
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Proposition 5.8. [If g # 0 then there exists a unique classical potential dominant
term Ty, = ¢ My, for forelative to (5.20).

Proof. Modulo upward shifting, it suffices to consider the case when g and the
coefficients of £ are in T*?. Then by theorem 5.1, there exists a unique monomial
i € TP with M(Lyy) = My, and the existence of 7,1, follows by applying lemma 5.2
to Lyy and g. The uniqueness of 7,1, results from the corollary of theorem 5.1 and
the fact that the Newton polynomial associated to my-1, is linear. O

Proposition 5.9.  Assume that L and g have coefficients in T P[z]. Let i de-
note the unique purely exponential monomial, such that M(Lyy) <ee M(g) (see the-

orem 5.2). Then

(a) Mp-1, € nz”log’ x.

(b) If m(Lyy) is purely exponential, then yp—1, € '

(¢) If m(Lyy) and g are purely exponential, and y(Lyy) = M(Lyyo), then My-1, =
1.

Proof. Applyinglemma 5.2 to Ly, and g, we have (b) and (¢). In order to prove (a),
we first observe that a(£y,1)/3,T = € for some 1 € Z. Next m(LyyTypiz) = M,T
by proposition 5.2, since Ly,T is purely exponential. Now we have (a) by applying
lemma 5.2 t0 LyypiT = LynTyeie and g7, and shifting downwards. O

5.4.3 Newton regularity

Assume that g, the coefficients of £ and mj-1, are purely exponential. Then the
purely exponential Newton regularity of (5.20) is defined to be the largest
number y, such that

M(LXML_lg,X) M(LXML_lg,rest)
_«
M(LXML—lg) M(LXML—lg)
We will show below that the Newton regularity of the upward shifting of (5.20) is
equal to x. This allows us to define the Newton regularity of (5.20) in the general

case as being the purely exponential Newton regularity of a sufficiently large upward

shifting of (5.20).

(5.22)

Proposition 5.10. Assume that g, the cocfficients of L. and vp—1, are purely expo-
nential. Then the purely exponential Newton regularities of (5.20) and the equation

LE(fT) = gt (f1 =< ) coincide.

Proof. Modulo a multiplicative conjugation of £ by m(£7'g) and a division by
M(1), it suffices to consider the case when m(£7'g) = m(£) = 1. If y denotes the
purely exponential Newton regularity of (5.20), this yields m(£y) <& M(Lrest ).
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By proposition 5.3, we have M(LycsiT) /M(Lyest)T =K €7 and m(L1, ) /m( Ly )T =K
e”, since L1, = Ly, 1. From (5.10), we also deduce that

I, = LA (14 0y1,,) 4 (Lt

Therefore, the purely exponential Newton regularity of L1(f1) = g1 (f1 < ut)
equals x, since m((L1)"'g1) = m(L7 )T = 1. 0

Contrary to the Newton degree, the Newton regularity increases during refine-
ments:

Theorem 5.3. Assume that the cocefficients of L and g are purely exponential, and
consider an admissible refinement

Lio(f)=g— 1Ly (] =) (5.23)
of (5.20) with ¢ € T*?[x] and 7, = T5-1,. Let x resp. X be the Newton regularities
of (5.20), and (5.23). Then X = x.

Proof. Modulo one upward shifting, we may assume without loss of generality
that ¢ € T“P?. As in the proof of the previous proposition, we may also assume
that Mm(¢) = m(£) = 1. Modulo one more upward shifting, we may finally assume
that m = M(L_T_lw(g — Ly)) € T*?. By proposition 5.1(a), we have m = m(Lyey) =
M(L—I—Lp,rest)-

Assume first that 1 <K . Then we have
Foyptin = Fain + o (1),
by (5.6), i.e. L4, = £+ og(1l) for all i. Consequently,
Lo pn = Lgo + ow(l) = Ly 4 ou(1),
by (5.7). On the other hand,

M( Ly urest) = M(Egg restyn) X 1,

by proposition 5.2. Therefore y > y.
Assume now that 1y » m. Let j be maximal, such that m(£4, ;) << . Clearly,
J = x. By (5.7) and proposition 5.2, we have

M( L xeng ) S M( By )1 =Xy 1,
and
M( L) Xn MLy )1 = 10
Again by proposition 5.2, we also have

M(L—I—ap,xu,rest) ﬁu M(L—I—ap,rest)uz .
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Consequently, y = 7 = . O

It the Newton regularity does not increase as the result of an admissible refine-
ment, then no new iterated logarithms are needed to compute the next potential
dominant term:

Theorem 5.4. With the notations from theorem 5.3, assume that x = x. Then
Ti7io-Le) € Te*?[z]. Moreover, if ¢ € T? and x = x = 0, then il (o-te) € Terp,

Proof. Modulo multiplicative conjugation of £ by a purely exponential monomial,
we may assume without loss of generality that m(£) = m, (by theorem 5.1). In
particular, ¢ < @' for some 7, by proposition 5.1(b). Modulo division of £ by m(£) we
may also assume that m(£) = 1. By proposition 5.9(a), M(L_T_lw(g—l}cp)) = 2 log” «
for some purely exponential monomial 11, o € Z and § € N. The key of the proof
now lies in the following

Lemma 5.3. M(L1, «y) is purely exponential.

Proof. We have m & M(Lgprest) Xew M(Lpest ), by proposition 5.1(b). Assume first
that 1 <« m. Since L = L¢, 4 oy(1), we have

Ly = Lg e +ou(l) = Ly + ou(1),
by (5.6). Using proposition 5.2, we therefore have
Lo n = Ly x4 0 (1)

Since Lgy xn =y It <& 11 by proposition 5.2, it follows that mM(ZL4e «y) is purely ex-
ponential.
Assume now that 1y » m. By proposition 5.2, we have

M( Ly s tin ) < (L in) <o 11

and
M(L-I-w,xu,rest) < HQM(L+%7’6575) < Hz‘

Since Y = x by assumption, we therefore must have M(Liy xn>y)/m 2 1. Us-
ing (5.7), it follows that

M(L+<p,>chi) = M(L+<p,><u,>><,><u—1) =i M(L+ap,><u,>><) i

Using (5.7) again, the other way around, we infer

L-I—%Xu,éx = L+w7<><,><u‘|‘L+w7>><7><u7<><

= Ljocoxn + ou(m).
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Let as usual 11 denote the logarithmic derivative of . We first consider the case
when 11 <« 1. Then

Liocx = Ly + om(l),
by (5.6) and using the fact that () <, ¢ for all 7. Consequently,

L-I—%éx%u = L<><7><u + Om(u)v

by (5.7) and the fact mentioned above. On the other hand,

Ly sy = Bhy 27 1,

whence M(Lgy,xn) w1 We conclude that M(Lig xn) = M(Lip <y xn) = M(Lgyn)
is purely exponential. Let us finally consider the case when i #= m. Then (5.7)
yields

. X—1
Lo,k ™ L-I—%xu( )

for all 7. In particular,

M(L-I—wéx,u) = M(L-I—wéx,u,o) = M(L-I—%X)HM(I:I)X = M(LX)HM(ﬁ)Xv

since Ly, = by + on(l) and L, << m. We again conclude that m(Liy xy) =
M(Ltg <y, xu) 1s purely exponential. O

End of the proof of theorem 5.4. The lemma implies at once that o € N and
B =0, by proposition 5.9(b). Moreover, if ¢ € T*? and y = x = 0, then g — Lf is
purely exponential. Furthermore, for all ¢ > 0,

M(L-I—tp,xuxo‘,iT) M(L—I—ap,xuaco‘,restT)
M(L-I-%Xuxa T) o M(L-l-w,Xuxa T)

Here the first inequality results from the fact that x = 0; the second one follows
from

e,

M(L-I-w,xu,rest) N
M(L+w,><u) o
and

L—I—ap,xuwo‘,rest ez L—I—ap,xu,rest;

Ly g xuze Xeo Ly xu-

It follows that
M(L+w,><u,i) ez M(L+w,><u)a

for all ¢ > 0, by proposition 5.2 and (5.7). Consequently, M(£44 xn) = M(L44.xu0),
so that a = 0 by proposition 5.9(c). O
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5.4.4 Existence proof of distinguished solutions

Theorem 5.5. The quasi-linear equation (5.20) of order r with coefficients in C°"?
admits at least one solution in CP if r =0, or in CPlx|l,_y ifr > 1.

Proof. Let (f,), be the transfinite sequence of transseries defined by:

fo = 0
Jor1 = Ja it TL} (9= Efa) if Lfo # g;
fs = stat lﬁlm fo for limit ordinals (3.
a<

We will show by transfinite induction that for all (3:
— If a < 3, then f, < f3.

— For all g € {u} Usupp f3, the equation

L () =9 Lfs (] <)
has Newton degree one.

— Either fz € T*®, or f3 € T*?[x]], for some [, and the equation

L+fv(fN) =9 (fN = q)
has Newton regularity > [ 4 1 for some v < § with f, € T“?|,.

The third hypothesis implies that f, € T**?], _, for all & (whence f3 is well-defined,
if 3 is a limit ordinal). The first hypothesis implies that the sequence has a last
term, which is necessarily a solution to (5.20). The induction hypothesis is trivially
satisfied for # = 0. Assume now that 5 > 0, and the induction hypothesis is satisfied
for all smaller 3.

Successor ordinals. Assume that = a4+ 1 and Lf, # g. Since
L) =g—Lf (f < 9) (5.24)

has Newton degree one for each @ € supp f,, we have L (9-L4a) ~< g for all

g € supp f,. Hence, the first induction hypothesis is satisfied at stage [3.
Since Ty-1(,_r,y is an admissible dominant term for the equation (5.24), the
equation

L+fa+1(f) =9g9— Lfoz-l—l (]EN < TL—l(g_fa)) (525)

has Newton degree one. Therefore, the second induction hypothesis is satisfied at
stage 3, because u <« U < TETL (9-Lfa) for all @ € supp f,.
+fa a
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As to the third induction hypothesis, let us first consider the case when f, €
Te». If § = 1, then we are done by proposition 5.9(b) and (c). If the Newton
regularity x of L4y, is strictly positive, then we are again done by proposition 5.9(b).
Otherwise, we conclude by applying theorem 5.4 to the refinement L_|_fﬁ(f) =qg-—

Lf, (f < m(f1)) of (5.20).
Assume now that f, € T*?. Choose [ and v < «, such that f,1, € T“?[x],
41 € TP and the Newton regularity x of

(Los 1)1 = (g — LEY, (F1, = b

satisfies Y > [ 4+ 1. Let x’ be the Newton regularity of

(L+faTl)(-fNTl) =(g—Lfa)T (]ETI < (fo = )T

If " > {41, then the third induction hypothesis is clearly satisfied at stage 3, by
proposition 5.9(a). Otherwise, it is again, by theorem 5.4.

Limit ordinals. Assume that 3 is a limit ordinal and let @ € supp fs. Then there
exists an a < (8 with u € supp f,, and by the second induction hypothesis, the
equation (5.24) has Newton degree one. Since the dominant terms of f3 — f, and
fat+1 — fa coincide, the equations (5.25) and

L-l—f,zs( )=g—Lfs (f = TL;}a(g—Lfa))

are both admissible refinements of (5.24). This implies the second induction hypo-
thesis at stage (3, since u < LT (9-Lia): The first induction and third hypotheses
+fa a

are trivially satisfied. O

In what follows, £~ ¢ denotes the solution f to (5.20) as constructed in the above
proof, and we call it the distinguished solution to (5.20). Using upward shiftings,
the definition of £ naturally extends to the case when ¢ and the coefficients of L are
arbitrary elements of T.

5.4.5 The “homogeneous” quasi-linear equation

In this section we prove the analogue of the fact that the dimension of the vector
space of solutions to a homogeneous linear differential equation is bounded by the
order of the equation.

Proposition 5.11. Let hy » -+ = hy # 0 be transseries, such that
L+h1—|—~~~+h,‘_1hi = 07

foralll <1< s. Then s < r.
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Proof. Let I = Lihytoth,. Since Lhy +--- 4+ h; = 0, we have
L(—hiyy — - — hy) =0,

for all 1 < ¢ < s. In particular, mp,,--- ,mp, are potential dominant monomials
relative to the “homogeneous” quasi-linear equation

Z}f:()(f«q)

By proposition 5.4, it follows that the asymptotic Riccati equation

~

RE,1,+@(]C) =0 (f« 1)

has strictly positive purely exponential Newton degree for all 1 < ¢ < s. But this
implies that s < r, since the dimension of the solution space of the linear differential
equation £y, f = 0 is bounded by r. g

5.5 Resolution of algebraic differential equations

5.5.1 Privileged refinements

In chapter 3, we have used refinements of the form f = ¢+ f with PU=D () =0 to
make the Newton degree decrease at most every two steps in the Newton polygon
method (see lemma 3.3). In this section, we will study a generalization of such
refinements, which we qualify as being privileged. Intuitively speaking, privileged
refinements can be thought of as the keystones of “asymptotic elimination” theory.

Let us first fix the total ordering <'** on (r+1)-tuples of indices, which is uniquely
determined by the following two properties:

— I {Js]] < [[g]], then & < 3.
— I [l2]] = [[7]]; 0 = Jo. -+~ s ik—1 = Jr—1 and iy < ji, then ¢ <" j.

Let f = o+ f (f < 1) be a refinement relative to (5.1) with & = m(¢). Denote by d
resp. d the Newton degrees of (5.1) resp. (5.16). The refinement f = o+ f (f < )
is said to be privileged, if either one of the following conditions is satisfied:

PR1. ¢ is a potential dominant term of f and d < d.

PR2. 7(¢) is a potential dominant term of f and d=d.
Moreover, ¢ — 7(¢) is the distinguished solution to the equation

PE () =0 (f < (9),

where 2 is maximal for <, ||z]| = d — 1 and M(P_f_?(w)) = M(Pyr(e))-
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Proposition 5.12. The length of a chain of privileged refinements of type PR2 is
bounded by (r + 1)d.

Proof. lLet

fo = w1+ fi (fi < =);

foct = on+ fa (fn«qn)

be a chain of privileged refinements of type PR2 with fo = f. For a fixed z with
lle]l =d—1and 0 < iy, -+ ,ig-1 <7, let j; < -+ < j,, be those indices for which 2
coincides with the ¢z in PR2. Let £ < m. By the choice of ¢;, , we have
Py (95,) =0
+o1t+-te5, 1 Pk :

If jx < n, which is in particular the case if & < m, then we claim that m(¢;, +1) is
the dominant monomial of a solution to the “homogeneous” quasi-linear equation

Pty (1) =0 (h =),

Indeed, this follows by applying proposition 5.7(b) to the ji-th refinement relative
to the above equation, which is admissible by assumption. Our claim implies that
m — 1 < r by proposition 5.11, because 1 % -+ % ,. Since there are (r + 1)1
possible choices for 2, we conclude that n < (r + 1)%. O

Corollary. The length of any chain of privileged refinements is bounded by
(r+ 1)%+L, O

5.5.2 Theoretical resolution algorithm

In this section we describe a theoretical algorithm to determine all solutions to (5.1).
The algorithm consists of five main parts:

— ade_solve: solves (5.1).
— ade_mod_solve: solves (5.1) modulo o(1).

— priviliged_refinements: computes a privileged refinement of (5.1).
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— pdm: computes a potential dominant monomials of f.
— Newton_degree: computes the Newton degree of (5.1).

Here we say that a transseries f is a solution modulo o(1) to (5.1), if

P+f(f):0(f<<1)

has strictly positive purely exponential Newton degree. The determination of the
solutions modulo o(1) to an asymptotic a.d.e. is used as a subalgorithm in order to
find the non classical potential dominant monomials using proposition 5.4.

The algorithms are non deterministic (with the exception of Newton_degree). To
implement the non determinism, we use the automatic case separation terminology
from chapter 8. The main algorithm ade_solve has the property that each solution
to (5.1) corresponds to exactly one branch in the computation tree.

Algorithm ade_solve
INPUT:  An asymptotic algebraic differential equation (5.1).
OUTPUT: A solution to (5.1) (computed non deterministically, if a solution exists).

STEP 1. If Py = 0, then separate the following two cases:
A. Return 0.
B. Proceed with step 2.
STEP 2. Determine (non deterministically) a privileged refinement

f=e+f(f=9) (5.26)

to (5.1) by priviliged_refinements.
STEP 3. Recursively solve (5.26) by ade_solve.

Algorithm ade_mod_solve

INPUT:  An asymptotic algebraic differential equation (5.1).

OUTPUT: A solution modulo o(1) to (5.1) (computed non deterministically, if a
solution exists).

STEP 1. Compute the Newton degree d of the equation P(f) = 0 (f < 1) by
Newton_degree.
It d > 0, then separate the following two cases:
A. Return 0.
B. Proceed with step 2.
STEP 2. Determine (non deterministically) a privileged refinement (5.26) to (5.1).
Impose the constraint ¢ » 1.
STEP 3. Recursively solve (5.26) modulo o(1) by ade_mod_solve.
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Algorithm priviliged_refinements

INPUT:  An asymptotic algebraic differential equation (5.1).

OUTPUT: ¢, such that (5.26) is a privileged refinement of (5.1); here ¢ is computed
non deterministically, if such a ¢ exists.

STEP 1. Compute (non deterministically) a classical potential dominant monomial
i of f by pdm.
Choose (non deterministically) a non zero solution ¢ to the algebraic New-
ton polynomial associated to 11.

STEP 2. Compute the Newton degree d of (5.1) by Newton_degree.

STEP 3. If ¢is a solution of multiplicity < d to Py, then return cm.

STEP 4. Otherwise, let ¢ be maximal for <*', with ||z]| = d — 1 and M(P_I(_ic)u) =

M(P-I-cu)'
Compute the distinguished solution ¢ to

P—?-ic)u(f) =0 (f < T—I)a

by theorem 5.5 and return ci + .

5.5.3 Computation of potential dominant monomials

Before stating the algorithms to compute the potential dominant monomials of f
and the Newton degree of (5.1), let us introduce some more terminology. Assume
that (5.1) is purely exponential. By proposition 5.3, we have m(F;) < Mm(P) =
M(P;T) < Mm(PT) for all i. More generally, if 11 is a purely exponential monomial,
then we have M(Pyy;) < M(Pxy) = M(Pyy,iT) << M(PyyT) for all i. It follows that
there exist unique indices ¢ < j, such that for all sufficiently large [, we have

M(qu,iTl) = M(PXHTI) = M(PXHJTl)v (5'27)

and

M( P Tr) < (P ) (5.28)

for all k < ¢ and k > j. We will call iy an (¢, 7)-monomial (relative to (5.1)) if
i < j and an i-monomial (relative to (5.1)) if 7 = ¢. Modulo upward shifting, this
terminology extends to the case when 1 and P are arbitrary.

If 1 is an potential dominant ¢-monomial, then 11 is necessarily non classical.
However, if i1 is an potential dominant (z, j)-monomial, then 1z may be non classical:
for instance, 1 is a non classical potential dominant (1,2)-monomial for f relative
to the equation f'+ ff' = 0. By theorem 5.1, there is at most one (i, j)-monomial
1y ; for fixed ¢ < 7. The following algorithm computes this monomial if it exists.
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Algorithm ij_monomial
INPUT:  An asymptotic algebraic differential equation (5.1) and ¢ < j.
OuTPUT: The unique (¢, j)-monomial relative to (5.1), if it exists.

STEP 1. If P, =0 or P; =0 then return 'failed’.

STEP 2. Let ! > 0 be minimal, such that the [-th upward shifting of (5.1) is purely
exponential.

STEP 3. Compute the unique monomial i € T?]; with M(Pyy,T;) = M(Puw;T))
by theorem 5.1.

STEP 4. Compute the unique monomial m € T*P|,_, with M(PeuwiTy) =
M( Py ;Ti41) by theorem 5.1.

STEP 5. If m # 1 or the differential Newton polynomials mpy, ., and MP1t,, ity
do not coincide, then set [ := 1+ 1 and go to step 3.

STEP 6. If i satisfies (5.27) and (5.28), then return 1.
Otherwise, return 'failed’.

Lemma 5.4. The algorithm ij_monomial is correct and terminates.

Proof. In order to prove the correctness of ij_monomial, we have to show that
if m = o, Mpy,ur, = Mpt,, ut,, and m satisfies (5.27) and (5.28), then (5.27) and
(5.28) are also satisfied for all larger values of [. Now from (5.18) it follows that
for all ¢, s( P71 i, 1544 ) 1s determined as a function of (Pt ot,,;) only.
Consequently, ao( PT,;,171,,;) for all i, whence the result.

In order to prove the termination, we assume that the logarithmic depths of the
solutions to the Riccati equation Rp,; are bounded by a fixed constant; this will be
proved in the next section. Now suppose that ij_monomial does not terminate.
Then the logarithmic derivatives of the successive values of 11 are all solutions to the
Riccati equation Rp;. By our assumption, it follows that 17is constant from a certain
[ on. Since m(PT,,ufl,) changes at each iteration, we observe from (5.18) that the
total order of m(P1,,f,) strictly decreases at each iteration. But this impossible.

O

Given a monomial 11, it is easy to check whether it is a potential dominant
monomial of f: we shift upwards until iy and (5.1) become purely exponential,
and check whether 11 << u and the algebraic Newton polynomial associated to 1
admits a non zero solution. Now we know how to compute the (z,j)-monomials
relative to (5.1) and we know how to compute recursively the non classical potential
dominant -monomials using the Riccati equation. This leads to the following:
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Algorithm pdm

INPUT:  An asymptotic algebraic differential equation (5.1).

OUTPUT: A potential dominant monomial of f relative to (5.1) (computed non de-
terministically, if it exists).

STEP 1. Separate two cases and respectively proceed with steps 2 and 4.
STEP 2. For each 0 <1 < 7 < r separate a case and do the following:
A. Compute the (7, j)-monomial 1z relative to (5.1) by 1j_monomial.
Kill the current process if 11 does not exist.
B. If i is a potential dominant monomial of f, then return .
Otherwise, kill the current process.
STEP 3. For each 1 <1 < r, with P, # 0, separate a case and do the following:
A. Solve the Riccati equation Rp;(p) = 0 modulo o(1) by ade_mod_solve
and set 11 := exp([ ¢).
B. If 11 is not a potential dominant monomial of f, then kill the current
process.
C. If i occurs as an (7', ')-monomial for some ¢’ < j’, then kill the current
process.
D. Return m.

Assume that 1 is an (7, j)-monomial or a j monomial, and 1 is an (¢, 7)-
monomial or a ¢ monomial. If i < m1, then applying proposition 5.2 after a suffi-
ciently large number of upward shiftings, we get 57 < ¢’. This observation leads to
the following algorithm to compute the Newton degree of (5.1):

Algorithm Newton_degree
INPUT:  An asymptotic algebraic differential equation (5.1).
OuTPUT: The Newton degree of (5.1).
STEP 1. If uis an (¢, 7)-monomial relative to (5.1) for some 7 < j,
then return 5 — 1.
STEP 2. Return the unique ¢ such that u is an i-monomial relative to (5.1).
Here 7 is computed as follows:
A. Let [ be minimal, such that the [-th upward shifting of (5.1) is purely
exponential.

&

While the Newton polynomial apy, ¢, is not homogeneous, set [ := [+ 1.
C. Let 1 be the degree of mpy, 1,

5.5.4 Correctness and termination proofs

We can now state and prove the main theorem of part A of the thesis.
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Theorem 5.6. Let (5.1) be an asymptotic algebraic differential equation of degree
d and total order p, with coefficients in T = C,[[[x]]]. Then

(a) The set of possible outcomes of the non deterministic theoretical algorithm
ade_solve is precisely the set of solutions to (5.1) in T.

(b) The algorithm ade_solve terminates for all possible executions, and each solu-
tion to (5.1) in T corresponds to exactly one branch of the computation tree.

(c) If the coefficients of (5.1) are in TP, then the logarithmic depth of each solu-
tion to (5.1) in T is bounded by (p + 1)(p+2)2/2+d.

Proof. We have already shown the partial correctness of ade_solve and of its
subalgorithms in the previous sections. Therefore, it only remains to prove (b)
and (c¢). We do this by induction over p, while proving simultaneously that the
logarithmic depths of the possible outcomes of ade_solve and ade_mod_solve are
bounded by (p 4 1)#*+2°/2+4_if the coefficients of (5.1) are in T**?. We notice that
if the coefficients of (5.1) are in T*?1; then one need add [ to these bounds modulo
[ upward shiftings of the equation. For p = 0, the equation (5.1) is algebraic, and
the statements (b) and (c¢) are trivially satisfied. Assume therefore that p > 0. As
usual, we denote by r the order of (5.1).

By the induction hypothesis, all recursive invocations of ade_mod_solve in pdm
for the Riccati equation terminate. The assumption made in the termination proof
of ij_monomial in lemma 5.4 is nothing but the induction hypothesis concerning the
bounds for the logarithmic depths of solutions. Finally, since a chain of privileged
refinements is bounded by (r + 1)+ in view of proposition 5.12, we obtain the
termination of ade_solve and ade_mod_solve. This proves the first part of (b).

Let us now examine more carefully the above argument, in order to obtain the
explicit bound from (c), when the coefficients of (5.1) are in T**? We have to examine
how many “additional upward shiftings” each step in the algorithm may necessitate.

By the induction hypothesis, each invocation of ade_mod_solve in pdm neces-
sitates at most p(?t1*/2+7 additional upward shiftings, since the degrees of the Ric-
cati equations Rp; are bounded by p. Furthermore, the computation of the (7, j)-
monomials necessitates at most p additional upward shiftings, since m(P1;,111;)
needs to change at each iteration in ij_monomial, and this can happen at most
p times. Consequently, the computation of a potential dominant monomial of f
necessitates at most p(Pt1)*/2+r — max(,o,p(p+1)2/2+p) additional upward shiftings.

The computation of a distinguished solution in step 4 of privileged_refine-
ments necessitates at most r additional upward shiftings by theorem 5.5. Con-
sequently, the computation of a privileged refinement necessitates at most r +
PPt 124e L (p 4 1)(+D*/242 additional upward shiftings. Finally, since the length
of a chain of privileged refinements is bounded by (r + 1)! the logarithmic
depth of any possible outcome of ade_solve or ade_mod_solve is bounded by
(r+ 1)d+1(,0 + 1)(p+1)2/2+p <(p+ 1)(p+2)2/2+d as desired.
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We finally have to prove that each solution to (5.1) in T corresponds to exactly
one branch of the computation tree. Actually, we claim that each possible outcome
of each of the subalgorithms correspond to exactly one branch of the computation
tree. The only subalgorithm for which this is non trivial is pdm, in which the possible
overlapping of branches is excluded by step 3d. g

Remark 5.1. Actually, part (a) of the theorem can be strengthened as follows:
if T/ O T is any strongly monotonic field of transseries over C in the sense of
chapter 2, then ade_solve even produces all solutions to (5.1) in T’. Indeed, this
follows immediately from our bounds for the logarithmic depths. In particular, no
new solutions occur if we enlarge T by other strongly monotonic transseries.

Remark 5.2. For convenience of the reader, we have rather tried to keep the
algorithms as simple as possible than to optimize the bound in (¢). Let us now sketch
how this bound can be improved. Instead of considering sequences of privileged
refinements of type PR2, where the index ¢ changes at each iteration, one can also
consider similar sequences of refinements, but with the index ¢ kept fixed. When
doing so, the bound from proposition 5.12 improves to r + 1 instead of (r + 1)¢ and
the bound in the corollary to d(r + 2) instead of (r + 1)#*!. Finally, the bound in
part (c) of in the theorem improves to (p + 2)!*d instead of (p + 1)(’)+2)2/2+d.

In particular, for fixed total order, this improved bound is linear in d. This
coincides with the result of Strodt in the case when p = 1, who proved in [Str 77]
that we may even take 2d for the bound in this case. On the other hand, we have
no evidence for the existence of linear bounds in p for the logarithmic depths of
solutions, which would in particular imply Shackell’s conjecture in [Sh 92].
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Chapter 6

Transvarieties

6.1 Introduction

The aim of this chapter is to present models for algebraic asymptotic calculus with
transseries in several variables and transseries which are not longer strongly mono-
tonic. Qur approach is geometrical: we interpret transseries as elements of the
function space on some “transvariety”. Besides the ordered exp-log ring operations
and relations, we also have partially defined infinitary summation operators on such
function spaces. The difficulty is of course how and when to define these operators
and here we use the abstract nonsense arguments from appendix B. The idea to use
a pointwise definition of infinite summation: an infinite summation is defined if and
only if it is defined in each point. Here a point is nothing else but a morphism of
the function space into a field of transseries in the sense of chapter 1 or 2 for which
infinite summation has already been defined.

It should be noted that this chapter should be seen as indicative for the de-
velopment of a future, more complete theory (see also section 6.3.2). We restricted
ourselves to transvarieties whose function spaces do not have nilpotent elements and
we are mainly interested in transseries defined on open subsets of affine space. The
advantage of this choice is that theory remains more natural, but it is probable that
a more general approach will be necessary for some future applications.

Let us now come to a more detailed description of the contents of this chapter. In
section 6.2 we introduce strong rings, which are rings with partially defined infinite
summation operators, which satisfy certain conditions.

For the introduction of grid-based transvarieties, we also introduce more spe-
cial, so called grid-based summation operators in section 6.3.1. These operators
adequately reflect the finiteness properties of grid-based series, and we will establish
a generalization of proposition 1.3. In section 6.4 we proceed with some examples
and basic properties of grid-based transvarieties. In particular, transvarieties are
given a natural topology, which generalizes the interval topology. It is next shown
in section 6.5 that the partial derivations can be defined for open subvarieties of

144
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affine space.

In sections 6.6 we introduce Noetherian transseries as the multivariate generaliz-
ation of well-ordered transseries. Using a careful definition, we show that the results
from the previous sections can be generalized.

In section 6.7.1, we show that our algebraic geometry methods can also be ap-
plied to construct models for weakly oscillating transseries, i.e. transseries which are
built up from the usual transseries operation plus the trigonometric functions. The
idea is to see weakly oscillating transseries as multivariate transseries, in which the
variables have been substituted by oscillating components. Contrary to the strongly
monotonic case, the models for such transseries do not necessarily correspond to
the analytic models, but a correspondence can often be forced. Using the notion of
weakly oscillatory transseries, it is easy to introduce complex transseries by consid-
ering real and imaginary parts. This is done in section 6.7.2 and we prove a theorem
which shows how far real transseries can be prolongated in the complex transplane.

6.2 Strongly linear algebra

In this section, we generalize linear algebra objects, replacing the usual addition by
an infinitary summation operator. Implicitly, we already used such infinite summa-
tions in chapters 1 and 2, but it convenient to make their properties more precise.
Two main problems are encountered here. First, infinite summation operator can
only be partially defined. Secondly, it is not clear what the arity of such an operator
should be. The first problem has been settled in section B.2. For the second problem
we can either take a summation operator >~ ; for each index set I, or for all subsets
I of a fixed sufficiently large set. We choose for the first option and we remind the
discussion at the end of section B.2. The prefix strong will be used to designate
generalized linear algebra objects. We will now make this more precise.

Let A be a set with a zero element 0, and for each index set [ a partially defined
summation operator ;. We will also denote >~ = > ; if the index set [ can be
deduced from the context. Then A is said to be a strong Abelian group, if > ; is
totally defined for all finite I, and if for all I and (z;);e; € A! we have

S1. Z(O)iel = 0;

82. 3 (4)ier = Y(%0())icr, for any permutation o of I;

83. > (4)ier = Y (22(xi)ier, ) jes, for any partition I = [1.c; 1.
Here we use our convention by which each of the above equalities only holds if at
least one of its sides is defined. We remark that A can be seen as an Abelian group
by taking x; + x3 = 2ie{1,2} Tiy for all z1,29 € A. From S2, S1 and S3 it also
follows that Y>(xi)ier = 2-(y())ies, for any bijection ¢ between two index sets [
and J.

Assume now that R is a strong Abelian group with an associative multiplication -

with unit 1. Then R is said to be a strong ring if
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S4. 3o (Axi)ier = A2 (4)ier,
for all (z;)ic; € R, A € R and index sets I, such that > (x;)ics is defined. In

particular, R can be seen as a ring. As before, we will only consider commutative
rings. Let R be a strong ring and M a strong Abelian group, such that R operates

on M by multiplication. We say that M is a strong R-module, if we have A(ux) =
(M), la = x, S4 and

> (Nix)ier = (Z()\i)iel) T, (6.1)

for all A\, € R,(\)ier € R,z € M, (%;)ier € M! and index sets [. A mapping
¢ : M — N between two strong R-modules M and N is said to be strongly linear
if

o (Y (Niwiier) = Y (higp())ier. (6.2)

for all (X\;)ier € RY, (2;)ier € M! and index sets I.

In a similar way many other linear algebra objects can be generalized, such as
vector spaces, algebras, multilinear mappings, derivations, and so on. For abstract
nonsense reasons (see chapter B), the categories of strong Abelian groups, rings, etc.
have a lot of properties. For instance, tensor products, pullbacks, pushouts, direct
limits and inverse limits exist in the category of strong rings by theorem B.2.

Example 6.1. Let T the field of grid-based transseries over C'. Then Y (x;)ier is
defined for any grid-based family (z;);e; € C. Similarly, if T is a field of well-ordered
transseries, then Y (2;);es is defined for any Noetherian family (z;);csr € Ccr.

Example 6.2. If C is also a strong ring in the previous example, then we say
that a family (fi)ier € T' is weakly grid-based, if U;cssupp f; is grid-based and
S (fin)ier well defined for each transmonomial m. Weakly Noetherian families are
defined similarly. Now the previous example can be generalized using these new
definitions.

Example 6.3. Strongly linear algebra can also be used in other mathematical
topics, such as measure theory: R is a strong ring, by defining Y (x;);e; for all
absolutely convergent families. A o-algebra B on a set I can canonically be extended
into a strong R-module Mp: we consider the free strong R-module in 5 and then
quotient by relations of the form

> (Us)ier = WieUs

for enumerable families (U;);e; € B!, whose members are mutually disjoint. Finite
measures can then be interpreted as strongly linear mappings from My into R. It is
also possible to replace R by a field of transseries T, and we leave it as an exercise to
the reader to generalize the Lebesgue measure (one has to be careful here: relatively
few disjoint unions of intervals are measurable).
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6.3 Grid-based transseries in several variables

6.3.1 Definition of grid-based transvarieties

In this chapter we fix a totally ordered exp-log field of constants C' and we denote
T = CMtI. In order to apply the abstract theory from the previous chapter, we
have select a suitable signature 7" and a category P of point types. For each n € N
and each family (¢, ... g, )by, gnenin in CT ) we define a grid-based summation

symbol X% of arity n. For infinitesimal f;,---, f, in T, we define
Si(fi s f) =0 Y e it (6.3)
ki, kn€N

We let T' be the signature consisting of these symbols Y%, the exp-log field operations
and the ordering relation <. We take obj(P) = {T}.

In section B.5, we have constructed the category Varp of varieties relative to
P. From now on such varieties are called grid-based transvarieties over ' and
their category is denoted by GTV¢. Then a grid-based transseries in several
variables is just a partially (but somewhere) defined function on a transvariety.
A transseries f in xy,---,x, can be seen as an expression in xy,---,x, and the
function symbols from 7', such that for all points P in a certain non empty subset of
T, the substitution f(P) of (21, -+ ,x,) by P is well defined. The maximal subset
with this property can be seen as the domain of f.

The ordering on the function space F(V') of a transvariety V is also determined
pointwise, i.e. f > g if and only if f(P) > ¢(P) for all points P € V. More
generally, we have pointwise generalizations of the asymptotic relations <« , <,
etc. (for instance, f < g & VPeV f(P) < g(P)). A consequence of the pointwise
characterization of functions and relations on a transvariety is that all Horn clauses
which are valid in T are valid in F(V') (see proposition B.4). In particular, F(V)
is an ordered exp-log ring. However, F(V') is not necessarily totally ordered nor a
field. Indeed, the axioms of a total ordering resp. a field are not all Horn clauses.

Example 6.4. The transseries f(z,y) = Y, tljlkla™y™7e™¥ in z and y is
well defined, for positive % 1 and y » 1. Strictly speaking, f is given by f =
Yz y™ em) and ¢ = (i!j!k!)(i,j,k)eNS-

C

Let us show that the function space of a transvariety V' has the structure of a
strong ring. It will be convenient to extend the meaning of the grid-based summation
symbols in the following way:

p
Ez(flv 7fn;glv"' 7gp) = Zzzj(flv 7fn)gj7
J=1

for all ¢ € C™»*" infinitesimal f1,---,f, € F(V) and arbitrary gi,---,g, €
F(V). Now let (h;)ier be a family of elements in F(V). Assume that there exist
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fisoor s fasg1y oo 5 g, and a family (‘c)ier € CTP*H” such that

hi = ch(fl,"' 7fn;glv"' 7gp)7 for all 7 € [7
{i € Il¢; ... », } is finite for each (7, ky,--- ,k,) € N, x N".

In this case, and only in this case we define

Z(hi)ief = Zz(flv 7fn;glv'” 7gn)7 (64)

where ¢ g, oo ky = Sicr 'Ciky o dn s Tor all 7, ky, -+« k.. Tt is not hard to check that
> 7 is well defined by this formula for each I, and that F (V) is given the structure
of a strong ring in this way.

Remark 6.1. One might be tempted to introduce grid-based transvarieties by
taking the infinite summation symbols ) ; in the signature 7' instead of the grid-
based summation symbols (see also example 6.1). However, consider the examples

flz) = z+2%z—-1)+2%x—-1)*(x—-2)+ -

glz,y) = -+

Neither f nor g are grid-based transseries in our sense, but they would have been
in the alternative sense, Indeed, f(x) would have been defined for all # such that
x—n < 1 for somen € N. g(z,y) would have been defined for all x » 1 and y » 1,
such that y™ # z"! for all n € N. In fact, our choice of T' ensures that the finiteness
condition in the definition of grid-based sets is adequately generalized.

6.3.2 Transrings of grid-based type

In this section, we study a purely algebraic generalization of the concept of transvari-
eties. Our approach is based on the structure of a transring, which can be modelized
by using Horn clauses only, and in which is allowed to have nilpotent elements. The
category of transrings has a lot of structure because of the abstract nonsense results
from the previous chapter. However, we have not adopted this more general point
of view in the rest of this chapter for simplicity reasons and because transvarieties
have a strong geometrical appeal. Nevertheless, the theory of transvarieties will
probably be replaced by a more algebraic theory in the future, using the ideas from
this section and section B.6.2.

In order to define transrings, we start by examining the properties of the grid-
based summation operators on the function space of a given transvariety. The
following Horn-clause tells us when X* is defined for a given ¢ € CM":

GS1. ( A A —5<f¢<5) = X5 (f1, 0, fa)

1<i<n e
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In fact, we even have

GSl’.( A A —5<f¢<5) S X (fry e o)

1<i<n e
Whenever ¢ € C'"" has finite support, we also have

GS2. Zz(flv"' 7f71): Z Chyyee hn lklffn
kl yeee 7kneN
This property ensures that the grid-based summation operators are compatible with
the ordinary ring structure of F(V).

The last important property of the grid-based summation operators is analogue
to S3. Let (‘c)ier and ('c’)ier be term by term sumable families in CT»*N" and
CMo I respectively. Denote by ¢ resp. ¢ their termwise sums. Then the following
Horn-clause is satisfied:

683, (A SLUb a9 = S0 e gt )
€]
Zz(flv' e 7fn;glv' e 7gp) = Zz’(fiv o 7f7/z’;giv' o 791/9’)‘
An ordered exp-log ring over €' with grid-based summation operators which satisfy
GS1, GS2 and GS3 is called a grid-based transring over C. Like in (6.4), grid-
based transrings can be given the structures of strong rings. We finally remark
that for some future purposes it might be necessary to replace GS1 by the stronger
condition GS1’, but we have not yet investigated this issue in detail.

6.3.3 Asymptotic scales of grid-based type

Let V' be a grid-based transvariety. In contrast to the one variable case, there is no
canonical way to write transseries in several variables as sums of coefficients times
transmonomials. However, we will now show that certain subalgebras of F(V') can
be seen as algebras of grid-based series. Let S be a subset of F(V). We interpret S
as a generalized set of transmonomials, so that we partially order it by the opposite
strict ordering < of < (remind warning 1.1). We say that S is an asymptotic
scale of grid-based type, if it satisfies the following conditions:

AS1. S is a multiplicative group with C-powers.
AS2. For any non trivial linear combination f = >"" | ¢;uy with gy, - -+ 1, € 9,
there exists a point P € V' with mp(s) = min{spau,), -+ MP(m,) }-

Let S be an asymptotic scale. The subset S = {m; € S|u; < 1} of Archimedian
elements in S forms a subgroup of S with C-powers. Elements in C'[.5°] are poly-
nomials in S¢ over C'. Because of AS2, these elements are also Archimedian.

Proposition 6.1. If S is an asymptotic scale of grid-based type, then C'[ST is
naturally embedded in F(V).
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Proof. Let us first show that an element f = )", cs fum of C'LST can naturally
be interpreted as an element of F(V'). We have

supps f C ) - - -1 F

for certain infinitesimal gy, - - - ,1m,, € S and a certain finite subset F'= {u], - - - ,Il];;}

of 5. Hence, we can write f =37 . p cj7k17...7knm]f1 mﬁ"m;, for some family
¢ of constants. But this means that we can interpret f as the element of F(V):

f=Y(my, -y, e, ).

To prove that the natural mapping from C' [[ST into F (V) is injective, we assume
that f =" ,es cmm, with Noetherian support S’ is in its kernel. Then the set I of
minimal elements of S’ is finite. Assume for contradiction that /' # ¢. By AS3 there
exists a point P € V, such that Mp(y) = minger Mp) = 1, where g = 3=, cp L
But P(3esnr cmtl) < 11 whence mp(y) = 1 and P(f) # 0. O

Example 6.5. Take V = (A% )2 = {(z,y) e A®|le =1 Ay»1Aa>0Ay>0}
Let 1T, resp. I, denote the sets of “transmonomials in = resp. y”. Then II,II, is
an asymptotic scale. The following transseries is a sample element of C'[1L,11,T:

17!k!!
iEN]ENkENx y-e
Example 6.6. Let V = {(z,y) € A’]l £ A <1 A z < 1}. Then AYI,-1 is an
asymptotic scale. For instance,

f = Z Z()\ ‘I‘ Qk)\Q _|_ e _I_ lk)\l)zke_lA2Z_l
keNIeN

is an element of C[[A“II,-1]].

6.4 Examples and properties of transvarieties

The transline. Let us show that grid-based transseries in several variables indeed
generalize transseries in one variable. To see this, we consider T as a transvariety.
A point ¢ : T — T in V(T) must send ¢ to a positive infinitely large transseries.
Inversely, right composition with a positive infinitely large transseries determines a
point in V(T). Hence, V(T) is isomorphic to the set At = {z € A|J0 <z A 2 » 1}
of positive infinitely large points on the transline.

Reparameterizations. The fact that right compositionsin T correspond to morph-
isms of V(T) to V(T) suggests to interpret morphisms of transvarieties more generally
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as right compositions. Given a morphism ¢ between two transvarieties V and W
and a function f € F(W), we thus have a function fo ¢ in F(V). In particular,
for any positive infinitely large transseries ¢ € T and any point P : F(V) — T of a
transvariety, we have a point P og. We say that P o g is a reparameterization of
P and we denote P (). Indeed, = is an equivalence relation.

Construction of transvarieties. We have shown in section B.5, that many cat-
egorical constructions can be carried out in GTV. For instance, we have the affine
n-space A", whose point space corresponds to T”. The direct product V x W, and
the direct sum V II W of two transvarieties V and W always exist, and correspond
to the pointwise direct product and sum (i.e. the forgetfull functor which associates
the underlying set of points to a variety preserves direct products and sums). We
can also consider subvarieties of transvarieties, such as the circle S' = {(x,y) €
A?|x? + y* = 1}. By proposition B.5 the circle indeed is a subvariety of A?.

Asymptotic systems. Other examples of subvarieties of A? are the closed ball
B = {(z,y) € A2a?+ 2 < 1} and (AL)2 = {(z,y) € A2la=1 A y»=1 A
x>0 A y >0} In fact, using the exp-log field operations, the ordering, and
the asymptotic relations, one can construct very general asymptotic systems of
equations and relations. For instance, one can consider relations like 2% + y? < e”.
The subvariety of points in A? which satisfy this relations is shown in figure 6.1 (we

recall that elements of A are considered as transseries in t).

Remark 6.2. Quotient transvarieties can not be constructed using the tools we have
developed so far. However, following the discussion in section B.6 we can generalize
the concept of transvarieties. Doing this, we can for example define projective
transvarieties by P" = A"*! /~ with

(o, - yxn) ~ (Yo, yyn) & FF0 yo=tag A -+ A y, = ta,.

Also less conventional quotient transvarieties, such as the curve transvarieties
V/e , where & is the reparameterization relation. An illustration of the plane
curve transvariety A? /s is given in figure 6.2. In this case, = is given by

(x,y)@(x’,y')@flgEAjo ¥ =z0g Ny =yog.

Other examples of quotient transvarieties are obtained by quotienting A by ~, < or

~

~ .

Topologies on transvarieties. A transvariety V' can be given different topologies.
In section B.5 we defined the Zarisky topology on V. The interval topology on the
transline can also be generalized to transvarieties: it is the smallest topology which
makes all functions on the transvariety continuous, as well as all functions on open
sets (recursively), when we give T the interval topology. This topology is called the
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Figure 6.1: The set of points (z,y) € A?, satisfying 2* + y? < €.

Y
1
= G —1+1/0)
(1+1/t,—1-1/t)

Figure 6.2: Some “points” in the plane curve transvariety.
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natural topology on a transvariety. We claim that any map V - W between
transvarieties is continuous for the natural topology. Indeed, for an open set of the

form ¢p=!(I) (where W % T and T is an interval), (1) 0¢)~(I) is open by definition.
The general case follows by the fact that ¢»~! preserves unions and intersections.

Dimension of a transvariety. The Zarisky topology can be used to define the
Zarisky dimension of a transvariety as the dimension of the associated topolo-
gical space (cf. [Har 77, p. 6]). Alternatively, we can define the dimension of a
transvariety V' to be the largest cardinal N, such that there exists a non empty open
subset of AV for the usual topology, which is isomorphic to an open subset of V.
Both definitions do not coincide, but it can be shown that the Zarisky dimension is
always superior or equal to the natural dimension.

6.5 Differential geometry on transvarieties

6.5.1 The tangent and cotangent bundles

Let F(V) be the function space of a transvariety. By derivations on F(V) we
understand derivations on the strong exp-log ring F(V). More generally, let M be
a strong F(V)-module. Then a strong derivation on M is a strongly linear mapping
F(V) — M, such that d(fg) = f(dg) + g(df) and de/ = (df)e, for all f,g €
F(V). By theorem B.1, the category of strong F(V')-modules M, together with a
derivation d : F(V) — M admits an initial object, which we denote by Qry. In
other words, Qv is a strong F(V')-module together with a universal derivation
d: F(V) = Qrw)y, which satisfies the universal property that for any other strong
derivation d' : F(V) — M into a strong F(V')-module, there exists a unique strongly
linear mapping v : Qzvy — M with d' = uod. We say that 1z is the cotangent
bundle of V', and its dual Q*f(v) the tangent bundle of V. Elements of the tangent
bundle can also be seen as strong derivations 9 : F(V) — F(V). In this section we
will study the structure of the tangent bundle more closely and we start with affine
varieties.

6.5.2 Partial differentiation on open domains of affine space

Let U be an open subset of affine X-space A*, for the natural topology. For each
fe€FWU)and x € X, we want to define the partial derivative 9, f of f w.r.t. . We
proceed by structural induction: we set d,c = 0, for ¢ € €', d,& = 1 and d,y = 0,
for y € X\{a}. Next, 0,(f £9) = 0.f £ 029, 0u(fg) = [0:9 + 0:fg. 0:(1/f) =

—0of/f* Ope! = O,fef and O, log f = 0.f/f. Finally, 0. S icr fi = SierOufi-
Strictly speaking, we rather define

DX g1y 2 Gn) = D 00g; X5 (g1, 1 )

i=1
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in the last case, where e, ... x, = (k; + L)Chy oo kj 41, kns for all By, ooekyy g In
order to prove that d, is well defined, we still need to verify that partial derivatives
of equivalent expressions (i.e. representing the same function) are equivalent. We
do this by establishing a pointwise characterization for d,.

Let P : F(U) — T be a point of U. We denote by S, .P the point we obtain
by sending = to P(x) + £, and leaving the other coordinates unchanged. Since U is
open, the points S, . P are in U for |¢| > 0 sufficiently small. We claim that

(S.eP)(F) = PU) + POz + PN+ (65)

for sufficiently small || > 0. Indeed, this is easily proved by structural induction.
For illustration, we give the proof in the case when f = ¥¥(g1, - ,¢s). By the
induction hypothesis, there exists an g > 0, such that

1
(52 P)(g) = P(gi) + P(Dsgi)e + 5 P(0gi)e* + -+

for sufficiently small |e] < g9 and 1 < ¢ < n. Repeatedly using the generalized
associativity property for strong rings, we deduce that (6.5) holds for all |¢] < &q.
The relation (6.5) gives us an intrinsic characterization of 9, f. Hence 0, f is well
defined for all f € F(U). In fact, the tangent bundle of U is generated by the partial
derivatives, in the sense that each strong derivation 0 of the exp-log ring F(U) is of
the form 0 = Y~ .y a,0,. Here the sum is formal and does not necessarily have finite
support. Indeed, each element of F(U) is can be written as a finite tree with leafs
in X and nodes in 7', since the arities of all symbols in T" are finite. The derivative
of such an expression is uniquely determined by the images of the elements of X.
Consequently, Qzy is isomorphic to the free strong F(U)-module over X.

6.5.3 Regular algebraic extensions

For non open subvarieties of affine space, the structure of {2r) may become more
complicated. We do not think that the classical exactness properties for Kéhler
differentials hold (see for example [Mat 70, Th 57,58, p. 186,187]). This is due to
the pointwise nature of transvarieties; in the more algebraic theory of transrings,
these properties might actually hold. Nevertheless, we are often interested in trans-
varieties which are locally isomorphic to open affine sets with a potentially extended
function space. This is for example so for any non singular algebraic curve. Let us
investigate more closely the effect of function space extensions with respect to differ-
ential calculus. Assume therefore that we are given a projection V' — U of another
transvariety onto U, such that each point in U has precisely one preimage. We want
a sufficient condition for 2y, to be isomorphic to the free strong F(V)-module
over X.

Let Y =A{y1,--- ,yp} € F(V). There exists a natural mapping ¢ from V into
U xAY | which maps each y; € F(U xAY ) to y;. Now assume that there exists an open
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subset W of U x AY and functions fy,--- , f, € F(W), such that ¢ factors through
the common zero set Z of fi,---, f,. Assume also that the Jacobian of fi,---, f,
has maximal rank on Z — i.e. the vectors ((Ow.fi)(P))vexny with 1 <@ < p are
linearly independent, for each P € Z. Since only a finite number of variables from X
occur in fi,--- , f, we may assume without loss of generality that X = {1y, - ,2,}
is finite.

For given (xy,--- ,x,) € U, there exists precisely one corresponding point in Z.
Hence the operators Sy, ., are still well defined on Z. Now we can formally expand

1

(Serer = Sepen P)y) = ) Zk mp(aii gy et e (6.6)
for all y € Y. The successive partial derivatives of y are formally computed by the
implicit function theorem. We observe that the right hand side of (6.6) is actually
well defined for sufficiently small ;. Since y,--- ,y, are determined uniquely as a
function of xy,--- ,x, this means that (6.6) is a genuine expansion for sufficiently
small ¢;. Hence, the partial derivatives of the y; are well defined on F(Z) and Q)
is isomorphic to the free strong F(Z)-module over X.

More generally, if for each g € F(V') there exist yy,- -+ ,y, with the above prop-
erties and such that g € F(Z), then the above discussion also shows that €z
is isomorphic to the free strong F(V)-module over X. In that case, we say that
F(V) is a regular algebraic extension of F(U) and elements F(V) are said to
be regular algebraic over F(U).

6.6 Noetherian transseries

6.6.1 Definition of Noetherian transvarieties

It we are considering well-ordered transseries instead of grid-based transseries, we
do not have to take into account finiteness conditions. Consequently, the grid-based
summation symbols ¥* are replaced by the infinite summation symbols >"; for all
index sets /. However, we can not content ourselves to take one of the fields of
transseries as constructed in section 2.2 for T in this case. The reason is that
the partial derivations would not be well defined on open subsets of affine space.
Consider for instance the transseries

F=3

Pt/ Pe—ljeprt1/e

where ¢ is infinitely large, and ¢ infinitely small. This transseries is defined for all
e < 1, with e € CR[[[t]]]-

The solution to this dilemma is to consider also fields of transseries of the type
CEoll[t; -+ 5 ta]]] with § =< w or # = w. These are defined by induction:

CLollltys - stalll = CE Mt 5 tuma LA [[[E]1)-

_|_...7
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The transseries f mentioned above is then undefined for e € C[[[u]]]* € C[[[u;t]]]-
Hence, f is not defined on an open subset of C[[[u;?]]]. We also write f <& g for
non zero transseries f and g, if exp, f < g, for all p € N. Here f = |f[ if [f] #= 1,

and f = 1/|f| otherwise. Thus, f is defined for all e < 1, except for 0 # & <& .
So let P consist of those fields of transseries CL,[[[t1;--- ;1,]]], where a is a
stable limit ordinal. Objects of Varp are called Noetherian transvarieties of
finite resp. infinite logarithmic depth. Elements of their function spaces are called
Noetherian transseries. Alternatively, we can restrict the o from above to be
bounded by some fixed stable limit ordinal 3. In that case we obtain transvarieties

of exponential depth < 3. The category of transvarieties of finite exponential and
logarithmic depths will be denoted by NTV.

Most of the theory from the previous sections can easily be adapted to the context
of Noetherian transvarieties. We now give some more details. We start by showing
how the transline can be given the interval topology, thus permitting the definition
of the natural topology on Noetherian transvarieties. Observe first that the elements
of P can all be embedded in the inductive limit Cg[[[tl; e tey]]] of

C = CRll[t]]] = Chllltws )] = - -

Here (3 is taken to be the limit meta-ordinal of all small ordinals (for instance).
Then the intervals of this inductive limit induce a topology on the transline. We
also remark that the transvarieties associated to the Cg[[[tl; -+ 3 t,]]] are given up
to isomorphism by

V(CH ([t 5 8a]]]) 2 {1, @) € Aoy <& -+ <& 2, ).

The intrinsic definition of 9, by (6.5) also remains valid: let P : F(V) — T be
a point in U and let 6 € T} be such that S, .P € U for all |¢| < §. In particular,
S,.P € U, for all 0 < ¢ <« T} (and in particular 1/u € T![[[«]]]). Tt is easily
verified by structural induction that (6.5) holds for 0 < & <& TF. For illustration,
let us do this in the case when f = Y(fi)ier. The set S = 11 forms an asymptotic
scale, where II is the set of transmonomials in T. By the structural induction
hypothesis, we have (S,.P)(f;) € C[[S]] for each i. Since Y2(S..P)(fi)ier is well
defined, the number of elements m € S in the support of (S, .P)(f;) w.r.t. S is
finite. In particular, the number of indices in support of P(df;) is finite for each
7 € N. It follows that 3" P(0” f:)ien is well defined for all 7 € N. The relation (6.5)
holds by strong linearity.

It is also true that €1z is isomorphic to the free strong F(U)-module in V.
The key point here is that transseries which are defined on an open subset of affine
space only depend on a finite number of variables. Indeed, a relation like (6.5) still
holds if we simultaneously change all elements in X: z — x + ¢,. If f depended on
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an infinite number of variables, then we would obtain a contradiction by selecting a
suitable family (e, ),ex (exercise).

Remark 6.3. One has to be a bit careful with the definition of Noetherian trans-
varieties. Consider for instance the category P’ = {Cg[[[tl; -+ 3 te]]]} of point types.
At the first sight, the categories Varp and Varps coincide. However, consider

VZ{(£17£27"')€T§/|$1—<«<$2-<<« }

Then V is a nonempty variety relative to P’, although V has not a single P-point.
In fact, the subcategories of Varp and Varps only coincide for those varieties whose
function spaces are finitely generated. Here a partial T-algebra F' is said to be
finitely generated, if F' C Iy for some finite set X.

6.6.2 Asymptotic scales of Noetherian type

It is also possible to generalize asymptotic scales to the context of Noetherian trans-
series in several variables: we say that a subset S of the function space F(V') of
some Noetherian transvariety is an asymptotic scale of Noetherian type, if it
satisfies AS1, AS2 and

AS3. For each point P € V and each well-ordered subset T of S, the set
User supp f(P) is well-ordered.

Proposition 6.2. [f S is an asymptotic scale of Noetherian type, then C[[S]] is
naturally embedded in F(V).

Proof. Assume for contradiction that not all elements of C[[S]] naturally induce
elements in F(V), and let f = 3" c5 ¢y be a sum with Noetherian ordered support
T (w.r.t. » ) which is not defined in F(V'). Then there is a point P € V, such that
Uwer supp mi( P) is not Noetherian. Let 1y, mr, - - - be a sequence of elements in T,
such that there exists a bad sequence 1wy, 1, -+, with 1; € supp my(P), for each
i. Since supp f is Noetherian, we may assume without loss of generality (modulo
extracting a subsequence using proposition A.1(d)), that the sequence my, 1y, - - -
is increasing. Hence UJ; supp 1y ( P) is well-ordered by AS3, which contradicts the
existence of the bad sequence 1y, 11, - - - . Finally, the mapping from C[[S]] into F (V)
is injective for the same reason as in the proof of proposition 6.1. g

Example 6.7. Take V = A2 = {(z,y) € A*|lx » 1 A y» 1}. Let I, resp. II,
denote the sets of “transmonomials in = resp. y”. Then I, II, is an asymptotic
scale and

1 1 1 1
f==
€

is a transseries in C[[LL,1T,]].

l’y x2€log2 Y x3€log3 Y
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6.7 Weakly oscillating and complex transseries

A major limitation of the theory we have developed so far is that we only consider
strongly monotonic asymptotic behaviour. In general, we also want to consider tri-
gonometric (and sometimes even fractal) functions. In this section we show that
the trigonometric functions and their inverses can be incorporated in a generalized
theory of so called weakly oscillatory transseries. The construction heavily relies on
the algebraic geometry methods we have introduced. Considering real and imagin-
ary parts, we will also show how this theory can be applied to construct complex
transseries.

Unfortunately, the semantics of the usual asymptotic relations on R and the
asymptotic relations that will be introduced below do not necessarily coincide. A
typical example is the asymptotic relation

m <« 2—cosx — cosex, (6.7)
for 1 % x. Classically, this relation can easily be deduced from the expansion e =
14+14+ % + é + ---. In our most primitive model for asymptotic calculus with

trigonometric functions, this relation does not hold. Intuitively speaking, this is due
to the possible existence of non standard reals x for which both cosx and cosex
are very close to 1. Nevertheless, we will show that many relations like (6.7) can
be forced. We also remark that the above example is rather pathological, in the
sense that it heavily relies on the number theoretical properties of e. We refer to
chapter 14 for a further discussion of these issues.

6.7.1 Weakly oscillating transseries

In this section, we assume that C'is a totally ordered elementary function field. This
means that C' is a totally ordered exp-log field, on which we have the additional
functions sin and arctan, which satisfy the following conditions for all x,y € C"

EF1. sin—x = —sinz.

EF2. sin(z +y) = sina cosy + siny cos x.

EF3. tanarctanz = x.

EF4. arctan is strictly increasing and imarctan =] — 7 /2, 7/2].

Here m = 4arctan 1, cosa = sin(x 4+ n/2) and tana = sinxz/cosx. In a similar
fashion, one defines (ordered) elementary function rings to be (ordered) exp-
log rings with totally defined functions sin and arctan, which satisfy the conditions
EF1, EF2 and EF3 (and EF4).

It is not hard to deduce the classical trigonometric relations from the axioms EF1
until EF4. The condition EF1 might actually be superfluous, but we have not yet
checked this (if C' = R, then EF1 follows by continuity). The inverse trigonometric

unctions are define arcsin x = arctan x — 2% and arccosx = I — arcsin x for
funct defined by t 1 2 and 5 f
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—1 <z < 1. Here \/z = €8%)/2 for 2 > 0. Finally, a derivation on an elementary
function ring R is a derivation d on R, considered as an exp-log ring, which satisfies
dtan f = 9f/(1 + f?) and dsin f = Jf cos f for all f.

For the definition of weakly oscillatory transseries, we need to add sin and arctan
to the signature 7. Now arctan is totally defined on any field T of grid-based or
well-ordered transseries, by using the Taylor expansions of arctan either at points
in C' or at 00¢. It can be checked that all theory of the previous sections remains
valid, if we replace T by T'U{arctan} and from now on we assume that we have done
this. To incorporate the sine function, two different constructions can be used. The
first one uses abstract nonsense: we repeatedly insert all sines of elements in the
function space of a given transvariety V. The sine of a bounded function is given
by its Taylor series. The other sines are inserted freely under the constraints EF1
until EF4. The transvariety V we finally obtain is called the free weakly oscillatory
completion of V. The second construction gives us more insight in the structure of
V and this is the one we now give in more detail.

Let V = V4 be a transvariety and Fj its function space. Since Q C (', we can
see Iy as a vector space over Q. The bounded elements of Fy form a sub-vector
space F(}t. Using Zorn’s lemma, we can select a basis By for some supplement of F(}t.
Now consider the extension Fo(So|Ro) of Fy with the symbols in Sy subject to the
relations in Ry, where

So = A{cos(f/n)|f € Bo A n € N }U{sin(f/n)|f € Bo AN n € N};
Ry = {cos®(f/n)+sin*(f/n)=1|f € By A n € N} U
{cos f = @, (cos(f/n))|f € Bo N n €N}

Here the generating function ®(¢,u) = 3,50 ®,(t)u" of the polynomials ®, is given
by ®(t,u) = (1 — ut)/(1 — 2tu + v?). On FE}, the sine and the cosine are naturally
defined by their Taylor series expansions. Using the relations EF1 and EF2, we
can therefore extend the mappings sin, cos : By/N* — Fy(S|Ro) to Fp.

Now let V; be the transvariety associated to C' — Fu(So|Ro). Identifying varieties
with their point spaces, the natural morphism Vi — V4 is surjective: to any point
in Vp we associate a point in Vi by sending the symbols cos(f/n) to one and the
symbols sin(f/n) to zero. Dually, this means that the mapping F(V5) — F(V1) is
injective. Repeating the above construction (with By € By C --- ), we can consider
the direct limit

F=limF(Vp) = F(Vi) = F(Va) = -

The corresponding transvariety V = €' — F is the! free weakly oscillatory com-

pletion of V. Points of V correspond to sequences (F(Vy) By T)nen of morphisms,
such that P; extends P, whenever ¢ < j. A transseries in f € [ is said to be a

n fact it is easy to check the independence of the construction of V on the successive choices
of the supplements and the (Q-bases: exercise.
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weakly oscillatory transseries. Its weakly oscillatory depth is the smallest
integer n € N, such that f € F(V,). By construction, F' is an ordered elementary
function ring.

As we already mentioned in the introduction to this section, the semantics of
the usual asymptotic relations on R and the asymptotic relations that are verified
by the free weakly oscillatory completion of a transvariety over the reals do not
coincide. For instance, consider the free weakly oscillatory completion of Xfo, where
Al ={z € Alx >0 A z » 1}. There exists a point of At , which sends z to¢ € T
(recall that ¢ 3 1) and both sin z and sin ez to 1. Consequently, (6.7) is not verified
by At .

Nevertheless, in the construction of AE, we may replace Vi by the subvariety
of V1, for which (6.7) is valid (see proposition B.5): the natural projection of this
subvariety onto AT is still surjective. More generally, at each step of the construc-
tion, we can replace V; by any subvariety of V;, as long as the natural projections
Viy1 — V; remain surjective. Doing this, we say that the resulting V is a weakly
oscillatory completion of V. Now (6.7) is an example of a relation which can
be forced in such a completion. Actually, many natural relations can be forced
simultaneously, although this point needs further investigation.

Now assume that we have selected a category IS, whose objects are weakly oscil-
lating completions of objects in P. We consider the objects of P as partial (TU{sin})-
algebras. Varieties relative to P are defined to be weakly oscillating transvariet-
ies (relative to IS) For instance, P can be taken to be the category of all free weakly
oscillating completions of objects of P. Again, it is possible to define a natural topo-
logy on the weakly oscillating transline A: we take a basis of open sets of the form
B(P,e) with P € T C P(A) and 0 < ¢ € T. Here ¢ = T gvobj(ls) is a completion
of C — T € obj(P) and B(P,¢) consists of all points @@ € T’, such that there exist
a commutative diagram

FA) —— T
le b
T/ P]F//

Y

where ¢, € hom(ls,ls) and such that |p(P(x)) — ¢ (Q(x))| < e. Of course, x
denotes the coordinate function in f(A) As before, the topology on T induces
a natural topology on all weakly oscillating transvarieties. It can also be checked
that the partial derivatives can again be defined on the function spaces of open
subvarieties of weakly oscillating affine space. Here we need a precaution in the case
of Noetherian transvarieties: for each ¢ — T € P there should exist a prolongation

N

C — T[[[u]] € P.



6.7. WEAKLY OSCILLATING AND COMPLEX TRANSSERIES 161

6.7.2 Complex transseries

Let ¢ — T be a weakly oscillating completion of a point ¢ — T in P. Then
C + Ci = C? has the natural structure of a strong exp-log field and T + T; = T2
has the natural structure of a strong exp-log ring over C' 4+ C'i. Indeed, all laws on
C' + Ciresp. T + Ti are defined in analogy with their definitions for the complex
numbers. For instance, e/79° = (cos g)e/ + (sing)e/i. By convention, we make log
univariate by defining log(f + ¢g¢) = log f + arctan(g/ f)i only for f > 0.

Assume now that we have selected a category P like above and let C denote the
category whose objects are of the form C 4 iC — T + Ti, with ¢ — T € obj(ls).
Then a complex transvariety (relative to |5) is a variety relative to C. The
complex transplane Ac can be given a natural topology in a similar way as the weakly
oscillating transline. Again, this allows us to define the complex partial derivations
on the function spaces of open subvarieties of complex affine space. It also allows us
to generalize transmanifolds to the complex case. The following theorem indicates
how far real grid-based transseries extend into complex transseries.

Theorem 6.1. Let f € C*9[M2T be an alogarithmic grid-based transseries of
exponential depth r. Then there exists a normal basis {61, ,6,} for f, such that
CL6y;--- ;6,01 C F(U) with

{z € Ac|Rz » 1}, if r =0;

{z €Ac|Rz» 1 A Sz << Rz}, if r =1

{z € Ac|Rz » 1 A Sz < exp L (R2)M}
for some suitable A > 0, if r > 1.

[ =

In particular, f is defined on U.

Proof. By the structure theorem, there exists a normal basis B = {6;,--+,6,} for
f. Following the construction in the proof, we may assume without loss of generality
that the elements of B are all in C*°[[21] and that 6, = z. If r > 1, then we
take A such that log, , 6;(x) < 277 for all 7 and some & > 0. We claim that
log 6;(z) ~ log 6,(Rz) for all .. From this it follows that for ¢ of the form 67 --- 62»
we have g(x) < 1 = log f(x) < 1 = log f(2) < 1 = |f(2)] < 1. In other words,
the ordering on the monomials in 64,--- , 6, is preserved in the extension from the
real to the complex case. Hence, the claim implies the theorem.

It r = 0, then our claim trivially holds. In the case r = 1 it follows from the fact
that log z® = alog(Rz) + aarctan(Jz/Rz) ~ log(Rz)?, for all « € C. If r > 1, then
we expand ¢; = log, 6,(z) for all

1
9i(2) = g:(Rz) + gi(R2)iSz — 592’(%2)(32)2 +---

The choice of A ensures the validity of this expansion and the fact that g¢;(z) —
g;(Rz) < 1 for each i. Consequently, log 6,(z) = €%*) ~ log 6;(Rz) for each 7. O
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Corollary. Let f € C*9[[log, 21 with [ > 0. Then the previous theorem still
holds if we take

{z € Ac|Rz » 1}, if r <1
U=1{ {z€Ac|R>» 1 A S(log, 2) < exp, 5 (R(log, 2))*}
for some suitable A > 0, if r > 1. n

Remark 6.4. Similar types of theorems were previously proved in the context of
Hardy fields (see [Gokh 93a| and [Gokh 93b]). Although our theorem does not give
any information about convergence, its scope is far more general, and its proof more
natural.

6.7.3 Extensions

Although the introduction of weakly oscillating resp. complex transseries as in the
previous section permits us to solve an increasing number of functional equations,
there are still many equations which can not be treated by the theory from sec-
tions 6.7.1 resp. 6.7.2. A typical example is

f/(x) — esinx‘

The point here is that a solution to this equation is available in the form of a Fourier
expansion, and such a Fourier expansion involves an infinite number of sines with
different arguments.

In the case when a differential ring of periodic functions ® from € into C is
given, such that each ¢ € ® admits a Fourier expansion

_ itk
e = ppe™,
kEeZ

the definition of weakly oscillating transseries can be generalized in a natural way
in order to include the functions in ®. Indeed it suffices to extend the signature T
with @ and to mimic the construction from section 6.7.1.

6.8 References

[Gokh 93a] D. GOokHMAN. Regular growth of solutions to the Riccati equation W’ + W? = e?*
in the complex plane. Tech. Rep. of the Univ. of Texas at San Antonio.

[Gokh 93b] D. GokHMAN. Limits in differential fields of holomorphic germs. Tech. Rep. of the
Univ. of Texas at San Antonio.

[Mat 70] H. MaTsuMaRrAa. Commutative algebra. W.A. Benjamin Co., New York.



Part B

Automatic asymptotics






Chapter 7

Asymptotic expansions of exp-log
functions

7.1 Introduction

An exp-log function is a function built up from = and the rational numbers Q by
the field operations, exponentiation and logarithm. These functions were introduced
by Hardy (see [Har 11]), and he showed that their germs at infinity form a totally
ordered field. But how to decide whether a given exp-log function is asymptotically
superior to another one in a neighbourhood of infinity? More generally, is it pos-
sible to compute an asymptotic expansion of a given exp-log function in a natural
asymptotic scale?

The first attempt to solve these problems was made by Geddes and Gonnet (see
[GeGo 88|). Shackell is the first to give an algorithm in [Sh 90] for computing the
limit of an exp-log function at infinity, under the assumption that an oracle is given
to decide whether an exp-log function vanishes in a neighbourhood of infinity. His
technique is based on so called nested expansions, by which one can find the order
of growth of exp-log functions at infinity, but which do not allow to derive com-
plete asymptotic expansions. This drawback is removed in [Sh 91], where Shackell
gives a complete and natural asymptotic expansion algorithm. A weaker version of
this algorithm, which only computes limits of exp-log functions was discovered inde-
pendently in [GoGr 92|, and is currently incorporated in MAPLE V.3. The author
generalized this limit computation algorithm and obtained variants of Shackell’s al-
gorithm in [VdH 94a] and [VdH 94b]. In particular, [VAH 94b| contains a compact
version of Shackell’s algorithm. This algorithm has been further improved in [RSSV
96].

However, several related problems were overlooked up till now. First, can we
reduce the problem of deciding whether an exp-log function is zero at infinity to the
corresponding problem for exp-log constants? Although several algorithms exist for
deciding whether a given exp-log function f is locally zero in the neighbourhood of

165
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a point of analyticity (see [Ris 75|, [DL 89], [Sh 89], [Pél 95]), no one considered the
problem of deciding whether the germ of f at infinity is zero. The second problem
concerns the improvement of the dramatic complexity of Shackell’s algorithm. In-
deed, we will see that the complexity is worse than any iterated exponential, even
for simple examples and if we assume that all computations with constants are done
in unit time. Moreover, for the generic version of the expansion algorithm (see
section 8.3), termination of the basic algorithm is not guaranteed any longer.

These two problems are dealt with in this chapter, our approach being based on
[VdAH 96a]. In section 7.2 we recall the basic expansion algorithm from [Sh 91], with
the improvements from [VdH 94b| and [RSSV 96].

In section 7.3 we show that the germ at infinity of an exp-log function can be
represented by a Laurent series in other, but simpler, germs of exp-log functions at
infinity. Such representations are called Cartesian representations and they allow
to detect efficiently cancelations of large numbers of terms, thus speeding up the
algorithm from section 7.2. We also show that Cartesian representations can be
used to decide whether a germ of an exp-log function is zero, modulo an oracle for
determining the sign of a given exp-log constant.

Modulo Schanuel’s conjecture (see the introduction), Richardson gave an al-
gorithm to decide whether an exp-log constant is zero. His algorithm has the prop-
erty that whenever it produces an answer, then this answer is correct. Moreover, if
we can prove that the algorithm does not terminate on a given input, then we can
construct a counterexample to Schanuel’s conjecture from this input. In principle,
Richardson’s algorithm also yields a method to compute the sign of an exp-log con-
stant: it suffices to perform a floating point evaluation at a sufficient precision. In
practice, this method is intractable and a more efficient algorithm for sign compu-
tations was proposed in [VAH 95a].

For convenience of the reader, we have tried to formalize the expansion algorithm
in a language which is as comprehensive as possible. In particular, in sections 7.2
and 7.3 we recall the necessary concepts from chapter 1 in a simplified and effective
context. Hence, these sections can be read independently from part A | although it
is easily verified that all reintroduced concepts are indeed special instances of the
theory from chapter 1. In chapter 9, we will reinterpret the algorithm in the richer
context of transseries from chapter 1, and discuss some variants of the expansion
algorithm.

7.2 The basic algorithm

Let ¥ denote the field of germs at infinity of exp-log functions and € the subfield
of exp-log constants. Elements of ¥ can be represented by exp-log expressions —
i.e. finite trees whose internal nodes are labeled by 4+, —., -, /,exp or log, and whose
leafs are labeled by = or rational numbers. The set of exp-log expressions which
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can be evaluated in a neighbourhood of infinity is denoted by T*?". We have
a natural projection f — f from T°P" onto . Until section 7.4, we make the
assumption that we have an oracle which decides whether a given exp-log expression
in TP is zero in a neighbourhood of infinity. In this section we recall the classical
asymptotic expansion algorithm for exp-log functions at infinity from [Sh 91|, using
the presentation from [VdH 94b].

7.2.1 Grid-based series

Let us first recall some basic concepts. An effective asymptotic basis is an ordered
finite set {64,--- ,6,} of positive infinitesimal exp-log expressions in T¢?" such that
log 6; = o(log 6;41) for 1 <7 < n—1. For instance, the set B = {log™" &, 27", 6_9‘2} is
an effective asymptotic basis. An effective asymptotic basis B generates an effective
asymptotic scale, namely the set Sp of all products &7'--- 6" of powers of the
6,, with the a; in €. Elements of Sg are also called monomials.

Given an effective asymptotic basis B, let 85" denote the set of expressions
which are built up from €, Sg,+,—,-,/ and the operations ¢ — expe resp. & +—
log(1+¢) for infinitesimal €. We observe that each exp-log expression f € &5"" has

a series expansion of the form
= > fareanBime--60m (7.1)

(o1, o )ECT

Alternatively, we can expand f as a series in 6, with coefficients in Qﬁ?épr

17"'7677,—1}'
These coefficients can recursively be expanded in 6,,_1,--- , 6;:
J— x
f - Z fan 671”
an€l

foznwwaz = Z fozn7~~~70é16?1'

a1 €C

The exp-log expressions of the form f,, .. ., are called iterated coeflicients of f.
In particular, the iterated coeflicients of the form f,, ... o, are exp-log constants.
The above expansions of f have an important property (see chapter 1): the
support of f as a series in 6, (resp. 6y,---,6,) is included in a set of the form
AN+ + AN+ v — we say that f is a grid-based series. Here the A; and v are
constants in € (resp. vectors in €*). From this property, it follows that the support
of f is well-ordered. If f is non zero, then the first term of its expansion is called
the dominant term of f. The corresponding monomial in Sg and its coefficient
are called the dominant monomial and dominant coefficient of f respectively.
Another important property of the expansion of f in 6,, and the expansions of its
iterated coefficients is that they can be computed automatically. By this we mean
that for each integer i, we can compute the first ¢ terms of the expansion of f and
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so can we for its iterated coefficients. In particular, we can compute the sign of f,
test whether f is infinitesimal, etc.

For the computation of the expansions of f in 6,,, we use the usual Taylor series
formulas. In the case of division 1/ f, we compute the first term f,6% of f and then
use the formula 1/f = (1/f,)6,*(1/(1 + ¢)), where ¢ = (f/f.6") — 1. The only
problem when applying these formulas is that we have to avoid indefinite cancelation:
note that indefinite cancelation only occurs if after having computed the first ¢ terms
of the expansion, f is actually equal to the sum of these terms. But this can be
tested using the oracle, and we stop the expansion in this case.

7.2.2 Automatic expansions of exp-log expressions

The asymptotic expansion algorithm takes an exp-log expression f € T on input,
computes a suitable effective asymptotic basis B and rewrites f into an element
of ®5"". The main idea of the algorithm lies in the idea to impose some suitable
conditions on B: we say that a linearly ordered set B = {6;,---,6, } is an effective
normal basis if

NB1. B is an effective asymptotic basis.

{ times

NB2. 6, =log;!« for some [ € N, where log, = = log -+ log z.
NB3. log6; € @?éff...76i*} for all 7 > 1, where loglog 6;! = log 6;«.

Such a basis is constructed gradually during the algorithm — i.e. B is a global
variable in which we insert new elements during the execution of the algorithm,
while maintaining the property that B is an effective normal basis. We also say that
B is a dynamic effective normal basis. We initialize B with B := {z7'}. Let
us now explicitly give the algorithm, using a PASCAL-like notation:

Algorithm expand(f).
INPUT: An exp-log expression f € TP,
OUTPUT: A grid-based series ¢ in &5?" with 3 = f.
Case f € Q: return f
Case [ = z: return (z7')!
Case f = g—l—hv Te {—I_v Ty /}
if T =/ and h =0 then error “division by zero”
return expand(g)Texpand(h)
Case f =logg:
¢ := expand(g)
e Denote B = {6, = logj ' x,6,--- ,6,}.
if ¢ < 0 then error “invalid logarithm”
e Rewrite g = ¢67" -+ 62" (1 + &), with infinitesimal ¢ in &F*".
if aq # 0 then B := BU {log;}}; 2}
return logc+ oy log 61 + -+ 4 a,, log 6, 4 log(1 + ¢)
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Case [ = ¢9:
¢ := expand(g)
e Denote B = {64, ,6,}.
if ¢ = O(1) then return e‘?~¢, where ¢ := gy times
if I <i<n g = log6; then -
a:=limg/log 6;
return 6¢expand(e?=210861)
e Let i* be such that log |g| < log 6.
g+ = g()’n_i*.fimeio
g =g—g"
B:=BU{e bl

gt |\ —sign gt g
return (e”l971)=sisng™ ¢g

Let us comment the algorithm. The first three cases do not need explanation.
In the case f = log g, the fact that B is an effective normal basis is used at the
end: aylog6; + -+ 4 a, log 6, is indeed an expression in &5*". The expansion
of the exponential of a bounded series g is done by a straightforward Taylor series
expansion. If ¢ is unbounded, then we test whether ¢ is asymptotic to the logarithm
of an element in B — i.e. we test whether o := limg/log &; is a non zero finite
number for some . If this is so, then f = 6%e/~*1°85 and e9=21°¢6 is expanded
recursively. We remark that no infinite loops can arise from this, because successive
values of ¢ in such a loop would be asymptotic to the logarithms of smaller and
smaller elements of B, while B remains unchanged. Finally, if g is not asymptotic
to the logarithm of an element in B, then B has to be extended with an element of
the order of growth of f. The decomposition ¢ = g™ + ¢~ is computed in order to
ensure that B remains an effective normal basis.

7.2.3 A detailed example

Let us exemplify our algorithm on the exp-log expression
v 1
f =loglog(xe™ + 1) — expexp(loglog x + —)
x

from [RSSV 96]. Initially, the effective normal basis B = {6y,--- ,6,} is {a7'}. We
start with the innermost subexpression e” of the first part of f. The argument x of

¥ is inserted

the exponential is not asymptotic to any log 6;, with ¢ > 1. Hence e~
at the end of B and e” is rewritten as 6;'. Next, for the expansion of ¢*", the
argument re® = 67'6;' is compared to —z = log6, = —67'. We deduce that
—x = o(xe”), whence ¢ is inserted at the end of B.

At this stage, B = {27!,e % ¢7%"}. The next expression we consider is

log(:Jceg”em + 1), where xe® + 1 is represented as 61_1651 + 1. The exponent of
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6, is not zero, therefore log™' z is inserted at the beginning of B. We now have
B={log7'z,27", e, "} and

log(xe™ 4 1) = 6565 + 67" + log(1 4 6,64).

The next logarithm is treated similarly: the normal basis need not be extended and
we rewrite

log log(ze™" +1) = 65" + 67" 4 log[l + 6,63[67" + log(1 + 6564)]].

We now consider the second part of f: logz is obviously rewritten as 67"
Taking its logarithm, we insert loglogz at the beginning of B. This yields B =
{log™"log z,log™ ', 27", e™*, e=**"}. The argument of the innermost exponential is

loglogz + 2~ = 67! + 63, which tends to infinity. This is found to be asymptotic
to the logarithm of 65 and we rewrite

exp(loglogz + 1) = 65 "¢,
where the argument of the new exponential tends to zero. Now 65 'e® is asymptotic
to log 63, whence the next exponential exp exp(loglog x + x71) is rewritten as

expexp(loglogz 4+ 1) = 65" exp[6; ! exp 63 — 65
The argument of the outermost exponential of the right hand side tends to zero, so
that no further rewriting is necessary.

At this stage, we have constructed an effective normal basis
B = {log7'logz,log™ &, 27! e7" 7"},
with respect to which we can expand
f=65"+65" +log[l + 6364[6;" + log(1 4 6365)]] — 65" exp[6; " exp 63 — 65'].

and its subexpressions as grid-based series in 5"". For instance, we now detail
the computation of an equivalent of f. The first step consists in computing the
dominant term with respect to 65. We illustrate the algorithm on the expansion of
the subexpression 65! + log(1 4 6365).

First, the argument 6365 of the special function log(1 4 z) expands to itself and
the dominant term of the logarithm is 6365. Next, 6;' is seen to be the dominant
term of the sum. The rest of the computation of the dominant term of f w.r.t. 65
is straightforward and yields

fo=063"+6" +1log(l + 6,'6364) — 65" exp[6; ' exp 63 — 651].
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We then proceed with the computation of the dominant term of this expression
w.r.t. 64. A similar computation leads to

foo = 6;1 + 62_1 — 6;1 exp[62_1 exp 63 — 62_1].

Next, we compute the dominant term of this expression w.r.t. 63. The compu-
tation of the dominant term of the argument g of the outermost exponential leads
to the cancelation 6;' — 6, = 0, which is recognized by the oracle, whereas the
function g itself is not zero. By computing the next term of its expansion, we obtain
the dominant term 6;'65 of g. The dominant term of 639 is 65, whence a new
cancelation 65' — 65" = 0 occurs in the computation of the expansion of fy. Com-
puting the next term of the expansion leads to another cancelation 6;' — 6;' = 0.
One more term is necessary before arriving at the conclusion that the dominant
term of foo w.r.t. 63 is

Jooa = —%(62_2 +65")63.
Computing the dominant monomial of this expression w.r.t. 6, yields the desired
equivalent for f:
1 log®
~ ——6,%63 = — :
S =360 2z

In particular, we see that f is infinitesimal and ultimately negative.

7.3 Cartesian representations

In practice it is not always efficient to perform the expansions of elements in &g by
applying the classical formulas for Taylor series expansions in a direct way. Consider
for example the expression

or, alternatively,

1 1
f(l’): 1 1 _N

1l —=a

where N is very large (say N = 1010100) and x tends to infinity. Determining the first
term of this series using a straightforward expansion would need a time proportional
to N. The point here is that, in order to detect the cancelation 1/(1 —a~')—1/(1 —
') = 0, we need to represent f as a Laurent series in two variables, namely "
and 2™V, This is possible by the fact that f is a grid-based series in ~'. In this
section we show that any exp-log expression f can be represented in such a way and

how to exploit this in order to improve the algorithm expand from section 7.2.2.
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7.3.1 Cartesian representations

A Laurent series u in several variables zy,---,z; is a series in zqy,---,z; whose
support is included in (N4 py) x -+ x (N + py) for certain py,--- ,pp € Z. We say
that u is infinitesimal if its support is included in N*¥\(0, - -, 0). The a-th coefficient
of u in z; is denoted by [27]u. We abbreviate [2]']--- [sz]u by [z - - sz]u We
notice that zy,--- , z; should be interpreted as variables which tend to zero.!

Let B be an effective asymptotic basis and let Z = {z1,--+ , 2z} be a finite set
of infinitesimal monomials in Sg. For convenience, we order Z by z; <p --- <p 2.
We denote by £77" the set of expressions built up from €, 2, 27, -+ - , 2z, and z;* by
+, —, - and the operations € — ¢°,¢ — log(1 +¢) and ¢ — 1/(1 +¢) for infinitesimal
. Given such a Laurent series u € £ its expansion

in any of the z; can be computed automatically. Moreover, the coefficients [z ]u
of such an expansion are also expressions in £, so that they can recursively be
expanded — we say that v is an automatic Laurent series. In what follows, we
will only consider automatic Laurent series which are in £7"" for some Z.

Remark 7.1. We notice that all classical efficient expansion algorithms for formal
Laurent series in £ can be used, such as Karatsuba’s algorithm for multiplication
[Kn 81] and Brent and Kung’s algorithms for composition [BK 75|, [BK 78]. We also
remark that we systematically store all coefficients of all expansions we compute, in
order to perform these computations only once (i.e. we use a MAPLE-like remember
option).

We denote by w the germ at infinity of the exp-log function represented by a

expr

Laurent series u in £,°. We call v a Cartesian representation of u. Let an
expression f € &5 be given. The aim of the rest of this section is to compute a
Cartesian representation u € £57" of f for some suitable subset Z of Sp. Further-
more, we will show how to compute the expansion of f from the knowledge of u
only. Clearly, this will enable us to replace all computations with elements in &5""

by computations with Cartesian representations in expand.

!The fact that x tends to infinity and z;,--- ,z; to zero might confuse the reader. This ap-
parently illogical choice stems from the potentially different asymptotic behaviours of an exp-log
function f(z), if # tends to zero from below or from above.
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Warning 7.1. One should carefully distinguish Cartesian representation from the

germs at infinity they represent. For instance, if B = {27!, e™*}, z; = 27! and

2y = 277, then 27 '2, is infinitesimal, while 2 ' 2, is not. In order to avoid confusion,
we therefore scrupulously distinguish u from @ by means of the upper bar. Moreover,
we will use the prefix “C-” to emphasize that we are referring to properties of
Cartesian representations. For instance, infinitesimal Cartesian representations will
be called C-infinitesimal.

7.3.2 Restrictions of Cartesian representations

Let 7 = {z1, -+ ,z} and let Sz = {z{" - 2%y, - ,a, € Z} be the set of

monomials in zy,- -, zz. We have a natural partial ordering on Syz:
itk ézzlﬁl---z,fk Sa <G A A ag < G
Let u be a Laurent series in zy,--- , z; and let II be a subset of Sz. We denote by

= Y (s 2

a1 el
2z Zk e]_[

the restriction of u w.r.t. II. For singletons Il = {u} we also write [u|u] = [u|{u}].
We finally define (I) = {m|3u € I u <z m} to be the final segment generated
by II. Here we recall that a final segment of Sz is a subset F' C Sz such that
neF A<= € F for all i, g € 5.

Proposition 7.1. Let u be a Laurent series in £5"". There exists an algorithm to
compute the restriction [u|(11)] of u w.r.t. any final segment (I1) for finite 11.

Proof. Let II, denote the subset of Il of monomials whose exponents in z; are
inferior or equal to a and let A be the smallest integer with Il = II,. Let III,
denote the set of monomials 11 in zq,- -+, 2zx_1, such that H_:Z,f is in II,, for some
B < a. Now expand u up to order A in zp, say u = u, 22 4 -+ 4+ uy_12p "' + 4.
Then we have
A—1
[uT) = 3 | (TL)] 252 + [ (24 Ty )]

1=pg

The right hand side of this equation is evaluated by expanding each of the terms in
Zp—1," " , 21 using the same method. O
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Z2

? 21

Figure 7.1: Dominant monomials for v = 1

-1 -1
=) A T 1 —21 — 229 — 27 2.

7.3.3 Intermediary dominant monomials

Let u € £5" be a Cartesian representation. A set of intermediary dominant
monomials of u is a finite subset GG of Sz, such that @ = [u|(()], and such that the
dominant monomial of f is equal to the minimal monomial in . Most of the time,
but not always, G is unique and we say that G is the set of intermediary dominant

monomials.

In figure 7.1, we have represented the dominant monomials of u = 27 '(1 — z; —
z9)7t — 21_1 —1 -z — 229 — 21_122; these are by definition the minimal elements
in the support of u w.rt. <z. If 71 # 73, then {z7'22 2y, 2%} is also the set
of intermediary dominant monomials of u. If Z7 = 73, then {z7'23, 22, 2,29, 2%}
is the set of intermediary dominant monomials of u, because of the cancelation

122 -2, =0.

Zy
In order to compute intermediary dominant monomials, we first need to introduce
some more orderings. First, we have a total ordering <p on Spg, which is analogous

to <z on Sy:
621 .- 62" <p 6?1---65" (:)6?1---65" = 0651 --- 627,

Via the natural (not necessarily injective) mapping v : Sz — Sp, the ordering <p
induces a quasi-ordering <p on Sz: u xp m < v(n) <p v(m) for all g, € Sz. The
reader should not confuse this quasi-ordering with <z, nor with the usual asymptotic
ordering on germs of exp-log functions (which is actually opposite to <p on Sz).
Now consider the following algorithm:
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Algorithm idm(u).
INPUT: A Cartesian representation v € £ with u # 0.
OUTPUT: A set of intermediary dominant monomials for u.

e Let 2 be the dominant monomial of v in z;, for 1 <7 < k.
o= ()
while true

M :={n € GNmeG u=<pm}

if > car tn # 0 then return G

e Denote G\M = {uy, - 1, }, with m;y <p -+ <p 1.
if EIOngq U — [u|(u;“ 7uq)] =0
then G := {1, -- ,1,} (with ¢ chosen minimal)

else G := (G\M)U M{z,--- ,z;}

e Fliminate non minimal elements from .

Remark 7.2. We recall the existence of an oracle to decide whether a given exp-log
expression in §°P" is zero in a neighbourhood of infinity. Hence, the test 30 <2 <

g u— [ul(w, - ;)] = 0 is indeed effective, by proposition 7.1.
Proposition 7.2. The algorithm idm is correct and terminates.

Proof. Let GGy, (5, -+ be the successive values of (G at the beginning of the main
loop. By induction, we observe that @ = [u|((;)] for all 5. This proves the correct-
ness of idm. Suppose that the algorithm does not terminate. Let F' = ;5 (G;).
We have w = up. By Dickson’s lemma, F' is finitely generated, say by I'. There are
only a finite number of monomials 11 > 27" -+ 2.* with 11 <z m for some m € T.
For sufficiently large 7, none of these monomials belongs to ;. We have I' C G,
since I' C (). There do not exist 1 € G;\I' and m € I', with oy <p m: indeed,
such a 1 would belong to G/ for all j* > j, although 1 ¢ F' = (I'). We deduce that

I' = {w, - ,1,} at the j-th iteration of the main loop for some ¢. But this means
that G411 = I'and I' € (Gj42). This contradiction proves the termination of idm.
O

Remark 7.3. We observe that the dominant term 7y of f is given by 7 = -, cpy unnt
at the end of the algorithm. More terms of the expansion of f can be obtained by
rerunning the algorithm recursively on u — 7.

7.3.4 On the computation of Cartesian representations

Lemma 7.1. There exists an algorithm, which given a Cartestan representation
u € L5 of an infinitesimal germ W at infinity computes Z' = {z},--- , 2z}, } and a

C-infinitesimal Cartesian representation u' € L7 for w.
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Proof. We first compute a set of intermediary dominant monomials G =

{m, -+ ,1m,} for u. If all monomials in G are strictly superior to 1, then we can
take 7' = Z and u' = [u|(1)]. More generally, we can write u = vy 4 - - - + v,,, with
v = [u)(mg, - )] —[u|(m, - - mimr)], for 1T <o <m. Putting v; = 1;h;, each h; be-

expr

longs to £ and its support is included in N*. Now v/ = mhy+- -+ 1k € £
with Z" = {zy, -+, zk, 14, -+ , 10, } satisfies the requirements of the lemma. D

Remark 7.4. Actually, we can take k' < k, as will easily follow from lemma 7.3
below.

Example 7.1. Assume that u’ is the Laurent series from figure 7.1. We can
take m = z7'22,my = zp and M3 = 22, Then we get v; = 2z7'22(1/(1 — 23)),
vy = z((1 + 21)/(1 — 29)) and vz = 23(1/(1 — 21 — 2)). We observe that @ is
infinitesimal if 2722 is. In that case, an expression like e* can be expanded in 2y, z;
and 27122, by using the identity e* = exp(v; + v + v3).

Theorem 7.1. Let B be an effective normal basis. Then there exists an algorithm
which given an expression f in 8" computes a finite set Z of infinitesimals in Spg,
and a Cartesian representation u € £ for f.

Proof. Constants are by definition Cartesian representations of themselves. If
[ € Sp\{1}, then either f € £5% or f € £77},. Now assume that v and u”

{1/f3
are Laurent series in £7/"" and SZ/, respectively, with 2/ = {z},--- |z, } and_Z”_:
{z1,---,z}. Then v'4u", v'—u" and vw'u" are Cartesian representations for u/+u”,

w —u” resp. w'u" in L5, If ' is infinitesimal, then we may assume without loss
of generality that v’ is C-infinitesimal by lemma 7.1. Hence, we have straightforward
Cartesian representations for 1/(1 + u/),log(1 + «’) and expu/ in £57". O

7.3.5 Asymptotic expansions via Cartesian representations

Having computed a Cartesian representation u for f by theorem 7.1, we would like
to take advantage of u to compute the asymptotic expansion of f.

Lemma 7.2. There exists an algorithm, which given a Laurent series u in £
with W # 0 computes 7' = {2}, , 2z}, } and v’ € LLF" with ' = u, such that v’ has
only one dominant monomial.

Proof. Let {m, -+ ,1m,} be a set of intermediary dominant monomials for u. Let
€=Uy + -+ Uy, and € = (4 — Uy, 1y — - - - uumum)/ul By lemma 7.1 we can
compute a C infinitesimal Cartesian representation ¢’ € £/ for g, where 7' =
{z1,-+ , 2z} }. Now we take v’ = (¢ + &')my. O
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Modulo this lemma, we may assume without loss of generality, that « has a
unique dominant monomial. The following proposition gives us the first term of the
expansion of f w.r.t. 6,:

Proposition 7.3. Let f € &5 and let uw € L7 be a Cartesian representation
of f with a unique dominant monomial zi* --- z* and Z C Sp. Let z1,--- , 2 those
elements among zy,--- , z;, which depend on 6, say z; = 265 for 1 <1 <[, with 2!
free from 6, and a; > 0. Then the dominant exponent of f w.r.t. 6, equals

P = proq 4 -+ oy

and
(R )

is a Cartesian representation for [63']f. O

Clearly, this proposition enables us to extract the first term of the expansion of
f w.r.t. 6,. More terms can be obtained by subtracting the first term from f and
iterating the process. Similarly, we can iterate the process on the coefficients of this
expansion in order to obtain the iterated coefficients of f. In particular, this yields
an algorithm to compute the iterated coefficients g, nmi* simes of ¢ involved in the

) )

exponential case f = e in expand.

7.4 An asymptotic zero test for exp-log functions

In this section we no longer assume that we have an oracle for deciding whether an
exp-log function is zero in a neighbourhood of infinity. Instead, we assume that we
dispose of an oracle which can decide whether an exp-log constant is zero. Such an
oracle is in fact an algorithm under the assumption that Schanuel’s conjecture holds
(see the introduction). Now a zero test for Laurent series in £, which depends
on the oracle, is given in [Pél 95| (see also appendix D).

Lemma 7.3. Let B be an effective normal basis and let zy,--- ,zry1 be in-
finitesimals in Sg. Assume that zpy = 27"+ 2% with oy, -+ o € Z. There
is an algorithm which computes zy,--- ,z, € Sp and a matric M = (0, ;) with

te{l,--- k+1}, 5 €{1,-- ,k} and coefficients in N, such that

o Bin 1 Bik
ZZ o Zl DTS Zk

foralll <1< k+1.

Proof. Let us describe a recursive method to compute such 2% and 3; ;. Since one
of the «; must be strictly positive, we may assume without loss of generality that
ay > 0 by permuting variables. Now 2% --- 2. *7" is either infinitesimal, equal to 1,

or infinitely large.
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In the first case, we recursively compute z{,--- ,z,_; € Sp and 7,; € N for

ie€{l,--- ,k}and y € {1, --- ,k}, such that

Z = Z{%‘,l ”‘Z;g_l%‘,k—l
forall 1 <:<k—1and
aq Ag—1 _ _IVk,1 ! Ve E—1
S R T R T . | ‘
Now we can take z; = z; and
Y11 te Y1,k-1 0
M = V=11 - Ye—14k-1 O
0 e 0 1
Vo1 ot Yek—1 1
The second case is trivial, since zp11 = zj.
In the last case, we recursively compute z{,---,z,_, € S and v;; € N for
ie€{l,--- ,k}and y € {1, --- ,k}, such that
2= Ziak'yi,l ”‘Z;g_lak’yi,k—l
forall 1 <:<k—1and
a1 L LO%—1 I TORYEL ) TQRVk k-1
<1 “k-1 T *1 k-1 .
! 1o ! Ap—1
Now take 2} = 221" -2, and
apY11 te a1 ,k—1 0
M = O Yh—1,1 " OpYe—14kh-1 0
Vi 1 e Vi k=1 1
0 e 0 a, 0

The following is an easy consequence of the lemma:

Lemma 7.4. Let B be an effective normal basis and let zq,--- | zx11 be infinites-
imals in Sg. Assume that z{" ---z;* = 1, for aq,-+- ,ap € Z not all zero. There
is an algorithm which computes z1,--- ,z,_y € Sp and a matric M = (3;;) with

re{l,--- Jk}, g€ {l,--- Jk—1} and coefficients in N, such that

1P / ik —
ZZ — Zlﬁz,l . Zk_lﬁz,k 1

forall1 <1 < k. O
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Theorem 7.2. Assuming Schanuel’s conjecture, there exists an algorithm which
given an exp-log expression [ € TP

(a) computes an effective normal basis B for f.

(b) computes an asymptotic expansion for f w.r.t. B at any order.
(¢) determines the sign of f.

(d) determines whether f is infinitesimal.

Proof. In view of what precedes, we only have to show how to decide whether
u =0 for a given u € £, with the notations from the previous section. To do

this, we slightly modify idm:

Algorithm zero_test(u).
INPUT: A Cartesian representation u € £ for some Z.
OUTPUT: Result of the test w = 0.

if v = 0 then return true
e Let 2 be the dominant monomial of v in z;, for 1 <7 < k.
G:={" 2%}
while true
M :={n € GVmeG 1 <pm}
if |M| > 1 then return zero_test(simplify(u, M))
if >, cn ug # 0 then return false
e Denote G\M = {uy, - 1, }, with m;y <p -+ <p 1.
if 30<i<qg v —[ul(wy, - ,11,)] =0 then G :={wm,, - ,1,}
else G := (G\M)U M{z,--- ,z}

e Fliminate non minimal elements from .

Let us comment this algorithm. All zero tests we perform are zero tests for
Laurent series. If the cardinal |M| of M never exceeds 1, then the usual termination
proof of idm remains valid and we are done. In the other case, the function simplify
is invoked, which undertakes the following action:

STEP 1. Determine a non trivial relation of the form z{*---z* = 1 in Sg, with

ap, - ap € 4.
STEP 2. Apply lemma 7.4 to find infinitesimals z7,--- ,z;_, € Sp and positive
integers 3;; with z; = 2/7"" ... 24 _ P51 for each i.
STEP 3. Return u after having replaced each z; by 2,7t ... 24 _ ikt
The recursive call of zero_test terminates, since Z' = {z],-+-,2;_;} has one ele-
ment less than Z. O

Remark 7.5. A heuristic zero test for Laurent series u in £ often suffices for
practical purposes: we perform a floating point evaluation of w in a random point
(C1,- -+, (k) with reasonably small ;. Instead of rewriting u in the above algorithm,
whenever we find a dependency z* - - - Z;f = 1, we use these dependencies to impose
a posteriori additional conditions on the (;.
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Chapter 8

Automatic case separation

8.1 Introduction

This chapter constitutes both the informal description of a general method (auto-
matic case separation) that will be used throughout the rest of part B of this thesis,
and two applications of this method to the parameterized exp-log expansion prob-
lem and linear programming. The main application of the automatic case separation
strategy is to solve problems involving parameters. For instance, consider the asymp-
totical problem of expanding AN < 0, then e =1 + M4 62/\90/2 4+ If
A > 0, then e forms its own expansions. The same situation is encountered when
solving differential equations, due to the presence of initial conditions.

In section 8.2 we give an informal description of the strategy of automatic case
separation. This technique is the analogue of constraint logical programming,
although the resolution techniques used here are different from the classical ones.

In section 8.3, we give an expansion algorithm for parameterized exp-log func-
tions, using automatic case separation. In the example mentioned above, the cases
A< 0,A=0and A > 0 are distinguished automatically while computing the ex-
pansion of e Next, the expansions in these different cases are found in the usual
way, by interpreting the parameters as constants.

In section 8.4, we briefly review a variant of the simplex method in linear pro-
gramming, based on automatic case separation. Next, we extend the usual con-
straint checkers for linear equalities and inequalities with the possibility to impose
asymptotic linear constraints.

Let us finally notice that automatic case separation is historically referred to as
dynamic evaluation, but we think that our nomenclature is more suggestive. The
first appearance of this technique in computer algebra goes back to [DDD 85|. Until
now, it has mainly be used for computations in parameterized algebraic number
fields (see also [GoDi 94]). But actually, it underlies many algorithms in computer
algebra, such as the Boulier-Seidenberg-Ritt algorithm (see [Seid 56], [Boul 94|,
[BLOP 95|, [VdH 96¢|), many asymptotic expansion algorithms, interval analysis,
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etc. In particular, we will make extensive use of it in the following chapters.

8.2 Automatic case separation

8.2.1 The strategy

Let us be given an arbitrary program P which takes p arguments A;,--- A, of
types T,---,7, on input and produces an output of type 7’. We are interested
in determining all possible outcomes of the program. More precisely, we see the
arguments Ay, -+, A, as formal parameters and we want to determine the outcome
of the algorithm in a symbolic way as a function of these parameters. Of course,
different cases need to be distinguished in general: by a generic output of P
relative to a subdivision

Ty x--xTy=R .- 1R, (8.1)

of Ty x --- x T, into regions Ry,---, R,, we mean a list
Pl()\la"' 7)\p)7... 7Pr()\17"' 7)\p)

of symbolic formulas, such that each P;(Ay,---,A,) is the output of the algorithm
in the case (A1,---,A,) € R;. We say that P;(Ay,---,),) is the generic output of P
relative to the region R;.

Example 8.1. Let P be the program which takes on input an exp-log constant A
and returns the result of the expansion algorithm from section 7.2 applied on e
Then a generic output of P is

exp t(—exp H(=Aa™H™h)), if A > 0;
e, if A =0;
exp(exp(A(z~1)™1)), if A <0.

In this case, Pi(A), P2(A) and Ps(A) are exp-log expressions in x and A, such that
we obtain the result of P applied to a particular exp-log constant ¢ by replacing A
by ¢ in the appropriate P;.

Let us make the notion of symbolic formula more precise. We assume that the
program P is built up from a certain number of elementary functions fi, fo,---
and relations py, py,--- by the usual constructs of some imperative programming
language. In the generic version P?“" of P, the types of all variables, arguments
to subprograms, etc. which depend directly or indirectly on Aq,--- , A, are replaced
by the symbolic type G of expressions in Ay,---, Ay, f1, f2,---. The only other
difference between P9 and P is that we have to respecify the elementary functions

and relations.
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Now f; applied on arguments e, --- ,e; of type GG simply yields fi(er,--- ,¢€;).
FEach test which depends on the value of p;(eq,--- ,¢;) for some ey, --- ,e; of type G
leads to the separate consideration of the cases p;(eq,--- ,¢€;) and —p(eq, -+ ,e;). It

is convenient to adopt a parallel computation model for this purpose: both cases
induce two distinct processes in which the relations p;(eq,- -+ ,€;) and =p;(e1,-- -, €;)
are respectively imposed as constraints. This is done by introducing a global vari-
able which contains the successive constraints we impose. Of course, we need to
know whether there exist actual substitutions for the A; which verify a given set
of constraints. A program which can check this is called a constraint checker.
Assuming that we dispose of a constraint checker, all processes in which the set of
the constraints admits no solutions are eliminated.

Example 8.2. In the case of expansions of parameterized exp-log expressions, the
elementary functions are the exp-log field operations and for each constant ¢ the
zero-ary function yielding ¢. The elementary relations are = and <. The constraint
checker should be able to decide whether a given system of exp-log equalities and
inequalities admits a solution.

The parallel computation process can be represented by a binary tree, which
is called the computation tree: the outgoing edges of each internal node of this
tree are labeled by p;(e1,---,e;) and —p;(eq,--- ,¢e;) for some i,eq,--- ,e;. Each
leaf [ of the tree are labeled by the generic output of the algorithm relative to the
region determined by the constraints on the path from the root to [. By Konigs
lemma on trees [Kon 50|, the computation tree is finite if and only if their are no
infinite branches. This means that the generic program P?9°" terminates, if each of
its parallel processes terminates. Usually, this is due to a Noetherian property for
the regions which are determined by the successive constraints.

8.2.2 Examples

In this section we give a list of classical and new examples where the technique of
automatic case separation can be applied, and briefly discuss these examples. Of
course, our list is not exhaustive and merely included to give the reader an impression
of the scope of the technique of automatic case separation.

Linear constraints. The problem of checking a finite system of linear equalities
and inequalities in finite dimension for consistency is an important problem in math-
ematics, with many applications to economics: the theory of linear programming
and linear optimization has known a big development since the fifties. We will
discuss this theory in more detail in section 8.4, where we also extend the classical
theory in order to deal with linear asymptotic constraints, which turn out to be
important in chapter 11.



8.2. AUTOMATIC CASE SEPARATION 185

Algebraic constraints. The problem of determining the consistency of a finite
system of polynomial equalities and inequations over an effective algebraically closed
field in finite dimension can either be solved by Groebner basis techniques or the
Ritt-Wu’s algorithm (see [Wu 87]). In particular, the Ritt-Wu algorithm can be
seen as an application of the automatic case separation strategy to the classical
g.c.d. algorithm.

Although the complexities of algorithms in this area are always very bad, several
interesting problems can nevertheless be treated. Notably, the technique of auto-
matic case separation has nice applications in classical geometry, because different
geometrical configurations can be distinguished automatically. We refer to [GoDi
94] for more details.

Real algebraic constraints. The problem of determining the consistency of a
finite system of polynomial equalities and inequalities over an effective real algebra-
ically closed field in finite dimension is an even more difficult problem. Nevertheless,
algorithms exist for this (see for instance [Col 75]).

Real exp-log constraints. A crucial problem in the field of automatic asymptotics
in higher dimensions is to determine the consistency of a finite system of real exp-log
equalities and inequalities in a finite number of variables over Q. We refer to the
conclusion of this thesis for a discussion of this problem.

Arithmetic constraints. A well-known theorem of computability theory is that
there exists no algorithm to determine the consistency of a finite system of poly-
nomial equalities and inequalities in a finite number of variables over the integers
(see [Mat 70]). This clearly marks a limit to the capability of constraint check-
ers. However, there are algorithms to determine the consistency of special types of
Diophantine equations, such as linear equations over Z.

Algebraic differential constraints. In [Seid 56| and [Boul 94] (see also [BLOP 95]
and [VdH 96¢]), it is shown that there exist constraint checkers for certain systems
of partial algebraic differential equations and inequations. The Boulier-Seidenberg-
Ritt algorithm can actually be seen as an application of the theory of case separation
to Ritt’s reduction theory. In [VdH 96¢|, we have generalized this algorithm to more
general mixed differential-difference equations.

Constraints in free algebras. The elementary theory of logical programming
can be interpreted as constraint checking in free algebras of a certain signature. Of
course, many extensions exist in the literature and real logic programming languages
such as PROLOG are far from theory. Currently, much research is done in the area of
constraint logical programming languages and we hope that computer algebra
will soon benefit from this research. See [Gal 87| for more information about this
area.
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8.2.3 Remarks

Many remarks can be made about the strategy of automatic case separation. In this
section we list the principal ones.

Initial constraints. By default, the set of constraints is empty at initialization;
taking another initial value, we can impose additional constraints on the parameters.

Error treatment. The strategy favorites a very flexible error treatment: we can
localize regions where errors occur and eliminate the corresponding processes, or
return error messages, etc.

Partial constraint checking. A very important feature of the strategy of auto-
matic case separation is that we do not necessarily need a complete constraint
checker: in cases where it is very expensive or impossible to check the consist-
ency of the constraints, we can temporarily or permanently allow inconsistent sets
of constraints. Indeed, even the virtual answer on a potentially empty region might
interest the user. Moreover, inconsistent results can often be refuted by the user on
the base of physical or other considerations. Generic outputs, for which the underly-
ing partition does not contains empty regions are called consistent; non consistent
generic outputs are called virtual.

Another advantage of partial constraint checkers is that it often increases the
efficiency of the strategy. Indeed, whenever the constraint checker is written in a
recursive style, constraint checking itself may lead to the separation of many cases.
This is one of the reasons for which we will make extensive use of partial constraint
checking in part B of this thesis. Moreover, we remark that the consistency of
constraints can always be checked a posteriori, if we also have a complete constraint
checker.

Let us finally notice that algorithms which are based on partial constraint check-
ers necessitate termination proofs which depend on the nature of these constraint
checkers. Indeed, termination also has to be guaranteed on empty but not eliminated
regions.

Parallel computation model. Let us comment the parallel computational model
we use. To our knowledge, no computer algebra systems support parallel constructs
yet. Nevertheless, parallelism can be simulated, by replacing all variables by lists
in which each item corresponds to a set of constraints plus the corresponding value
of the variable. Such lists are called generic variables. Another way to simulate
parallelism is to rerun the program several times, by choosing each time another
branch of the computation tree. This strategy has the advantage that no code
has to be rewritten; the price to be paid is that the same computations are often
performed several times.

The most elegant and efficient way to implement automatic case separation is to
use the second strategy mentioned above, but by remembering the information which
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is common to all processes. However, this necessitates the extension of conventional
programming languages such as C with parallel data types and control structures.
At present such extensions are only in an experimental stage.

8.3 Expansions of parameterized exp-log functions

Let K be a totally ordered exp-log field and A a set of formal parameters and
(' a subset of K. An exp-log expression f over C in A is an expression built
up from C,A by 4,—,-,/,exp and log. The domain of f is the subset dom f
of K%, consisting of those substitutions ¢ : A — K, such that ¢(f) is naturally
defined. A system of exp-log equalities and inequalities is a pair ¥ = (¥, %;)
of finite sets of exp-log expressions over €' in A. The domain of ¥ is defined by
dom ¥ = Nyex Uy, dom f. We say that a substitution A — K in dom ¥ is a solution
to X, if p(f) =0, for each f € X., and ¢(f) > 0, for each f € X;.

Assume now that € is an effective ordered field of constants and a subset of K.
Let € be the smallest subset of K, such that any system of exp-log equalities over €
in some finite A which admits a solution in K* admits a solution in €. We call &
the exp-log closure of € in A" and we observe that ¢ is an exp-log field. If € = é:,
then we say that € is exp-log closed.

8.3.1 The algorithm

In this section we present two generic expansion algorithms for exp-log functions over
¢ depending on a finite number of parameters in K. In practice, we usually have
K=R,and€=Qor €= Q. For the first algorithm, no additional hypothesis need
to be made, but the constraint checker being only a partial one, the algorithm may
yield virtual generic expansions. For the second algorithm, we make the hypothesis
that € is an effective totally ordered exp-log closed constant field; i.e. we
have an algorithm or oracle which can check the consistency of any given system of
exp-log equalities and inequalities over € in any finite set of parameters A. In this
case, the computed generic expansions are always consistent.

Theorem 8.1. (Parameterized expansion theorem, weak form) Let A =
{1, , A} be a finite set of parameters. There exists an algorithm which takes an
exp-log expression in x, A, - , A, over € on inpul and computes

(a) A partition € = R 11 --- 1L R, of €, which we denote by P;

(b) A generic effective normal basis B relative to P;

(¢) An algorithm which computes the generic asymptotic expansion of f w.r.t. B
relative to P at any order.

Fach possibly empty region R; is represented as the solution set to a system X; of
exp-log equalities and inequalities.
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Proof. We apply the strategy of automatic case separation to the expansion al-
gorithm expand from chapter 7, incorporating the optimizations from sections 7.3
and 7.4. We first remark that modulo the introduction of a finite number of new
parameters, a finite number of elements in the exp-log field & may be introduced in
the algorithm. For instance, if € = @Q and K = R, then e can be represented by
Ap+1, where A\, satisfies the constraint A — e* = 0. Representing elements in € in
this way, all computations on constants are done in the ring €[A;, -, ], where
g = p may increase during the algorithm. In particular, the constraints we impose
on constants are only checked for their algebraic consistency, for instance by using
cylindrical decompositions (see [Col 75]).

Let us verify that all parallel processes terminate. The only loops in the expan-
sion algorithm come from the recursive application of expand in the exponential case
and the main loops in idm and zero_test. For a similar reason as in the previous
chapter, no infinite loops can arise from expand.

Assume that the main loop in idm or zero_test does not terminate on a given
input. Now w is a Laurent series with coefficients in €[Ay,- -+, A,] in these algorithms,
since ¢ can not increase during such a loop. Let ¢;,co, -+ denote the successive
values of Yyepruy, during the loop. Since €[Aq, -, A,] is Noetherian, the chain of
ideals (¢1), (¢1,¢2), -+ - is stationary. In particular, ¢; = 0 can be deduced from the
constraints, for sufficiently large 7, and the usual termination argument is used to
obtain a contradiction. O

Remark 8.1. We notice that the zero test from section 7.4 can indeed be ap-
plied: in section D.4.1 (see remark D.5), we have given a zero test for parameterized
Laurent series. We remark that some new but finite branching may occur during
the execution of such a generic zero test.

Theorem 8.2. (Parameterized expansion theorem, strong form) Let A =
{1, , A} be a finite set of parameters. Assume that we have an oracle which
decides whether a given system of exp-log equalities and inequalities over € in any
finite set of parameters admits a solution. Then there exists an algorithm which
takes an exp-log expression in x, Ay, -+, A, over &€ on input and computes

(a) A partition € = Ry 11 --- 1T R, of €*, which we denote by P;
(b) A generic effective normal basis B relative to P;

(¢) An algorithm which computes the generic asymptotic expansion of f w.r.t. B
relative to P at any order.

FEach non empty region R; is represented as the solution set to a system X; of exp-log

equalities and inequalities.

Proof. The present theorem is a trivial corollary of the previous one, since the
oracle can be used to check the regions for non emptiness. O
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8.3.2 An example

Let us consider the expansion of the exp-log function

Fla) = et — it

Y

depending on one formal parameter A. The expansions of 1/z and Az are straight-
forward. For the expansion of e*?, one needs to compute the sign of Az and thus of
A. This leads to a branching into three processes, corresponding to the cases A < 0,
A =0 and A > 0. The first case leads to the expansion

1 1 1
f:62+6162+§6§62+---+§6§+5616§+---,

with effective normal basis B = {6, = 71,6, = ¢**}. The second case leads to the

expansion
e—1

2
where B = {6, = 27'}. Finally, the case A > 0 leads to the expansion

f=(e=1)+(e—1)6; + 624,

1
f:63—|—6163—|—§6%63—|——1—61—,

with B = {6, = 21,6, = e7,65 = ¢},

8.4 Linear constraint checkers

In this section we give algorithms for determining the consistency for systems of
linear inequalities, equations, and asymptotic inequalities. In terms of asymptotics,
this means that we can check the consistency of systems of relations involving <, <,
=, <K, =<K and = in certain monomial groups.

The topic of finding the maxima of linear functionals on convex sets determined
by linear inequalities is known as linear programming. In particular, the con-
sistency of systems of linear inequalities can be determined in this way. The most
frequently used method in linear programming is the simplex method. Roughly
speaking, this method proceeds by following a path on the edges of the simplicial
solution set of a system of linear inequalities. However, the simplex method has an
exponential worst case complexity. This has lead to the introduction of the ellipsoid
method in [Kat 79], which is a polynomial time algorithm. Unfortunately, the com-
plexity involves a large constant factor, which makes the Katchian’s algorithm little
useful in practice. More recently, this drawback has been removed by Karmakar (see
[Kar 84]), whose algorithm is currently the fastest.

In sections 8.4.1 and 8.4.2 we respectively study systems of strict linear inequal-
ities and mixed systems of linear inequalities and equalities. The consistency of such
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systems is determined by computing the simplicial set of solutions. We give a geo-
metrical approach, which is basically equivalent to the simplex method. However,
the fact that we actually compute the simplicial solutions sets implies that we can
quickly check whether a given linear equation or inequality is or can be verified
on such sets. This is useful, if these tests are performed with a rate which is very
superior to rate of imposition of new constraints.

In sections 8.4.3 and 8.4.4 we reduce the problems of determining the consistency
of certain systems of asymptotic linear constraints to the problem of determining the
consistency of systems of linear inequalities and equalities. Hence, the algorithms
from sections 8.4.1 and 8.4.2 can be applied, as well as the ellipsoid method, and
Karmakar’s optimization.

8.4.1 Linear inequalities

Let X be a totally ordered non zero vector space over an effective totally ordered

field K. Let zy,---,z; be a finite number of positive parameters in X. In this
section, we give an algorithm to check whether a finite system of constraints of the
form
a171 4+ apzr >0 (8.2)
is consistent (where aq,--- ,ax € K). In particular, if X is a monomial group with
K-powers, this yields a method to check whether a finite system of constraints of
the form
2t K1 (8.3)
is consistent (where zq,--- ,zp < 1). Inequalities of the form (8.3) are also called

expo-linear inequalities.

Since the z; are assumed to be positive, and since constraints of the form (8.2)
are homogeneous, we may assume without loss of generality that X = & and impose
the additional constraint

The set of solutions to (8.4) and a finite number of linear inequalities like (8.2) is a
bounded convex subset of &. Our algorithm is based on the representation of such
convex sets C' by their sets of vertices V-, edges F¢ and hypersurfaces He. For each
edge e € E¢, we store its two endpoints ey ¢, e3¢ € V. For each vertex v € Vi, we
store its coordinates and the set H, ¢ of hypersurfaces to which it belongs. Each
hypersurface is characterized by a linear constraint of the form

arzy + - +agz, = 0.

By convention, we represent the empty set by Vg = Eg= Hg = ¢.

In absence of constraints, C is the simplex with k vertices (1,0,---,0),---,

(0,---,0,1) which are pairwise connected by edges. C has k hypersurfaces, which
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i—1 times

are characterized by the equations z; = 0,---,z, = 0. FEach point (0,
,0,1,0,---,0) belongs to all hypersurfaces, except the one which is determined by
Z; = 0.

Assume now that we have the representation of the convex solution set C' of a
given system of constraints. Imposing the additional constraint (8.2), we wish to
compute the corresponding convex solution set C’. To do this, we first label each
vertex (vy, -+ ,vx) € Vo by the sign of ajvy + -+ + agvg. Let us denote by V*, V°
and V'~ the sets of vertices which are labeled by +,0, resp. —. If V* = ¢, then we
have C" = @. If V™ = ¢, then we have C' = C.

In the remaining case, we determine all edges whose endpoints are labeled by
opposite signs and we compute the intersections of these edges with the hypersurface
H™" determined by ayz; 4+ -+ + agzr = 0. Let I be the set of these intersections.
We have Voo = TTTVOII VY. Hegi is given by H™ and those hypersurfaces H in
He, with H € H, ¢ for some v € V*. We have H, ¢ = H, ¢ for v € V. We have
Hycr = {H}U (H. 0N He, o) for each v € I which lies on the edge ¢ € Eg.
Finally, we have H,cr = ({H} U H,¢) N Hero All edges in E¢ between vertices
with non negative labels are conserved in F¢r. Fach edge e € Ex, on which lies a
vertex v in [, is replaced by the edge from v to the endpoint of e with a positive
label. Finally, two vertices v and w in VOII I are connected by an edge in Fe» if and
only if the intersection of all hyperplanes in H, ¢ N H, ¢ forms a line (linear algebra
methods are used to check this). This completes the algorithm and we have proved:

Theorem 8.3. Let & be an effective totally ordered constant field and X a totally
ordered vector space over K. Then there exists a constraint checker for systems of
constraints of the form (8.2). O

Remark 8.2. Given a convex set (' represented in the above way, the maximum
of a-v=ayvy + -+ 4 arvg, for v € V7 and given aq,--- ,ap € & can be determined
as follows: we first randomly choose a vertex v € V. Next, we follow those edges
which increase a - v, until we have reached the maximum. This algorithm can be
speeded up by choosing v among an appropriate number of random vertices in such
a way that « - v 1s maximal.

Remark 8.3. Let (; and (5 be arbitrary bounded convex sets, which are repres-
ented in the above way. Then the method can be generalized in order to compute
the intersection of € and Cy; in this case, VT, V% and V~ are the sets of vertices
of Vi, which are inside, on the boundary of, resp. outside C5.

8.4.2 Linear equalities

In this section, we consider systems of constraints of the type (8.2) or

arzy + - +agz, = 0. (8.5)
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The latter constraints take the form
2tz <1 (8.6)

if X is a totally ordered monomial group with K-powers. Equalities of the form (8.6)
are also called expo-linear equalities.

The solution set of (8.4) and a system of constraints of the form (8.2) or (8.5) is an
open bounded convex subset ' of some subvector space of 8. This subvector space
is said to be the underlying vector space of C'. We represent (' as before, except
that we work in the underlying vector space W¢ of C instead of the hyperplane
z1 + -+ 4+ zr = 0. This means that the hypersurfaces of C' are represented as
intersections of W¢ with hyperplanes H 2 W determined by equations like (8.5).

Assume now that we are given such a convex set ¢’ with underlying vector space
We. The algorithm from the previous section to compute the intersection of €' with
the half space determined by (8.2), remains valid modulo a minor change: we first
have to check by linear algebra that We is not contained in H™*", in which case C’
is empty.

If we want to compute the intersection C’ of €' with the hyperplane H™®" de-
termined by (8.5), we proceed in a similar way: if H**" contains W¢, then C' = C.
If V* or V~ then sois ("', with similar notations as before. In the remaining case,
we compute the intersection Wer of W and H™ by linear algebra. Finally, Ve,
Ecr and Her are computed as in the previous section, but we only conserve those
vertices and edges which lay in H™*" and those hypersurfaces on which lies at least
one vertex in V't and one vertex in V~. Summarizing, we have

Theorem 8.4. Let R be an effective totally ordered constant field and X a totally
ordered vector space over K. Then there exists a constraint checker for systems of

constraints of the form (8.2) or (8.5). O

An immediate corollary of this theorem is that there exists a constraint checker
for systems of constraints of the form (8.2), (8.5) or

a2+ -+ agzgp = 0. (8.7)

Indeed, it suffices to split up each constraint (8.7) in the constraints (8.2)
and (8.5), by using the automatic case separation strategy.

Alternatively, one can describe the solution sets (' to such systems of equations
in the above way, with this difference that we associate a flag to each hypersurface
in He which indicates whether C' N He is empty or not. It is not hard to modity
our algorithms in order to compute with such representations of solution sets.

Let us finally notice that it X is an totally ordered monomial group, then the
constraint (8.7) takes the form

ai ag
2t XL
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8.4.3 Asymptotic linear inequalities

The totally ordered &-vector space X is said to be complete, if for each =,y € K
with = < y there exists a A € & with # ~ Ay. In this section, we assume that X is
a complete infinite dimensional vector space. Under this assumption, we will show
how the constraint checker from the previous section can be extended in order to
handle constraints of the form

layzy + -+ apzp| < &5 [brzy + -+ + bzl (8.8)

It X is a totally ordered monomial group with &-powers, then such constraints take
the form

ai Ok by b
Zyt ezt &L 2 2y

We notice that in order to impose a constraint
larzy + -+ agzr] < &bz + -+ brzil,

it suffices to consider the case in which

ayzy + -+ apzp > 0;

modulo the imposition of some additional linear constraints like (8.2) or (8.5) and
some case separation.

Theorem 8.5. Let & be an effective totally ordered field and X a complete infinite
dimensional totally ordered K-vector space. Then there exists a constraint checker

for systems of constraints of the form (8.2), (8.5), (8.7) or (8.8).

Proof. The idea of the proof is to work in the effective totally ordered RK-algebra
£R(e) instead of R, where ¢ is a positive infinitesimal. Then we replace each constraint
of the form

arzr + - Fagzg < ﬁj(b121 + o brzi) (8.10)
under the assumption (8.9) by
Gyt agGe < e(biCy A+ - 4 brG)- (8.11)

We have to show that a system ¥ of constraints of the form (8.2), (8.5) or (8.10)
admits a solution in X* if and only if the corresponding system Y’ of constraints of
the form (8.2), (8.5) admits a solution in &(£)*. This will prove the theorem in view
of theorem 8.4.

Lemma 8.1. Fach finite dimensional R-subvector space Y of X admits a basis of
positive pairwise comparable elements for <.

Proof. We use induction over the dimension of Y. If dimY = 0 then there is
nothing to prove. Assume that dimY > 0 and let Y’ be a hyperplane in Y. By the



194 CHAPTER 8. AUTOMATIC CASE SEPARATION

induction hypothesis, we can find a basis of Y’ of positive elements 6; < --- << 6,,.
Let @ be an arbitrary positive element in Y\Y’. As long as z is asymptotic to one
of the 6;, we replace it by |t — A&;|, where & ~ A&, (the existence of such a A € K"
is guaranteed by the completeness of X). This process yields a positive element x
which is not asymptotic to any of the 6; after at most n steps, and {64, ,6,,2}
yields the desired basis for Y. O

Remark 8.4. We notice that the lemma is a weaker analogue of the structure
theorem for transseries from page 53.

End of the proof of the theorem. Let (z1,---,z;) be a solution to ¥. By the
lemma, there exists a basis 6; < --- < 6, of positive elements for the vector space
Y spanned by zy,---, 2. Let E be the vector space spanned by 1,--- g2
consider the linear transformation which sends each 6; to 2"~ This transform-

and

ation actually determines an isomorphism ¢ of ordered K-vector spaces. Moreover,
we have @ < y < & < ey for positive elements x,y in E. Hence (¢(z1),--- ,¢©(zk))
is a solution to Y.

Inversely, let ((1,- -+, (k) be a solution to ¥'. By the lemma, there exists a basis
61 < -+ <K 0, of positive elements for the vector space V spanned by (y,--- . (,.
Since the (; are Laurent series in €, we may assume without loss of generality that
6, < 1, by multiplying the (; by a suitable power of . Let p be such that 6; < &”.
Let E be the vector space spanned by 1,¢,--- &P,

The truncation of power series at order p determines mapping ¢ from V into F.
We claim that this mapping is an embedding of ordered K-vector spaces. It suffices
to check that strictly positive elementsin V' are mapped to strictly positive elements
in K. Moreover, given > 0 in V', we can write x ~ A6; for some A > 0 and :. Now
6; ~ pe’ for some p > 0 and j < p. Therefore, x ~ Aue/ and ¢(z) > 0.

By lemma 8.1 and the fact that X has infinite dimension, there exist elements
o -+ ¢, in X. Now there exists a natural isomorphism ¢ between the

ordered R-vector spaces I and Reg @ - - - & Rey,, which sends each ¢ to ;. Then
(V(p(C1)), -+ ¥ (p(Ck))) is a solution to X' O

8.4.4 Asymptotic linear equalities

In this section, we still assume that X is a complete infinite dimensional vector
space. We will consider asymptotic linear constraints of the form

{ AM e RS |ayzy + -+ + agzg| < Mbyzy + -+ + bpzi| A (8.12)

ANERS |byzr + -+ + brzi| < Nlayz + -+ + agzil.

resp.

AM € &S |ayzy + -+ + apzp| < M|byzy + -+ + brzy. (8.13)
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It X is a totally ordered monomial group with &-powers, then such constraints take
the form

a ag o b1, .. bk
lek /_\Zl Zk

I’(iSp.
a b
Z?l"'Zkk _«Zl{l"'zkk.

Clearly, it suffices to consider constraints of the form (8.13) and without loss of
generality we may assume (8.9) modulo the imposition of some additional linear
constraints and some case separation.

Theorem 8.6. Let R be an effective totally ordered field and X a complete infinite
dimensional totally ordered K-vector space. Then there exists a constraint checker

for systems of constraints of the form (8.2), (8.5), (8.7), (8.8), (8.12) or (8.13).

Proof. Let &(w) be a totally ordered field, where w is positive and infinitely large
over R. Let X' be any complete infinite dimensional totally ordered vector space
over R(w). Given a system X of constraints of the form (8.2), (8.5), (8.8) or (8.13),
let ¥’ be the system of constraints of the form (8.2), (8.5) or (8.8), which is obtained
by replacing constraints of the form

AIMe RS a2+ +apze < M(byzy + -+ - + bz, (8.14)
under the assumption (8.9) by
arGr 4 - 4 apCe < w(biCy - 4 brCe)- (8.15)

Let us show that ¥ admits a solution in X* if and only if ¥’ admits a solution in X'*.
This will prove the theorem in view of theorem 8.5 and the introductory remarks.

Let (z1,- -+, zx) be a solution to ¥. By lemma 8.1, we construct a basis 6; < - -
~ 6, for the &-vector space V generated by z1,--- , zx. Let V'’ be a subvector space
of X’ of dimension n. Again by lemma 8.1, we construct a basis 6] < -+ <« 6,
for V'. Now let ¢ be the f-linear mapping from V to V'’ which sends each 6; to &.
Then (¢(z1),- -+ ,¢(zx)) is a solution to X'

Inversely, let ((1,- - , (x) be a solution to ¥’ and construct a basis 6] << --- K&/,
for the R-vector space V' generated by (1,--- ,(x. Let V be a subvector space of X
of dimension n, with basis 6; < --- < 6,,. Let ¢y be the partial mapping which
maps elements f16] + -+ + fi6) in V' to elements fi(M)6, + - -+ + fr(M)6) in V.
We claim that for sufficiently large M, (@oar(¢1), -+, om(Ce)) is well defined and a
solution to .

Consider a constraint of the form (8.15) in ¥'. We can write a1y + - - + ax(x =
J16} 4 - -+ + f,6, for certain fi,---, f, € &(A) and f, > 0. Similarly, we can write
biGi 4 -+ 4 byl = 916} + -+ + ¢,6,, with g, > 0 and ¢ > p. Since f, < (v + 1)g,
(with f, = 0 if ¢ > p), we have f,(M) < (M + 1)g,(M) and 0 < ¢,(M) for all
sufficiently large M. Hence, taking z; = ¢a((;) for each ¢, the constraint (8.14) of
Y is satisfied for sufficiently large M. A similar argument applies to constraints of



196

CHAPTER 8. AUTOMATIC CASE SEPARATION

the form (8.2), (8.5) resp. (8.11). This proves our claim, because ¥’ contains only
finitely many constraints. O
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Chapter 9

Basics for automatic asymptotics

9.1 Introduction

In chapter 7 we have given an expansion algorithm for germs of exp-log functions at
infinity. Actually, we have limited ourselves to such germs for pedagogical reasons,
and we have opted to represent them by exp-log expressions. However, as we will
show in this chapter, most of the methods apply in a far more general context. Our
approach is based on the theory of grid-based transseries from chapter 1.

In section 9.2, we introduce some very general terminology. Section 9.2.1 con-
cerns the concept of “effective algebraic structures”, which provides a useful ap-
proach to computer algebra. In sections 9.2.2 and 9.2.3, we give general definitions
of automatic power series and automatic Laurent series. In section 9.2.4 we in-
troduce the concept of automatic transseries and prove an effective version of the
structure theorem from chapter 1. Let us also notice that the above concepts will
be refined further in chapter 12.

In section 9.3, we generalize the concept of Cartesian representations and some
of the corresponding algorithms from chapter 7.

In section 9.5.1, we generalize the asymptotic expansion algorithm from chapter 7
to a far more general class of functions, using the concepts introduced in section 9.2,
and the algorithms from section 9.3. We also give an alternative canonical expansion
algorithm.

In section 9.6.3, we introduce the concept of local communities: a theoretical
and effective tool for computations with implicitly defined series. An application is
given in section 9.6.3, where we show how certain asymptotic implicit equations can
be solved automatically.

Finally, section 9.7 deals with Newton polytopes — a classical concept, which
will be needed in chapters 10 and 11.

198
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9.2 A formalism for effective asymptotic algebra

9.2.1 Effective algebraic structures

An effective algebraic structure is an algebraic structure, represented by some
data type, together with algorithms for performing a certain number of operations
and/or constructions effectively. The data type is not necessarily required to repres-
ent the elements of the algebraic structure in a one-to-one manner, although we do
require the algorithms to be compatible for this representation. For instance, ele-
ments of ¥ are non uniquely represented by exp-log expressions in 7" in chapter 7.
The exp-log field operations 0, 1,4, —,, /,exp,log can clearly be performed by al-
gorithm and we do have compatibility: for example, the exponentials of two expres-
sions which represent the same germ in ¥ also represent the same germ. Moreover,
assuming Schanuel’s conjecture, we have shown how to test whether a given exp-log
expression in TP" represents the zero germ at infinity; we say that ¥ is an effective
exp-log field.

Remark 9.1. In general, the exact meaning of computable can be made easily be
made precise, for example in the language of Turing machines. Sometimes, a more
general notion of computability is needed. For instance, in section 7.3 we have shown
that ¥ is an effective exp-log field, if € is an effective field of constants. This relative
notion of computability is usually formalized using oracles (which we actually used
already).

In particular, for theoretical purposes it is sometimes useful to assume that all
algebraic structures are effective. Algorithms for these structures are then called
theoretical algorithms. Although they can not be executed in practice, their
correctness proofs may yield interesting theoretical results. For the same reason,
definitions made in an effective context do also make sense in a theoretical context.

We notice that for many mathematical structures the definitions of their effective
counterparts are clear. Most importantly, for a given signature ¥ (see section B.2),
we define an effective Y-structure to be a Y-structure, with algorithms for all
functions and relations in ¥ and for the equality test. In particular, this definition
covers the notions of effective groups, effective rings, effective exp-log fields, and so
on. More generally, any axiom imposed on the algebraic structure should be satisfied
in a suitable effective way. For instance, an effective algebraically closed field is an
effective field K, which is algebraically closed, and such that we have an algorithm
which computes the solution set to any polynomial equation over K.

Example 9.1. Adopting the effective algebraic spirit of thinking we get theorems
like: if R is an effective field, then we can compute its effective algebraic closure R.
Indeed, this is a classical exercise which we leave to the reader. We notice the precise
statement of this theorem: we do not only announce that the algebraic closure is
effective, but there exists an algorithm which computes R as a function of &,
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9.2.2 Automatic power series

Special care needs to be paid to effective algebraic structures whose elements are of
an infinite nature; since such elements can not be stored as a whole into a machine,
they are represented by programs which extract suitable finite information about
them. For instance, an infinite power series can not be stored completely into a
machine, but we may have algorithms for extracting the first n elements of it for
any n. Actually, we use a double representation for series: we both compute with
series as elements of an abstract effective series algebra and with their truncations
up till a finite order. This strategy is classically called lazy evaluation.

Univariate power series. Assume that we are given an effective constant field €
and an effective €-algebra SR of power series over € in z, which contains z. A subset
2 of PR is said to be automatic, if there exists an algorithm which takes u € 2
and o € N on input, and which computes [z%]u. A power series u in R is said to
be automatic, if v is an element of an automatic subset 2 of 8. Consequently,
automatic power series can automatically be expanded up till any order and in
particular, we can compute their valuations.

Multivariate power series. More generally, assume that we have an effective €-
algebra R of power series in zy,--- , zx, which contains zy,--- , 2. A subset 2 of R
is said to be automatic, if there exists an algorithm which takes u € 2, 1 < < k
and «; € Z on input and which computes [z]"]u; moreover, we require [z"]u to be
in A. If A is an automatic subset of R, then so is the subalgebra of YR which is
effectively generated by 2[. A power series u in R is said to be automatic, if u is
an element of an automatic subset of $R. Such series can automatically be expanded

in each z; up to any order.

Proposition 9.1. If 2 is an automatic subset of R, then so is the subalgebra of
R which s effectively generated by 2.

Proof. We first detail that elements of the effective subalgebra of R are represented
by trees whose inner nodes are labeled by 4+, — and - and whose leaves are labeled
by elements in 2 or €. Such trees represent series in R, which can be expanded
automatically w.r.t. each z;, by using the usual rules for the expansions of sums
differences and products. The global zero-test for such series is given by the zero-
test in fR. U

Power series in infinitely many variables. For some purposes it is convenient to
allow k to be infinite. In that case, R is an effective €-subalgebra of the direct limit
C[[z1, 22, - - - ]] of €, &[[z1]], €[[21, 22]], - - -, which contains zq, z9,---. Series in R only
depend on a finite number of variables, although this number is not bounded a priori.
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If Z ={z,, -+ ,2,} is a finite set of variables, then we denote by Rz = R
the subalgebra of R of power series in Z.

BRNARELY

Effective Cartesian algebras. For the purpose of Cartesian representations, it
is convenient to introduce the concept of Cartesian algebras of power series over €.

These are subalgebras 9 of €[[zy, 2y, - - - ]|, which are stable under substitutions which
send a finite number of z; to power products z; " - - - ,Z:il’ki, with a1, -+, a0 €N,

while leaving the others invariant.

If these substitutions are effective, and fR is effective and automatic, then we say
that 2R is an effective Cartesian algebra of power series over €. In particular,
M is unique up to isomorphism, if 7 is a finite subset of {z1, z2,-- -} of fixed the
cardinality, since R is stable under finite permutations of variables. Therefore, we
may extend the notation Rz to the case when Z is any finite set of formal variables.

9.2.3 Automatic Laurent series.

Automatic Laurent series. Let £ be an effective €-algebra of Laurent series in
21, , 25, which contains 2z, 27", -,z and z;'. A subset 2 of £ is said to be
automatic, there exists algorithms which take v € A, 1 <7 < k and o; € Z on
input and compute the valuation of v in z; and its a;-th coefficient; moreover, we
require [z7"]u to be in 2. A Laurent series v in £ is said to be automatic, if u is
an element of an automatic subset of £. We can compute the valuations of such a

series u in each z;, as well as its expansion up to any order.

Effective Cartesian algebras. As in the previous section, we may allow k& to be
infinite in the above definition. Then effective Cartesian algebras of Laurent series
over € are defined in a similar manner as in the previous section.

From power series to Laurent series. Assume that R is an effective €-algebra
of power series in zy,---,zp, which contains zy,---,z;. Then we can naturally
associate an effective €-algebra £ of Laurent series in zq,--- , z; to R by

£= {Zijl szu|p17 y Pk € Z,UE %}

Laurent series in £ are redundantly represented as pairs (21" -+ 2.*, u), whence we
always have a priori bounds for their valuations in zq,--- ,z;. Therefore, if R is
automatic, then so is £. Allowing £k to be infinite, we deduce that effective Cartesian
algebras of power series naturally induce effective Cartesian algebras of Laurent
series.
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From Laurent series to power series. Assume that £ is an effective €-algebra

of Laurent series in zy,---,z, which contains z,27",---, 2z, 2;'. Then we can
naturally associate the effective €-algebra | = £N &[[z1, - - , z;]] of power series to
£, which contains zq,--- , z. We notice that if £ is automatic, then so is R, and we

have an algorithm for testing whether a series u € £ belongs to fR.

Remark 9.2. Let R be an effective algebra of power series, £ the natural effective
algebra of Laurent series associated to SR, and % the natural effective algebra of
power series associated to £. In general, we have 58 D R, but not /% = R. This is
because z;u € R does not necessarily imply u € R for v € €[[z1,--- , z¢]]. On the
other hand, we do have £ = £, when starting with an effective algebra £ of Laurent
series instead.

9.2.4 Automatic transseries

Automatic transseries. Let € be any effective totally ordered exp-log field of
constants and T = €[z the field of grid-based transseries in x over €, as defined in
chapter 1. Let ¥ be an effective totally ordered exp-log subfield of T, which contains
x and €. A subset 2 of T is said to be automatic, if there exists an algorithm which
takes f € 2 on input and which returns a finite labeled tree T" with the following
properties:

AT1. Each node of T is labeled by a couple (g, P), where g € 2 and P is an
algorithm.

AT2. The root is labeled by a couple of the form (f, P).

AT3. The label of each leaf has the form (—exp, x, P), where P is a 'dummy’
algorithm.

AT4. For each interior node labeled by (g, P), whose successor nodes are labeled
by (p1,Q1), -, (pr, Qr), the transseries ¢ is an automatic Laurent series
in e, -+ e and P an expansion algorithm for ¢.!

The tree T is called an automatic expansion tree for f. A transseries in ¥ is
said to be automatic, if it is an element of some automatic subset of .

!Here we understand that the underlying automatic set of Laurent series for this expansion
algorithm is a suitable set of Laurent series in €Le®t, -  e?*] N2
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Effective normal bases and the structure theorem. An asymptotic expansion
tree relative to a normal basis B C T (as defined on page 52) is an asymptotic
expansion tree T', whose labels except the root’s one have the form («'log 6, P), with
a € € and 6 € B. An effective normal basis is a normal basis B = {6, ,6;},
such that we have an asymptotic expansion tree for each 6; with ¢ > 1 relative to

{61, ,0;x}, where log 6; = 6;«.2

Theorem 9.1. (Effective structure theorem) Let 2 be an automatic subset of
T and By C % an effective normal basts. Then there exists an algorithm which takes
f e on input and which computes an effective normal overbasis B C X of By and
an automatic expansion tree for f relative to B.

Proof. We only give a sketch of the proof, which is analogous to the proof of
the theoretical structure theorem on page 53. Given f € 2, we first compute an
automatic expansion tree T of f. If T is a leaf, whence f = expl_o1 x, then we
compare [ with the level ly of By, and either insert log; "z, - - - ,logl_ol_1 into By, in
which case we are done, or replace f by €!°6/ and recursively apply the algorithm.
If T'is not aleaf, then let (1, @Q1),- - , (¢r, Qk) denote the labels of the successors
of the root. We recursively compute an effective normal overbasis B” C ¥ of By and
automatic expansion trees for ¢, - - - , ¢ relative to B’. Now we compute the normal
basis B as in the proof of the theoretical structure theorem, using the algorithm add.
In our case, B is an effective normal basis and the image of f by the embedding of
ClLer,--- ,e¥] into C[64;--- ;6,1 is computed by using the formulas from the
end of section 1.4.3. g

The following corollary of the structure theorem is proved by mimicking the
algorithm expand from chapter 7. As the result will not be used in what follows,
the details of the proof are left as an exercise to the reader.

Corollary. [If % is an automatic subset of X, then so is the exp-log subfield of T
which is effectively generated by 2. g

Automatic multivariate transseries. Automatic multivariate transseries can
be defined in a similar way as above, by labeling the leaves by pairs (— exp, ;, P)
in AT3, for some z; in a finite set X = {xy,--- ,2,}. For more details about
multivariate transseries from the effective point of view, we refer to chapter 11.

?We remark that this definition implies that we have automatic Cartesian representations for
the log &; with ¢ > 1. Although this property could not be derived directly from the definition on
page 168, it resulted indirectly from theorem 7.1, because of the restriction to exp-log functions.
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9.3 Cartesian representations

Let €LXT be the ring of grid-based series over an effective field € in an effective
quasi-ordered monomial group X. Let zy,--- .z, be formal variables, which rep-
resent infinitesimal monomials Z7,--- ,Zx in X. Then we have a natural mapping
Clzy, -+, 2l — CLXT; v — u by proposition 1.3 and remark 1.3. We say that a
Laurent series u € €[z, - , 2,1 is a Cartesian representation for w. In this sec-
tion, we will generalize the algorithms from section 7.3 for Cartesian representations
which belong to an effective Cartesian algebra £ of Laurent series.

9.3.1 Intermediary dominant monomials

Let u € £7 be a Cartesian representation of a series in €[X] and let my,--- , My be
the dominant monomials of w. A set of intermediary dominant monomials of
u is a finite set G of monomials in Sz with @ = [u|(G)], such that each of the n; is

represented by one of the elements in ¢ and such that each element in G represents
a monomial in (my,--- ,My). If w=0 then such a set is necessarily empty.

In this section we will present a generalization of the algorithm idm which in-
corporates an asymptotic zero-test at the same time. As in section 7.4, this implies
the need for an algorithm simplify in order to eliminate redundant elements in
Z. It X is an effective totally ordered monomial group with Q-powers, such an al-
gorithm is obtained by a straightforward generalization of the algorithm simplify
from section 7.4. In the other case, we assume that X is generated by a finite num-
ber of monomials, on which asymptotic constraints of the forms (8.3) and (8.6) may
be imposed. Then the algorithm simplify from section 7.4 again generalizes: the
cases when 1 = z{" -+ - z,*7" are infinitesimal, Archimedian, resp. infinitely large in
lemma 7.3 are now distinguished using automatic case separation, by imposing the
constraints m << 1,11 < 1 resp. 11 » 1.

Whenever a redundant element in 7 is eliminated by simplify, the Cartesian
representation of u needs to be rewritten as an element in 8217...722/, where the 2/

represent new monomials in X and the Z; are positive integer power products of the 2.
Sets like Z and 7’ are called Cartesian coordinates, changes of coordinates of the
above type Cartesian changes of coordinates, and 7' is said to be wider than
7. We notice that the rewriting of u can be done automatically, by the properties
of effective Cartesian algebras.

As before, we will denote by <z the componentwise ordering on Sy = 2. . zZ.
Restrictions of Cartesian representations in £z are computed in a similar fashion
as in proposition 7.1. We will also denote by <x the quasi-ordering on Sz induced
by <x, where we warn the reader not to confuse these different quasi-orderings and
that the quasi-ordering <y on X is opposite to the asymptotic ordering <. We
can now specify the generalization of idm; its termination and correctness proofs are
analogous to those of idm from page 175 and zero_test from page 179.
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Algorithm idm(u).
INPUT: A Cartesian representation v € £,, ... ., for a series w € €[X]].
OUTPUT: A set of intermediary dominant monomials for u.

e Let 2 be the dominant monomial of v in z;, for 1 <7 < k.
Gim {2t
while true

if v = 0 then return ¢

M :={n € GVmeG 1 fxm}

if M contains g # 1 with I@ = T then return idm(simplify(u, M))

if > .en ug # 0 then return ¢

if there exists a final segment I of G\ M for xx with u — [u|(IL)] =0
then choose I maximal with this property, and set ' := II.
else G := (G\M)U M{z,--- ,z;}

e Fliminate non minimal elements from .

9.3.2 Infinitesimalization and regularization

Let u be a Cartesian representation of an infinitesimal series in €[[X]. Although
u is not necessarily C-infinitesimal itself, it is always possible to compute another
Cartesian representation u’ of @ which is C-infinitesimal. The replacement of u by
such a ' is called infinitesimalization of .

Proposition 9.2. There exists an algorithm, which given a Cartesian representa-
tion u € £,, ... ., of an infinitesimal series w computes a C-infinitesimal Cartesian
representation u' € £ . o, for w, with k' < k.

)

Proof. The algorithm is analogous to the algorithm from the proof of lemma 7.1.
Here we apply simplify each time a new Cartesian coordinate is introduced, in
order to force k' < k. O

Let u be a Cartesian representation of a regular series in €[X1. Again, u is
not necessarily C-regular, although it is possible to compute a C-regular Cartesian
representation u’ for u. Replacement of u« by v’ is called regularization of .

More generally, a Cartesian representation u € €[Lzy,--- , z;] for w is said to be
faithful, if the natural mapping z7--- zZ — X induces a bijection between the set
of dominant monomials of the Laurent series v and the set of dominant monomials
of w. The following proposition generalizes and improves lemma 7.2:
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Proposition 9.3. There exists an algorithm, which given a Cartesian repres-
entation u € £,, ... ,, for a series w computes a faithful Cartesian representation
u' € 8217...722/ in u, where k' < k.

Proof. We first compute a set of intermediary dominant monomials G = {my, - - ,
I, } for u by idm. We notice that there do not exist m; # 1; in ¢ such that m = 1
is a dominant monomial of @, because this would have been detected in

if |[M| > 1 then return idm(simplify(u, M)).

Now as long as (¢ contains monomials 1; <y 117, we do the following: we introduce
the new Cartesian coordinate ¢ = m;/1; and rewrite

(1)) €
wim LAEINC )
I
In these new coordinates, u admits G := {1y, -+ , 01,41, - ,In | as set of

intermediary dominant monomials. We finally eliminate one of the new coordinates,
using simplify and the multiplicative relation (m; = ;.

After a finite number of steps, our procedure yields the desired faithful Cartesian
representation for u. 0

9.3.3 A variant of idm

The algorithm idm from section 9.3.1 has the property that the Cartesian coordinates
may be simplified during the execution. However, for the purposes of chapters 10
and 11 where additional assumptions are made on the Cartesian coordinates, such
simplifications may be undesirable. In this section, we show how an admissible set
of dominant monomials w.r.t. the original coordinates can be found, if such a set is
known w.r.t. wider coordinates.

Lattice subalgorithms. Before stating the algorithm, we first need a preliminary.
Let Z and Z’ be sets of Cartesian coordinates, such that 7’ is wider than Z. Then
we have a natural mapping ¢ : Sz — Sz, which is neither injective nor surjective in
general. Interpreting ¢ as a linear mapping from Z* into Z* via natural isomorph-
isms, we recall that there exists algorithms to compute generators for the kernel of
@ and to compute a preimage of any element in the image of ¢. For instance, the

LLL-algorithm can be used for this (see [LLL 82]).
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Algorithm idm(u).

INPUT: A Cartesian representation v € £,, ... ., for a series w € €[X]].

OUTPUT: A set of intermediary dominant monomials for v w.r.t. the Cartesian
coordinates zq,--- , 2.

G:=¢
o Let ' = 291+ .. Z?”N be a superset of supp u.

repeat
e Let H be a set of intermediary dominant monomials for u — [u|(G)] w.r.t. a

wider set of Cartesian coordinates z{,--- , z.,.
e Compute ¢~ '(H)NT, where ¢ is the natural mapping from Sz into Sz.
G:=GU (e ' (H)NT).
until H = ¢

return ¢

Proposition 9.4. The above algorithm idm is correct and terminates.

Proof. Let GGy,Gy, - resp. Hy, Hy,--- denote the successive values of (G resp. H
during the execution. Since (Gy) C (G3) C --- forms a strictly increasing sequence
of final segments of I'; idm terminates by Dickson’s lemma.

At the end of the algorithm, we have [u|(G)] = @, since H = ¢. Furthermore,
since H; is chosen to be a set of intermediary dominant monomials for u — [u|(G—1)]
for all 7, we have

U u— [ul(Gr)] = u—[ul(Ga)] > ---.

This implies in turn that the maximal elements in each G; for < were already in

(1. Since there exists an element i1 € H; with T < @ (if @ # 0), there exists also
such an element 1’ € (G;. Therefore, G is an admissible set of dominant monomials.

4

9.4 Extraction of coefficients

Let X be an effective quasi-ordered asymptotic scale, which admits a basis B, and
let £ be an effective Cartesian algebra of Laurent series. Given a Cartesian repres-
entation u € £z of an element w € €L[X] and 6 in B, a natural question is how
to compute the asymptotic expansion of @ in 6. Modulo the insertion of new ele-
ments into Z, we may assume without loss of generality that for all z € Z we have
Z = 27627 for some z/7¢¢ € Z% free from 6. If ., > 0 for all z € Z, then the first
terms of the asymptotic expansion of @ can be computed by a natural generalization
of proposition 7.3 (see section 9.4.1). The other case is far more intricate and we do
not know of a general algorithm to compute the expansion of @ in 6.
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To see where the difficulties lie, consider the following example: let B = {6, 65}
and 7 = {z1,22} = {61,62/61}, where 6; » 65.> Let u be a Cartesian repres-
entation in zq,z3. First of all, we observe that the expansion of @ w.r.t. 6; is
not grid-based in general, although the coefficients are grid-based. For instance, if
u=1/(1 =z — z3), then

=Y

A

65"

. 1 .
6! — 6.
1 — 6, DY !

ieNl_ 62

A second, more serious problem is that we need to compute the diagonal
[ul{zy23|a € Z}],

in order to get a Cartesian representation for [69]u. Unfortunately, “the largest
class”, as far as we know, in which diagonals of the above kind can be computed
automatically, is the class of holonomic functions (see [Lip 89|, for instance). In
particular, there is no reason for a Cartesian algebra like £ from chapter 7 to be
stable under taking diagonals.

Fortunately, the exact computation of coefficients of the form [6°]w is not needed
for the applications we have in mind. Instead, we will only need suitable approx-
imations of them, which we call pseudo-coefficients. Before introducing these in
section 9.4.4, we first show how to test whether u is equal to its restriction w.r.t.
a generalized diagonal (see section 9.4.2) and whether @ depends on & (see 9.4.3).
Actually, we will even consider the extraction of pseudo-coefficients w.r.t. several
variables in B.

9.4.1 The “easy” case

Assume that for all = € Z we can write Z = /6%, where 2’ € 7 is free from 6 and
« 2= 0. Then idm, proposition 9.3 and the following straightforward generalization
of proposition 7.3 can be used to compute the dominant term of the expansion of @
in 6 (whence the first n terms for any n € N):

Proposition 9.5. Let u be a Cartesian representation in £z of a series f in
CLXT, where X admits a basis B. Assume that u has a unique dominant monomial
2tz k. Let 6 € B be such that z; does not depend on 6 for |l < i < k and
Z = zlfree6°” for 1 <o < I, with Zlfree free from 6 and o; > 0. Then the dominant
exponent of f w.r.t. 6 equals

P = proq 4 -+ oy

and
([ 2 u) (=) (2 ey

is a Cartesian representation for [6"1]f. O

3The notation [ is used in order to refer to a “natural Cartesian reprentation” of a transseries
(or series f). In the present case, we have 6, = z; and 62/6; = z3 by definition.
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9.4.2 Diagonal tests

Let u(z1, z2) be a Laurent series in two variables in an effective Cartesian algebra £.
Then u = [u|(z122)7], if and only if u(z122, 2122) = u(z%, z2). In particular, we have
an algorithm to test this, by the properties of effective Cartesian algebras. More
generally, let Z = {z;,--- , z;} and let A be a generalized diagonal of Z%, i.e. A
is a subgroup of ZZ, which is generated by the intersection of a subspace of Z? with
ZN. We will show how to decide whether u = [u|A] for u € £., ... .,. This problem

is essentially a problem of “discrete ordered linear algebra”:

Proposition 9.6. Let A and M be k x [ resp. k X k matrices with entries in N
resp. N*. Assume that | < k and the rank of B = M A is . Then there exists an
invertible matriz U with entries in QF, such that B = UA.

Proof. By classical linear algebra, there exists an invertible matrix V' with coeffi-
cients in @, such that B = VA. Now consider the matrix Uy = AV 4+ (1 — A\)M. We
have B = UyA for all A € Q. V' being invertible the polynomial det U/ in A is non
zero. Hence, det Uy # 0 for all A # 0 sufficiently close to zero. Since the entries of
M are in N*, the matrix Uy has coefficients in Q7 for A sufficiently small. Hence,
U = U, tulfills our hypothesis for some sufficiently small A. O

Proposition 9.7. Let A be an k x | matriz of rank | < k with entries in N. Then
there exist matrices M and U with entries in N*, and respective ranks | and k, such

that MA=UA and MA has rank [.

Proof. Let M; be an arbitrary matrix of rank [ and with entries in N*, such that
Mj A has rank [. By the previous proposition, there exists an invertible matrix U
with entries in @7, such that ;A = M;A. Let p € N* be the greatest common
divisor of the denominators of the entries in U;. Then A = pA; and U = pU;
obviously fulfill the requirements. O

Clearly, the above proofs actually provide an algorithm to construct M and U.
Let us now come back to our initial problem, and let &y, --- , 8 € Z" be expo-linearly
independent generators for the group A? with Q-powers. Each §; corresponds to a
column of a k x [ matrix A with entries in N, by decomposing §; w.r.t. Z. Now let
M and U be as in proposition 9.7. Then u = [u|A], if and only if M xu = U x u,
where the matrix action x is defined as follows:

M, .V MV
M *u = Z UV, ViR X .

VeZk

Remark 9.3. To check Mxu = Uxu in a reasonably efficient way, it is important to
choose M and U, such that their entries are as small as possible in proposition 9.7.
We have not yet undertaken a detailed study of this issue.
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9.4.3 Dependency on basis elements

Let B’ be a subset of B. We now present an algorithm to test whether the class
u of a Cartesian representation u € £z depends on B’. That is, we test whether

u = [[Igen 6°]u.

Algorithm depends(u, B').

INPUT: A Cartesian representation v € £,, ... ., for a series w € €[X]].
An subset B’ of the basis B for X.

OUTPUT: The result of the test whether @ depends on B’

A=

while true
if v = 0 then return true

G := idm(u)
if 1 depends on B’ for some 11 € G then return false
A:=AUG

e Choose 1 minimal in G for <x.
if [ulmd™] = [ulu(I' N AD)] for some initial segment [ of G for <x then
e Choose I maximal with this property, and set u := u — [u|m/"].

Remark 9.4. We notice that the problem of computing generators for I N A? is
an easy application of the LLL-algorithm.

Remark 9.5. We assume that redundant elements in Z are eliminated during the
successive applications of idm, whenever possible.

Proposition 9.8. The algorithm depends is correct and terminates.

Proof. The correctness of the algorithm is clear, since the part of @ which depends
on B’ does not change throughout the algorithm. Assume that depends does not
terminate on some input. The dimension of A? being bounded, A? and A" are
constant after a sufficiently large number of iterations. Similarly, Z remains constant
after a sufficiently large number of iterations.

By Dickson’s lemma, the sequence of successive choices for 1y admits an increasing
subsequence for <z, say 111,113, - - - . Without loss of generality, we may assume that
A% and Z are constant from the choice of 1y on. Let I be the smallest initial segment
of Z for <x, such that there exists an n, for which 1, 1,41, -- are all contained
in 1, I". We claim that for each ¢ € N, there exists an m > n with 1, € 1, (11 [)i.
Indeed, otherwise there would exist a z € [, such that the exponent of 1, in z
remains bounded by ¢ for all m > n, whence this exponent tends to a finite limit.
But this would imply that 1., 1,11, -+ are all contained in 1, (1 — {z})" for some
n' > n, which contradicts the minimality hypothesis on I.

Let v = [ulm, "] — [ulm, (I N AD)], just after the choice of 1m,. Let M =
1,271 - -z * be a dominant monomial for v. Such a monomial exists, since v # 0,
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and depends on B’. Let & = max(ay, -+, o). By our claim, there exists an m > n
with m,, € m,([T71)**'. Since u remains unaltered except for terms which do not
depend on B’ and since M < M, the term uy,m of u must have canceled out against
another term in the call of idm which precedes the choice of 1,,. But this contradicts
the constancy assumption on Z. O

9.4.4 Pseudo-coefficients

Let B’ be a subset of B and let u = []5cp 6% be a monomial in Sgr. In this
section we will show how to compute the pseudo-coefficient (u)f of f in u, where
f resp. u are represented by u resp. m. The idea behind pseudo-coefficients is the
following: if f/u is a series which is free from B" C B, then (u)f should coincide
with [a]f. Otherwise, they should coincide at least up till terms 7, with 7 »= ™ for
each dominant monomial m of f/u— [u]f. Intuitively speaking, a pseudo-coefficient
is just sufficiently close to the real coefficient to make the algorithms which use
them work. Pseudo-coefficients are computed by slightly modifying the algorithm
depends from the previous section:

Algorithm pseudo_coefficient(u, ).

INPUT: A Cartesian representation v € £,, ... ,, for a series f € €[X].
A monomial u in Sg/, where B’ C B.

OuTPUT: A Cartesian representation for (u)f.

u:i=u/u

Up i= U

A:=¢

while true
if u =0 then return ug — u

G := idm(u)
if 11 depends on B’ for all i1 € G then return wug — u
A:=AUG

e Choose 1 minimal in GG for <x, such that 11 does not depend on B’.
if [ulm/"] = [ulu(I N AD)] for some initial segment [ of Z for <x then
e Choose I maximal with this property, and set u := u — [u|m/"].

Remark 9.6. In principle, we may have to introduce some new Cartesian coordin-
ates in order to compute the Cartesian representation u. However, in practice such
a Cartesian representation is often known already, in which case we may use this
one instead.

The termination of this algorithm is proved in a similar way as the termination of
depends. Although pseudo-coefficients are not defined canonically by the algorithm
pseudo_coefficient, they always do satisfy the following property:
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Proposition 9.9. For any possible outcome of pseudo_coefficient, each dom-
inant monomial of f/a — (a)f depends on B'. O

9.5 Automatic expansion of £-finite transseries

Let £ be an effective Cartesian algebra of Laurent series over an effective ordered
exp-log field €. We say that £ is an effective exp-log Cartesian algebra,
if £ is effectively stable for left composition of infinitesimal Laurent series with
/(1 4 z),log(1l 4+ z) and e*. Let ¥ be the smallest subfield of €[[xl, containing
x, which is stable under left composition of infinitesimal transseries with Laurent
series in £. Transseries in ¥ are called £-finite. They are represented by £-exp-log
expressions, which are expressions built up from x by the exp-log field operations
and left compositions with elements in £. We notice that £ contains in particular
the constants in €. In this section, we will show that ¥ is an automatic effective
exp-log field.

9.5.1 The basic expansion algorithm

The following expansion algorithm is a straightforward generalization of expand
from chapter 7. As before, B = {6y, ,6,} is a dynamic effective normal basis,

which is initialized by B := {z7'}.

Algorithm expand(f).
INPUT: An £-exp-log expression f in ¥.
OUTPUT: A Cartesian representation f for f.

Case f = z: Return (z71)7%
Case f=u(gi, - ,g) € Ly gt

STEP 1. Compute Cartesian representations gi,--- ,g; for gi,--- ,g; by expand.
Check whether ¢y, -+, g; are infinitesimal.
Infinitesimalize g1, - , g;.

STEP 2. Return u(gy, -, ¢i).

Case f = gl|:|927 e {—I_v BEERE /}
STEP 1. Compute Cartesian representations g1, g, for g; and g, by expand.
If 0=/, then check whether g, # 0 and regularize g,.

STEP 2. Return g10gs.

Case f =logg:

STEP 1. Compute a Cartesian representation g for g by expand.
Compute the dominant monomial of g via idm.
Regularize g.
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STEP 2. Compute ¢ and ay, -+ ,a, € €with e < 1 and g = ¢,67" - -- 6o (1 4 ¢).
If ay # 0, then insert log™' 67! into B.
STEP 3. Return loge, 4+ a1log 61 + - - - + a,,log 6, + log(1 + ¢).

Case f =expyg:
STEP 1. Compute a Cartesian representation g for g by expand.
STEP 2. If ¢ is bounded, then do the following;
A. Compute ¢, = gy times and ¢ = g —c.
B. Infinitesimalize ¢.
C. Return e®e=.
STEP 3. If there exists an 1 <1 < n with g < log 6;, then do the following:
A. Compute the limit A of ¢/ log 6;.
B. Return 6}expand(ed=*losbi),
STEP 4. In the remaining case, do the following:
A. Compute i* with log |g| < log &;«.
B. Decompose g = g7 + ¢g~, with gt = gy nmi* times -

c. Insert e 9%l into B.

1ot —sien gt g
D. Return (e lg |) signgted

Theorem 9.2. Let £ be an effective exp-log Cartesian algebra of Laurent series.
Then the exp-log field X of L£-finite transseries in v is effective and automatic. [

Example 9.2. The above theorem seriously enlarges the class of functions for which
we can compute automatic asymptotic expansions. For instance, modulo Schanuel’s
conjecture, we may include the power series of the trigonometric functions at zero
into £. Then the expansion algorithm may be applied to expressions like

1

% sin sin(x_l—l—e_m) .
. . 4
sinsim e~ %

€

and many others. When we allow heuristic zero-tests for Laurent series, then we
may also include the Laurent series

1 1 > Ba;
log () = wlogz — 5 log + g log(2m) + 3 5oy s

in log™' = and ™" into Log—1 » -1+ Hence, we can automatically expand expressions

like

z,z"

(o 4 1/T(2)) — (o)
log '

In a similar fashion, many other expressions involving special functions can be ex-
panded automatically.
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9.5.2 A canonical expansion algorithm

In section 1.6 we have introduced the concept of canonical bases. If instead of
computing decompositions ¢ = ¢t +¢~, we compute decompositions ¢ = ¢' 4 ¢°+ g*
in step 4b of the exponential case of expand, then the normal basis B actually
remains a canonical basis. Such decompositions are computed using the formula

g'= > 1619+ >0 626,77 lg+ -+ D [6, - 656" ]g.

an<0 p—1<0 a1<0

Expansions of exp-log expressions with respect to canonical bases are interesting
because they do not depend on the order in which the expansions of the subex-
pressions are computed. However, we do not recommend the use of canonical bases
for practical purposes for two reasons: first, the complexity of algorithms based on
canonical may be dramatic, as shows the following example:

— el’N+~~~+x + ex—lexN-I-"'-I-l’ 4.,
where N is a very large integer. Indeed, in this example the computation of Vv +
.-+ takes a time proportional to N. A second reason not to use canonical bases is
that they essentially depend on the choice of x as “coordinate function”. Therefore,
canonical bases admit no natural generalization to higher dimensions.
Nevertheless, canonical bases are interesting for certain theoretical purposes, be-
cause the above algorithm shows that the purely unbounded part f' of a transseries
f € T is actually in ¥. If we take for £ the smallest Cartesian algebra of Laurent
series over &, such that its subset of infinitesimal elements is stable under left com-
position with exp z — 1,log(1 + z) and infinitesimal real algebraic power series, then
we have in particular:

Proposition 9.10. If f is an L-transseries, then so are fT,fT, fl and f*. O

9.6 Computations with implicit functions

9.6.1 Local communities

A local community of power series over (' is a Cartesian algebra R of power series
over (', which satisfies the following additional conditions:

LC1. Z1 € RZI‘
LC2. R is stable under the partial derivation d,,.
LC3. For each infinitesimal P € R,, .. with [z] - 20zp,]P # 0 we have a

homomorphism R. ..., ., & R., ..., which corresponds to the implicit

definition of zx41 € C[[z1, - - ,Zk]]7by P =0.

1Zk41
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The condition LC3 means that local communities are stable under the resolution of
regular systems of functional equations. In particular, R is stable under composition
and functional inversion, whence local communities are the natural local structures
in which all classical operations are defined:

Proposition 9.11. Let R be a local community of power series over C'. Then

(a) R is stable under composition.
(b) R is stable under regular functional inversion.
(¢) R is stable under extraction of coefficients.

Proof. Let u € R, ... ,,, where vy, - v are infinitesimal power series Ty, -+, 7]
in R, ... Applying £ times LC3 to the equations vy — oy, - ,v; — U] we ob-
tain a natural homomorphism of Ry, ... 2 ... -, into R, .. which sends u to the
composition of u with (vq,---,v;). This proves (a).

Next, let vq,--- , v, represent infinitesimal power series vy,--- , 0y € R, .. ..
If the linear parts of vy,--- ,v; determine an isomorphism of C*, then applying k
times LC3 to the equations vy — oy, - - - , v, — U, we obtain a natural homomorphism
of Ly ooy 2y, 2 1060 Ly oy o Left composition of this homomorphism with the
natural inclusion L., .., — Ly vz 20
L., and Ly, ..., . This proves (b).

Finally, let w € L., ... ., be given. Since [20]u is precisely the substitution of z
by 0 in u, we have [2{]u € L., .. ., by (a). More generally, for each i > 0, we have

; 1. o [Ou
o= 169 (52

whence [2i]u € L, ... ., for each 7. This proves (c). O

X

yields a natural isomorphism between

A Cartesian algebra L of Laurent series over ' is said to be a local community,
if its associated Cartesian algebra of power series is. By what has been said in
section 9.2.3, we can naturally associate local communities of power series to local
communities of Laurent series and vice versa. However, we usually start with a local
community of Laurent series because of remark 9.2.

Example 9.3. The intersection of an arbitrary family of local communities is a
local community. In particular, there exists a smallest local community over C'. This
local community contains all algebraic power series.

Example 9.4. Let C[[zy, 22, - - ]]°"" denote the set of power series u(zq,--- ,z)
which converge in an open neighbourhood of (0,---,0). and let C'[[zq, z9,--- 1"
denote the natural C-algebra of Laurent series associated to C[[z1, zg,---]]*"". By
the implicit function theorem, C[[z1, z2,---]]*"™ and C [z, 2q,--- 1" are local
communities.
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Example 9.5. The subalgebras of all regular D-algebraic power series resp. Laurent
series of C'[[z1, 22, - - ]| resp. C'[[z1, 22, - - - T are local communities (see section D.5.3).
More generally, the regular D-algebraic closure of a local community is also a local
community.

9.6.2 Effective local communities

Let € be an effective field of constants of characteristic zero. An effective local
community over €, is an effective Cartesian algebra over &€, which satisfies LC1,
LC2 and LC3 effectively. L.e. the partial derivations are effective, as well as the
natural mappings 1p from LC3. Moreover, these mappings 1p can be computed as

a function of P. The following proposition is the effective counterpart of proposi-
tion 9.11:

Proposition 9.12. Let R be an effective local community of power series over C'.
Then

(a) R is effectively stable under composition.
(b) R is effectively stable under regular functional inversion.
(¢c) R is automatic. O

Let € be an effective totally ordered exp-log field of constants. The above pro-
position implies that R is an effective exp-log Cartesian algebra, as soon as (' is a
totally ordered exp-log field with log(1 + z),e* € R.. In this case we say that R is
an effective exp-log local community.

Example 9.6. In section D.5.3 we have shown that the regular D-algebraic series
over € form an effective local community. In fact, local communities of this type are
sufficiently general for the applications to asymptotic expansion algorithms which
will be considered in this thesis. However, there is no need to restrict our attention
to this particular type of local communities.

Example 9.7. There exists a smallest local community PR of power series over
¢, which contains expz; and log(1 + z1). Since exp z; and log(1l + z1) are regular
D-algebraic, R is effective. This local community will be sufficiently rich for the
applications in chapter 11. We notice that the series in R are convergent, if € is a

subfield of C.

9.6.3 Automatic expansions of implicit functions

In section 3.1, we have described the Newton polygon method from a theoretical
point of view. In this section, we show how this method can be made effective in
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the setting of local communities. Although the results of this section will not be
applied in what follows, the section can be seen as an introduction to section 10.4.1.

Let € be an effective field of constants of characteristic zero, such that the solu-
tions in € to any polynomial equation over € can be computed by algorithm. Let
X be an effective totally ordered monomial group with Q-powers. Let £ be a local
community of Laurent series, and R the associated local community of power series.
Our aim is to compute the solutions to asymptotic equations in €[X] of the form

Po+Pif+PfP+--=0 (f xu€X), (9.1)

where there exists an 7 € N, with P; » P;a'~7 for all j € N. To do this, we assume
that the series Py + P, f+--- is given by a Cartesian representation u € R., ... ., 7/u,
for some finite set Z = {z1,---, 2z} of infinitesimals in X. We also assume that
ue Sy,

Remark 9.7. If P(f) = Po+ P.f+--- is a polynomial, then we obtain all solutions
to (9.1) by taking u small enough. Equations of the form P, f*+ P, f*t' +--- =0
with u € Z can be reduced to (9.1) by multiplication with f~*.

Theorem 9.3.  There exists an algorithm, which given P and v satisfying the
above assumptions computes the set of all solutions to (9.1) in €LXT.

Proof. We have to show how to make the different steps of polynomial_solve in
section 3.3 effective, taking into account the extension from section 3.4.

Let us first show how to compute an a priori bound dy for the Newton degree
of (9.1): we substitute f by f/min (9.1), thus reducing the general case to the case
when 11 = 1. Next we apply the algorithm idm to find the dominant monomial of
P when considered as a series in €[[f]][XT. Then dy is just the valuation of the
corresponding dominant coefficient as a series in f.

Let us now show how to perform steps 1 and 2, if we have an a priori bound
dy for the Newton degree of (9.1): we start by computing mp,, - - ,Mp, , using idm.
Then the potential dominant monomials i > u relative to (9.1) are necessarily of
the form o = J‘."/Mpl./MpJ with 0 < 7 < 7 < dy. To decide whether such a 11 is
indeed an potential dominant monomial, it suffices to check that mp, i < Mp, i’ for
all 0 < [ < dp. In particular, this yields an algorithm to compute d. The Newton
polynomials associated to the potential dominant monomials can be computed by the
hypothesis on €. Hence, we have an algorithm to compute the potential dominant
terms of f.

The only non trivial thing which remains to be shown is how to compute the
unique solution to P(d_l)(c,o) = 0 in step 5. Clearly, it suffices to show this for
d = 1. We first reduce the problem to the case when u = 1, u; = [f']Ju = 1 and
u € R, ... ,..;- This is done by substituting f by f/min (9.1), dividing v by u; and
regularizing u as a Laurent series in €[[f]][XT. Now the effective counterpart of
LC3 yields the unique infinitesimal solution to (9.1) in R, .. ., . O
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Remark 9.8. The substitution of f by ¢ + f in step 5 of polynomial_solve may
be unnecessarily expensive from a complexity point of view. Consider for instance
the example

(f_ 1 )2—6_9”2f:e_x (x — 00).

1 —z!

Application of the above algorithm leads to the refinement

1 e’ ~
= — 1).
fe=rm =t 5+ =1
However, the refinement
1 L
f — 1 -1 —I_ f7 (f _« 1)
—

would clearly avoid infinite loops as well and leads to simpler formulas. The reason
is that we did not exploit the information that z7! <& e™% <& ™.

Let us now sketch an alternative approach, based on the observation that we can
often efficiently check whether P(¢) = 0: for instance, a heuristic test is usually
sufficient. In the case when P is a polynomial, we can check whether P(yp) = 0,
by considering the g.c.d. of P,OP/df,--- 0 P/0f%!. As in the example above,
we will replace the substitution of f by ¢ + f by a less expensive substitution if
P(p) # 0. We denote u; = [f']u for each i. We assume that u = 1 and that we have
ordered z; <x -+ <x 2.

Let = z{"--- z;* and let z;* - - - z;* be the dominant monomial of F,. Without
loss of generality, we may assume that u; has been regularized, and that its dominant

e 2 for 0 < 4 < d: otherwise, we eliminate one of the z;

monomial is z{
using simplify. Now consider the Newton polynomial in zj:

(27 Tuo + ([ ™" Jun) fo 4 - 4 ([0 ua) £

If this polynomial has a root f. of multiplicity d, then we substitute f by f.zp* + f.
Otherwise, we consider the Newton polynomial in z; and zp_q:

05 2o+ ([0 o™ ) oo ([ [ )

We repeat this procedure until such a Newton polynomial admits a root of mul-
tiplicity d. Of course, this is ultimately the case, since the Newton polynomial in
Z1,+ - , 2 1s nothing but the usual Newton polynomial.

9.7 Newton polytopes

Let € and & be effective totally ordered fields and X be an effective monomial group
with Kpowers. We assume that X is admissible, i.e. given zq, -,z € X, we can
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compute a finite system of expo-linear constraints ¥ on z{*--- 2%, which determines

precisely the quasi-ordering induced by X.

Let f be a non zero series in €[X] and M its set of dominant monomials. The
convex envelope C' (when considering X as a vector space over &) of the final segment
generated by M is called the Newton polytope associated to f. The intersection
N = C N M is said to be the combinatorial Newton polytope associated to f.
If H is a hyperplane with H N C # @ and such that C is contained in a halfspace
with border H, then H N C is said to be a facet of the Newton polytope C' and
H N N a facet of the combinatorial Newton polytope.

Proposition 9.13. Let £ be an effective Cartesian algebra of Laurent series over
€. There exists an algorithm, which given a Cartesian representation u € £, ... .,
for a series f in €LXT computes the combinatorial Newton polytope associated to f.

Proof. Compute a set G of intermediary dominant monomials for u. Now assume
that the ordering on X induces on zf'--- 2% an ordering which is determined by a
set of constraints ¥ as above. Let F' be a subset of G and 11 € F', such that 1 is a
dominant monomial of w. Let ¥ be the set of constraints o < 1 for m € F\{m}
and 1 % 1 for g € G\ F'. Then a subset F' represents a facet of the combinatorial
Newton polytope associated to u if and only if ¥ U X' is consistent. The consistency

of ¥ U Y is checked using theorem 8.4. 4

Remark 9.9. Let ) be a totally ordered monomial groups with K-powers. Let
X — €Y1 be a morphism of multiplicative ordered groups. Such a morphism
extends by linearity into a mapping €[X1 5 ¢IYIT. Then the set F of those 11 in
M which minimize M) is a facet of N. Usually, M5y = a1y for all 1 € F: this is
called the regular case. The case when mys) > a1y for all m € F'is called the singular
case. See section 10.2 for more details.

In the case when we want to solve systems of equations f; = --- = f, = 0
with f1,---, f, € €LX], we need to consider the Newton polytopes associated to
fi,-+-, fn simultaneously. Then the analogue of a facet of the Newton polytope in
the case n = 1 is a compatible set of facets of these Newton polytopes. Let us now
make this concept more precise.

Let Cy,---,C, resp. Ny,---, N, be the Newton polytopes resp. combinatorial
Newton polytopes associated to fi,---, f,. Let By,---, B, be facets of Cy,---,C,
respectively. Considering X as an ordered &-vector space, there exist by definition

linear functionals ¢y, -+ ,¢, : X — K&, and numbers ¢, - ,¢, € K such that
C; C @i ([er,o0]) and B; = C; N7 (c;) for all 7. If we can choose ¢ = -+ =
©n, then we say that the facets Bi,---, B, are compatible. In this case, the
corresponding facets Iy = By N Ny,--- . F, = B, NN, of the combinatorial Newton

polytopes Ny, --- , N, are said to be compatible as well. In the effective context from
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above, compatible facets of the combinatorial Newton polytopes can be computed
by checking the consistency of systems ¥ U ¥j U --- U X! with obvious notations.

Remark 9.10. Let ¢ be as in the previous remark and let M;,--- M, be the
respective sets of dominant monomials of fi,---, f,. Let F; be the set of those 11 in
M; which minimize M) for each i. Then Fi,--- | F,, are compatible.



Chapter 10

Multivariate series

10.1 Introduction

Note. For convenience, we exceptionally use the letters x, y, etc. to denote positive
infinitesimal parameters in this and the following chapter. In order to avoid confu-
sion with the usual convention, we distinguish between = and x by using a different
font.

Let K be a field of characteristic zero. Let C' be a totally ordered real algebra-
ically closed field with K-powers. Let G be a non trivial totally ordered monomial
group with K-powers. Let X = {x1,---,x,} be a finite set of strictly positive infin-
itesimal parameters in (' [[G]]ﬁ_, the set of positive infinitesimal grid-based series in
GG. We recall that a series f € C'[Sx] is regular, if f admits a unique dominant
monomial (see page 42). Regular series are important because they are the only
ones which are invertible in C'[LSx 1 by proposition 1.2, whence the only ones which
can be composed on the left with other univariate series.

Although series f are not regular in general, they may be regular on certain
regions R of (C [[G]]ﬁ_)k. For instance, f = x# — x; is not regular, but on the
region R = {(x1,x2) € (C [I:G:l]ﬁ_)2|xl2 < x5}, f is a regular series in C'[[Sx1. Here

Sy =xE- -XZ;Z carries the natural' ordering determined by the asymptotic relation
~ on R.

Unfortunately, given an arbitrary series f on a region R, it is not always possible
to split up R in a finite number of regions, each on which f is regular: in general,
a sequence of changes of coordinates, or refinements, needs to be made, whose
inverses are determined by Puiseux series. For instance, in the case of f = x¥ — x5,
f is regular on the regions R = {(x1,x) € (CLGTY)?x < x5} and R = {(x1,x) €
(C |]:G:|]ﬁ_)2|xl2 » x5}, but some additional action needs to be undertaken on the
region R = {(x1,%) € (CLGTL)?x} = x3}.

'In terms of section 1.3, this means that <g is defined by xf‘1~~~xﬁp <R x101~~~x5”, iff
XY X0 X7 ~ﬁﬁp for all (X7, ---,%,) € R. Here we remind warning 1.1.

221
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In this chapter, we give an algorithm, which automatically performs the neces-
sary refinements in order to compute the generic dominant monomial of f. In other
words, we are able to decompose R in a finite number of regions, each on which
f has a well determined asymptotic magnitude. In section 10.2, we introduce co-
ordinate systems and refinements from a theoretical point of view. In section 10.3,
we consider the effective counterpart of section 10.2. In section 10.4 we describe
a generic generalization of the Newton polygon process. Finally, the algorithm to
compute generic dominant monomials is given in section 10.5.

Our algorithm has several applications: it provides a uniform way to compute
with multivariate series, but it can also be used to solve systems of asymptotic equa-
tions. The algorithm can finally be used to desingularize singularities determined
by multivariate series, although this topic will not be studied here.

B>

Let us discuss the relation between the results in this chapter and the classical
desingularization problem in algebraic geometry. Geometrically speaking, the main
difference between our approach and the more classical napproach is that we do not
search for a global non singular projective variety which parameterizes the original
singular variety: instead, we cut the singular variety into pieces, such that each piece
is non singular. Moreover, the resulting pieces can be described and parameterized
effectively. However, the different pieces are not determined uniquely (the way
we cut in particular depends on an elimination order on the variables), and our
algorithms do not provide information about how the pieces glue together.

In other words, we consider a somewhat easier problem in a less general setting.
Nevertheless, our way of describing singularities also has an important advantage:
instead of embedding the variety in a higher dimensional one, the dimensions of
the pieces are all bounded by the dimension of the original variety. Moreover, our
parameterization is more natural in some respects, because each piece is described
in a fairly easy manner, while the description of the non singular projective variety
may involve several complicated relations.

It is also in order to compare our results to what is known when the Laurent
series we consider are polynomials. In that case, Mora’s tangent cone algorithm
applies (see [Mora 82|, resp. [MPT 92]), and this algorithm can be used (see [AMR
89]) to compute standard bases in the sense of Hironaka (see [Hir 64]). In particular,
the desingularization process from algebraic geometry can be carried out effectively.

From the complexity point of view, one might expect that the more general types
of orderings, which are used in the tangent cone algorithm are more efficient, for a
similar reason that Groebner basis computations are usually more efficient than the
computation of Ritt-Wu bases. Whether this analogy holds is not clear at present:
our main technical ingredient is a generalization of the Newton polygon method,
which has no counterpart in the Ritt-Wu method. Furthermore, since our algorithm
has not been implemented, no practical evidence is available yet.
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10.2 Terminology

Linguistic convention. The following convention will be useful in what follows:
the set X is called a set of variables. Whenever the values of the x; are restricted
to belong to a region R, then X is called a set of coordinates (for R). Hence

coordinates are really determined by pairs (X, R), although we will often abusively
write X instead of (X, R).

Abstract definition of the function space F(R). We now describe a function
space consisting of formal expressions build up from X, the field operations and tak-
ing power series in other infinitesimal expressions. Hidden infinitesimal parameters,
which are needed to describe singularities are directly available as expressions in this
function space.

Denote by F(R,C[LGT) the set of mappings from R into C'[GT. This set is
an ordered ring, on which we define the asymptotic relations <« , < <, < and
< componentwise: for instance, f <« g if and only if f(P) < g(P) for all P € R.
There exists a natural mapping vx of X into F(R,C[LGT), which maps x; to the
projection mapping

(X1, , %) € R— X,.

Now let fi,--- , f, be positive infinitesimal elements in F(R, C[GT) and let us give
St ,....r, the natural ordering determined by <. Then we have a natural mapping

vt . s, from C'LSy, ... 1,1 into F(R,CLGT), which maps
Z ca17...7anﬂa1 cee fpa" € Cl]:Sfl7...7fp:|]

to the mapping
PeRw D> cCayranfi(P) - £,(P)™.

We define F(R) to be the smallest subring of F(R, C'[[G1), which contains the image
of vx, and such that imuvy, .. r, is contained in F(R), for all f,--- ,f, in f(R)i =

{f e F(R)|f < 1 A f >0}. Inparticular, we have a natural mapping vg of C [Sx 1]
into F(R), where Sy = xZ-- -XZ;Z carries the natural ordering determined by < on
R (notice that we should actually write S¥ instead of Sx). Whenever convenient,

we (abusively) identify elements with their images through natural mappings.

Changes of coordinates. Let X' = {x{,--- ,x{,} be a second set of strictly positive

infinitesimal variables. Let ¢ be a mapping of X’ into f(R)ﬁ_. Such a mapping

induces a region R¢ of (C I]:G]]i)k/ by

Re = {(f(xi)()glv 7)@?)7"' 7§(Xl/c’)()elv"' 7)229))

Then ¢ naturally extends into a mapping from C'[Sx.T into F(R), and from now
on we assume that we have done this. Moreover, there exists a natural mapping ¢
such that £ = { o vp,.

(X1, , %) € R}.
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If £ is an isomorphism and if there exists a morphism? y : C[Sx1 — C'LSx 1,
with vg = € o x, then we say that £ is a change of variables relative to R or a
change of coordinates. Assuming that ¢ is such, we have the following commut-

ative diagram:
VR

CLSx/ 1 - F(Re)

[N e

CLSx1 — F(R)

We notice that y preserves regular series. We also remark that coordinate changes
can be composed: if {' : CLSx»1 — F(Ry) is a second change of coordinates, then
£ o0& is also a change of coordinates, as illustrates the following diagram:

PR e

CLSx»1 — F(Reer)

!

[XIE\R | &

CLSx/ 1 5 F(Re)

N e

CLSx] — F(R)

A restriction of the coordinate system (X, R) is a coordinate system (X, R')
with B C R. Such a restriction induces a natural morphism F(R) = F(R'). More
generally, a refinement is a change of coordinates ¢ : C[[Sx/1 — F(R') with
R C R; the coordinate system (X', Ry) is said to refine (X, R). Again, refinements
can be composed: if ¢’ : CLSx»1 — F(R") is a second refinement, then ¢ o¢’ is also
a refinement, where ¢ is the natural isomorphism between F(R") and f(Rg 10le)
This situation is illustrated by the following diagram:

e,

CLSx»1 — F(R; )

L N

CLSx1 — F(R;) — F(R”>

/\ |-

CLSx] — F(R —»]—"R’) F(RL.,, )

ETovp

Let f be a Laurent series in C'[[Sx]. A desingularization of f relative to a
region R© C R is a refinement ¢ : CLSx/1 — F(R'), such that VR! is injective

?By morphism we mean here a morphism of strong C-algebras. L.e. y is a C-algebra homo-
morphism which preserves infinite summation.
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and x(f) is a regular series in C'[Sx/1. Here x is a mapping as mentioned above,
which is actually uniquely determined by the requirement that ¢ be a desingular-
ization. It can be checked that the composition of a desingularization of f with
another desingularization (in the sense of composition of refinements) yields again
a desingularization of f.

Example 10.1. Let f = xf — x;. If we have x{ < xJ or x; < x{, then we say
that we are in the regular case and vp yields a trivial desingularization of f. In
particular, we can expand

1 I xt X

=3 S5 5+
3 6 9

f x5 X5 X

on the region where x} < x; and
1 1 3 6
==+t -I- = -I-
foox X X
on the region where xj <« x{. If x} < xJ, we either have f < x{ or f < x{. In the
first case, the critical case, we can write x, = x12/3()\—|—5) withe €« 1and 0 < A # 1.
We then distinguish the three cases ¢ > 0, ¢ =0 and ¢ < 0, for which the following
refinements respectively desingularize f:
X=X, % = Xlz()‘ tx) g < 1);
X1 —X137 X = x{"(A = x}) (x; =
xi =X, x; = x|’

—_
~—

?

They respectively lead to the following expansions of 1/f:

A2
1 (1 /\3) 16 —I_ (1 /\3)2 16 -I'
I 1 3/\2
F7) oo T

S S

(1A )x° "
Finally, let us consider the singular case x{ < x; and f <« x{. Writing x} — x5 =
xie, with ¢ < 1, we have either ¢ > 0, ¢ = 0 or ¢ < 0. These three cases respectively
lead to the desingularizations

X, = X{S, Xy = x12(1 +x5) (x; < 1);

xi =x1", x = x*(1 = x5) (X < 1);

~—

?

~—

of f and to the following expansions of 1/f:

1 1 .
Lttt
f— 1 —_— 1 o« .. M
f - 3x'6xé 3x{6 !

Error.
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10.3 Effective refinements

In this section, we describe how the concept of coordinate systems and refinements
can be made effective, thereby establishing the framework for the algorithms in the
next sections.

10.3.1 Effective assumptions

In the rest of this chapter, we make the following effective assumptions:

AO0.8 is an effective field of characteristic zero.
A1.¢ is an effective totally ordered constant field with & powers.
A2.€ = &(M, g, - -+ ) is the effective parameterized constant field over €.

A3.£ is an effective local community of Laurent series over ¢.

Let us detail condition E2: any element in ¢ is a rational fraction in a finite number
of parameters over €. In our algorithms, we allow the dynamic imposition of polyno-
mial constraints on these parameters (either equations, inequations or inequalities).
The consistency of such systems can be checked by classical algorithms from effective
real algebraic geometry (see for instance [Col 75]). In practice, only a finite number
of parameters Ay, --- , \; are used at each instant, and new parameters Aj11, Aiyo, - -+
are introduced whenever necessary.

10.3.2 The coordinates

Coordinates. The coordinates are determined by couples (X, X)), where
— X ={x, - ,x,} is a set of formal variables.
— Y is a set of asymptotic constraints which determines a region R.

As was the normal basis B in the expansion algorithm, our coordinate system is
determined dynamically. This means that X and ¥ are global variables, which may
change during the execution due to refinements. We always work with respect to
the current coordinate system, which is determined by the last refinement.

The set of variables X. We assume the existence of an elimination ordering

>elim . >elim

X1 Xp

on the variables. Intuitively speaking, this means that z; will be eliminated before
x2, when necessary.
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The set of constraints >. The set ¥ is a consistent set of constraints of one of
the following forms:

S RREED S '
where aq,- -+, o, € Z. In section 8.4.2, we have shown how the consistency of ¥ can

be checked by algorithm?.

Initialization. At initialization, ¥ contains the constraints x; << 1 for all 1 < < k,
and optionally some additional constraints.

10.3.3 Cartesian representations

Dependency on coordinates. Let u be a Cartesian representation in zq,--- , 2
of a series f in €LSyT. We say that u depends on the coordinate x;, if Z; depends
on x; for one of the underlying Cartesian coordinates. Here we notice that this not
imply @ to depend on x;: consider for example the Cartesian representation zzy of
y,withzr =xy 1,75 = y.

Intermediary dominant monomials. For the computation of intermediary dom-
inant monomials, we use the algorithm idm from section 9.3.3. We recall that no
changes of the Cartesian coordinates may result from the application of this version
of idm.

10.3.4 Effective refinements

Refinements. In our algorithms, we only consider refinements of the form

R1. x, =0T+ x)) (x; < 1);
R2. x, =807 —x)) (x; < 1);

R3. x, =1v.
Here 11 is a C-infinitesimal monomial and v < 1 a C-regular Cartesian representation,
which do not depend on x;,---,x,_1. Notice that we have eliminated x; in the last
case, so that x;41 = X7, -+, %, = x)_;.

Automatic updating of Cartesian representations. Assume that we perform
a sequence of refinements of the above forms. Then the old coordinates can al-
ways be expressed effectively in the new ones and vice versa on the current region.
Refinements resp. desingularizations with this property are called effective. By
proposition 9.12, we can rewrite any series in the old coordinates as a series in the
new coordinates.

To perform these rewritings automatically when necessary, each Cartesian rep-
resentation in memory contains a field, specitying its Cartesian coordinates. Each

3Indeed, it suffices to consider the x; as parameters in G; this is equivalent from an asymptotic
point of view, since any series in Q:ﬂ:G]]ﬁ_ 1s asymptotic to its dominant monomial.
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time we attempt to access a Cartesian representation whose coordinates are not the
current ones, then we perform the necessary rewritings. We call this strategy the
automatic updating strategy.

Automatic updating of Cartesian monomials. Let g be a Cartesian monomial.
Then after a refinement of one of the form R1, R2 or R3, or a sequence of such
refinements, it is straightforward to compute the dominant monomial m of 1 w.r.t.
the new coordinates. Indeed, in the case of one refinement it suffices to replace x,
by I in . Using the automatic updating strategy, we assume that automatically
replace m by m whenever necessary.

Notice that we made a small abuse of language: the automatic updating of a
Cartesian monomial as a monomial and as a Cartesian representation do not coincide
in general. Nevertheless, ’Cartesian monomial” and "Cartesian representation’ should
rather be considered as data types, thereby eliminating the risk of confusion.

Automatic updating of X. We finally use the automatic updating strategy in
order to update the constraints in ¥: each time we perform a refinement, we replace
each monomial occurring in X by its dominant monomial.

10.3.5 Imposition of constraints

The default way of imposing a constraint of the form (10.3), is to insert it into X.
However, in case of constraints of the form

o B 24
Xy x, 7 =< 1,

the dominant monomial of x;"* - - x7'# w.r.t. the new coordinates is not necessarily
equal to 1, although is equivalent to 1. For this reason, we sometimes need the

following alternative algorithm to impose such constraints:

Algorithm constraint(nm < 1).

INPUT: A monomial 11 in Sy.

ACTION: Restricts and cuts the current region into parts, such that the dominant
monomial of 11 is 1 on each of these parts.

STEP 1. Let 1= xJ«---x;7, with o, # 0 (if [ = k, then we have nothing to do).
If oy < 0 then set o := —a; for all j > q.
Let m be a Cartesian monomial with I = g/, %1 -+ x, P,
Infinitesimalize m1.

STEP 2. Introduce a new parameter A > 0 in ¢.
Separate three cases and respectively refine:

X, =MmA+x) (x; K 1);
X, = WA —x) (x; < 1); (10.4)
X, = AIO.
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10.4 The generic Newton polygon method

The main piece of the algorithm to compute generic dominant monomials, is a suit-
able generalization of the Newton polygon method. The idea is to consider a series
in xp, -+ ,x, as a series in x; with generic coeflicients. The main difficulty is that
these coefficients are not regular in general, and we need to compute their generic
dominant monomials recursively, modulo refinements. Such recursive computations

lead to applications of the Newton polygon method on series in xg,--- ,x,, with
q= 1

The above discussion motivates the following definition: let f be a series in
X1, -+ ,X, and let © be a monomial in x;,---,x,_; for some ¢ > 1. We say that
the coefficient [u]f is Newton prepared, if [u]f is a power series in x, and the
dominant monomials of [u]f as a series in x,,--- ,x, are of the form m(x,/m)* for
fixed 17 and g in X441, ,X,. The corresponding Newton polynomial of [u]f is
defined by

PN = Y fumy(z0/m)° A,

aelN
The degree of P is called the Newton degree of [u]f.

10.4.1 The algorithm

For concrete computations, we first need an analogue of Newton prepared series for
Cartesian representations. This introduces a technical difficulty, since no Cartesian
representation for [u]f is available in general (see section 9.4). To overcome this
difficulty, we use pseudo-coefficients and we restrict ourselves to the case when f
admits a dominant monomial in 1S, ... s,

More precisely, let u be a Cartesian representation of f in zq,--- , z. We say that
X, is an ordinary variable in w, if w is a power series in z;, for some [ with Z7 = x,,
and such that z; does not depend on x, for 1 <. Let F' be a set of intermediary set

of dominant monomials of u. We denote
Fo={me Fieuady, ..}

Finally, let M the subset of F' of monomials which represent a dominant monomial
of f.

We say that u is Newton prepared relative to « and [, if x; is ordinary in u,
M N F,; # ¢ and the elements in M N Fy are of the form m = my(z; /) for fixed 11
and m with T € Sk, ...x, and T € 1S, .. x,- In this case, the coeflicient [u]f is
clearly Newton prepared as well, and its Newton polynomial is given by

P()) = Z um(zl/u)o‘)‘a'
iz /m)*EMNFy

We can now state the algorithm which performs one step of the Newton polygon
method:
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Algorithm Newton_step(u,u, F').

INPUT: A Newton prepared Cartesian representation v € £, .. ., relative to a

12k
monomial u € Sy, .. ., and a set F' of intermediary dominant monomials

for w.

q—1

ACTION: The algorithm refines x, = (£ x;) (x; < 1) or eliminates x, = Tv, where
v is a first approximation to a solution of wu = 0 in x,, and ¥ < 1.

STEP 1. Adopting the notations from above, test whether the Newton polynomial
P admits a root of multiplicity deg P. If so, then proceed with step 3.

STEP 2. Introduce the formal parameter A > 0 in ¢.
Impose the constraint P(A) = 0.
Infinitesimalize o,

Separate three cases and respectively refine:

()\—I—x) (x; < 1);
( ’) (x; < 1); (10.5)

q

Return.

adegP 1
STEP 3. Compute w := pseudo_coefficient (W,q)
a eg 1

2
Divide w by [z}]w

Regularize and infinitesimalize [z,°]w and w — [#,°]w
Compute the unique C-infinitesimal solution v to the equation w =0 in
z; by LC3, where v < 1.
Regularize v.
STEP 4. Impose the constraint ¢ > 0 on the dominant coefficient ¢ of v.
Separate three cases and respectively refine:

x,) (X, < 1);
x') (x) =< 1); (10.6)

||
p={gp=]
@| @|

(T +
(

X2
I
g

10.4.2 Termination lemmas

Let (X', R') and (X, R) be coordinate systems, such that (X', R’) refines (X, R).
We say that X' g-refines X, x{ = xq,--- ,x/_; = x,-1 and x, = g &+ hx] (x; < 1),
where g »= h are regular infinitesimal series in X 41, , X,.

For termination purposes, we now need to find suitable analogues for lemma 3.2
and lemma 3.3 from section 3.3. These analogues will establish that in a sequence of
g-refinements, resulting from repeated applications of Newton_step, the successive
Newton degrees in x, decrease by one at most every two steps. Truly, it happens that
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this phenomenon is independent of the first ¢ — 1 exponents in the corresponding
dominant monomials.

Lemma 10.1. Let f be a series in xy,--- ,X, and assume that X' is a coordinate
system which q-refines X via x, = g & hx} (x; < 1). Assume that

' ' R R
Loox(t - xr and (™t -+ x,"k are dominant monomials of f w.r.t. X resp. X'.
Xg— .
2. X" x, 7' is Newton prepared, of Newton degree ay.

Then ozg < ay.

Proof. We prove the lemma in the case when x, = g + hx;; the case x, = g — hx is

.. e / '
treated similarly. Denote w = x{" ---x; 7" and o' = x{™" ---x]_;“e=1. Let P be the

Newton polynomial associated to m(g) and relative to [u]f = 0, and let v denote
the multiplicity of ¢z as a root of P. We have

[ 1F =7 (75 ) (fax 1) g7 B

720

by expanding x, = g + hx, and

[ 1f = na(([x;9)f) g~ )b (5P (A) + o(1)),

v

by splitting the dominant part from the rest. Since g ~ x, on R’, we obtain
[qx;y]f < ([ux;]f) x; 7" h". (10.7)

More generally, we have on R’
[ 0 = 3 () ([N g h

Since [ux27]f is regular, we also have

([ax ] ) wx,s =< X - x5

Since x;'' -+ x'7 is a dominant monomial of f, we therefore obtain

([ ™) g = ([ o)) s,

for all v > 0. Hence,

([e'x] "] ) o' x

/ ([eaxa] ) wxg "0 x! b

(ot 1) et (25)™ (10.8)

q Xq

<« () g ()

Xgq

ES

X



232 CHAPTER 10. MULTIVARIATE SERIES

using (10.7) and the fact that x{all X -XZ’)% is a dominant monomial of f. We conclude
that o) < v < ay, since hx; < x;. O

Let us now establish a generalization of lemma 3.3, which says that if one step
of the Newton polygon method does not suffice to decrease the Newton degree, then
two steps do. We start by the ideal case, in which we know how to extract the

coefficient [u]f of f.

Lemma 10.2. With the notations and assumptions from lemma 10.1, let X" be a
coordinate system which g-refines X'. Assume that

1. a, =a, and g is the unique solution to the equation in x,:

aq_1>6“q‘1g
ox; e

s

=0.

" O‘k//

" . .
2. xl’cyl X)) is a dominant monomial of f w.r.t. X".

3. [x{al- X, 4 q—l]f is Newton prepared.

"
Then ay < og.

Proof. It suffices to consider the case when x, = g + hxé and x =g+ hx ” ; the
other three cases are treated similarly. Assume that o) = o, for Contradlctlon and

let
aaq—l

aXOZq—l

We first treat the “ideal case”, when (u)/ = [u]/. In this case, we have [qx;aq_l]f = 0.
It follows that on R":

I =

q q

[ax) ™ = ([ax, ")) g/ W0 (10.9)
of

! . . .
Since x;” (I -x)°7 is a dominant monomial of f and of, = v = oy, (10.8) becomes

([a'x; ]f) %) =< ([ux]f)ax] " he
= (Jax ) ux . (10.10)
Similarly (and with obvious notations), we have
"o Hog oo 1 10q Hog prog
([u"x) "] f) a"x; = ([u'x;"]f) ='x)""h (10.11)

([q’x”aq]f) q’x”aq

for the second g-refinement. Putting things together, we obtain

([ "] f) ' x) " b (by (10.11))
([ o b (by (10.10))
EF{ nea=l)f )qx"%—l (%7) (by (10.9))

([q”x”aq]f) q//X//ozq

e

XX

nag—1

A X

x| f ) ax;
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This yields the desired contradiction.
Let us now consider the other case, when (u)/ # [u]l. Let - oy, g denote the
substitution of x, by g. Since ({u)/) oy, g = 0, we have

[oy, 8 = (u(l/a — (a)])) Oy, 8-

By proposition 9.9, each dominant monomial of //u — (u)/ depends on x,- -+ , X,—2
or X;_1. dince

XN = (o, )b
= (I = ()] ox, gk,

we infer:

Each dominant monomial of q_l[x’aq_l]f depends on Xy, -+, x;_9 or X,—1. (10.12)

q

Now expand

X = (U + (0 = D(1x77)F) g+ Rest)h™* ™,

q q

Since m([ux; “*]f Jux; "¢ is a dominant monomial of f on /' by (10.10), each dominant

monomial of [x;"|f is bounded by ([ux;"]f)u for %, and Rest < ([ux;"]f)ug’.

We claim that any dominant monomial m of [xé’aq_l]f satisfies

= ([ax)]f ) g h

This follows from (10.12), if each dominant monomial of [x;aq_l]f is bounded by
([ax;"]f) ug’ for =, and is trivial in the other case. From our claim we deduce in
a similar way as before that

([ ™)) ax) " < anx) ™0

But this contradicts the fact that x{’alll . -x]’)’ag is a dominant monomial of f on R”.
Ol

10.5 Computation of generic dominant monomials

10.5.1 The algorithm dom_mon

In this section, we present the algorithm dom_mon, which computes generic domin-
ant monomials of a series f, whose variables are infinitesimal parameters in some
non trivial totally ordered algebra of grid-based series with &-powers. Hence, the
algorithm splits up the region on which f in a finite number of regions, each on which
f is regular, and on which the corresponding dominant monomial of f is computed.
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Algorithm dom_mon(u).

INPUT: A Cartesian representation v € £,, ... ,, of a series f in xy, - , X,.

k
OUTPUT: The generic dominant monomial of f.

By convention, we return 0 for regions on which f = 0.

STEP 1. Repeat the following until m # 'Recommence’:
A. Compute a set M of intermediary dominant monomials of w on R by idm.
B. If M = ¢ then return 0.
C. Separate a case for each facet F' C M, and do the following:
Select an arbitrary 11 € F.
Impose the constraint I < T for each m € M\ F.
Impose the constraint I < T for each ug € F'\{u}.
Set M := dom_sub(u, 1, F').
STEP 2. Return wm.

Let us shortly explain the algorithm: we repeatedly refine the coordinates until f
is regular. To compute the refinements, we select a combinatorial Newton polytope,
whose vertices are maximal for < among the dominant monomials, and then apply
a subalgorithm dom_sub. This subalgorithm either directly returns the dominant
monomial of f, or, in the case when more refinements are necessary, it returns the
symbolic value "Recommence’.

Subalgorithm dom_sub(u, u, F').

INPUT: A Cartesian representation v € £,, ... ,, of a series f in xy, - , X,.

k
A monomial 7 in Sy, ... x,_;-
A set of monomials F', such that F, # ¢.

OuTPUT: Either the dominant monomial M of [u]f or 'Recommence’.
In the first case, I, = {am/u} at the end of the algorithm.

STEP 1. If x, is ordinary in u, then separate the non singular from the singular
case and respectively proceed with step 3 or step 4.

STEP 2. If m/m depends on x, for some m,m € Fy, then fix i € F,, execute
constraint(m < §) for all m € Fy\{u} and return 'Recommence’.
Otherwise, let x;' be the unique monomial such that Fuxe # 0,
and return dom_sub(u,ux;, F)x;* (or 'Recommence’, if dom_sub returns
"Recommence’).

STEP 3. Let 11 be an arbitrary element in Fy.

Execute constraint(m < T) for all mg € F,\{u}.
Let m be the unique element of F; and impose the constraint [m]u # 0.
Return 1.
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STEP 4. For each a such that Fuxe # @, execute dom_sub(u,wx;, F').
Let n be the number of times that dom_sub does not return 'Recommence’.
It n =0, then return "Recommence’.
If n =1, then kill the current process.
Otherwise, choose m, 11 € F,, with T = ux, 11 and W = qxqalu_:’, such that

o' # a. Next, execute constraint(m®”’-'ur*~*"m”*'~* < 1) for each
'’ € F,, with @ = qxqa”m".

STEP 5. Execute Newton_step(u, 4, F') and return 'Recommence’.

Let us again detail the computations. Steps 1 and 2 reduce the general case to
the case when x, is ordinary in u. Then we distinguish the non singular case from
the singular one: the non singular case is when the monomials in the selected
combinatorial Newton polytope are equivalent to f in the refined coordinates; this
case corresponds to step 3 in the algorithm and directly yields the desired dominant
monomial of f. The remaining, singular case corresponds to steps 4 and 5 in the
algorithm and is essentially treated by the algorithm Newton_step described in the
previous section. Step 4 serves to Newton prepare u.

10.5.2 Termination proof of dom_mon

In this section we prove the termination of dom_mon; the correctness is easily verified
step by step, by checking the specification of each subalgorithm.

Theorem 10.1.  Let X = {x,--- ,x,} a coordinate system, whose underlying
region is determined by a finite sel of constraints of the form xi" ---x» < 1. Then
there exists an algorithm which takes a Laurent series u € £y .., on input and
computes a generic dominant monomial of it via a suitable refinement.

Proof. Assume that dom_mon does not terminate on some input u. Let ¢ be minimal
such that x, is refined infinitely often. Replacing u by its value after a large number
of iterations of step 2 of dom_mon, we may assume without loss of generality that
X1, ,X,—1 are constant during the execution. Moreover, modulo one refinement of
X, in step 2 of dom_sub, we may also assume that z7 = x, is ordinary in « throughout
the execution.

Lemma 10.3. Ultimately, all refinements of x, exclusively occur in Newton_step.

Proof. We first observe that only the subalgorithm dom_sub may lead to refine-
ments during the execution of dom_mon, since idm does not affect the system of
Cartesian coordinates. Now each call of dom_sub, for which the present ¢ and the
g in the algorithm correspond, falls into the singular case: otherwise, either one of
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the coordinates xy,---,x,_; would change or the algorithm would terminate. By
what has been said above this lemma, x;, does not change in step 2 of dom_sub
either. Consequently, during the execution of the algorithm, x, can only be refined
in Newton_step. ]

By lemma 10.3, we may assume without loss of generality, that all refinements
of x, occur in Newton_step. By lemma 10.1 and lemma 10.2, an infinite sequence
of such refinements does not exist. O

10.6 Comments and extensions

Case separations. In practice, it is necessary to limit as much as possible the
number of case separations. In particular, instead of splitting up into three processes
in (10.4),(10.5) and (10.6), the sign determinations can be postponed until we need
them: only in order to compute negative powers of monomials, we should check
them for being zero, and only in order to compute fractional powers, we should
check them for positivity. In example 10.1 this leads to the distinction of only 5
cases instead of 8.

Algebraically closed constant fields. For convenience, we have limited ourselves
to the case of a real algebraically closed constant field. Actually, the algorithms can
be adapted to the case when € is an algebraically closed field: in this case, x;, -, x,
are not required to be positive, but we assume the existence of canonical ¢-th roots

in € for all 1.

Solving implicit equations. The algorithm can also be used to solve the equation
f =0 in x;. Indeed, it suffices to choose the branches of the computation tree in
which x; is eliminated from the equation f = 0. It is also possible to solve a system
of equations fi,--- ,f, =0 1in xq,--- ,Xx,, by successively eliminating x; from f, = 0,
x; from f, = 0, etc. However, our algorithm can be optimized in order to eliminate
Xy, , X, simultaneously in this latter case. This is interesting because it strongly
reduces the number of cases to be separated during the execution.

The idea behind simultaneous elimination of variables is to replace dom_mon
by a routine which simultaneously computes the generic dominant monomials of
U, -+ ,Uy. In the main loop, we now consider tuples (Fy,---, F,) of compatible
facets of the combinatorial Newton polytopes associated to uy,--- ,u,. The subal-
gorithm dom_sub is applied to each (u;, 1, F;) in the same way as before.

Normalization of ¥. The presence of constraints of the form x; -+ x» =< 1 is
quite uncommon, since the resulting scales Sy are only quasi-ordered. We say that
Y is a normal system of constraints, if it contains only constraints of the form
xi" oo x87 K 1. An arbitrary system X of constraints of the form (10.3) can be
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normalized by executing constraint(x;"" ---x# < 1) for each x;"" ---x77 < 1 in X,

starting with those constraints which depend on x;, next those on x;, and so on.
It can be shown that dom_mon followed by the above normalization of ¥ actually

computes a generic desingularization of f. Since this fact will not be needed in what

follows, we will not prove it here.
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Chapter 11

Multivariate transseries

11.1 Introduction

In this chapter, we generalize the generic expansion algorithm from chapter 10 to an
expansion algorithm for multivariate transseries. The hard core of the algorithm is
the same as in the previous section, and consists of the algorithms dom_mon, dom_sub
and idm. However, to handle exponentials, many additional problems arise. We will
now give a brief overview of our approach to handle these.

The theoretical framework. In section 11.2 we define multivariate transseries.
Such transseries were already introduced in chapter 6, but we will recall a more
restricted setting which is sufficient for our applications. Consequently, all what
follows can be read independently from chapter 6, although the general theory may
provide better insight. We also define refinements and desingularizations of trans-
series, without searching for maximal generality.

The effective framework. In section 11.3, we describe the effective framework
which we use in this chapter. We introduce normal bases, as being the lexicograph-

ical multivariate counterpart of the previously defined normal bases: let x;,--- , x, be
the coordinates. Then a normal basis B is a disjoint reunion B = B;II---II B,,, where
cach B, is the set of basis elements which depend on x,, but not on xq, -+, x,_1.

Each B, corresponds to a normal basis in the old sense.

Normal basis can be well-quasi-ordered, by ordering first on the number of ele-
ments in By, then the number of elements in B, etc. This quasi-ordering underlies
most of the termination proofs in this chapter. The main difficulty we will encounter
is to avoid as much as possible the insertion of new logarithms into B. Neverthe-
less, in view of the above quasi-ordering, the elimination of a single element in B,
compensates the insertion of any number of logarithms and/or exponentials into
By I--- I B,.

In section 11.3.3, we define admissible Cartesian representations as being Carte-
sian representations so that of the classes of its underlying coordinates are ultra-
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regular. Roughly speaking, this means that the comparability classes of the co-
ordinates are well determined. For technical reasons, we will exclusively work with
admissible Cartesian representations in this chapter.

In section 11.3 we also add two new types of refinements to the ones we considered
in chapter 10: upward shiftings x, = exp™* x;_l and split-offs x, = Exéil (X) =K Xq)-
We finally introduce the concept of exponential rewritings, which is the analogue of

refinements for exponential basis elements in B.

The main algorithms. The sections 11.4, 11.5, 11.6 and 11.7 are highly interde-
pendent, although we have tried to keep them as understandable as possible when
read linearly.

In section 11.4, we give the expansion algorithm for multivariate transseries;
actually, the algorithm can easily be derived from the one on page 212 when con-
sistently applying the automatic case separation strategy.

Since we require all Cartesian representations to be admissible, the infinitesim-
alization and regularization algorithms from chapter 9 can not be used, without
showing how new Cartesian coordinates can be introduced while preserving ad-
missibility. In section 11.5, we present the algorithm ultra_regularize for this
purpose.

Section 11.6 is devoted to the analogue of the algorithm constraint from sec-
tion 10.3.5, for the imposition of asymptotic constraints of the form 1 < 1. The
treatment is far more complicated than the one from chapter 10, because we need
to avoid as much as possible the insertion of logarithms into the normal basis.

Finally, in section 11.7 we give the overall termination proof of our algorithms,
the algorithms Newton_step, dom_mon and dom_sub being identical to those from
chapter 10 (with some obvious changes).

Complements. The last two sections are complements.

Our algorithms are based on automatic case separation using a partial constraint
checker. In section 11.8, we provide a complete constraint checker, modulo an oracle
to decide the consistency of finite exp-log systems over the constants.

Finally, in section 11.9 we give an application of the main theorem of this section
to classical analysis. We show that the field of convergent transseries is a Hardy
field which is stable under the resolution of consistent zero-dimensional systems of
exp-log equations. In particular, this field is stable under functional composition
and inversion. As an application, the functional inverse of log zlog, * admits a
convergent transseries expansion (see also section 1.7.4).

11.2 Multivariate transseries and normal sets

Let us fix a totally ordered exp-log constant field C' and a finite set of transseries

parameters X = {x;, -+ ,x,}. We denote T = C'[tT]. Let R be a region of T?.
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Abstract definition of the function space F(R). Let F(R,T) be the set of
mappings R — T; P — f(P). Then F(R,T) has the componentwise structure of
an ordered partial exp-log ring: the logarithm logf of f € F(R,T) is defined if
and only if log f(P) is defined for all P € R. As in section 10.2, the asymptotic
relations <, %, <, <K, < are naturally defined on F(R,T). We also have a natural
mapping vx of X into F(R,T),and if f;,--- , f, are positive infinitesimal elements in
F(R,T) then we have a natural mapping vy, ... 5, of C'[L5,.... £, 1 into F(R, T), where
Stog, = £ £¢. We define F(R) to be the smallest partial exp-log subring of
F(R,CLXT), which contains the image of vx, and such that imuvy, ... r, is contained
in F(R), for all f,--- ,f, in F(R). We also say that F(R) is generated by imvy.
Whenever convenient, we abusively identify elements with their images through
natural mappings.

Normal sets. In order to generalize refinements, we need to generalize normal
bases. However, for technical reasons, it is more convenient to work with a slightly
weaker concept at this point, namely the concept of normal sets. Let B be a finite
set of positive infinitesimal elements in F(R), which contains X = {x;,--- ,x,}. We
say that B is a normal set relative to R and some total elimination ordering <"
on B, if the following conditions are satisfied:

NS1. X C B.
NS2. The logarithm of each element 6 € B\X is a regular transseries in
C'[LScetimgl, where

S<e”m6 = {(6/1)01 (6;6)Ck|6/17 762 <06 A Cry tr ,Ck € C}

is given the naturallordering determined by <.

Usually, B satisfies some additional conditions; see for instance the next section.
If B is a normal set, then we denote by Sg = BY the multiplicative group with
C-powers generated by B.

Refinements. Assume that B is a normal set relative to R and let £ be a mapping
of a set X' = {x{,--- ,x,} into F(R). Then { naturally determines a region of

(TL)""
Rf = {(g(xi)(XAlv U 7XAP)7 e 75()(]/)/)()217 e 7XAP))|(XAlv e 7)€p) € R}
Given a normal set B’ relative to Re, £ can naturally be extended into a mapping

from C'[Sp1 into F(R) and from now on we assume that we have done this.

Moreover, there exists a natural mapping F(Re) LN F(R) with £ = £ o vRe. If £ is
bijective and there exists a morphism? y : CL[Sgl — C' LS/ with vg = oy, then

Tn view of section 1.3, this ordering is the opposite ordering induced by <. Here we remind
warning 1.1.

?By morphism we mean here a morphism of strong exp-log C-algebras. l.e. x preserves the
exp-log C-algebra structure as well as infinite summation.
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we say that ¢ is a change of coordinates. Refinements and desingularizations are
defined in a similar way as in section 10.2 and they have similar properties as before.

11.3 The effective framework

11.3.1 Basic assumptions

In the rest of this chapter, we make the following effective assumptions:

A1.¢ is an effective totally ordered constant field, contained in some totally ordered
exp-log field.
A2.¢ is the effective parameterized exp-log constant field over €.

A3.L is an effective exp-log local community of Laurent series over ¢.

Let us detail condition A2: any element in ¢ is an exp-log expression in a finite
number of parameters over €. As in section 10.3, we allow the dynamic imposition
of polynomial constraints on these parameters (either equations, inequations or in-
equalities). However, we only check the real algebraic consistency of such systems,
although we will sometimes assume the existence of an oracle to check the exp-log
consistency.

We will denote by £ the é—algebra of Laurent series associated to €. Furthermore,
T denotes the set of parameterized transseries over £; i.e. ¥ is the smallest set of
expressions, which contains a countable set of transseries parameters, which is stable
under the exp-log field operations, and which contains £, ... ;, for any ¢;,--- ,¢g; € %.
In particular, ¥ contains the set of all exp-log expressions in the countable set of
parameters. Notice also that expressions in ¥ may very well be defined nowhere
(example: log x 4 log(—x)); nevertheless, we will be able to detect this modulo an
oracle for checking the exp-log consistency of exp-log systems over €.

11.3.2 The coordinates

Coordinates. From an effective point of view, the coordinates are determined by

triples (X, ¥, B), where
— X ={x, - ,x,} is a set of formal variables.
— Y is a system of asymptotic constraints on X, which determines a region K.

— B ={6;,--+,6,} is a normal basis of positive infinitesimal multivariate trans-
series on R.

In all our algorithms, X, B and ¥ are all global variables.
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The set of variables X. As in chapter 10, we assume the existence of an elimin-
ation ordering on X:
li li
Xl >€ m ... >€ m Xp,

Moreover, X is required to be a subset of the countable set of transseries parameters
mentioned in section 11.3.1.

The normal basis B. At this point, it suffices to assume that B is a normal set
relative to a suitable elimination ordering which extends the elimination ordering
on X. Actually, we assume that B is an effective normal basis, but this assumption
will only be detailed in the next section.

Roughly speaking, if B, denotes the set of elements in B which depend on x,,
but not on x, -+, x,_1, then we require that B, is a normal basis of level 0 for each
q. As a consequence, we have a natural extension of the elimination ordering on X:
if for each ¢ we write

By ={6g1," ", 6q,nq}7
with x, = 6,1 < -+ <K 0, , then we order the elements in B by

617711 >elim . >elim 6171 >elim . >elim 6p,np >elim . >elim 6p,1-
This will precisely be the elimination ordering we mentioned above.

The set ¥ of asymptotic constraints. Each of the constraints in X has one of
the following forms:
6160 K 1
6760 < 1

11.1
621 .- 69 <K 60 - 60 (11.1)
601 - 6o <K 6?1---65",
with oy, -y, 81, . Bn € ¢. Modulo case separations, we notice that we can

also insert constraints of the forms 67" --- 62" < 1 and &7'--- 6" < 1 into X.

Partial constraint checking of ¥. We only check the constraints (11.1) in ¥
for their expo-linear consistency by 8.4.4.%> Consequently, the asymptotic relations
<, =& , etc. do not necessarily coincide with the usual asymptotic relations de-
termined by R. Indeed, expo-linear consistency of ¥ does not imply overall consist-
ency, although a complete constraint checker will be given in section 11.8.

Constraint saturation. To reduce the number of case separations, we will always
saturate the set X in the following way: for each 6 € B\ X, we assume that log 6

3We notice that it suffices to consider the 6; as transmonomial parameters in order to apply
8.4.4. This is equivalent from an asymptotic point of view, since any transseries in T is asymptotic
to its dominant monomial.
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is regular, and we impose the constraint m(log 6) <« 6. Furthermore, whenever we
have m(log 6) <« m(log 6') for 6,6 € B\ X, then we impose the constraint 6 < &'
and vice versa. Similarly, whenever we have m(log 6) < m(log &) for 6,6" € B\ X,
then we impose the constraint 6 << 6’ and vice versa.

Initialization. The triple (X, Y, B) determined by ¥ = {x < 1,--+ ,x, < 1}
and B = {xq,---,x,} satisfy our hypothesis. These are the coordinates we use
to initialize our algorithms; additional constraints may be imposed by the user
afterwards.

11.3.3 Effective representations

Asymptotic scales. Let
Sg = B".

In the remainder of this chapter, we will only consider asymptotic expansions w.r.t.
Sp, 1.e. we work with transseries in CLSpIl. We abusively call Sp an asymptotic
scale. Indeed, Sp is not an asymptotic scale in the sense of chapter 6 in general: a
counterexample is given by B = {x, e~ ¥y ¢V} where x <K y.

Admissible Cartesian representations. A monomial 11 € Spg is said to be ultra-
regular, if it has the form

I = 61,
where 6 € B, a > 0, m € Sp, « s and

Sk «s =1{6€ B|6 « )%

By convention, 1 is said to be ultra-regular too. An ultra-regular transseries
is a regular transseries whose dominant monomial is ultra-regular. Ultra-regular
monomials and transseries are interesting, because their comparability classes are
well determined.

A Cartesian representation u € £z is said to be admissible, if each Cartesian
coordinate in Z represents an ultra-regular monomial. From now on we will assume
without further mention that all Cartesian representations are admissible.

Example 11.1. Let X = {x,y}. The Cartesian coordinate z with z = y/x is
admissible, if and only if x <K y.

Dependence on coordinates. Let f be a transseries represented by an admissible

Cartesian representation f € £, ... . We will now define when f depends on a

-
coordinate x in X.
Each z; has the form z; = 6, ---6,"". We say that z; depends on 6; in B, if

a;; # 0. Let B, ... be the union of these elements 6; in B, when 1 ranges over
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1,-++ ,k. Then we say that f depends on x € X, if x € B, ... ., or if there exists
an 6; € B, ... \X such that 6; recursively depends on x. Here 6, is (abusively:
see the warning below) said to depend on x if the natural Cartesian representation

log 6 of log 6 does.

Warning 11.1. It may happen that f depends on a certain coordinate, while f
does not. For instance, taking X = {x, y}, the transseries f = y may very well be
represented by f = y + (€2¥)® — (¢**)?, which depends on x. For a similar reason,
a basis element 6 in B may depend on x in the above syntactical sense, while the
transseries 6 does not depend on x in the usual sense.

Normal bases. For each 1 < ¢ < p+1, let By, denote the set of those 6 in B which
do not depend on xy,- -+ ,X,—1. We also abbreviate B, = B3\ B>411, B>q = Bxgt1,
etc. We say that B is an effective normal basis, if for each 1 < ¢ < p:

NB1. B, = {641, "+ ,04n,} is lincarly ordered w.r.t. <.

NB2. 6, =x,.

NB3. Each 6 =6,; € B, with i > 1 has the form 6 = ", where u = log 6 is a
C-regular Cartesian representation and @ € CLST with

S ={6€ Bs,|6 € B>, V 6 < u(log6)}°.

We notice that the above hypotheses indeed imply that B is a normal set relative to
the elimination ordering mentioned in the previous section. From now on, we will
always assume that B is an effective normal basis.

11.3.4 Refinements and exponential rewritings

In this chapter, we will exclusively consider effective refinements of one of the fol-
lowing forms:

R1. x, =exp™' x/;

R2. x, =Tx, (x, <K 0);

R3. x, =Tx, (x, <K 0);

R4. x, =md(u+x)) (x; < 1);
R5. x, =0(u—x) (x; < 1);
R6. x,=1u

Here 1 is a C-infinitesimal C-regular Cartesian monomial such that T is ultra-regular,
and u a C-regular Cartesian representation of a transseries with w < 1. Moreover,
neither u nor  depend on xy,- -+, x;.

Refinements of the form R1 are called upward shiftings and need to be used
with care, because they insert new elements into B. Refinements of the forms R2
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and R3 are called split-offs. Refinements of the forms R4, R5 and R6 are called
ordinary refinements.

Refinements and constraints in Y. Whenever we perform a refinement of one
of the above types, we rewrite all constraints in ¥ w.r.t. the new coordinates. This
process is straightforward: for instance, in the ordinary case, each occurrence of x,
is replaced by 1.

Automatic updating of Cartesian representations. As in chapter 10, we will
always automatically update Cartesian representations when necessary, to make
them available w.r.t. the current coordinates. The rewritings involved in this process
are straightforward, because x, admits a C-regular Cartesian representation w.r.t.
the new coordinates for any refinement of the above types, while the other elements
in B remain unchanged. Furthermore, admissibility is preserved, since 11 is required
to be ultra-regular. We also notice that C-regularity and C-infinitesimality are
preserved under these rewritings.

Updating of monomials in Sg. In our algorithms, monomials 11 in Sp are not
updated automatically, and we explicitly say that we “update 1”, if 1 has to be
replaced by its dominant monomial w.r.t. the current coordinates.

<>

Besides rewriting coordinates in X, we sometimes also need to rewrite elements
in B\ X: an exponential rewriting of 6 € B,\{x,} is a rewriting of the form:

6=m6"u (11.2)

Here o' € SB/> \{x,} 1s ultra-regular, ¢ € {—1,0,1} and u is a C-regular Cartesian
Z9 .

representation free from xq,---,x,.1 with @ < 1. Moreover, at least one of the

following two conditions holds:

E1l. 1 does not depend on x,.
E2. u does not depend on basis elements in B, which are strictly larger than
M(log 6) for <.

As a result of the exponential rewriting, 6 is removed from B, but 6’ < 6, is a
new element in B’, if ¢ # 0.

Exponential rewritings and constraints in Y. Whenever we perform an ex-
ponential rewriting, all constraints in ¥ are modified accordingly, by replacing each
occurrence of 6 by To6'°.

Exponential rewritings and Cartesian representations. The process of auto-
matic updating of Cartesian representations after exponential rewritings is straight-
forward. This is again due to the fact that 6 admits a C-regular C-infinitesimal
Cartesian representation w.r.t. the new coordinates. Furthermore, C-regularity and
C-infinitesimality are preserved under exponential rewritings.
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11.3.5 Renormalization of B

In general, the basis B need not remain normal, when we perform an ordinary
refinement; therefore, some additional action need be undertaken each time we do.

Example 11.2. Let B = {x,e™*,y} and assume that we perform the refinement
x = y(1 +x), with X’ % y. Then B = {x/, eV /0y after the refinement.
Although B is no longer normal, B can be renormalized by means of the exponential
rewriting
e~V T — my T oy T (14X

More generally, the renormalization process relies on the algorithm exponen-
tiate, which will only be specified in the next section. This algorithm is invoked in
order to recompute some of the exponential basis elements in B, after a refinement
of x,.

Algorithm renormalize.
ACTION: Renormalizes B after an ordinary refinement.

STEP 1. Let 6,1 << -+ <& 6,,, be the elements of B, before the refinement.
In case of a refinement of type R6, let ¢ = n, and go to step 2.
Separate n, cases and respectively impose the constraints:

x; =< M(log 6,2) (1 =1);
M(log 6,,) < x; =X M(log 64,41) (2 <@ < ny — 1);
M(log 6,0, ) <K X; (1 = ny).

STEP 2. Recompute exp(log 6,2), - ,exp(log 6,;) by exponentiate;
This yields expressions of the form (11.2) for 6,4, , 6, satisfying E1,
and we perform the corresponding exponential rewritings.

Proposition 11.1.  The algorithm renormalize is correct. Moreover, the the

4

size of B, does not increase® as a result of the renormalization, and the exponential

elements in B, remain unaltered.

Proof. In case of refinements of type R6, the algorithm is obviously correct. As-
sume therefore that the refinement has type R4 or R5.

If © > 1, then the fact that x; »- 6,; ensures g to be free from x, in the
decomposition g = gt + g~ involved in the re-exponentiation of each log 6, with
2 < j < 1 (see the next section). Hence, the resulting expressions for 6,2, -+ , 6,
indeed have the desired form and their dominant monomials in the new coordinates
are free from Xx,.

On the other hand, if ¢ < n,, the fact that x; =< log 6,41 ensures that

{x;, 6441, ,6gn, } 15 again a normal basis after the refinement. O

“By convention, we understand that the size of By strictly decreases if x, is eliminated from X.
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In principle, renormalization of B might also be necessary after exponential
rewritings. However, exponential rewritings of type E1 are only performed in
renormalize in this chapter, whence no additional renormalization is needed in
this case. Furthermore, we claim that renormalization is never necessary after ex-
ponential rewritings of type E2. Indeed, the only exponential basis elements 6 in
B,, such that logé depends on 6 are strictly larger than 6 for <<. Since u does not

depend on elements in B, which are larger than log 6, it follows that no exponential
rewritings are necessary for 6.

11.4 The expansion algorithm

In this section we present an algorithm to compute asymptotic expansions of mul-
tivariate transseries in €. The algorithm relies on a certain number of subalgorithms
which will be specified in the next sections.

Algorithm expand(f).
INPUT: An L-exp-log expression f in ¥.
OUTPUT: A generic Cartesian representation f € £ for f.

Case when f = x, is a new transseries parameter:
Separate five cases, respectively refine

);
q

Xy = A + X, (x; < 1);
X, = Ay — X, (x; < 1);

and return x,. In the last three cases, A, denotes a new parameter in ¢.

Case f =u(gy, - .8) € Lot it

STEP 1. Compute Cartesian representations gy,--- ,g; for g1,--- , g by expand.
Compute their respective dominant monomials a1, - - - ,3; by dom_mon.
Regularize gi,- - , gi.

STEP 2. Impose the constraints m; < 1,--+ ,m; < 1.

Infinitesimalize gy, - , gi.

STEP 3. Return u(gy,--- ,8&i)-

Case f = gy +gn * € {+,—, /}

STEP 1. Compute Cartesian representations gy, g» for gy and g by expand.

STEP 2. If x = /, then compute the dominant monomial m of gy by dom_mon, kill
the current process if m = 0, and regularize g.

STEP 3. Return gL * g2
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Case f =logg:
STEP 1. Compute a Cartesian representation g for g by expand.
Compute the dominant monomial ofg by dom_mon.
Regularize g.
STEP 2. Compute € and ay, -+ ,a, € ¢ with g = cghy' - 607 (1 +¢2).
For each i with a; # 0, perform the upward shifting x; = exp™ x/~".
STEP 3. Return log ¢, 4+ alog 6, + -+ - + a,log 6, + log(1 + ¢).

Case f = expg:
STEP 1. Compute a Cartesian representation g for g by expand.
Compute the dominant monomial :(g) of g by dom_mon.
Separate two cases, and respectively proceed with steps 2 and 3.
STEP 2. Separate two cases and respectively proceed with a and b
A. Impose the constraint m(g) < 1.
Regularize and infinitesimalize g and return expg.
B. Execute constraint(m(g) < 1).
Regularize g.
Let c=g, . o
Return exp cexp(g — ¢).
STEP 3. Impose the constraint m(g) » 1.
Let ¢ be minimal such that g depends on x,.
Let x, = 06,1 < -+ < 6q7; be the elements in B,.
Separate two cases and respectively proceed with steps 4 and 5.
STEP 4. For each 2 < i < n, separate a case and impose the constraint m(g) <
M(log 6,,).
Compute the limit A = limg/log 6,,;.
Return 6, ;expand(e8="186a1),

STEP 5. Separate two cases and respectively impose the constraints

i

Separate n, + 1 cases and respectively impose the constraints

M(g) < m(log Bg,2);
M(log 6,,) < m(g) < M(log 6,:11) (2 <1 < ny); (11.6)
M(log 6,,,) < M(g).
STEP 6. Let 6;,---,6;, be those elements 6 in B, with 6 3 m(g).
Decompose g = g* +g~, with g* = [67, --- 6 ]g.
If g* depends on x,, then insert 6 = eIsisnetlet into B.

Return expand(e")expand(es™).
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Remark 11.1. In step 6 of the exponential case, the decomposition g = g™ + g~ is
computed by repeated applications of proposition 9.5, where we start by extracting
the coefficients of the basis-elements which are maximal for <<. Notice that we may
indeed apply proposition 9.5, since all Cartesian coordinates are admissible.

Let us briefly explain the different cases of the algorithm, which is fairly similar
to the algorithm on page 212.

The case when f is a new transseries parameter x, is reduced to the case when
X, 1s positive and infinitesimal, by a separation into five cases.

In step 5 of the exponential case, we make sure by means of case separations
that m(g) and x, are comparable for << and we determine the place in B where 8"
might need be inserted. In step 6, g* either depends on x,, in which case insertion
takes place, or gt does not depend on x,, in which case the part g~ of g which
depends on x, is bounded so that we “split it off”.

Obviously, the exponential case algorithm can also be applied to transseries g for
which we already have a Cartesian representation g, by skipping the very first line
of step 1. This algorithm, called exponentiate, has the following obvious property:

Proposition 11.2.  Exponentials computed by exponentiate are always ultra-
reqular. O

11.5 Ultra-regularization

Since not all Cartesian monomials are admissible, we can not merely introduce
new infinitesimal Cartesian coordinates in the infinitesimalization and regularization
algorithms from section 9.3.2. For this purpose, we will show in this section how to
make an arbitrary monomial 11 in S ultra-regular modulo a sequence of refinements.

11.5.1 The subalgorithm rewrite

If the basis elements in B are linearly ordered w.r.t. —«, then all infinitesimal
monomials in Sp are represented by Cartesian coordinates. Therefore, a major
ingredient of the ultra-regularization process is a partial linearization of B by means
of the following algorithm:
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Algorithm rewrite(6, ).

INPUT: A basis element 6 € B, and an infinitesimal ultra-regular monomial
(= 6) € By gy

ACTION: 6 is either rewritten in terms of 11 and smaller basis elements for <<, or
eliminated® from B,.

Case 6 = x,: Separate three cases, and respectively refine

X, = m'x, (x) <& m);
X, =m'x) 7! (x) <& m),

or use constraint in order to impose the constraint

A
Lq ~ IO,

where A > 0 is a new parameter in ¢.

Case 6 € B,\{x; }:

STEP 1. Execute constraint(m(log 6) < m(log mg)).

STEP 2. Compute the limit A of log 6/ log m.
Compute the exponential of ¢ =log& — (logug)/A by exponentiate.
If 6 has not been eliminated from B,,
then perform the exponential rewriting 6 = m'e® of type E2.

We notice that in the last step of the case 6 € B,\{x,}, 6 may indeed have been
eliminated from B,. Indeed, the preceding steps may lead to refinements of x,. If, as
a result of these, 6 is eliminated from B,, then the exponential rewriting 6 = m"¢e¥
becomes either invalid or superfluous.

We also notice that by the fact that ug does not depend on the basis element x,,
the computation of ¢ does not necessitate the insertion of new logarithms into B,.

Let us exemplify the use of rewrite in the ultra-regularization process:

Example 11.3. Let B = {x,e™ (49 y 7'} with x < y. Assume that we
want to ultra-regularize ¢~ 0% /e=r™" | Since ¢~ 149 /e ™ we first re-express

-1 . =1 . . .
e 0+ iy terms of e times smaller terms for <&, using rewrite:

_y-t —y-1
eV (4x) _ -y yTix

After this exponential rewriting, e™¥ ™ (4% /e=y™" = ¢=¥ 7' ig ultra-regular.

By convention, we say that & has been eliminated from By, if x, is eliminated from X.
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11.5.2 The algorithm ultra_regularize

In general, the following algorithm is both used in order to infinitesimalize a Carte-
sian monomial and to ultra-regularize the transmonomial it represents:

Algorithm ultra_regularize(m).

INPUT: An infinitesimal monomial 11 in Sp.

ACTION: After the execution, the dominant monomial of 11 w.r.t. the current co-
ordinates is ultra-regular.

STEP 1. Let M be the set of maximal basis elements occurring in .
Select a non empty subset S C M, using 2/M! — 1 case separations.
Impose the constraint 6 <« &' for all 6 € M\S and &' € S.
It S contains only one element, then return .
STEP 2. Let ¢ be minimal such that B, NS # ¢.
Let 6 be the unique element in B, N 5.
Let a be the exponent of 6 in 11.
Let @ be the set of basis elements in By, \{6} which occur in 1.
Decompose 11 = u6”m, with © € S¢, and m € Sq.
STEP 3. Separate three cases, and respectively proceed with a.b or c:
A. Impose the constraint my < 1 and execute ultra_regularize(m).
B. Execute constraint(mg < 1) and return.
C. Impose the constraint g % 1 and execute ultra_regularize(m_l).
STEP 4. If 6 has been eliminated’ from B,, then update 1 and return to step 1.
Update 11, separate two cases and respectively proceed with a or b:
A. Impose the constraint m < & and return.
B. Impose the constraint mr = 6.
STEP 5. Let 3 be the exponent of x; in 11 and set m := I_T_I/Xqﬁ
Execute rewrite(6, m).
Update 11 and re-execute ultra_regularize(u).

Proposition 11.3. The algorithm ultra_regularize is correct and terminates.

Proof. The correctness of the algorithm is obvious. Before proving its termination,
let us first introduce the following invariant: let i be an element in Sp, , and let
0,4, be maximal for <« while occurring in 1. If 11 does not depend on x,, then we
define y(m) = 1. Otherwise, we define x(u) =i + 3.

Assume for contradiction that the recursive invocations of ultra_regularize
(or the jumps to step 1 in step 4) provoke an infinite loop. Let ¢, ¢q2, -+ be the
successive values of ¢ in these recursive invocations. Let ¢ be minimal, such that
q = q; for infinitely many 2. Without loss of generality, we may assume that ¢; > ¢
for all 2. We now restrict our attention to calls of ultra_regularize for which
¢; = q. Assume that all such calls for which x(u) < d terminate. This is clearly so
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for d = 1. Now consider a call of ultra_regularize, for which x() = d. We will
prove that this call terminates. In particular, this yields the desired contradiction,
by induction.

First, the recursive invocations of ultra_regularizein step 3 always terminate,
since y(m) < y(m). Similarly, if we return to step 1 in step 4, then we have termin-
ation by the fact that the new 1 does not depend on x, any more. Now consider
the monomial 11 just before a recursive invocation of ultra_regularize in step 5Hb.
Decompose 11 = m1y, where m;y € Sp_, and my € 532(1. We will show that 1y is
either ultra-regular, or y(m2) < d; the termination of ultra_regularize is clear
in both cases. We will denote by ,x, resp. "x, the respective values of x, before
and after the execution of rewrite. Assume first that 6 = .x,. Then my = .x{ 1,
whence after the execution of rewrite we have

M(HQ) = M(m/\a-l—l *qu) (5 € {_1707 1})7

where A is as in rewrite. Since m is ultra-regular and *x, <K 11, we conclude that
11y is ultra-regular.

Assume now that 6 # .x,. If 6 is eliminated in rewrite, then the dominant
monomial of 11 does not depend on x,, after the execution of rewrite, and we are
done. Otherwise, we have

M = 6% .x) m = .x) m e’
alter the execution and with the notations of rewrite. Since e¥ <K m and
*xg ~« 1, we are done in particular, if Aa+1 # 0. Assume therefore that Aa+1 = 0.
By proposition 11.2, € is ultra-regular. Hence, if 3 = 0 or ,x, ¥ €?, then we are
done. Furthermore, if 5 # 0 and x; has undergone an ordinary refinement, then the
exponent of *x, in M(1jz) vanishes, and we are done again.

The only case which remains be treated is when x, has only undergone split-offs
and .x, = e¥. We claim that these split-offs did not occur during the computation of
the dominant monomial (see section 11.7) of ¢ in exponentiate, unless an element of
B, « ¢ is eliminated from B,. Assume first that we never execute constraint(u <
1) in dom_sub, for a monomial u which depends on x,. Since x, is the largest variable
occurring in ¢, x, is not refined at all in this case. In the other case, the imposition
of the constraint either leads to an ordinary refinement of x; or the elimination of
an element in B, (see section 11.6), which is necessarily in B, « s, since ¢ only
depends on elements in B,, which are in B, « .

Now if we eliminated an element in B, « 4, then we clearly have () < d in
the recursive call of ultra_regularize. Assume therefore that no split-offs occur
during the computation of the dominant monomial of ¢. Then x, = .x,, when we
compute the decomposition p = g* + g~ in exponentiate. It follows that the
principal part gt does not depend on x,, since p < log x, << x,. Consequently,
x() <d-— % in the recursive call of ultra_regularize. O
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11.6 Imposition of constraints

In this section, we describe the analogue of the algorithm constraint from sec-

tion 10.3.5 in the present context. Any monomial i = 67" --- 62" in Sp can canon-
ically be decomposed as follows:

0= X;zuexpoufree7 (118)
where ¢ is maximal such that 11 does not depend on xq, - ,x,1, & € é:, e €

SBy\{x,} and /e € SBs,- We say that 11 is a ¢-monomial. Now three cases are
distinguished:

1. The ground case 11**° = 1.

2. The exponential case a = 0,177 # 1.

3. The mixed ground-exponential a # 0, 1°"7? # 1.

We will respectively qualify 11 as a ground, exponential and mixed monomial
in these cases. In sections 11.6.1, 11.6.2 and 11.6.3 we consider the imposition of
the constraint 1 < 1 for these three cases.

11.6.1 The ground case

The algorithm in the ground case is analogous to the algorithm from section 10.3,
and needs no further explanation:

Algorithm constraint( < 1). (ground case)

INPUT: A ground g-monomial 11 in Sg.

ACTION: Restricts and cuts the current region into parts, such that the dominant
monomial of 11 is 1 on each of these parts.

STEP 1. If a <0, then set o := —a and /"¢ = (/7€)1
Impose the constraint m/™*® s 1.
Ultra-regularize (1i/7**)~"/* and update /",

STEP 2. Let A be a new parameter in ¢.

Impose the constraint A > 0.
Separate three cases and respectively refine:
X = (w/7) VO x) (6 < 1);
X, = (7)o (A = 1) (x) = 1)
X, = )\(Hfree)—l/oz‘

11.6.2 The exponential case

If we are not in the ground case, the constraint 11 < 1 may be imposed by computing
the dominant monomial m of log 11 and imposing the constraint m < 1. If o = 0, we
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hereby benefit from the fact that a Cartesian representation for log n®*?° is already

beforehand, therefore log™ xq_1 needs not be inserted into B. On the other hand,
the computation of log /"
which are free from x,. To compensate these insertions, the relation 11 < 1 is used

may necessitate the insertion of new logarithms into B,

to eliminate at least one element from B,.

Algorithm constraint(m; < 1). (exponential case)

INPUT: An exponential g-monomial 11 in Sp.

ACTION: Restricts and cuts the current region into parts, such that the dominant
monomial of 11 is 1 on each of these parts.

STEP 1. Let 6 € B, be maximal for <<, while occurring in 1*?°.
Let A be the power of & in 1177,
Ultra-regularize (11/7**)~'/* and update /",
STEP 2. Let o = log m°*P° 4 log i/"°.

Compute the dominant monomial m of 7 by dom_mon.

Regularize ¢ and separate the following two cases:
A. Impose the constraint ¥ <« 1 and infinitesimalize .
B. Execute constraint(m < 1).
STEP 3. If 6 has not been eliminated® from B,,
then perform the exponential rewriting of type E2

6 = ((Hexpo/6/\)Hfree)—l//\ew//\‘

STEP 4. Otherwise, update 11 and impose the constraint 1 < 1.

Proposition 11.4. The above algorithm constraint is correct and terminates.
Moreover, at each invocation, |B,| strictly decreases*, while B, remains unchanged.

Proof. In step 1, we reduce the general case to the case when (1/7¢¢)="/* is ultra-
regular (this is needed in step 3, in order to guarantee that the rewriting of 6
is indeed an exponential rewriting). Step 2 is equivalent to the imposition of the
desired constraint. In step 3, we check whether the coordinate x, has been eliminated
from 6 as a result of step 2. If not, we perform an exponential rewriting to eliminate
6 from B,. Otherwise, constraint must be re-applied to the dominant monomial
of 11 in the current coordinates, which is free from x,. O

11.6.3 The mixed ground-exponential case

erpo

In general, a # 0 and 1°"?° # 1 Consider for example the constraint

—1

xe ™ =y, (11.10)

with X = {x, y}. In order to avoid the insertion of log™" x~! into B, we first compute
a monomial 1, asymptotic to x, but independent of x. This is achieved by exploiting
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the fact that (11.10) implies e =y, whence x™*

transforms into

=< log y~*. Consequently, (11.10)
e < ylogy ™,
and we have reduced the present case to the exponential case.

For more general monomials 11, the idea of the algorithm is to compute a decom-

position

I = xqaefeg,

where f is an ultra-regular transseries whose dominant monomial depends on Xx,,
and g is a transseries which is free from x,. If f is bounded, then have reduced our
problem to the ground case. Otherwise, since f %= x,, we must have f < g. Then,
by induction, the recursive imposition of the constraint f < g either leads to the
elimination of a basis element in B, or an ordinary refinement of x, (in which case
we have the desired equivalent g for x,).

However, we have to cope with one additional difficulty: how to compute the
part of a transseries which does not depend on x,7 By what has said in section 9.4,
we do not have a general algorithm to do this. For this reason, we will specity
an algorithm dep_dom_mon in section 11.7, which given a Cartesian representation
u, simultaneously computes a decomposition v = ¢ + ¢, where ¢ is free from x,,
and a generic dominant monomial m of @ which depends on x,. Furthermore, this
algorithm aborts whenever an ordinary refinement for x, occurs. Anyway, we also
obtain the desired equivalent m1 for x, in this case.

Algorithm constraint(m < 1). (mixed ground-exponential case)

INPUT: A mixed g-monomial 11 in Sg.

ACTION: Restricts and cuts the current region into parts, such that the dominant
monomial of 11 is 1 on each of these parts.

STEP 1. w := log ®*?° + log /",
u = X;.

Let (¢,%,M) := dep_dom_mon(u).
STEP 2. If the dominant monomial of u w.r.t. the current coordinates is free
from x,, then update 1, execute constraint(n < 1), and return.
STEP 3. Separate the following two cases:
A. Impose the constraint m » 1.
B. Impose the constraint m < 1.
Execute constraint(x{'exponentiate(t)) < 1)
Re-execute step 2.
STEP 4. Ultra-regularize m.
Re-execute step 2.
Let w € Sp,, be such that n < qxqﬂ.
Set ¢ 1= 1 + log .
STEP 5. Compute the dominant monomial M of 1) by dom_mon.
Update m and execute constraint(m'/m < 1).
Update 1 and execute constraint(i < 1).
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Proposition 11.5. The above algorithm constraint is correct and terminates.
Moreover, at each invocation, |B,| strictly decreases*, while B, remains unchanged.

Proof. The correctness and termination of the algorithm are clear, if we return
in step 2: if 11 does not depend on x, any more after the updating, then all basis
elements in B, which were present in the original 11 must have been eliminated.
Otherwise, 11 is an exponential g-monomial after the updating, and we are done by
proposition 11.4.

In step 4, we indeed have n < qxqﬂ, for some u € Sp,, since all refinements
of x, must have been split-offs. Furthermore, the dominant monomial of M w.r.t.
the current coordinates depends on x, and is ultra-regular. Now we must have

x,Fe¥e? < 1 11.11
q 9

just before the imposition of the constraints in step 5. Since the dominant monomial
of ¢ is ultra-regular, and depends on x,, we have x, =<K and x, << ¢¥. Con-
sequently, (11.11) admits no solutions if 7 % 1. Therefore, it is legitimate to impose
the constraint M'/m < 1 in step 5 (and we have termination by the fact that m'/m
only depends on elements in B, which are strictly smaller for <« than the largest
element in B, occurring in 1°?°). Now the imposition of this constraint either pro-
vokes an ordinary refinement of x;, or the elimination of an element in B,. In the
first case, the recursive application of the constraint 1 < 1 falls into the exponential
case. In the second case, the termination follows from finiteness of B,. O

11.7 Computation of generic dominant monomials

The implementation of the algorithms dom_mon, dom_sub and Newton_step is the
same as in chapter 10 with the obvious changes:

— We compute with Cartesian representations of multivariate transseries instead
of multivariate Laurent series.

— The monomial u € Sy, ... ., in Newton_step and dom_sub is now a monomial

in Sng\{Xq}.

q—1

— At the very beginning of Newton step, we ultra-regularize and update .

— Instep 1 of dom_mon, we first test whether there exists a monomial u € Sp_\(x,)
such that each monomial in Fy is in Fy,. If so, then u is replaced by um.
Otherwise, we proceed with step 2.

— We use the algorithms from the previous sections for the imposition of con-
straints and computations with Cartesian representations.
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Modulo these changes, we again have:

Theorem 11.1.  The algorithm dom_mon and its subalgorithms are correct and
terminate.

Proof. The correctness’ of dom_mon and its subalgorithms are clear from the com-
ments made in the text. Assume that dom_mon does not terminate on a given input.
Without loss of generality, we may assume that p and all basis elements in B,
remain fixed during the computations, while B, is altered infinitely many times.

Furthermore, by proposition 11.4 and proposition 11.5, among all calls of
constraint(m < 1), there are only a finite number such that 1y depends on an
element in B,\{x,}. Hence, using proposition 11.1, we may also assume that the
elements in B,\{x,} remain unaltered throughout the execution.

The remainder of the proof is analogous to the proof of theorem 10.1: after one
call of constraint(x < 1), such that 17 depends on x,, the variable x, becomes and
remains ordinary in the Cartesian representation u. After this, all refinements of
x, are ordinary, and they exclusively occur in Newton_step. We finally obtain a
contradiction by the analogues of lemma 10.1 and lemma 10.2. 4

In section 11.6.3, we assumed the existence of a variant dep_dom_mon of the
algorithm to compute generic dominant monomials. Let us now state this algorithm:

Algorithm dep_dom_mon(u).

INPUT: A Cartesian representation v € £z of a transseries f in xg,- -+, X,.

OuTPUT: Whenever x, is refined, the algorithm aborts and returns (0,0, 0).
Otherwise, the algorithm returns (¢, ¢, M), where u = ¢ + ¢ of u, with ¢
free from x,, and M is a generic dominant monomial of .
By convention, we return m = 0 on regions where @ = 0.

STEP 1. Let ¢ :=w and ¢ := 0.
STEP 2. Repeat the following until m # ’Recommence’:
A. Compute ¢ := pseudo_coefficient(y, 6y, - 627%).

Set p:=p —¢and ¢ ;== + £
Compute a set M of intermediary dominant monomials of ¢ on R by idm.
If M = ¢ then return (p,,0).
D. Separate a case for each facet F' C M, and do the following:

Select an arbitrary i € F'.

Impose the constraint I < T for each m € M\ F.

Q=

Impose the constraint @ < T for each m € F\{u}.
Set M := dom_sub(yp, 1, F).
STEP 3. Return (¢, ¢, M).

Theorem 11.2. The algorithm dep_dom_mon is correct and terminates.
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Proof. By proposition 9.9, the class of each of element in a facet F' in step 3d de-
pends on x,. Consequently, whenever we perform a refinement during the execution,
each dominant monomial of @ is also a dominant monomial of f — [G] - -- 627%]7‘.
The remainder of the termination proof is now analogous to the termination proof
of dom_mon, by applying the analogues of lemma 10.1 and lemma 10.2 to f —

65,6y ,,)f instead of f. O
Putting all pieces together, we have proved:

Theorem 11.3. (Main theorem, weak form) Under the assumptions A1, A2
and A3, there exists an algorithm which takes an L-exp-log expression in xq,- -+, X,
over € on input and which computes

(a) A partition TP = Ry I ---II R, of T?, which we denote by P;

(b) A generic effective normal basis B relative to P;

(¢) An algorithm which computes the generic asymptotic expansion of f w.r.t. B
relative to P at any order.

The regions Ry,--- , R, may be empty. g

11.8 Constraint checking

In this section, we assume the existence of an oracle to test the exp-log consistency
of systems of constraints imposed on ¢. Under this assumption, we will design a
complete constraint checker for the asymptotic constraints in . This in particu-
lar reduces the asymptotic expansion problem of multivariate exp-log functions to
the correspondent constant problem. More precisely, we will prove the following
theorem:

Theorem 11.4. (Main theorem, strong form) Assume A1, A2, A3, and that
the exp-log consistency of finite systems of exp-log constraints on € can be checked
by algorithm. Then there exists an algorithm which takes an L-exp-log expression in
X1, , X, over € on inpul and which computes

(a) A partition TP = Ry I ---II R, of T?, which we denote by P;

(b) A generic effective normal basis B relative to P;

(¢) An algorithm which computes the generic asymptotic expansion of f w.r.t. B
relative to P at any order.

Fach region R; is non empty and represented as the solution set to a system X; of

exp-log equalities, inequalities and asymptotic relations.

Proof. An asymptotic constraint of the form (11.1) is said to be a ¢g-constraint if
it depends on x,, but not on x;,--- ,x,—;. A normal constraint is a constraint of
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one of the following forms:

X, <K 13
Xy P 14
X, =<K 11
Xy W 11
X, =X 1m;

X, 7 1,

where 11 € S5,. We say that X is normal, if all its constraints can be deduced from
a subset X" of normal constraints; i.e. each o € ¥ is an expo-linear consequence
of the saturation of X" (see section 11.3.2).

In section 11.8.1, we shall show how ¥ can be normalized. In section 11.8.2,
we show that if ¥ is normal, then ¥ is consistent if and only if it is expo-linearly
consistent. This will clearly enable us to check the consistency of general systems

2. 4

11.8.1 Normalization of systems of asymptotic constraints

We introduce the following elimination ordering on constraints of the form (11.1): we
write o <™ o' whenever the highest monomial (for <®* on monomials) occurring
in o is strictly smaller than the highest monomial occurring in ¢’. Then we have
the following normalization algorithm for X:

Algorithm normalize(Y).
INPUT: A set of constraints ¥ of the form (11.1).
ACTION: The algorithm normalizes ¥..

STEP 1. While ¥ is not normal, let o be a maximal non normal constraint in ¥ for
<lm - and do the following:
A. If o has the form 17 < 1, then execute constraint(m < 1).
B. If o has the form 11 < 1, then execute step 2.
C. 1If o has the form 11 <K 11’ resp. 11 =X 1r', then execute step 3.
STEP 2. Ultra-regularize 1.
Let 6 € B be the maximal element for <& occurring in 1.
Let A be the power of 6 in 11 and impose the constraint A > 0.
STEP 3. Ultra-regularize 1 and m.
Replace 11 by a basis element 6 with 1 =< 6.
Replace 11’ by a basis element 6" with i’ =< &'.
If the constraint m <& 11’ resp. 1 =<K 11’ is not normal, then impose the
constraint m(log 1) <« m(log1y') resp. m(logm) < m(log it').

Proposition 11.6. Then above algorithm normalize is correct and terminates.
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Proof. The correctness of the algorithm is obvious. In order to prove its termina-
tion, we first observe that during the treatment of a ¢-constraint o (in steps la, 1b,
le, 2 and 3), the number |B,| does not increase. Moreover, after the treatment, o
can be deduced from constraints in ¥ which are strictly smaller than o for <,
These two properties clearly imply the termination of normalize. O

11.8.2 Consistency of normal systems of constraints

Theorem 11.5. Let ¥ be a normal system of constraints, which is expo-linearly

consistent. Then R # @.

Proof. We prove the theorem by induction over p. For p > 1, the theorem obviously
holds. Assume now that the system Y’ of all constraints in 3 which do not depend
on x; is consistent. Then the region R’ associated to ¥/ is non empty, whence there
exists a point P’ = (Xz,---,X,) in R'.

Let X" C ¥ be the subset of ¥ of normal constraints, so that the constraints
in ¥ are expo-linear consequences of the saturation of X", The comparability
class constraints in X"\ ¥/ are each of one of the following forms:

X =< 10

X1 = I

I << X5

I =<K X,
where 11 does not depend on x;. Among the 11 occurring in such constraints, let
™ resp. ™" be the ones for which m(P’) is maximal resp. minimal for <<. By
convention, we may have ”*" = 1 /ooy resp. ™ = 1/00¢.

The remaining constraints in X"\ ¥’ are of one of the following forms:

Xy << I
m << Xy,

where 11 does not depend on x;. Among the 1y occurring in such constraints, let
7" resp. m™" be the ones for which m(P’) is maximal resp. minimal for <. By
convention, we may have ™ = ocog resp. m”* = 1/oor.

Since Y is expo-linearly consistent, we must have

Hmzn(P/) ﬁ mmzn(P/) ) mmax(P/) ﬁ Hmax(P/)‘

Hence, there exists a X; € T with m™" <« x; < m™**. Then (X, -+ ,X,) is a point
in R, as desired. O
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11.9 Applications

A Hardy field is a field of germs of functions at infinity, which is stable under
derivation. Hardy fields are the classical analytical analogues for fields of transseries.
The analogues of many stability theorems for transseries also hold for Hardy fields
and there is an extensive literature on this subject (see [Bour 61|, [Rob 72|, [Ros
83al, [Ros 83b], [Ros 87]). In this section, we give an example of how theorem 11.4
can be used to transfer such theorems directly from the transseries setting to the
Hardy field setting.

Let T be the field of convergent transseries, i.e. the field of €[z, z9,---1-
finite transseries. Clearly, T is stable under differentiation, since €[z, zo,--- 1
is stable under the partial derivations. We also notice that transseries in T
naturally converge in a neighbourhood of infinity, whence we may consider them as
germs of functions at infinity.

Theorem 11.6. T is a Hardy field which is stable under composition, inversion
and resolution of consistent zero-dimensional exp-log systems of equations.

Proof. We may consider €[zy, z5,--- 1 as a theoretical effective exp-log local com-
munity of Laurent series. Therefore, the main theorems of this chapter apply if we
take £ = é:[[Zl,ZQ, I

Now let f and g be two convergent transseries in T°"", where g is positive
and infinitely large. Expressing z as a function of x, by applying theorem 11.4 to
eliminate of y and z from the equations z = g(y) and y = f(x) yields the composition
of f by g.

Similarly, the functional inverse of g is obtained by expressing y as a function of
x after elimination of y from the equation f(y) = x.

More generally, if a system of transseries equations in ¥ admits a finite number
of solutions, then the solution set can theoretically be computed by theorem 11.4,
whence all solutions must be convergent. O

Remark 11.2. Actually, more direct algorithms can be given for the computation
of functional compositions and inverses (see [VdH 94c|), based on the formula’s from
sections 1.7.1 and 1.7.3. However, it is quite cumbersome to verify the preservation
of convergence in a direct manner.

Although we have restricted ourselves here to convergent transseries, similar
transfer theorems hold whenever we identify suitable exp-log local communities. For
instance, if one is able to generalize the concept of multisummable Laurent series
to several dimensions, and to prove that the set of such series forms an exp-log
local community £, then the analogue of the above theorem would hold for £-finite
transseries in several variables. If one is also able to generalize Braaksma’s theorem
(see [Br 92]), then this analogue of theorem 11.6 would encapsulate virtually all
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known stability theorems for Hardy fields (for germs with a natural origin d’aprés
Ecalle).

However, the above project can probably only be carried after some suitable
modifications: in the next chapter, we shall see that the current definition of effective
local communities is not general enough for the systematic treatment of differential
equations. Nevertheless, we shall indicate how to generalize this concept in order to
incorporate solutions to algebraic differential equations.
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Chapter 12

Algebraic differential equations

12.1 Introduction

This chapter establishes the effective counterpart of chapter 5. We show how to
compute the generic solution to an asymptotic algebraic differential equation with
grid-based transseries coefficients

P(f) =0 (f < ). (12.1)

under suitable effective hypothesis. Our algorithm has the particularity that we
automatically introduce the necessary parameters, which correspond to the integ-
ration constants. The chapter is divided into three main parts: in section 12.2, we
introduce a new sort of “lexicographically automatic Cartesian representations”. In
section 12.3, we show that the transseries solutions to the above equation are indeed
grid-based. In section 12.4, we give the effective hypothesis and the algorithm.

In view of the undecidability results of Denef and Lipshitz (see [DL 89]) and Grig-
oriev and Singer (see [GS 91]), the existence of our algorithm might seem surprising.
The fact that we can actually give an algorithm relies on two observations:

— The field of grid-based transseries is better behaved for the resolution of al-
gebraic differential equations than the field of grid-based power series.

— Since we search for generic solutions, we may decide ourselves how we want to
represent them.

Let us detail these issues.
In [GS 91], Grigoriev and Singer consider the following system ¥ of differential
equations in grid-based power series':
y'v = PBy;
B =0;
dyr 4 22t =y + 2.

! Actually, Grigoriev and Singer work with well-ordered power series whose supports are included
in a finitely generated subgroup of z&.

263
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They show that ¥ admits a solution if and only if 3 = n~! for some n € N. Based on
Y, they construct a system T, of algebraic differential equations for any Diophantine
equation ¢, such that the existence of solutions to T, is equivalent to the existence
of solutions to . The latter problem is known to be undecidable (see [Matij 70]),
whence so is the former. What saves us, is that ¥ always admits a natural transseries
solution, although this transseries is not necessarily a grid-based series!

Another important issue is how to decide whether Q(f) = 0, where () is another
differential polynomial and f is a well determined solution to (12.1)?7 To see why

this problem is difficult, let
fz/g

be the primitive of some transseries g, by taking 0 for the integration constant
(i.e. if B ={64,---,6,} denotes the normal basis w.r.t. which we expand ¢, then
[6Y---6Y]g = 0; stated differently, f is the distinguished solution to f’ = ¢g). Assume
that we want to test whether Q(f) = 0. Replacing the derivatives of f by g, this
question reduces to the case when () is a polynomial.

Now the point is that although we can compute the roots of ), we are not able
in general to test whether the constant parts of these roots vanish. In other words,
whenever we find a primitive f of ¢ among the roots, we can not test whether f=7
Nevertheless, we notice that this problem does not arise in the case when () does not
depend on parameters, since in this case, we can compute the canonical expansions
of the roots of () as shown in section 9.5.2. Unfortunately, this algorithm does not
work any more in presence of parameters.

What saves us in this case, is that in order to compute the generic solution to
f" = g, we may choose the integration constant ourselves: initially, we choose the
primitive fo of g with integration constant 0 and represent the generic solution to
f"=gby fo+ A Now if we need to test whether Q(f) = 0, somewhere later
during the computations, and if the polynomial ¢} admits a root f; with f| = g,
then we replace the previous generic solution fo+ A to f' = ¢ by the generic solution
f1 + p. In other words, the knowledge that there exists a primitive for g, which is
also a solution to an algebraic equation, enables us to represent the generic solution
in a simpler way than in the general case. However, this knowledge may become
available, only when we explicitly test whether one of the roots of some polynomial
has derivative ¢! This issue will be treated in detail in section 12.4.4.

12.2 Cartesian representations reviewed

In this section, we introduce “lexicographically automatic” Laurent series and Carte-
sian representations. These are different from the previously defined, “symmetrically
automatic” Laurent series in this respect that they can only be expanded automat-
ically w.r.t. a single variable, the coefficients of this expansion being recursively
expandable in the same way. Nevertheless, we do know that the series in question is
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a Laurent series (and not merely a series in some ring like €((z1))--- ((zx))), and we
demand explicit bounds for the valuations in each variable. Hence, we do conserve
some of the properties of the symmetrically automatic Laurent series, and this will
enable us to generalize the algorithm idm.

So why the need for lexicographically automatic Laurent series? Consider for
instance the primitive F' of

1
(1 —a272)(1 —e )

fz) =
Clearly, F admits an asymptotic expansion w.r.t. the mnormal basis
{271, e}, say F(z) = u(z,{) = u(a™t, 6_9”2). We have

1
T==1-0)

F'= —2%u, — 227 ue =

together with the initial condition

1

2
_u(2,0) = .
z*u,(z,0) T2

The problem with this kind of equations is that although the expansion of u w.r.t. ¢
is easily derived, the same does not hold for the expansion w.r.t. z. Even though this
problem might still be feasible in this special case, we do not know of any general
method in order to obtain such expansions. For this reason, we will now consider
lexicographically automatic series.

12.2.1 Lexicographically automatic series

Lexicographically automatic power series. Let € be an effective constant field

and R an effective €-algebra of series in €[[zq,--- ,z;]]. We say that a subset 2
of R is lexicographically automatic, if there exists an algorithm, which takes
u € Aand o, -+ ,a, € N (1 <1 < E) on input, and which computes [z - - - 2. % |u;

moreover, this coefficient is required to be in 2. As before, if 2 is a lexicographically
automatic subset of R, then so is the €-algebra which is effectively generated by 2.
A series u € R is said to be lexicographically automatic, if it is contained in a
lexicographically automatic subset of fR.

Lexicographically automatic Laurent series. Let £ now be an effective €-
algebra of Laurent series in zy,--- , z;, which contains zy, 27", -+, 2, 27 ', We say
that a subset 2 of £ is lexicographically automatic, if

— There exists an algorithm, which takes v € 2 on input, and which computes
lower bounds gy, --- , g for the valuations of w in zq,--- | z; respectively.
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— There exists an algorithm, which takes v € A and oy, - ,a, € N (1 <[ <
k) on input, and which computes [z --- z*]u; moreover, this coefficient is
required to be in 2.

Again, if 2 is a lexicographically automatic subset of £, then so is the €-algebra
which is effectively generated by 2l. A Laurent series u € £ is said to be lexico-
graphically automatic, if it is contained in a lexicographically automatic subset

of £.

Lexicographically automatic transseries. We define lexicographically auto-
matic transseries in a similar way as symmetrically automatic transseries in sec-
tion 9.2.4, by requiring ¢ to be a lexicographically automatic Laurent series instead
of a symmetrically automatic Laurent series in AT4. It may be checked that the
effective stability theorems from section 9.2.4 extend to the present context.

12.2.2 Lexicographical Cartesian representations

Let € be an effective field of constants and X an effective (quasi-ordered) monomial
group. We assume that X is generated by a finite number of monomials, on which
expo-linear constraints are imposed. Contrary to what we did in section 9.3, in
this chapter we will work with Cartesian representations of series in an effective €-
subalgebra & of €[X]. In other words, we do not assume the existence of a zero-test
for the Cartesian representations, but for the series they represent. In particular,
for the computation of intermediary dominant monomials, there is no need for an
analogue of the algorithm simplify.

A lexicographical Cartesian representation of a series f in & is a Laurent
series w in zy,--- , 2k, such that the Cartesian coordinates verify z; <x -+ <x 2z.
Here we notice that we may always order the Cartesian coordinates in such a way,
by separating at most 2% cases. We say that u is a lexicographically automatic
Cartesian representation, if we have bounds py,--- ,pr € Z for the valuations of u
in zy,---, 2z, and an algorithm which given ay,--- ,ap € Z (1 < [ < k) computes
[z 21 %]u, where we assume this series to be in &. By “formal nonsense”, it
follows that the coefficients [z - - - 2z, *]u are lexicographically automatic Cartesian
representations as well.

In the remainder of this chapter, Cartesian representations are always understood
to be lexicographically automatic Cartesian representations.

12.2.3 Computation of intermediary dominant monomials

We now have the following algorithm to compute intermediary dominant monomials
in the context of lexicographically automatic Cartesian representations:
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Algorithm idm(u).
INPUT: A Cartesian representation u € €[z, -+ , 2] of a series uw € 6.
OUTPUT: A set of intermediary dominant monomials for u.

if w =0 then return ¢
e Let 2 be the dominant monomial of v in z;, for 1 <7 < k.
H .= {1}
while true
a = py
G:=¢
repeat
G =G U idm([zp]u)
a:=a-+1
until G # ¢ and 1 55 27" ---zi‘jlz? forall ;e G
G=GU{ 2520}
if (G is an intermediary set of dominant monomials of v then return GH
else
o et m = 27"+ 2% and o = Zfi---zzz be in G, such that & = 17 is
minimal for <x, a; < o}, and where «}, is chosen minimal with these
properties.
wim o+ (o — ()
H:=HU{n/u'}H

Proposition 12.1. The above algorithm idm is correct and terminates.

Proof. The correctness of idm is immediate from the following two observations:
first, r and 1 with the required properties indeed exist in the before last step: for
each 1y chosen maximal in GG for <y, the 1p,--- ,1; € G withmy = --- =1 = 1M
satisfy [my]u + -+ + [m]u = 0. Secondly, at the end of the algorithm, G H is indeed
an intermediary set of dominant monomials for the original value of u; G is only an
intermediary set of monomials for the final value of .

Let us prove by induction on k£ that idm terminates. This is clear for £ = 0. Let
k > 0 and assume that we have proved the assertion for all smaller k. No infinite
loops can occur in the repeat-until loop, since we assumed that z; <x zp for all
i < k. Furthermore, the step v := u 4 (if — )([z,*]u) can be executed only a finite
number of times, since it has the effect of increasing the valuation of w in zj, while
u # 0 remains invariant. O

Remark 12.1. Instead of returning GH at the end of the algorithm, we may first
eliminate its redundant elements. Notice also, that if we are allowed to change the
Cartesian representation u during the execution (while preserving @), then the set
H has no use, and we may return G instead of GH.
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Remark 12.2. As before, we also have algorithms for the infinitesimalization and
regularization of Cartesian representations, based on idm.

12.3 Stability theorems

In chapter 5, we gave a theoretical algorithm to solve asymptotic algebraic differen-
tial equations in the case of well-ordered transseries. In this section, we show that
if the coefficients of such an equation were actually grid-based transseries, then so
are its solutions. Moreover, we describe some changes in the theoretical algorithm,
which will allow a purely effective treatment in the next section. Because of its tech-
nical character, this section may be skipped without much harm at a first reading.

In view of the theoretical algorithm to solve asymptotic algebraic differential
equations, it suffices to show that the distinguished solutions of quasi-linear equa-
tions with grid-based coefficients are also grid-based. In section 12.3.1, we give
several ways to compute distinguished solutions. In section 12.3.2, we prove that
the distinguished solutions of linear differential equations with grid-based coefficients
are grid-based. In section 12.3.3, we treat the general case.

Since this section is purely theoretical, no effective assumptions need be made,
and C' denotes the real closed exp-log field of constants we are working over.

12.3.1 Distinguished solutions w.r.t. normal bases

When dealing with grid-based transseries, it is convenient to compute w.r.t. normal
bases, especially for the effective purposes of the next section. The construction by
transfinite induction of distinguished solutions to linear or quasi-linear differential
equations corresponds to the case when the normal basis is actually a canonical
basis. Indeed, if B is a canonical basis, then the elements of the asymptotic scale
Sp generated by B are transmonomials. In general, distinguished solutions are
constructed in a similar way as in chapters 4 and 5, but they depend on the choice
of B.

In this section, we briefly explain the construction of distinguished solutions
w.r.t. general normal bases B = {61, -+ ,6,}. We will also present an alternative,
lexicographical construction: this yields the expansion in 6,, and, recursively, the
full expansion w.r.t. B. By analogy, distinguished solutions w.r.t. general normal
bases share all properties of the distinguished solutions as introduced in chapters 4
and 5. In principle, distinguished solutions w.r.t. B are transseries in €[[[Sg]]]. In
sections 12.3.2 and 12.3.3, we will show that they are actually grid-based.

Classical construction of distinguished solutions. Before coming to the con-
struction of distinguished solutions, we first notice that, more generally, poten-
tial dominant monomials and terms of solutions to asymptotic algebraic differential
equations are easier to compute in the grid-based case than in the context from
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chapter 5. This is because the transfinite induction procedure in theorem 5.2 may
now be replaced by a finite one: with the notations from chapter 5, we first compute
the unique constant «,, € € such that

M(Px6$",i) =6, M(Pxiﬁ",j)v

next the unique constant a,_; € € such that

M(Pygonstgn i) <o M(Pygmnsigan ;)
and so on for «,_3,---,a;. In the linear case, this yields a finite procedure to

compute My-1, in section 4.3. In the quasi-linear case, this yields a finite procedure
to compute my-1,, which is in particular needed for the construction of L™ g.

Let us now come to the construction of distinguished solutions, which is analog-
ous to the one given in the proof of theorem 5.5. This time, g and the coefficients of
L are in C[[[SB]]], and we are looking for solutions in C'llog, z][[[S{z-1 . 10g,_, =1uBl]]-
The main differences with respect to before are the following:

— The definition of stationary limits in C[[[Sg]]] is analogous to the transseries
case, except that we now write elements in C[[[Sg]]] as strong linear com-
binations of monomials in Sg, instead of strong linear combinations of trans-
monomials.

— Using upward shiftings, we maintain the normal basis B of level 1 during
the “transfinite computation”: each time when 7! need be inserted into B,
we perform an upward shifting. In view of the Newton regularity, this may
happen at most r + 1 times. Alternatively, we shift » + 1 times upwards
at the beginning of the computation, thereby guaranteeing a priori that the
distinguished solution will be expandable w.r.t. B.

Taking into account these two differences, we define the transfinite sequence (f,)
as before, and the last term of the sequence is the distinguished solution £7'¢ to

Lf=g.

Lexicographical construction of distinguished solutions. Instead of comput-
ing the distinguished solution f term by term, one might also want to compute the
successive terms of f, when expanded in 6,, the coefficients of this expansion being
recursively expandable in a similar manner. To do so, we will construct a transfinite
sequence (fr) in a similar manner as before; but now f ; is obtained from fX by
adding a term 7, in C[[[61;- -+ ;6,_1]]]6¢ instead of a term in C'Sp. Actually, this
sequence will be a subsequence of (f,).

Before we show how to construct the sequence (f*), let us first introduce some
more notations. For any f, we denote by u(f) or ps the valuation of f in 6,. We
will also consider expansions of quasi-linear operators £ w.r.t. 6,:

L= Lt = Y56
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and we denote by u(£) or py the valuation of £ in 6,. The coefficients [67]L of L
w.r.t. B are themselves operators with coefficients in C[[[Sp\(s,]]]. Moreover, the
operator [6¥¢]L is quasi-linear.

Now we define (f*) by

o =0
f;+1 = f; + To;
o= st%zgm f5 (if o is a limit ordinal),
where
Ta = €400

WLy px xotter)

o = ([6n [ pexope) ™ (1627 )(g = Lf2));
o = p(Lik(g—LF2) = plg — Lf2) — (L gz iin).

(Lypx wota) . - . . .
The fact that [6Z & xoh L4 sx wora is a quasi-linear operator with coefficients in
Cl[[SB\(s.3]]] guarantees the existence of a distinguished right-inverse for it.

Proposition 12.2.

(a) The sequence (fX) is a subsequence of (f,).
(b) The lexicographical and the classical constructions of distinguished solutions
are equivalent.

Proof. It is straightforward to verify (a) and (b) follows directly from (a). O

12.3.2 Distinguished solutions: the linear case

Let L = Lo+ ---+ L,0"/02" be a linear differential operator with coefficients in
CIl6;---;6,1. We study the action of L on €[z][61;- - ; 6,1, where we recall that
B is purely exponential of level 1. The usual support supp L of L is defined to be
the union of the supports of its coefficients Lg,--- , L,. The operator support of
L is defined to be the smallest set supp. L, such that

supp Lg C (supp. L)(supp g),

for all g. The operator L is actually a grid-based linear operator, in the sense
that supp. L is grid-based. Indeed,

supps« L C supp Lo U (supp L1 )(supp.d/0x) U --- U (supp L, )(supp. d/dx)"
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and
supp,0/dz C {z7'} Usupp 6, U -+ Usupp 6,,

where we recall that f stands for the logarithmic derivative of f.

In this section, we will show that the distinguished right inverse L= of L w.r.t.
B as defined in the previous section is also a grid-based linear operator. This implies
in particular that the distinguished solution to the equation L™ f = g is grid-based,
for all g.

Lemma 12.1. Let

IT
o = mwes } ;
{M(LXH) b
supp Ly
I = —
ugB M(LXH)
xr—Nq);

> reo
|

; e U1,

Then
supp. L™ C 1.

Proof. We must show that for all g, the distinguished solution f to the equation
Lf = g satisfies supp f C ®I'“supp g. Let the f, be as in the classical construction
of L7'¢ in the previous section. We will prove by transfinite induction over a that:

— supp (9 — Lfa) S T¥suppyg.
— supp fo C 1 %supp g.

This is clear for a = 0.

Assume that o = F+1 is a successor ordinal. Let ma’ be the dominant monomial
of g — Lfs, where m is purely exponential. By the induction hypothesis, ma’ €
fosupp g. Let

e = Mp-1(g-Ljs) = ML
where 11 is purely exponential. Then we have

g = M( Ly ). (12.3)

Now f, = fs + crz' for some constant c. Hence,
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and mz’ € mzid C Ci)fosupp g. This proves the second induction hypothesis. As to
the first, we have g — Lf, = g — Lfs — L(cz'). Now

L(cu:z;i) = Ly’ = CLXH70$i + -+ el Dy
whence
supp L{cmz') C &' supp L.
Using (12.3), we get

i i s Supp Ly,
supp L(emaz’) C mpd gt~ -2 20
( ) M(LXH)
Since i —j < r and L(cz') ~ ma?, we conclude that supp L(cmz') C mai] C
I'Ysupp g, whence the first induction hypothesis.

If o is a limit ordinal, then the induction hypothesis are trivially satisfied (in the
case of the first hypothesis, we use the linearity of ). O

Lemma 12.2. The sets ® and I from the previous lemma are grid-based.
Proof. Each 1 € Sg has the form 11 = 67" - - - 62", whence we may consider 11! Ly,

as a linear differential operator with coefficientsin €[ay, -+, a,|[6;- -+ ; 6,1, whose
support is a grid-based set A. Indeed, the coefficients of 17! L, are given by

(0™ Lw)i = 32 Lm0 [,
j=1

and the quotients /=% /1y may be rewritten as differential polynomials with constant
coefficients in the logarithmic derivative 1 of 11.

Since the ring €[y, -, a,] is Noetherian, it follows that m(11™" Ly, ) can only
take a finite number of values, when varying «y,---,a,. For each semi-algebraic
subset of (ay, -+ ,a,) on which m(n™' Ly,) is constant, we also have a uniform
bound

supp Lo _ 17tsupp L {m € Ajm =K m(n' L)}
M( L) M D) T M(m! L) 7
for supp Lyy/M(Lyy). Hence, the sets @, T, $ and I' are indeed grid-based. O

Combining both lemmas, we have proved:

Theorem 12.1. The distinguished linear right inverse L™ of L is grid-based. O
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12.3.3 Distinguished solutions: the quasi-linear case

We now turn to the case of a quasi-linear operator L of order r with coefficients
in €[64;---;6,1. Given g € €[[64;---;6,1, we study the distinguished solution
L7'g to the equation Lf = ¢, as defined in section 5.4.4. Modulo a suitable number
of upward shiftings, we may assume without loss of generality that B has level 1,
and that £7'¢ is expandable w.r.t. B.

Consider the lexicographical construction of £7'¢g. The dominant term f; of
L7'g w.r.t. 6, is the distinguished solution to the equation

M(LMZO)

([6n " VLygro) co = ([60"""*)(g — Lf2)).

which is quasi-linear in general. The remaining coefficients are solutions of the
equations

Ly o gna) _ g—LfX *
([60 " Ly prxone) ™ eal (85 ](g — L)),

with @ > 0. We will now show that these equations are actually linear and not
merely quasi-linear. Moreover, there exists a linear differential operator L, such
that

_ [ *
Ca = Lxéﬁ“ ([6n Y ](g - Lfoz))7
for all a > 0.
Lemma 12.3.

L * o
(a) [62( +Haxon )]L+f;,x6za is a linear differential operator for all a > 0.
(b) The linear differential operator

Wl gx xotier)

L= ([6n ]L+f;,x65°‘)x6;“a (12.4)

is independent of a, for a > 0.

Proof. For a > 0, we have

M(L+f;,xMBZ°) = M(L+f;,xMB:jO,zm)-

Since pg > o, it follows by (5.6) that

M(L+f;,xMB,’fl) = M(L+f;,xMB,’fl,lin) > /“L(L-l—f;,xMB,’fl,rest)'

This proves (a).
For oo > 1, we have X — f; =< 6,, whence

M(L * Nl)
_ +1E xol
Liprxomn = Ly gr ot 4 06,(Gn

)7
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by (5.6). Hence,

M(L+f* ><6MO‘)
Ly gx xope = Ly e xoie + 06, (6n ),

by (5.7). Hence,

M(L_l_fik , X6Zl )

“’(L *7)(650‘)
([6n e ]L+f§,x65°‘)x6;“a = ([6n ]L+f1*,x651)x6;“17
for all @ > 1, because of (a). This proves (b). O

From both lemmas and theorem 12.1, we now deduce the following:
Lemma 12.4. The distinguished solution to Lf = g is grid-based.

Proof. We prove the theorem by induction over n. For n = 0, we have nothing to
prove. Assume therefore that n > 0. By the induction hypothesis, f; is grid-based.
Modulo the replacement of ¢ by ¢ — Lf], we may assume without loss of generality

that (12.4) holds for all a.. Let

L = L+ R;

A = supan---UsuppfiAn,
and define

® = (supp.L™")(suppg):
I = U(Supp*L_l)(suppRi)q)|i|—1A||i||‘

(2

Let us show by transfinite induction that
supp fo C ®I'?

for all a. This is clear for & = 0 and for limit ordinals a.

Assume that o = 34 1 is a successor ordinal. We claim that supp (g — Lf} —
R(f3)) € supp g Usupp R(f;). Indeed, by the construction of f3, all terms of Lf;
cancel out against terms of g — R(f7). It follows that

supp f € supp f; Usupp7(L~" (g — Lf; — R(f3)))
C supp f; U (supp L™ (supp g U supp R(f3))

C oreu (U(supp*L‘l)(supp R;)(supp (fé)(i)))
c ore (U<supp*L-1><suppR»@""‘IAW”)
C ore.
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This completes the proof of the theorem. O

In view of this lemma and the theoretical resolutions algorithm, we have proved
the main theorem of this section:

Theorem 12.2. Any transseries solution to an algebraic differential equation with
grid-based transseries coefficients is itself grid-based. O

12.4 Effective asymptotic resolution of a.d.e.’s

In this section, we show how to compute the generic solution to the asymptotic algeb-
raic differential equation (12.1) under suitable effective hypothesis. For this purpose,
we use the theoretical algorithm from section 5.5, with the following changes:

— The distinguished solutions are now computed w.r.t. a dynamic normal basis
B, as explained in section 12.3.1 and below.

— Instead of computing with distinguished solutions, we will sometimes compute
with semi-distinguished solutions (see section 12.4.4).

Of course, we also have to fix an effective context and to show how to render the
theoretical algorithm effective in this context. This is the object of section 12.4.1.
The sections 12.4.2, 12.4.3 and 12.4.4 deal with effective extensions of the effective

field of transseries coefficients we compute in.

12.4.1 Basics for the effective treatment

Basic assumptions. In the rest of this chapter, we make the following effective
hypotheses:

A1.¢ is an effective totally ordered constant field.
A2.%T is an effective differential field of transseries over €.

In what follows, we allow ourselves to enlarge ¥ with real parameters, logarithms,
(certain: see below) exponentials and distinguished solutions of quasi-linear equa-
tions. In the next sections, we will give effective zero-tests? in such extensions fields.

As in previous chapters, we allow the imposition of constraints on the real para-
meters by which we extend ¥. Contrary to before, we allow the imposition of any

ZActually, we will not really give a full zero-test in the case of extensions by distinguished
solutions. Nevertheless, we will present an approach which is equivalent to giving such a zero-test
for the purposes we have in mind.



276 CHAPTER 12. ALGEBRAIC DIFFERENTIAL EQUATIONS

first order formula, using constants in €, the exp-log field operations and the or-
dering operation. The regions defined by such constraints do not coincide with the
regions defined by the exp-log systems considered in chapters 7 and 11; see [VdD 84|
and (0.14). When necessary, we assume the existence of an oracle to check the con-
sistency of systems of such constraints. As usual, such an oracle is used to eliminate
empty regions, but it suffices to check for real algebraic consistency in order to guar-
antee termination. This can for instance be done using cylindrical decomposition

(see [Col T5]).

The normal basis B. In the remainder of this chapter, we will always work
w.r.t. the effective dynamic normal basis B = {6,--- ,6,} of level 1. Initially, the
coefficients of (12.1) can be effectively expanded w.r.t. B, after having them made
purely exponential by means of upward shiftings (i.e. the coefficients of P admit
automatic Cartesian representations relative to ¥, where the Cartesian coordinates
are in Sg). On the other hand, we will always assume that the elements in ¥ can
all be expanded w.r.t. B.

Automatic upward shiftings. In order to keep the normal basis purely expo-
nential of level 1, we use upward shiftings and the automatic updating strategy:
we introduce a global level [, which is increased each time an upward shifting is
necessary. To each transseries f (resp. differential polynomial with transseries coef-
ficients, etc.) we consider during the computations, we also associate a level. If this
level is different from the global level [, when we access the transseries, then the
necessary upward shiftings of f are made. This may lead to the insertion of new
(inverses of) logarithms into B and the extension of ¥ with new logarithms.

Insertion of new exponentials into B. It may happen that a monomial 11 is a
potential dominant monomial w.r.t. a normal overbasis of B, but not w.r.t. B itself.
We need be able to detect this situation, and insert the necessary elements into B
when it occurs. Now in order to find the potential dominant (i,7)-monomials of
[ (see section 5.5.3), it suffices to perform at most one additional upward shifting,
whence no new exponentials need be inserted into B.

In the case of potential dominant -monomials, we first solve the corresponding
Riccati equation at degree i. If ¢ is a solution modulo o(1), then we compute e
by the usual exponentiation algorithm. The dominant monomial of €% is now a
potential dominant :-monomial. Here we notice that both the computations of ¢
and e¥ may provoke the insertion of new elements into B. We also notice that the
field ¥ is extended by each new exponential which is inserted into B; the exponential
of “the infinitesimal part” of ¢ is not needed for further computations.

Cartesian representations of distinguished solutions. The lexicographical
construction in section 12.3.1 shows in principle how to compute the expansion of
the distinguished solution to quasi-linear equation £f = ¢g term by term. However,
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since we represent all our transseries by Cartesian representations, we also need a
Cartesian representation for the distinguished solution. We will now explain how to
compute such a Cartesian representation.

We start by regularizing all coefficients of the quasi-linear operator, and extract
their dominant coefficients w.r.t. 6,. This allows us to compute (recursively) the
first term 7 of the expansion of f w.r.t. 6,,. We then reduce the general case to the
case when (12.4) holds for all a, by replacing g with g — £7 and searching a solution
to Lf =g.

Next, we compute a set Z = {z1,--- , z;} of Cartesian coordinates with 2z » ---

> zp, w.r.t. which f can be expanded, using the effective bounds for supp f given

in sections 12.3.2 and 12.3.3. We take this set Z sufficiently large, so that it contains
all Cartesian coordinates of the coeflicients of £. We now let z; 3 --- % z, be those
Cartesian coordinates in Z which depend on 6,. The expansion of the Cartesian
representation of f w.r.t. Z is now computed lexicographically, by expanding first
in zp, then in z5_; and so on. To do this, we proceed in a similar manner as in the
lexicographical construction of distinguished solutions, where the elements of Z now
play the roles of the normal basis elements.

We must finally show that we indeed compute a Cartesian representation of the
distinguished solution in this way. Let L be the linear operator from lemma 12.3.
By proposition 4.7, the distinguished solution is unique with the property that
supp f N {mp,, -+ ,Mu. } = @, where hy < -+ < hg form a basis for the solutions
space of the homogeneous equation Lh = (. But the transseries represented by the
Cartesian representation computed by the above construction clearly satisfies this

property.

12.4.2 [Effective extensions of T by logarithms and exponen-
tials

In the previous section, we have seen that we sometimes need to extend ¥ by log-
arithms or exponentials during the computation of privileged refinements. We have
also observed that we only need to extend ¥ by (inverses of) logarithms and expo-
nentials 6, which are also inserted into B.

Let B be the normal basis before we insert 6. We recall that we assumed that
all elements in ¥ can be expanded w.r.t. B. We claim that a polynomial R(6) in
6 with coefficients in ¥ vanishes, if and only if R = 0. Indeed, from our hypothesis
on ¥ it follows that the supports of the different terms of R are pairwise disjoint.
Consequently, we have a straightforward zero-test in €(6). We also notice that the
elements in T(*B) can again be expanded w.r.t. BU{6}. Hence, we may recursively
extend ¥ by new logarithms and exponentials.
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12.4.3 Recall of some results from differential algebra

In this section P denotes an arbitrary differential polynomial, and not necessarily
the P from (12.1).

Let f be a solution to an algebraic differential equation P(f) = 0. Assume that ¢
is another differential polynomial and suppose that we want to test whether Q(f) =
0. Often this question can be answered by using only algebraic considerations. By
analogy with classical algebra, this is done by computing some kind of greatest
common divisor of P and (). If this greatest common divisor is a scalar, then we
know that Q(f) # 0. If the greatest common divisor is P, then we know that
Q(f) = 0. In the remaining case, we need more information to decide, but we still
gained something. Namely, a simpler equation then P(f) = 0 must be satisfied by
f, in order Q(f) = 0 to hold true.

Actually, there is no straightforward analogue of the g.c.d. of two polynomials in
the differential setting. However, something like the above still holds in this case. To
show this, we will use Ritt reduction (see [Ritt 50|, or [Kap 76]), and an algorithm
which resembles a lot the Boulier-Seidenberg-Ritt algorithm for testing whether a
differential polynomial belongs to a given perfect ideal (see [Boul 94], [BLOP 95|,
[VdH 96¢]).

We will say that a differential polynomial P(f) is simpler than another differ-
ential polynomial Q(f), if the order of P is strictly inferior to the order of @, or the
orders 7 of P and @ coincide and the degree of P in f{) is strictly inferior of the
degree of Q in f(); we write P < Q). Let P(f) be a non zero differential polynomial
of order r, and write P = P;(f0)? 4 --- Py as a polynomial in f{"). The initial of
P is defined by Ip = P; and the separant of P by Sp = 9P/df"). The differential
polynomial Hp = IpSp is always simpler then P.

If @) is another differential polynomial, and the the coefficients of P and () live in
an effective differential field, then Ritt gave an algorithm to compute ¢ € N, a linear
combination wP of P, P, P --. and a differential polynomial R which is simpler
then P, such that

H-Q = wP + R.

In particular, f is a simultaneous solution to P and @, if and only if Hp(f) # 0 and
P(f) = R(f) =0,0r Hp(f) = P(f) = Q(f) = R(f) = 0.

More generally, we may consider pairs (2,7"), where ¥ = {Py,---, P;} is a non
empty set of non zero differential polynomials, and T a single differential polynomial.
Such a pair corresponds to the system Pi(f) =--- = Pi(f) =0 and T(f) # 0 of
differential equations and inequations. We say that (¥X,7') is elementary, if ¥ is a
singleton. We say that a system (X, 7T) is simpler than a system (¥, 7"), if (X, 7T)
is elementary, or there exists a P € X, which is simpler than all elements in .

Let (3,7T) be a non elementary system and write ¥ = {P,Qq, -+ ,Q,}, where
P is simplest among the elements in . Now compute «;,w; and R; as above, such
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that
HpQ; = w, P + R;,

for each 1 <@ < s. Let ¥ = {R;|R; # 0}. Then the systems (¥’ U{P},THp) and
(X U{Hp}UX,T) are both simpler than (X, T'), their solutions spaces are disjoint,
and f is a solution to (X, 7'), if and only if f is a solution to one of the these systems.

In general, a system (X, 7T') is said to be equivalent to a list L of systems whose
solution spaces are mutually disjoint, if f is a solution to (X,7T) if and only if f
is a solution to one of the systems in L. Then the above generalization of Ritt-
reduction yields a procedure, which given a system (X, 7") with |X| > 2 computes an
equivalent list of simpler systems. Repeating this procedure on each of the systems
in the obtained list, we eventually obtain an equivalent list of elementary systems.
Indeed, there exists no infinite chain of simpler and simpler systems. We have
proved:

Theorem 12.3. There exists an algorithm, which given a system (X,T) computes
an equivalent list of elementary systems. O

In what follows, we will apply this theorem in the case when (¥,7") = ({P,Q}, 1).
In this case, we obtain an equivalent list of elementary systems, which describes the
set of common solutions to P and Q).

12.4.4 Effective extensions of T by distinguished solutions

Assume that we want to adjoin the distinguished solution f to a quasi-linear equation
P(f) = 0 (f < u)® to T, where P has coefficients in §. We have to design an
algorithm in order to test whether Q(f) = 0 for arbitrary differential polynomials ¢
with coefficients in ¥. If Ay denotes the set of parameters in ¥, we may formulate the
problem in a different way: determine the region R of €% on which Q(f) = 0. We
will assume by induction that we know how to solve this problem for all distinguished
solutions of simpler differential polynomials than P. We know how to treat the base
step of this induction, namely the case of linear equations.

The first step of our algorithm consists of computing an equivalent list of sim-
pler elementary systems ({A1},71), -, ({Ai}, 1)) for the system ({P, @}, 1), by the
algorithm from the previous section. Then the region R can be written as a disjoint
union

R=R/1I---1I Ry,
where R; is the region on which A;(f) = 0 and T;(f) # 0 for all «.

3For the purposes of this section, the notation P(f) = 0 (f < u) is more convenient than

Lf=g.
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The simple case. Let us first consider the case when (for all possible values of
the parameters in Ag) the distinguished solution is the unique solution to the quasi-
linear equation P(f) =0 (f << ). In this case, whenever for some 1, f is a solution
to the asymptotic differential equation

Ay=0(f =1 (12.5)

with the extra condition

Ti(f) # 0, (12.6)

then we must have f = f. On the other hand, we must have Ai(f)=0(f=<1)
with T;(f) # 0 for some ¢, if f is a solution to Q(f) = 0. Hence, we have reduced our
problem to determining whether for a fixed index i, there exists a solution to (12.5)
with the extra condition (12.6).

By the induction hypothesis, we can solve the equation (12.5).* Again by the
induction hypothesis, we can determine the common solutions to (12.5) and Tz(f) =
0. More precisely, each generic solution f to (12.5) leads to the introduction of a
new set of parameters A;. For each such solution, we then obtain the region S of
¢l on which Tz(f) vanishes. Then ¢AUA1\ ' is the region on which Tz(f) does
not vanish. The projections of these regions on €*° (when taking into account all
generic solutions to (12.5)) yield the desired region on which there exists a solution
to (12.5) under the condition (12.6). It is in order to carry out these projections,
that we need an oracle for determining the consistency of first order formulas in the
theory of exp-log fields, and not merely the consistency of exp-log systems in the
sense of chapter 11.

The general case. In general, [ is not the unique solution to P(f) =0 (f < q),
so we can not guarantee that a given solution to (12.5) and (12.6) is the same one
as f. Although a test whether this is the case can be designed in most of the cases
encountered in practice (by using the properties of the supports of distinguished
solutions), we were not able to design a fully general test.

Nevertheless, we will now present two “dirty tricks”, which provide the last piece
of our algorithm to solve algebraic differential equations. Actually, our trick consists
of working with dynamically determined semi-distinguished solutions instead of
distinguished solutions. By default, the semi-distinguished solution to a quasi-linear
equation P(f) = 0 (f < ) is the distinguished solution. However, when we find
a posteriori a solution to P(f) = 0 (f << 1), which is also a solution to a simpler
algebraic differential equation, then we will use this solution instead as the semi-
distinguished solution.

Coming back to our original problem, such replacements a posteriori of dis-
tinguished solutions by semi-distinguished solutions in privileged refinements occur

*We notice that it suffices to solve this equation w.r.t. the current normal basis B; i.e. any
solutions which necessitate the insertion of new exponentials are discarded.
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precisely then, when we can not decide whether a solution to (12.5) under the con-
dition (12.6) is the distinguished solution to P(f) = 0 (f < u). More precisely, this
situation amounts to the separation of [ 4+ 1 cases: on the complement of the region
R, the result to the test is negative and no additional action is undertaken. On each
region R;, we compute a solution f to (12.5) under the condition (12.6). Next, all
computations which depend on f are done over, where f is substituted by f.

Termination is guaranteed by the fact that at each replacement of a distinguished
solution by a semi-distinguished solution, the semi-distinguished solution satisfies
simpler and simpler algebraic differential equations.

Remark 12.3. We qualified our trick as “dirty”, because we may have to do over
part of the computations. This amounts to quite complicated and unconventional
control structures. To handle this problem, we propose the following approach, based
on a variant of the automatic case separation strategy: at each time we introduce
a distinguished solution, we separate a usual case, and a virtual case. Whenever
the distinguished solution need be replaced by another solution, we kill the current
process, and activate a virtual process in which we work with the new solution
instead of the distinguished solution.

Remark 12.4. We notice that distinguished solutions are needed at two places: in
privileged refinements, and recursively during the computation of the expansion of
a distinguished solution. In particular, the replacement of an iterated coefficient ¢
of a distinguished solution f to some quasi-linear equation P(f) =0 (f < u) by an
iterated coefficient ¢ which is no longer a distinguished solution to some equation,
yvields a new solution f to P(f) =0 (f < u), which is only semi-distinguished! In
particular, suitable new Cartesian coordinates for f are computed in this case.

12.5 Conclusion

Putting together the results from this chapter, we have proved

Theorem 12.4. Let € be an effective exp-log field. Then there exists an algorithm
which takes on input

(a) An effective differential field T of transseries over €;

(b) An effective normal basis B C X;

(¢c) An asymptotic algebraic differential equation (12.1), whose coefficients can
effectively be expanded w.r.t. B,

and which computes

(a) A finite family (A;,3;)1<ica of pairs of finite sets of real parameters and first
order systems of exp-log constraints;

(b) For each 1 < i < I, an expansion algorithm for a virtual generic transseries
solution f; to (12.1), parameterized by A;, where the parameters satisfy ¥;,
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such that fi,---, fi yield all solutions to (12.1) in a non redundant way.

Modulo an oracle to determine the consistency of first order systems of exp-log
constraints, we may eliminate those indices v, for which ¥; has no solutions. In this
case, the f; are generic solutions and not merely virtual generic solutions to (12.1).

4

Remark 12.5. Although the algorithm is finite, the actual expansion of the trans-
series solutions to (12.1) may involve a potentially unbounded number of case sep-
arations. For instance, consider the differential equation

where A is a real parameter and * — oco. The computed generic solution to this

= /1_ R g

where the integration constant is zero. However, expansion of this solution up to
the first n € N* terms yields the following result:

equation is

A< —1 ¢ f:M-I-%Hx”H- —I_/\711-|—3 2N L O,

A=-—-1 : f:M+10gx_x1_..._711T2—n-l-?_l_O(x—n-l—l);
—1<)\<0 : f:/\L_Hx/\-I_l_I_//L_I_ _I_/\717‘+3/\n+3_|_0(/\n+2)‘

A=0 : f:$+10g$+u—x1—---—71173x‘”+3+0(x—71+3);
A=n-—3 : f:anZxH—Q_I__|_x_|_10g$_|_lu_|_0(x—l)’
A>n—3 f_A-ll—leH"‘"“FA_i+3$A_n+2—I-O(:1;A_”+1).

Here we assumed that ;1 # 0; a similar list is returned for the other case.

Remark 12.6. If we want to compute the first n terms of the expansion of a generic
solution to the differential equation, the computations may induce substitutions of
auxiliary distinguished solutions by semi-distinguished solutions. Such substitutions
may actually alter the expansions which have already been computed! Nevertheless,
if we allow terms in the expansion to be zero, then no zero-tests are needed during
the expansion, and this problem does not occur. Furthermore, if all parameters
are substituted by constants, then we are able to perform all necessary zero-tests
effectively, by computing canonical expansions (see section 9.5.2).

Remark 12.7. The generic solutions to algebraic differential equations may be
used themselves to extend ¥. Hence, we may recursively solve algebraic differential
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equations whose coefficients are solutions to other algebraic equations. However,
it should be noted that such computations may alter the representations of the
coefficients of the equation.

Remark 12.8. Since arbitrary D-algebraic® systems of ordinary algebraic dif-

ferential equations may be reduced to equivalent lists of elementary systems (see
section 12.4.3) by a straightforward generalization of the reduction algorithm, our
results may in principle be used to solve such systems. However, from the efficiency
point of view, a simultaneous resolution algorithm for systems of asymptotic al-
gebraic differential equations would be preferable. We have not studied this issue
in detail, but we think that our methods generalize to this case without to many

difficulties.

12.6 References

[Col 75] G.E. CoLLINS. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. Proc. 2-nd conf. on automata theory and formal languages, Springer

Lect. Notes in Comp. Sc. 33 (p. 134-183).

[DL 89] J. DENEF, L. LipsHITZ. Decision problems for differential equations. The Journ. of
Symb. Logic 55(3) (p. 941-950).
[GS 91] D. GRIGORIEV, M. SINGER. Solving ordinary differential equations in terms of series

with real exponents. Trans. of the A.M.S. 327(1) (p 329-351).
[Kap 76] I. KAPLANSKI. An introduction to differential algebra. Hermann (2-nd ed.).

[Kol 73] E.R. KoLcHIN. Differential algebra and algebraic groups. Academic Press, New-
York.

[Matij 70]  Yu. MaTasgEvic. Enumerable sets are Diophantine. Dokl Akad. Nauk SSSR 191
(p. 279-282). Soviet Math. Dokl 11 (p. 354-357).

[Ritt 50] J.F. RiTT. Differential algebra. Amer. Math. Soc, New-York.

[Sh 91] J. SHACKELL. Limits of Liouvillian functions. Technical report, Univ. of Kent,
Canterbury. Appeared in 1996 in the Proc. of the London Math. Soc. 72 (p. 124-
156).

[VAD 84] L. vaN DEN DRIEs. Remarks on Tarski’s problem concerning (R, 4+, -, exp). Logic
Colloguium ’82, G. Longi, G. Longo and A. Marcja eds., North-Holland.

>This means that the “differential dimension” of the variety of solutions is zero; see also [Kol

73].



Chapter 14

Oscillatory asymptotic behaviour

14.1 Introduction

In the previous chapters of part B of this thesis, we have been concerned with auto-
matic asymptotic expansions of “strongly monotonic” transseries. In this chapter,
we make a first step towards the automatic treatment of functions involving oscil-
latory behaviour. We notice that Grigoriev obtained some very interesting related
results in [Gri 94] and |[Gri 95], although his point of view is different yet comple-
mentary to ours. The results of section 14.2, 14.3 and 14.4 should soon appear in
[VdAH *].

The structure of this chapter is as follows: in section 14.2, we recall a classical
density theorem for linear curves on the n-dimensional torus (see for example [Kok
37] or [KN 74]). In section 14.3, this theorem is generalized to more general classes
of curves on the torus.

In section 14.4, we are given an algebraic function ¢ defined on [—1,1]?, and
exp-log functions at infinity Fy(x),---, Fy(z) in . We show how to compute

lim sup p(sin(F1(z)), -, sin(Fy(2))).

In section 14.4, we will assume the existence of an oracle for checking the Q-linear de-
pendence of exp-log constants. Actually, Richardson’s algorithm (see [Rich 95]) can
easily be adapted to yield an algorithm for doing this modulo Schanuel’s conjecture.

Section 14.5 contains extensions of the obtained results. For simplicity, we have
based our exposition in section 14.4 on the case of exp-log functions. In view of the
algorithms from the previous chapter, the reader will notice that the results can be
easily extended to more general classes of transseries. This issue will be discussed
in section 14.5.1. In section 14.5.2, we sketch an approach for computing complete
asymptotic expansions of so called sin-exp-log functions of trigonometric depth one
(sines may not be nested). We finally discuss further extensions of our results to the
resolution of differential equations, in section 14.5.3.

284
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14.2 A density theorem on the n-dimensional torus

Let A1, ---, A, be Q-linearly independent numbers: we will use vector notation, and
denote the vector (Ay,---, ;) by A. In this section, we prove that the image of
x +— Az, from R into the n-dimensional torus 7™ = R"/Z"™ is dense. Notice that we
use the same notation for Az and its class modulo Z". Moreover, we show that the
"density" of the image is uniform is a sense that will be made precise. The following
theorem is classical:

Theorem 14.1. (Kronecker) Let Ay, -+, A, be Q-linearly independent real num-
bers. Let ey, - e, be the canonical base of R™. Then A\yeyZ + - - -+ Ay, Z 4+ R(ey +

<o+ ey,) is dense in R™.

Proof. Let G = MetZ+ -4+ N\, Z,u=¢1+ -+ ¢,, and let A be the closure
of G + Ru. By the classification theorem of closed abelian subgroups of R™, we can
decompose A = V& D, where V' is a subvector space of R™ and where D is a discrete
subgroup of R”, with V Nvect D = {0} (here we recall that vect D stands for the
vector space spanned by D). Then we have projections 7 : G — GNV and 7’ : G —
D, with Id = 7 + #'. Now let {v, -+ ,v4} € G be an R-base of G and complete
this base into an R-base {vy,---,v,} € G of R”. Then 7(v441),- -+ ,m(v,) form an
R-base of V. Since Ru C V, u is an R-linear combination of p(vgg1),- -+, p(vn).
This can be written in matrix form

AMX =T,

where A is the diagonal matrix with entries Ay,---,\,, M an integer matrix, X
some column matrix, and U the column matrix with l-entries. If d were strictly
superior to 0, then we would obtain a Q-linear relation between the A;, by doing
row operations on M. This completes the proof. O

Now let X be a measurable subset of T, and let I be some interval of R. De-

noting the Lebesgue measure by p, we define

{z € I|Ax € X})
(1) '

Let us also denote by d the Euclidean distance on T". Let Sy, resp. 5S4 de-

note the shift operator on R, resp. R”™ or T™: Sy(x) = a4+ d and Sq(x) =

Strda) (1, xn) = (v1+dy, -+ 2+ dy) = 24 d. The following are immediate

consequences of the definition of p:

,,(1,)():’“‘(

(14.1)

Proposition 14.1. We have
(CL) p([,X) = ZiENIO([in); ZfX = HiENXi'
(b) |p(L, X) = p(Sal, X)| < |d|/u(1), for all d.
(¢) p(I,X)=p(S_aql,SxaX), for all d. O
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It will be convenient to adopt some conventions for intervals I = [a,b] (resp.
I = [a,b], I =]a,b] or I =la,b]) whose lengths b — a tend to infinity: we say that a
property P holds uniformly in [, if the property holds uniformly in a:

AlVaVl > 1y P([a,a+1]).

We say that P holds for all [ sufficiently close to infinity, if P holds for all sufficiently
large a.

The next theorem is also classical, but for convenience of the reader we present
a proof, since similar techniques will be used in the next section:

Theorem 14.2. (Bohr, Sierpiniski, Weyl) Let Ay, -+ A, be Q-linearly inde-
pendent real numbers and let p be given by (14.1). Let

X = [al,bl[x e X [an,bn[g T
be an n-dimensional block, with 0 < a; < b; <1 for all i). Then

lim p(1,X) = u(X).

w(I)—oo
uniformly in 1.

Proof. The theorem trivially holds, if ¢; = 0 and b; = 1, for all but one 1 <
1 < n. Hence, it suffices to prove the theorem, when the a; and the b; are rational
numbers. Indeed, let a},b], -+ ,al bl be rational numbers with |a] — aq| + [b] —
bi| + -+ |al, —a,| + b, — b,| <6, and denote X' = [a},b)[x -+ x [a/,b[. Then
lp(1, X") — p(I, X)| < 26 for (1) sufficiently large, uniformly in /.

Because of proposition 14.1(b), it therefore suffices to prove the theorem for fixed
p=(p1, - ,pn) € (N)* and for all

ki k 1 k, k,+1
X:Xk:[i7 l—l_ [X"'X[—7 —I— [7
P P Pn Pn

with 0 < k& < p1,---,0 < k, < p,. We remark that [0,1["= Iy Xk, so that

Now let ¢ > 0. For each k, we can find xg, with d(Azg, k) < e/n, by the-
orem 14.1. Consequently, we have u(S_x;, Xx & Xo) < &, where A A B denotes
the symmetric difference of A and B. Hence, (X; A Sx(z—p) X&) < 2¢, for each 1
with [y < py,---,{, < p,. Using proposition 14.1, we can now estimate

lp(1, Xt) = p(1, Xi)| < oL, Sx—an)) — p(L, Xi)| +
Xy & Sxg—a) Xk)
< |IO(Sl’k—l’t[7Xk) - P([an)| + 2¢
|2p — 2]

S p(l)

+ 2e.
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Taking pu(1) > |xg — x4|/e, for any k and 1, we get

1 1
p(l, Xg) — < p(L, Xg) — p(L, X1)| < 3e.
( ) P1-Pn pl"'pnzk:|( ) ( )

Hence |p(1, X&) — u(Xk)| < 3e, for sufficiently large p([), uniformly in I. This
completes our proof. O

Remark 14.1. The theorem does not longer hold, if we replace X by an arbitrary
measurable subset of the torus. Nevertheless, it can be shown that it does hold for
any measurable X, whose boundary is a finite union of differentiable hypersurfaces.

14.3 A more general density theorem

In this section we will obtain a more general uniform density theorem on the torus,
when the application z — Az from section 14.2 is replaced by a non linear mapping,
which satisfies suitable regularity conditions. Before coming to this generalization,
we will need some definitions and lemmas. We say that a function f defined in
a neighbourhood of infinity is steadily dominated by z, if f has a continuous
second derivative, f tends to infinity, f’ decreases strictly towards zero, and f”/f’
tends to zero. We remark that such functions f admit functional inverses f in a
neighbourhood of infinity.

More generally, we say that if f and ¢ are functions in a neighbourhood of infinity,
such that ¢ is invertible, then f is steadily dominated by g, if f o ¢ is steadily
dominated by x. In this case, we write f <* ¢g. It is easily verified that if f <* «
and g <* z, then f o g <®x, so that <K* is transitive. We also remark that if
f =<? g and if h is a function, which has a continuous second derivative and tends
to infinity, then f o h <«* go h. We finally have the following property of steady
domination:

Lemma 14.1. Lel h be steadily dominated by x and let | > 0 and ¢ > 0 be given.
Then for all sufficiently large x we have |h'(x + d) — h'(z)] < eh’(x), for all d with
|d| < 1.

Proof. Let x¢ be such that |h"(x)/h'(x)| < eh’(x), for all # > 29 — . We have
[P (x4+d)—h'(2)| < |dR"(E)| < eh!(£), for some € between x and x+d. If d is positive,
then A'(£) < h'(x), and we are done. In the other case, we have |h'(x +d) —h'(2)| <
eh/(x) —e|h/(x + d) — K'(x)|, whence |h/(x + d) — b/ (2)| < (¢/(1 — €))h'(x). O

Now let X be a measurable subset of R. For each interval I, we define:

p(l N X)

o, X) = p(l)
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We say that X admits an asymptotic density p(X) if

lim (1, X) = p(X),
w(I)—oo

uniformly in [, for [ sufficiently close to infinity.

Lemma 14.2. Let X be a measurable subset of R and let h be steadily dominated
by x. If p(X) exists, then so does p(h(X)) and we have p(h(X)) = p(X).

Proof. Let ¢ > 0. Let [ € R be such that |p(I, X) — p| < e, whenever u([) > I.
Taking I = [a, 3], we subdivide A""(I) in ¢ = | (K'"(8) — h"""(a))/l] parts of equal
length " > [ ' '

(" (a), A" (B))]= [ax, by [T - - - T {ag, by,

with b; = a;41 for 1 <1 < g. Then we have

(hmv(X)m)
Z/ a;)dr < (p+e) ;/bih/

By lemma 14.1, for all sufficiently large «, we have |h'(z + d) — h'(x)| < eh/(x), for
all d with |d| < !’. Hence,

Z/ (B)lde <
52/ x)de = ep(1),

and we have a similar estimation, when replacing b; by «;. Consequently,
(0= 2)(1 — 1) < p(h(X) O 1) < (p+ )1+ )l D)
This completes our proof. O
Let f; <® .-+ <* f, be continuous functions defined in a neighbourhood of in-

finity, which strictly increase towards infinity. Let A;,; > 0 (1 < 7 < n;) be such
that A;1, -+, A, are Q-linearly independent for each 7. Now consider the curve

g(l‘) = (fl()‘le)?"' 7f1()‘17n1x)7"' 7fp()‘p71x)7"' 7fp( pypd ))
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on T" (n =ny+---+ny), which is defined for sufficiently large x. By analogy with
the preceding section, we define

p({z € Ig(fi™(x)) € X})
pfvg([7X) = M([) 9

for intervals [ sufficiently close to infinity, and measurable subsets X of T".

(14.2)

Theorem 14.3. Let fi, -+, f,, 9 and ps, be given as above and let
X = [al,bl[x cee X [an,bn[g ™
be an n-dimensional block. Then

lim pra(l,X) = p(X),

w(I)—oo
uniformly, for intervals sufficiently close to infinity.

Proof. We proceed by induction over p. If p = 0, we have nothing to prove.
Otherwise, we decompose X = X; x X, with X; € 7™ and X C 7%, where
n =ny+---+n, We denote by gi(z) resp. g(x) the projections of g(x) on T™
resp. 1™, when considering 7™ as the product of 7™ and T". Without loss of
generality, we may assume that f; = z.

Given a subset A of R or T™ and its frontier dA, we denote for any € > 0

QA= {z e Ald(z,0A) > e}.

Let ¢ > 0. If ¢1(x) € Q.X1, then ¢1(x + d) € X for all d with |d| < [, where
[ =max(1/A11, -+, 1/ A1, )e. Hence, for [ sufficiently close to infinity,

INg™(.X,) C (INWg™(X)+] = LIS I0g™(X,).

Therefore, theorem 14.2 implies that for [ sufficiently close to infinity
PN g™ (X1))
— u(X
‘ () )
and (using that p(Q. X7 A X1) < 2ny)
p((L N Qg™ (X)) +] = L) p(I N g™ (Xy))

p(l) p(l)
Now (I N Qgi"(X1))+] — 1, 1] is a finite union of intervals, say

<e (14.3)

< (201 + 1)e. (14.4)

INQg™(X)N] = L= T I~ 1T 1,44,

where [, -+, I, have length at least 2/, and where Iy and [,4; have length at most
21.
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By the induction hypothesis, we have

L0 R X)

i ) = (X)),

uniformly, for J sufficiently close to infinity. Using lemma 14.2, this gives us

) ng™ (X))

= u(X),
u(f2(I) =00 u(J) #(X)

uniformly, for J sufficiently close to infinity. In particular, we have
‘M(J ng"™ (X))
w(J)

for all J sufficiently close to infinity, with w(.JJ) > [. Thus, choosing [ sufficiently
close to infinity, we have

— p(X)

<e,

‘M([Z mgmv(j()) _M()N() <e,

(1)

forall 1 < <gq.
Taking u(1) > 2l/e, and using (14.3) and (14.4), this gives us

w1y 10 g™ (X))
(1)
pINg™ (X)) p(lIEs I ﬂém“(f())‘

p(1) p(1)
qf p(Lin g™ (X)) = p(X)u(L) N

o101, X) = u(X)] < —M(X)‘ s

N

(1)

This completes the proof. O

14.4 On the automatic computation of limsups

In this section we show how theorem 14.3 can be applied to compute limsups (or
liminfs) of certain bounded functions, involving trigonometric functions. The idea
is based on the following consequence of theorem 14.3.
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Theorem 14.4. Let 1 < f1 < -+ < [, be exp-log functions at infinity. Let
Aij >0 (1 <5< n;)besuch that X;q, -+, Xy, are Q-linearly independent for each
i. Denote U ={ax++/-1lyeCla?+y* =1} andn =ny + -+ +n,. Let ¢ be a

continuous function from U™ into R and let

77/)(1;) — SO(e\/—_l/\l,lfl(l’)7 .. 7e\/—_l Ap,npfp(l’))‘

Then
limsup ¢ (z) = sup o(@).

T— 00 zcelUn

Proof. We first notice that we will be able to apply theorem 14.3 on our input data:
by a well known theorem, which goes back to Hardy (see [Har 11]), the germs at
infinity of fi,---, f, lie in a common Hardy field. Consequently, fi <°* --- <* f,,
and fi,---, f, are strictly increasing in a suitable neighbourhood of infinity.

The mapping ¢ is defined in a neighbourhood V' of infinity, and can be factored

VAR=V AT BR with

Mifi(x )‘p,nppl'
) = (L) el

and

9 I A I - 17“‘76 - "7
¢ (51?1 T ) SO(GZW\/_IQU 2m/—1 & )

where ¢y and 1 are both continuous. Since T™ is compact, there exists a point
 in which 1ty attains its maximum. Let ¢ > 0. There exists a neighbourhood
V of @, such that |¢q(y) — ¢a(@)| < e, for any y in V. By theorem 14.3, there
exist x, with ¢¥1(z) € V as close to infinity as we wish. For such x, we have

[ (2) — supgepn ()] < e O

We now turn to the computation of this limit.

Theorem 14.5. Let Iy, --- | F, be exp-log functions at infinity. Let ¢ : U7 -+ R a
real algebraic function, where we consider U? as a real algebraic variety. Assume that
we have an oracle to test the Q-linear dependence of exp-log constants. Then there
exists an algorithm to compute the limsup of Y (x) = c,o(e\/__lFl(l’), e ,e\/__qu(x)).

Proof. Using the identity e™* = 1/e*, we may always assume without loss of
generality, that the F; are all positive. Now the algorithm consists of the following
steps:

Step 1. Compute a common effective normal basis for Fy,--- ., F),, using the al-
gorithm from section 7.2. Order the F; w.r.t. - ; that is, F} < I} or F; < I,
whenever 1 < j.
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Step 2. Simultaneously modify the F; and the algebraic function ¢ in the eV
until we either have F; <« Fj, or I; = AF}, for some A, whenever ¢ < 7. As long as
this is not the case, we take 7 maximal, such that the above does not hold, and do
the following:

First compute the limit A of F;/F;. Next insert I} := F; — AF; and F] := \F}
into the set of F; and remove F;. The new expression for ¢ is obtained by replacing

each ¢V~ 11 by VL E VT

Step 3. Compute exp-log functions f; < -+ < f,, and constants A; ; (1 < 7 < n;),
such that each F; can be written as F; = A;; f;, for some ¢ and j. Replacing eV -LE
by its limit for each bounded F;, we reduce the general case to the case when 1 <« f;.

Step 4. This step consists in making the A; ; Q-linearly independent for each fixed 1.
Whenever there exists a non trivial Q-linear relation between the A, ; (for fixed 7),
we may assume without loss of generality that this relation is given by

anl‘)\i,n,‘ - al)\i,l + -+ an,‘—l)\i,n,‘—lv

for ay, -+ ,a,, in Z and a,, > 0. As long as we can find such a relation, we do the
following:
For all j < ny, replace A;; by Al . := A; j/a,, and VLA ki by (e\/__“wfi)“"i in

the expression for ¢. Next, replace eV =1 Yinifi by (e\/__l Agylf")“l e (e\/__l /\gvni_lfi)a"i—l

in the expression for .

Step 5. By theorem 14.4, the limsup of ¥ is the maximum of ¢ on U", where
n =mny + -+ mn, To compute this maximum, we determine the set of zeros
of the gradient of ¢ on U". Then ¢ is constant on each connected component
and the maximum of these constant values yields maxy» . To compute the zero
set of the gradient of ¢ and its connected components, one may for instance use
cylindrical decomposition (see [Col 75]). Of course, other algorithms from effective
real algebraic geometry can be used instead.

The correctness of our algorithm is clear. The termination of the loop in step
2 follows from the fact that the new F/ is asymptotically smaller then F}, so that
either the x-class of F} strictly decreases, or the number of 7 with F; < F}, but not
F; = AF; for some A. The number of <-classes which can be attained is bounded
by the initial value of q. O

Corollary. Let Fy,--- , F, be exp-log functions at infinily and ¢ be an algebraic
function in q variables, defined on [—1,1]7. Assume that we have an oracle to test
the Q-linear dependence of exp-log constants. Then there exists an algorithm to

compute the limsup of Y (x) = @(sin(Fi(x)),--- ,sin(F,(x))). O
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Figure 14.1: Plot of the function  from example 14.1.

Example 14.1. Consider the function

_ 2sina® —sin(2®/(z — 1))

"~ 3 +sinex? — sin(ex? + 1)

()

The first step consists in expanding 2? = 22, 2°3/(z — 1) = 2> + a + -+ -, ex? = ex?

and ex? +1 = ex? 4 1. All these functions have the same x<-class, but they are not
all homothetic. Therefore, some rewriting needs to be done. First, 2°/(z — 1) =
2? + 2%/(x — 1), and we rewrite

V=1 2% /(z—1) \/—_1x2€\/—_1x2/(x—1)

e =e ,

which corresponds to the rewriting

z? z? z? 9

= sin 22 cos + sin cosx”,
T — z—1 T —

sin
if we consider real and imaginary parts. Similarly, we rewrite
VT (1) _ VT e /T

which corresponds to the rewriting

sin(e:z;2 + 1) =sin ex?cos1 4+ sin 1 cos ex?.

In step 4, no Q-linear relations are found, so that we have to determine the maximal
value of
A % — at — ci
plaabbee) = — (14.5)
34+b—bcosl —bsinl

on U?. Here we have abbreviated ¢ = sinz?, & = cos 2%, b = sin ex?,b = cos ex?, ¢ =
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sin(z?/(x — 1)), & = cos(2?/(x — 1)) (hence U? is the set of points with a* 4-a*
b*+b* = ¢*+¢* = 1). The maximum of ¢ is attained fora = 1,4 = 0,0 = —1/2,b =
V3/2,¢=0,é=—1. We deduce that

lim sup ¢ (x) 6

= =1.
=300 5—|—cosl—\/§sin1

Similarly, exploiting the symmetry of (14.5), we have

—6

5+cosl—\/§sin1

hg}(i)glf@/}(x)

14.5 Extensions

We have shown how to compute limsups of certain functions involving trigonometric
functions, exponentiation and logarithm. Actually, the techniques we have used are
far more general than theorem 14.5 might suggest. Let us now discuss the possible
extensions of our theorem.

14.5.1 More general classes

More general F,--- ., [F,. In theorem 14.5, the crucial property of the functions
Fy,--- ,F, is that they are strongly monotonic and that we have an asymptotic
expansion algorithm for them. Consequently, functions more general than exp-log
functions can be taken instead, especially classes of (germs of ) functions, which can
be represented by transseries for which the asymptotic expansion algorithms from
the previous chapters apply. Now convergent transseries naturally represent germs
of functions at infinity. More generally, resummation techniques are needed in order
to associate germs of functions at infinity to transseries.

Resummation theories. So what natural axioms should a resummation theory
actually satisfy? We propose to define a real resummation theory as being a
mapping X from a differential subfield K of the field of transseries to the ring of
germs of real functions at infinity, which satisfies the following properties:

RTO. K contains all convergent transseries and X( f) is defined in the natural way
for such transseries f.

RT1. ¥ preserves the field operations.

RT2. ¥ preserves differentiation.

RT3. Y preserves the ordering.

RT4. ¥ preserves infinitesimals.

RT5. Y preserves composition (when defined).

The image of a resummation theory ¥ is a Hardy field. Via X, the results of this
chapter generalize to the case when Fy,--- | F, are in an automatic subfield of K.
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There do exist non trivial resummation theories. For instance, one may extend
the differential field of convergent transseries with the Gamma function. Similarly,
we may use the classical closure properties of Hardy fields in order to construct
non trivial resummation theories. However, no resummation theories with very
general closure properties (stability for resolution of algebraic differential equations
and composition) are known at the moment. Indeed, this is a very important open
question, and especially the preservation of realness is very hard to achieve (see
[Ec 92] and [Men 96| for an approch to this problem).

More general functions ¢. We may also take ¢ in a more general class than
the class of algebraic functions defined on U? or [—1,1]?. The interesting property
of the class of algebraic functions is that there exists a cylindrical decomposition
algorithm for it. In particular, modulo suitable oracles, one may consider the class
of solutions to real exp-log systems in several variables (see also the conclusion).

It one drops the effectiveness condition, one may also consider the class C' of
all real analytic functions defined on U?. We claim that there exists a cylindrical
decomposition theorem for . To show this, we have to prove that the zero-set of
any finite system of functions in C' can be decomposed in a finite set of connected
real analytic subvarieties. Now the theory from chapter 10 implies that such decom-
positions exist locally, by taking the set of all convergent power series for the local
community. By the compactness of the zero-set, we need only a finite number of
such local pieces in order to recover the entire zero-set.

From the effective point of view, it is attractive to restrict ones attention to
an effective differential ring R of effective real analytic functions on U?. Effective
real numbers are numbers which can be approximated automatically to any desired
precision by rationals. Effective real analytic functions are effective real functions
f, such that for any effective point x¢ in the domain of f, we can compute f(x¢), a
small disk around xg on which f is analytic and bounds for f on any closed subdisk.
In this context, it is not hard to show that there exists an algorithm to compute the
maximum of a real analytic function ¢ on the torus U?. On the other hand, exact
zero-tests for constants in R are usually very hard to design, if they exist at all. We
also refer to appendix C for computations with effective reals and complex numbers.

14.5.2 Complete expansions

The approach. In principle, our techniques can also be used to compute automatic
asymptotic expansions of sin-exp-log functions ¢ at infinity of trigonometric depth
one (i.e. without nested sines). This is done as follows: let sin fi,--- ,sin f, be
the sines occurring in ¢. Using the rewriting algorithm from section 14.4, we first
reduce the general case to the case in which the f; are Q-linearly independent, and
homothetic whenever equivalent for <. Next, we consider ¢; = sin f1,--- , ¢, = sin f,
as formal transseries parameters, which satisfy the constraints —1 < sin f; < 1 for
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all . At this point we can apply the generic expansion algorithm for multivariate
transseries from chapter 11.

Simplifying a bit (see the final remarks at the end of this section), the result
is a list of regions, determined by asymptotic constraints on the ¢;, together with
a generic expansion algorithm on each region. Of course, some regions may not
correspond to actual asymptotic behaviours of ). Besides checking the constraints
for exp-log consistency, which can be done modulo the oracle used in chapter 11,
we need check whether the constraints (and the extra constraints induced by the
final refinements) can actually be realized when we know that the formal parameters
were originally sines of exp-log functions. This issue has still to be studied in detail.
Let us briefly discuss some aspects of this problem.

Diophantine problems. In its full generality the problem may lead to very difficult
number theoretical phenomena, as the following example illustrates:

1
[(z +2)

2 —sinx —sinex =

This asymptotic inequality follows from the number theoretical properties of e. But
what about the positive infinitesimal exp-log functions f for which

(14.1) 2 —sinx —sinax = f(x)

for all sufficiently large =, where a is an arbitrary exp-log constant? Clearly, this
is a problem of Diophantine approximation which is very hard to solve in general,
if solvable at all (see [Lang 71| for a nice survey on Diophantine approximation).
Yet, it is one of the simplest situations which can arise, since in general, we want to
study far more general systems of constraints.

Nevertheless, we notice that (14.1) has been chosen in a very special way: 2 is
precisely the limsup of sina + sinax; we say that (14.1) is “degenerate”. If 2 is
replaced by any other real number, then the problem becomes “non degenerate”
and trivial. Therefore, our example is quite pathological. Furthermore, we notice
that @ 1s usually not an arbitrary real number, but say an algebraic number, or a
parameter. In the first case, the theory of Diophantine approximation may give us
some information, which we are able to exploit effectively, using the theory from
chapter 11. In the second case, one can keep f fixed, and study the measure of the
set of a for which (14.1) holds (by analogy with Kolmogorov-Arnold-Moser theory),
which is again a simpler problem.

A pragmatic attitude. Finally, let us explain why from a numerical point of
view, it 1s not really necessary to decide whether complicated asymptotic systems
involving trigonometric functions are consistent. Indeed, assume for instance that
during the computation of the expansion of a sin-exp-log function v of trigonometric
depth one, we need determine the asymptotic sign of g(x) = 2 —sin x —sin ax — f(x)
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for some reason (with ¢ and f as in (14.1)). Then this asymptotic sign does not
really matter for numerical applications: if we want to evaluate ¢(x¢) for a large
value of zg, then we just compute the sign of ¢ in . If this sign is positive resp.
negative, then we compute ¢(xo) using the asymptotic estimate obtained for it under
the assumption that g(x) is asymptotically positive resp. negative. Clearly, the fact
that the generic asymptotic expansion algorithm from section 11 returns always a
finite list of regions is very important for this mechanism to work in general.

On the other hand, certain questions which are, logically speaking, decidable,
are completely undecidable from the practical point of view. A good example is to
determine the sign of

. 101010
c=-sin10 ,

which is needed in order to compute the asymptotic expansion of

10
expexp(sin 1010 )

at infinity.

Final remarks. We have “cheated” a bit in the application of our generic expansion
algorithm from chapter 11. Indeed, the algorithm may introduce some real para-
meters and impose exp-log constraints on them. In particular, when introducing a
sine ¢; = sin f; = 1 as a formal parameter, we refine

g=Ate(e<1)

or
g; = A.

However, we do not wish to interpret ¢; as the sum of a real parameter plus an
infinitesimal expression, since sin f;(x) does not necessarily tend to a constant as
tends to infinity in the region which interests us.

Let us briefly discuss an approach to handle this problem, which we intend to
develop in a future paper. Instead of introducing real parameters in the generic
expansion algorithm, an alternative approach would be to divide the set of transser-
ies parameters in two subsets: the infinitesimal and bounded parameters. Here the
status of a parameter may be changed dynamically, while maintaining the elimina-
tion ordering. From the constraint point of view, the bounded parameters behave
in a similar way as the real parameters before. However, if the limit behaviour of a
bounded parameter x; can be expressed as a function of other bounded parameters
x; with 7 > ¢, then we separate three cases, as we would have done in the usual
algorithm.

Example 14.2. Assume that we want to expand

1

sinz — sin €%
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elim

Initially, sinz < sin e” correspond to bounded parameters. In order to invert

sinx — sin ¢” we have to separate the cases
sinz —sine” » 1

and
sinx —sine” =< 1.

In the first case, ¢ is bounded, and we are done'. In the second case, we have

expressed the limit behaviour of sinz as a function of the limit behaviour of sin e”,
and we separate three cases:
sinx = sine® + ¢ (5 < 1);
sine =sine” —e (e < 1
sine = sine”.

N~ e

?

The last case is eliminated, since sinx — sine” should be invertible. In the first
two cases, the bounded parameter sinx is rewritten in terms of an infinitesimal
parameter ¢ (change of status). The constraints sina = sine” 4+ ¢ (¢ < 1) resp.
sinx =sine” — e (¢ < 1) induced by these refinements are both consistent.

14.5.3 Differential equations

In section 4.6, we have given a theoretical algorithm to determine all solutions to
linear differential equations with transseries coefficients, even those solutions which
involve oscillatory behaviour. The method becomes really effective, if the transseries
live in an effective field of transseries, which satisfies the hypothesis from chapter 12.
Indeed, we use similar algorithms as in the previous chapter.

More generally, one may consider transseries whose transmonomials are strongly
monotonic, but the coefficients are analytic functions in a finite number of exponen-
tials ef1, ... e'fr of purely imaginary strongly monotonic transseries. Of course,
the analytic functions are restricted to belong to some effective class, as discussed
before. In this context, we have already some results about the computation of
distinghuished solutions to linear and quasi-linear equations, but these results still
require a full development.
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Appendix A

Noetherian orderings

A.1 Introduction

It should not be surprising that in a general theory of asymptotic expansions the
usual theory of orderings plays an important role. In fact, it turns out that asymp-
totics is closely related to the subject of Noetherian orderings. Because of its
richness, we decided to devote this appendix to it. One of its origins clearly comes
from commutative algebra, as developed by Noether and others in the twenties and
thirties. In section 2, we translate the basic properties concerning Noetherian rings
in the language of orderings; in fact, we mainly recall this very classical material to
make the reader familiar with our nomenclature.

The study of Noetherian orderings for their own right would not have been
justified without the appearance of a certain number of non trivial theorems in the
fifties and the sixties, most importantly Higman’s theorem (see [Hig 52]). Various
motivations led to these theorems: a conjecture of Véazsonyi and a question from
Erdés (see [Er 49]), order theoretic reasons (see [Krus 60, [NaWi 63]), etc. It is
interesting to notice, that Higman’s original motivation was the same as ours: the
construction of algebras of generalized power series. The idea is to fix a ring, a
partially ordered monomial group, and to consider those series, whose supports are
Noetherian (that is, the induced ordering is Noetherian). We shall prove Higman’s
theorem and some of its generalizations in section 3.

The interest of theorems like Higman’s theorem is that they permit us to prove
the existence of solutions to certain types of equations over generalized power series
and transseries, and in many cases to explicitly find a solution. The idea is that
these theorems permit us to construct Noetherian orderings from others by means
of elementary constructions. In terms of asymptotics, this allows us to confirm
that the supports of candidate solutions are indeed Noetherian. However, for sev-
eral reasons the classical theorems are insufficient to handle very general functional
equations. Therefore, we introduce in section 4 the concept of Noetherian operators,
which will allow us to generalize some classical theorems about Noetherian order-
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ings. In section 5, we will show that these theorems are in fact effective, in a sense
which will be made precise.

Let us finally notice that some other interesting constructions can be performed
on Noetherian orderings. First, a Noetherian ordering determines a topology, whose
closed sets are the final segments. Then it is interesting to study the Boolean
algebras or o-algebras generated by this topology. The elements of this boolean
algebra are called constructible sets (by analogy with algebraic geometry). Often it
is possible to define a natural measure on the o-algebra on a Noetherian ordering,
and often the measures of constructible sets can be computed effectively. This
gives an final justification of the use of Noetherian orderings for doing asymptotics,
although the degree of generality obtained here hides some other problems, which
are discussed more fully in part B of this thesis. For more details, we refer to [VdH

94a).

A.2 Definitions and basic properties

Let E be a set. We recall that an ordering on F is a reflexive transitive and
antisymmetric relation on E. One also defines strict orderings on E to be anti-
reflexive transitive and antisymmetric relations on F. Of course, a strict ordering
naturally determines an ordering and vice versa. If an ordering < is given on F, we
(abusively) say that F is an ordered set, and that < is the underlying ordering.
Two elements x,y of F are said to be comparable, if either x < y or y < x. The
ordering is total, if any two elements are comparable (to emphasize that an ordering
is not total, we will sometimes say that it is partial). A subset of E is said to be
a chain, if it is totally ordered by the induced ordering. A subset of F is said to
be an antichain, if no two of its elements are comparable. The ordering is said
to be well founded, if there is no infinite strictly decreasing sequence of elements
in K. Equivalently we say that the descending chain condition holds. Dually,
we say that the ascending chain condition holds, if there is not infinite strictly
increasing sequence of elements in £. The ordering is said to be Noetherian, if it
is well founded, and if there are no infinite antichains. Finally, a total well founded
ordering is called a well-ordering. A well-ordering is in particular Noetherian.

Remark A.1. Many other names appear in the literature for the concept of No-
etherian orderings. It is also possible to define Noetherian quasi-orderings, in which
case the name well-quasi-ordering is used most commonly instead. Here a quasi-
ordering on a set F is a reflexive transitive relation and the definitions of well-
foundedness and antichain are the same. Given a quasi-ordering <, one can define
an equivalence relation = by r =y & * <y A y < . Then “dividing out” <
with respect to =, one obtains an ordering. This ordering is Noetherian, if < is a
well-quasi-ordering.
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We will need some more definitions. Let < still be an ordering on . A final
segment for < is a subset F' of F, such that z € FF A z <y =y € F. We denote
by (A) ={y € E|Ja € A x < y} the final segment generated by A C E. Dually,
we say that [ is an initial segment for <, ify € [ A @ <y = x € [. We will also
refer to final segments as closed sets and to initial segments as open sets. Indeed,
it is not hard to verify that the open sets form a topology on E; they are even stable
under infinite intersections. We have the following classical equivalent conditions
for an ordering to be Noetherian:

Proposition A.1. Let < be an ordering on I. Then the following are equivalent:

(a) The ordering < is Noetherian.

(b) Any final segment of E is finitely generated.

(¢) The ascending chain condition w.r.t. inclusion holds for final segments of F.
(d) One can extract an increasing sequence from any sequence xy,Tq,--- € F.
(e) Any extension of E into a total ordering yields a well-ordering.

Proof. Let F' be a final segment of I/ and G C F' the subset of minimal ele-
ments of . G is an antichain, whence finite. Moreover, G generates [, since <
is well-founded. Inversely, if @1, x5, -+ is an infinite antichain or an infinite strictly
decreasing sequence, the final segment generated by {xy, x5, -} is not finitely gen-
erated. This proves (a) & (b).

Now let Fy C F, C --- be an ascending chain of final segments. If the final
segment [ = J, F, is finitely generated, say by G, then we must have G C F),,
for some n. This shows that (b) = (c). Inversely, let G be the set of minimal
elements of a final segment F'. If x1,x,,--- are pairwise distinct elements of ¢, then
(x1) C (x1,22) C -+ forms an infinite strictly ascending chain of final segments.

Now consider a sequence wy,q,--- of elements in £, and assume that < is
Noetherian. We extract an increasing sequence x;,, x,,, -+ from it by the following
procedure: Let F), be the final segment generated by the x, with k > ¢, and z}, > x;,
(Fo = E by convention) and assume by induction that the subsequence of w1, z, - - -
of those x; which are in F, is infinite. Since F), is finitely generated by (b), we can
select a generator z;,,,, with 7,11 > 7, and such that the subsequence of 1, z,---
of those z; which are in F),4; is infinite. On the other hand, it is clear that it is
not possible to extract an increasing sequence from an infinite strictly decreasing
sequence or from a sequence, whose image forms an infinite antichain.

Let us finally prove (a)&(e). An ordering containing an infinite antichain or an
infinite strictly decreasing sequence can always be extended as to contain a copy of
—N, by a straightforward application of Zorn’s lemma. Inversely, any extension of
a Noetherian ordering is Noetherian. O

In order to state some applications of proposition A.1, we need some more defin-
itions. Let K and F' be ordered sets. Then we define the natural ordering on the
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disjoint union K II F' of F and F, by taking the induced ordering on each of the
summands, and by taking £ and F' mutually incomparable. Similarly, we define the
product ordering on F x F by (v,y) <gxr (2",y) S e <g a2’ N y<py'

An increasing mapping ¢ between from F into F' is a mapping such that ¢ <g
y = p(x) <p ¢(y). We remark that if this is the case, then ¢(.5) is a final segment
of F for any final segment S of F. Now assume that ~ is an equivalence relation on
E. We say that ~ is compatible with <gp, ife <y Az ~2' = Jy' ~y 2’ <y'. In
this case, we have a natural ordering defined on £/~ and the projection £ — E/~
is an increasing mapping. We state without prove the following easy proposition,
where (c), (d) and (e) follow from proposition A.1:

Proposition A.2.

(a) Any ordering on a finite set is Noetherian.

(b) The usual ordering on N is Noetherian.

(¢c) If E and F are Noetherian ordered sets, then so is F' 11 F.

(d) If E and F are Noetherian ordered sets, then so is E x F.

(e) Let E be a Noetherian ordered set and let ¢ be a surjective increasing mapping
from E onto an ordered set F'. Then F' is Noetherian.

(f) If E is a Noetherian ordered set, then so is any subset of F for the induced

ordering.
(9) If E is a Noetherian ordered set, and ~ an equivalence relation, compatible
with <g, then F/~ is a Noetherian. O

Corollary. (Dickson’s lemma) N" is a Noetherian ordered set for each n. O

To finish this section, let us state the so called Noetherian induction prin-
ciple, which generalizes the classical induction principle over N as well as transfinite
induction:

Proposition A.3. Let P be some property concerning ordered sels, such that
P(E) is true whenever P(I) is true for every proper initial segment I of F. Then
P(E) holds for all Noetherian ordered sets.

Proof. Assume that P(F) is false for some Noetherian ordered set, then we can
construct a strictly decreasing sequence of initial segments Iy D [ D --- of F, such
that P(1,) is false for each n. But then E\I; C F\I; C --- would be an infinite

strictly increasing sequence of final segments. O
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A.3 Classical theorems on Noetherian orderings

In this section we will generalize proposition A.2 in order to provide more examples
of Noetherian orderings. Let us be given an ordered set E. We will denote by E*
resp. F/¥ the sets of non commutative words and commutative words over £.
The sets of non empty words resp. commutative words are denoted by ET resp. K.
We denote words either by products of letters ay - - - a,,, or by n-tuples [z, - ,z,],
in the case when confusion might arise. Elements of £ are also denoted by words,
although it is understood that the letters commute. We remark that an element of
E® can always be represented by a word z;---x, € E*, with 2; < z; = i < j, for
all ¢, 7. If the ordering on FE is total, then this representation is canonical.

The sets of commutative and non commutative words can be given “natural”
orderings in the following way: we define x;---x, <gr y1---Ym, if and only if
there exists a strictly increasing mapping ¢ : {1,--+ ,;n} — {1,--- ;m}, such that
T KB Yo(i), for all 1 <4 < n. It is not hard to verify that the equivalence relation
determined by the permutation of letters is compatible with <gx. Hence, we also
have a natural ordering defined on <g¢. For instance, it £ = N, then we have

2,31,15,7] <u~ [2.8,35,17,3,7.1]
2,31,15,7] Zu- [2.8,35,17,3,2,1]
[2,31,15,7] <po [2.8,35,17,3,2,1]

Theorem A.1. (Higman) [f E is a Noetherian ordered set, then so is E*.

Proof. We will give a proof due to Nash-Williams (see [NaWi 65]), using his
technique of minimal bad sequences. If < denotes any ordering, then we say that
(x1,29,---) is a bad sequence, if there do not exist 1 < j with ; < z;. An
ordering is Noetherian, if and only if there are no bad sequences. Now assume for
contradiction that s = (wy,ws,--+) is a bad sequence for <g+. Without loss of
generality, we may assume that each w; was chosen such that the length (as a word)
of w; were minimal, under the condition that w; be in E*\(wy, -+ ,w;—1). We say
that (wy,ws,---) is a minimal bad sequence.

Now none of the w; can be the empty word, so we can factorize w; = z;w!,
where x; is the first letter of w;. By proposition A.1(d), we can extract an in-
creasing sequence x;,,%;,,--+ from z1,xq,---. Now consider the sequence s =
(wy, -+ swi—1,wi ,wi -+ ). By the minimality of s, this sequence is good. Hence,
there exist 5 < k with ng < wgk. But then, w;, <g+ w;,, which contradicts the
badness of s. O

Corollary. If E is a Noetherian ordered set, then so is E°.
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More generally, one can consider the set £ of finite trees, whose nodes are
labeled by elements of K. We recall that a finite E-labeled tree T' is recursively
defined as being an element = of F, together with an n-tuple Ty, --- , T, of E-labeled
trees (n = 0 being allowed). We write T' = «[T4,--- ,T,]. Equivalently, we can see
an E-labeled tree as a finite set T' of points, called nodes, labeled by elements of
E. One of the nodes root(T') of T' is said to be the root of T'. To each other node is
associated a unique distinct node, which is said to be its predecessor or parent.
Finally, a total ordering is given on the successors of each node.

A node which is not the predecessor of any other node is called a leaf. The set
of leafs of T' is denoted by leaf(T"). The transitive closure <7 of the predecessor
relation determines a partial ordering on T'; we say that a is an ancestor of b, if
a =7 b. For each node a € T', the descendants of a form a subtree of T, of which «
is the root. The subtrees determined by the successors of a node are said to be its
children. Any two nodes a,b of T" admit a lowest common upper bound w.r.t. <,
which we denote by a V 0.

The partial ordering <7 can canonically be extended into a total ordering <rp
by imposing that the children of each node a are ordered by the corresponding
ordering on the successors of a and that ¢’ <7 o' for any «’ <7 a, b’ <7 b such that
a <7 b. The “natural” embeddability ordering on E" is given by T <pt T7, if and
only if there exists an injective strictly increasing (for the total orderings) mapping
@ : T — T’ such that p(a V b) = ¢(a) V ¢(b), and l(a) <g l(¢(a)), for all a,b € T.
The following is an example of a tree which embeds into another tree, if £ = N:

SN
ANV RN

Theorem A.2. (Kruskal) If E is a Noctherian ordered set, then so is ET.

Proof. Assume that there exists a minimal bad sequence (T, 75, --) in the sense
that the cardinal of T; is minimal, for fixed Ty,---,T;_;. We can write T; =
zi[Ti1,- -+, Tin,] for each i. We claim that the induced ordering on S = {T; ;|7 < n;}
is Noetherian.
Indeed, suppose for contradiction that the claim is false, and let
(TZ Ti27]27 T )

1,J19
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be a bad sequence. Let k be such that 75 is minimal. Then the sequence

(T17”' 7T’ik—17Ti TZ

kodko Tikgradre1s T )

is also bad, which contradicts the minimality of (71,73, -- ).

Finally, we know that £ x S* is a Noetherian ordered set by Higman’s theorem
and proposition A.2(d). But each tree T; can be interpreted as an element of this
set. Hence, we obtain the desired contradiction. O

Remark A.2. In the case when we restrict ourselves to trees of bounded arity,
the above theorem was already due to Higman. The general theorem was first
conjectured by Véazsonyi. Let us also notice that much research has been done
in order to extend Kruskal’s theorem to trees with infinite arities. This led to the
concept of better-quasi-ordering, which lies between well-quasi-ordering and well-
ordering. We refer to [Mil 85] and [Pouz 85| for surveys. It would be interesting
to know whether this related theory can be given an interpretation in our context.
Another very deep result (see [RS]) is that the graph minor ordering on the set
of finite labeled graphs is Noetherian. That is, G < G’ if G’ can be obtained from
(' by deleting and contracting edges and decreasing labels. Again we do not have
an interpretation in our context.

By playing some combinatorial games with the encoding of finite trees, one can
obtain many variants of Kruskal’s theorem. We will mention one of them now. Let
X be any ordered set and let © be an ordered set of operations on X (that is, each
f € Qis an ng-ary operation f : X" — X). We say that the operations in 2 are
extensive, and that the ordering on M is compatible with the ordering on X, if
the following two conditions are verified respectively:

O1. ;i <x f(x1, -+ ,2,,) forany f € Q, and 1 <@ < ny;
02. Let f <q g bein Q. Then f(xi,---,2,,) <x 9(y1, " ,Yy,), Whenever
there exists a strictly increasing mapping ¢ : {1,--- ,ns} — {l,--- ,n,},

such that z; <x y,() for each 1.

Now let (G be a subset of X. The smallest subset of X which contains G and which
is stable under € is said to be the subset of X generated by GG w.r.t. 2, and will
be denoted by (G)q. Then we have

Theorem A.3. Let X be an ordered set and § a Noetherian ordered set of
operations on X verifying the above conditions. Then if (G)q is a Noetherian subset
of X, whenever GG is.

Proof. Any element of (G)g can be represented as a finite tree labeled by elements
of G Q. We conclude by proposition A.2(c) and Kruskal’s theorem.
We remark that Kruskal’s theorem can also be derived from the present theorem.

To do this, one takes G = ¢, @ = F x N (with ng ) = k) and X = ET. Then the
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smallest ordering relation on X verifying conditions O1 and O2 is the embeddability
ordering. O

A.4 Noetherian choice operators

The results of this section find their origin in the theory of transseries (see chapters 1
and 2). They can be used to establish implicit function theorems of a very general
type. Roughly speaking, we prove a generalization of Kruskal’s theorem, where
the elements of ) are not operations, but rather mappings f from X"/ into the
power set P(X) of X. The reason why we need this, is that the support of the
derivative of a transmonomial is generally not a singleton (think of de*”/(*=1 /gy =
(278 — 273 = 227% — .. )eme”/(*=1); we do not have this difficulty in the case of

ordinary power series, where da*/0z = ka1,

Let X denote an ordered set and let ¥ be a set of X-labeled structures. This
means that to each 0 € ¥ we can associate a set [, and a mapping [, : [, — X
(note that this association need not to be injective). If Y C X, then we denote by
Yy ={o € ¥|iml, C Y} the subset of ¥ of Y-labeled structures. We order couples
in ¥ x X by (o,2) < (¢/,2) & v < 2.

A mapping ¥ : ¥ — P(X) is called a choice operator. We say that 9 is
Noetherian, if for any Noetherian subset Y of X, the subset {(o,2z)|oc € ¥y A x €
J(o)} of ¥ x X is Noetherian. We say that ¥ is extensive, if for each o € ¥,
a € iml, and b € ¥(0), we have a < b. We say that ¢ is strictly extensive, if for
each 0 € ¥, a € im/, and b € ¥(0), we have a < b.

Remark A.3. Let us comment why we insist the subset S = {(o,z)loc € Ey A
x € Y¥(o)} of ¥ x X to be Noetherian in our definition, and not simply the set
S" = Uyeoy ¥(0). Indeed, this condition guarantees that for a given x, we only have
a finite number of o with (o,2) € S — a property which will prove to be important
for future purposes.

Example A.1. Let f be an extensive n-ary operation, and let ¥ = X", with
ley ey s {1, 0} = X

Then
J: Y — X

(1’17"' 7$n) = {f(xlv 7$N)}

is an extensive Noetherian choice operator.

As in the previous section, we now want to build trees. In fact, it suffices to show
how to build words, because of the strength of the formalism. Let ¢ : ¥ — P(X) be
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a choice operator and let us inductively define the choice operator ¥*. First we set
To =X, with [, : {1} = X;1 — 2 and 9*(x) = {«}. Next, assume that we defined
U* on the domain Ty IT - -- I T},. Let o € ¥ be given together with a family (7;)cz,
of elements of Ty I --- I T}. Assume that 7, € T}, for at least one i (we say that
7; has depth k), and that [,(¢) € 9*(¢;), for each i. Then these data determine a
unique structure 7 = o[7ilier, in Tryr. We take I, = Wiep 1, with 1.(5) = 1,(5),
for j € I,,, and we define ¥*(7) = ¥(o). This construction inductively determines a
choice operator ¥* with domain To IT 7} IT - --. We take the choice operator J* to
be the restriction of ¥* to the domain 77 L 7511 - - -.

Theorem A.4. Let 9 be a strictly extensive Noetherian choice operator. Then 9T
is a strictly extensive Noetherian choice operator.

Proof. The tree operator ¥ is clearly strictly extensive, by induction. Let Y be a
Noetherian subset of X. Assume that there exists a minimal bad sequence

((Tlvxl)v (TvaQ)v e )7

with z; € 9%7(7;) and iml,, C Y for each 7, in the sense that the depth of 7; is
minimal, for fixed xy, -+, x;_;. Write 7, = O'Z'[TZ'J]]‘G[T@, for each 7. We claim that the
induced ordering on S = {(91(7:;), (7)) € I,,} is Noetherian.

Indeed, suppose for contradiction that the claim is false, and let

((19+(Ti17j1)7 lcn‘l (]1))7 (19+(Ti2712)7 l% (]2))7 T )

be a bad sequence. Let k be such that 75 is minimal. Then the sequence

((7—17 xl)v T (Tik—lv xik—l)v (19+(Tik7jk)7 laik (]k))v (19+(Tik+17jk+1)7 lgik+1 (jk-l-l))v T )

is also bad, since ¥ is strictly extensive. But this contradicts our minimality hypo-
thesis. Having proved the claim, the desired contradiction is obtained by using the
Noetherianity of ¥ for S. g
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Appendix B

Partial algebras and their geometry

B.1 Introduction

The aim of this appendix is to introduce algebraic geometry methods for structures
which are different from rings, by adopting the language of category theory. In
chapter 6, this theory is applied to define and manipulate transseries in several
variables, but this quite technical appendix can be skipped without much harm, at
least at a first reading of 6. To facilitate the reading of this appendix, let us now
comment its motivation and main results.

Just as rings are used in algebraic geometry to study algebraic equations, we
want to construct generalized transseries in order to study very general singular
equations. Following this parallel, elements of a generalized transseries ring need an
interpretation as functions on some space (just as k[x,y] is the ring of polynomial
functions on the plane). Different problems arise at this point. First, contrary to the
ring operations, the logarithm can only be defined for positive elements (or non zero
elements, if one considers log |x|). Secondly, we need to have an interpretation for
the ordering relation. Thirdly, we need to interpret infinite summation. Fourthly, we
should make the concept of “the space” associated to a ring of generalized transseries
more precise. Fifthly, we would like to incorporate in our theory the most common
spaces, such as the line, the plane, etc. And we can go on.

Now the first problem also arises in algebraic geometry, if we want to incorporate
the division. This is precisely what motivates the systematic use of localization. We
might therefore borrow some of these ideas for our treatment, and consider spaces
with sheaves of functions defined on it. Alternatively, we can consider spaces with
partially defined functions on it. The second problem is not a classical one. Never-
theless, it has a strong analogy with the first one: we can consider the definability
of a partially defined function as a relation. In other words, the first problem can
be seen as a special case of the second one.

The algebraic translation of what precedes is that we will consider categories
of sets with partially defined functions and relations, so called partial Y-algebras.

313
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Next, we impose axioms on such structures, which are of a particular type, namely
Horn clauses. Ordered rings can for example be defined using such axioms. It can
be shown that the category of partial ¥-algebras which satisfy certain Horn-clauses
has a very rich structure, i.e. many abstract nonsense constructions can be carried
out. Moreover, we can solve the third problem by allowing functions and relations
to have infinite arities; infinite summation can then be seen as a partially defined
function. Partial ¥-algebras will be studied in sections B.2, B.3 and B.4.

Geometrically, partial Y-algebras correspond to functions on a space. The next
step is to introduce the spaces themselves. As in algebraic geometry we will work
“over” a fixed partial ¥-algebra A. For instance, a Z-algebra is a morphism from Z
into a ring K. Now a B-point of a partial ¥-algebra F' over A is a morphism from
F into B, where B is another partial Y-algebra over A. For example, an R-point
(x,y) in the “plane” Z — Z[x,y] naturally associates a value P(z,y) € R to each
polynomial in Z[z,y]. Instead of considering B-points for all possible B, we may
restrict our attention to B-points with B € obj(P), where P is a subcategory of the
category of partial Y-algebras over C'. For instance, we may restrict B to be a field
in the case of Z-algebras; in terms of systems of algebraic equations, this means that
we are only looking for solutions in a field.

Assume that we have fixed P, so that the points of a partial Y-algebra over A
are B-points, with B € obj(P). Not all partial ¥-algebras [ have a “pointwise” geo-
metrical interpretation. In particular, it is not always possible to interpret elements
of F' as unique functions from the point space of F' to a X-algebra B over A in P
(the union of all these B corresponds to the affine line). For instance, in the case of
Z-algebras, where P is taken to be the category of fields, this is due to the possibility
of nilpotent elements: for every morphism of R[z]/(z?) into a field, 0 and z have
the same image, yet they are not equal. Now varieties are partial X-algebras F
over A for which a suitable pointwise interpretation of the elements of [ is possible.
In section B.5 we will show that there is a canonical way of associating a variety
F to any partial Y-algebra [ over A. In the case of Z-algebras, we just quotient
by the ideal of all elements x, which are sent to zero by every point in the above
sense. The canonical nature of the association F s F implies that we can carry
out many abstract nonsense constructions. In particular, we can construct many
familiar spaces such as the line, the plane, etc.

A consequence of the pointwise nature of a variety is that the function space
of a variety V shares a lot of properties with A. In particular, any Horn clause
verified by A is verified by the function space of V. The interesting point is that
this resemblance is preserved for a lot of other intrinsic properties of A, which can
not — or not easily — be modelized by Horn clauses. This it what makes the
construction useful in the case of transseries. In the last section we discuss some
possible extensions of our theory. More precisely, we discuss a trick of Lawvere
based on the construction of affine varieties from section B.5, which permits us to
incorporate (the analogue of) nilpotent elements in the function spaces of varieties.
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We also discuss another extension of the notion of a point, which allows us to recover
the analogues of projective varieties and others.

In this appendix, we assume the reader is familiar with category theory, although
a certain number of definitions will be recalled. We refer to [ML 71] for a more
extensive treatment. A very basic knowledge of commutative algebra, universal
algebra, and algebraic geometry might also ease the reading. We respectively refer
to [AtMac 69] or [Lang 84], [Cohn 65| and [Har 77|. Let us finally remark that
some of the nomenclature may not correspond to the classical nomenclature. For
instance, varieties may be reducible (which is not the case in [Har 77]), and are
always understood in the algebraic geometry sense (in [Cohn 65] a variety is not at
all the same thing).

Most of the results of this appendix are not new, perhaps with the exception
of the last two sections. However, our way of exposition is not very standard.
The classical theory of Y-algebras does not treat partially defined functions nor
relations, and the arities are classically restricted to be finite. In particular, the
device of subquotient objects seems to be new. However, we think that all our
results about partial ¥-algebras can be obtained by reformulation of related theories.
For simplicity reasons, we have chosen a quite classical approach, but it should
be noticed that many generalizations can be obtained by a more extensive use of
category theory. For instance, it is possible to study topological Y-algebras and so
on.

B.2 Partial algebras

A signature ¥ is a set of function symbols ¥ and relation symbols ¥y ,
together with there associated arities. That is, to every f € X, resp. R € X,
corresponds a set Ny resp. Ng , which is called the arity of f resp. R. For our
purposes, we may assume that all arities are at most countable.

From now on we will fix a signature ¥. A Y-algebra is a set £ on which these
function and relation symbols correspond to functions resp. relations. That is, each
f € ¥y corresponds to a function f (or fg, whenever confusion might arise) from
ENs into E and similarly for relations. A Y-algebra E is said to be full, if the
relation symbols of Yr are maximal: Rr = EV&, for each R € Y. A partial
Y-algebra is defined like a Y-algebra, with the exception that the function symbols
need not to be defined totally. We will note by dom f the domain of a function f.

A morphism of X¥-algebras £ — F is a mapping ¢, such that ¢(f(z)) =
f(e(x)) resp. R(z) = R(p(z)), for all f € Xf resp. R € Y and € EN7 resp.
z € BV, Of course, f(x) is defined by (f(z)); = f(a;), for each I and = € E'.
A morphism of partial Y-algebras is defined similarly, with the exception that
o(f(x)) = fle(x)) only needs to hold, when ¢(f(x)) is defined (hence, x € dom fg
implies ¢(x) € dom fr). Similarly, one defines partial morphisms of partial -
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algebras, by demanding ¢(f(z)) = f(e(x)) resp. R(x) = R(¢(x)) to hold when
defined only. Morphisms of partial Y-algebras will often be called ¥-morphisms.
It is straightforward to verify that Y-algebras and partial Y-algebras form categories
and we will note them respectively by »-Alg resp. X-PAlg.

Let X be any set and consider the set Ix of trees, labeled by elements of 3, IT X.
Here we assume that the arities of each node of the tree correspond to the arity of
each label (the arities of elements of X being zero). The set [x has a natural X ;-
algebra structure. Taking R;, = Ié(VR, for each R € Xp, we give Ix the structure of
a full ¥-algebra which satisfies the following universal property: if £ is any mapping
from X into a full Y-algebra F. then there exists a unique Y-morphism Iy - E,
such that ¢ = ¢ otx, where ¢y is the natural inclusion from X into Ix. We say that
Ix is the free full X-algebra over X.

Usually, one is interested in Y-algebras or partial ¥-algebras which verity certain
axioms. Let us make this more precise. Let W denote a set of variable symbols
(which is always assumed to be sufficiently large), and let T' = Iy denote the set
of ground terms w.r.t. X. If £ is a partial Y-algebra, then by an assignment,
we mean a mapping v : W — E. An assignment v can recursively be extended
to a subset of T, by putting v(f(x)) = f(v(x)), for all f € ¥y and x € T,ﬁvf, with
v(x) € dom f. If v(t) is defined for every assignment v, then we say that ¢ is totally
defined, or defined on F.

A ground property w.r.t. X is either an expression of the form ¢ = ¢, where
t,#' € T, or an expression of the form R(z), where R € ¥ and x € TN®. A ground
property t =t resp. R(x) is valid for an assignment v, if ¢ and ¢’ resp. the z; are
defined and if v(¢) = v(t') resp. v(R(t(x)) holds. If a ground property is valid for
all assignments into F, then we say that it is valid on F. A ground property of the
form ¢t = ¢, for some ground term ¢, is valid for v if and only if v(¢) is defined. We
will write t# instead of { = ¢ and read “f is defined”.

A Horn clause (w.r.t. ¥) is a pair ((P,)ier, @), where the P; and @) are ground
properties. We say that ((P)er,t) is valid in a partial ¥-algebra F, if v(Q) holds
for all assignments v, such that every v(F;) holds. We write £ = A;c; P = Q,
if this is the case. We remark that ground properties can be interpreted as Horn
clauses, by taking I = ¢. We denote by Cy the set of Horn clauses w.r.t. ¥. If £ is
a partial Y-algebra, then we denote by Cp the set of Horn clauses which are valid
in £. Inversely, let C' be a set of clauses or axioms. A model for (' is a partial
Y-algebra £ with C' C Cg. These models form a subcategory A-Mod = (X, C')-PAlg
of Y-PAlg, which is called the category of partial ¥-algebras verifying C.

Let us now discuss some matters concerning the foundations of set theory and
category theory. The objects of a category C do not form a set in general, and
neither do the morphisms of C. However, by enlarging our model of set theory,
we can interpret the objects resp. morphisms of most categories C as sets obj(C),
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resp. hom(C, C). More precisely, assume that we have a model M of the Zermelo-
Fraenkel axioms, such that there exists a privileged set U, which is also a model of
the Zermelo-Fraenkel axioms for the induced relation €.

To avoid confusion between sets w.r.t. M and U, sets w.r.t. M are called
meta-sets (alternatively, sets w.r.t. U are sometimes called small sets). Using
this formalism, we can for example speak about the meta-set of all groups. We
also have U = obj(Set), where Set denotes the category of sets. The formalism is
also useful when considering mathematical structures where we do not have any a
priori bounds for the arities of the operations. This arises for example in the case
of infinite summation of well-ordered transseries, where the arity depends on the
exponential depths of the transseries we are considering. This problem is solved by
taking meta-sets of function and relation symbols, instead of classical sets.

We finally remark that our formalism can still be strengthened by allowing meta-
meta-sets, and so on. Indeed, this is done by assuming that we have an even bigger
model M of the Zermelo-Fraenkel axioms, for which M is a set. Nevertheless, for
most of the practical applications, the consideration of meta-sets (and sometimes
meta-meta-sets) is sufficient.

B.3 The lattice of subquotient objects

In this section, 3 denotes a fixed signature and C' a set of axioms w.r.t. ¥. Let I
be a partial -algebra. A subalgebra F' of F is a subset of £ on which we have
a partial Y-algebra structure, such that the canonical injection is a -morphism.
Assume now that F is a full Y-algebra. Then a quotient algebra F' of £ is a
quotient set of £/ on which we have a Y-algebra structure, such that the canonical
surjection is a Y-morphism. A subquotient algebra F' of F is a partial subalgebra
of a quotient algebra of K. These definitions can be extended to the case in which
F models C. In that case, we say that F'is a (¥, (C)-subalgebra resp. quotient
(X, C)-algebra resp. subquotient (X, (')-algebra.

To a subalgebra of a partial X-algebra E corresponds a monomorphism I % F,
which is said to be a subobject of . We quasi-order subobjects by

FLUISF A EeIF4F (=¢ol.

Similarly, if £ is a full ¥-algebra, then a quotient algebra of E gives rise to an
epimorphism £ = F. which is said to be a quotient object of £J. We quasi-order
quotient objects by:

ESFSES P eIdRr4F o=gor.

In the literature, the opposite quasi ordering is usually taken. The ordering on
subquotient objects justifies our inversion: a subquotient object of I is a pair of
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morphisms /' < ) < E, where 7 is a quotient object of F, and ¢ a subobject of ().
We quasi-order subquotient objects of £ by

FLQLIE<FSQLE,

if and only if there exist F' 5 F’ and Q = @', such that

‘w v

F/

KA
F—-Q
J

Q'

commutes. We remark that it can be shown that the above definitions of subobjects
and quotient objects coincide with the usual definitions (as monomorphism F — E
resp. epimorphisms £ — F') up to isomorphism. In particular, one can generalize
and define quotient objects of partial Y-algebras. However, this leads to several
complications, and our restricted definition will suffice for what follows.

Proposition B.1. Let E be a full ¥-algebra. The set of subquotient (X, C)-objects
of E forms a complete lattice for <.

Proof. S = E/~& E is maximal for <, if we take ~= FE? S = FE/~ and
v = Idgp. Next, let (Sp 5 E/~ & E)ex be a family of (X, C)-subquotient
objects. Let ~= Njex ~k. The natural surjection £ = [/~ naturally induces a
¥ ;-algebra on E/~. Let S = 7(Mwer 75 (Sk)). We give S the structure of a partial
Y-algebra, by taking dom fs = m(Niex 75 (dom fs,)) and Rs = m(Nrex 75 ' (Rs, ),
for each f € X; resp. R € Y. It is clear from the definition that S = E/~¢< F
must be the infimum of the (5} L YL E), if S models C'. Let us show that
this is indeed the case.

Remark first that the mapping & = m o (77!) is well defined for & € K and as
imé&, o0 C im ey, there exists a unique mapping S <% Sy, with z 0 x5 = & 0¢. Let us
now show by structural induction, that if ¢ is a ground term and v a substitution
into S, then v(t) is defined, iff (y; o v)(¢) is defined for every k € K. Surely, this is
the case, if t € W. Suppose now that ¢t = f(x), where v(z) and every (yi o v)(x)
is defined. Then v(t)# < v(z) € dom fs & VE€ K yi(v(z)) € dom fs,. & Vk €
K (xrov)(t)#. Similarly v(P) is valid, for a ground property P, iff (xx o v)(P)
is valid for every k € K. Finally, let ((P;)icr,@) be a Horn clause in C' and v a
substitution into S, such that v(F;) holds for every « € I. Then (xx o v)(P;) holds
for every ¢ € [ and k € K. Therefore (xx o v)(Q) is holds for every k € K, so that
v(t) holds. O

Let E be a partial ¥-algebra F and let E be the infimum of all quotient algebras
Ig/~ of Ig, such that £ — Iy — Ip/~ is a Y-morphism. This infimum is defined
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by proposition B.1, noticing that any quotient object [/~ E can be interpreted

as a subquotient object ]E/Ng Ig/~+ E. We say that I/ is the ¥-closure of I,
and we have

Proposition B.2. Let I be a partial YX-algebra. Then

(a) For each S-morphism E 5 F into a full S-algebra, there exists a unique Y-
morphismﬁg F, such that p = F SELF.
(b) E — I « I is a subquotient algebra of Ig.

Proof. Let ¢ be given. There exists a unique X-morphism [Ig LN F'. such that

p=F—Ig % F. This ¢ factorizes uniquely into the composition of a surjection
and an injection £ = Iy — im & — F. There exists a unique X-morphism F — im ¢,
which makes all triangles commutative, by the minimality of £. This yields the
desired Y-morphism £ — F which is easily seen to be unique by decomposing it as
the composition of a surjection and an injection.

To prove (b), we consider any extension E of the partial Y-algebra structure on
E into a full X-algebra structure. By (a), there exists a ¥-morphism F — E, such

that B % £ =F - F — E. The injectivity of £ — I follows from the injectivity

Proposition B.3. Let F be a partial L-algebra. The set of (3, C')-subobjects of E
forms a complete lattice for <.

Proof. This follows easily by abstract nonsense from proposition B.1, when rep-
resenting (X, C')-subobjects of £ as (X, C')-subquotient objects of Ig, using propos-
ition B.2(b). O

Let us finally remark that subquotient algebras can also be considered as “quo-
tientsub algebras” and vice versa (under some restrictions). More precisely, let
S % Q & F be a quotient object of E. Denoting S’ = 771(S), we have a canon-

ical injection S’ L FE, a canonical surjection S’ L S, and the following diagram

commutes:
i

Q E

R

S S

Inversely, assume that we are given a partial subobject S % E of £ and an equival-
ence relation ~ on S, such that S = S/~ is a morphism of partial ¥-algebras. Then
we can consider the smallest relation = containing ~ on £, such that @ = E/~is
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a Y-algebra. In general, S/~ is not a subalgebra of ). Nevertheless, a sufficient
condition is that S is an initial segment for the smallest ordering on F such that
z; < f(x), for any f € X, z € BN and i € N;. In the proof of theorem B.3 we
will see a natural example of the use of quotientsub algebras.

B.4 Existence theorems for adjoints

In this section we will show that a lot of so called universal constructions can be
carried out in (X, C')-PAlg. We first recall the necessary language. If Cis a category,
its opposite category C° is obtained by reversing all arrows. If ¢/ C €' and ¥/ C
Y, then each partial (X, C')-algebra is in particular a partial (X', C’)-algebra. The
natural functor from (X, C')-PAlg into (X', C")-PAlg is called the forgetfull functor.

Let H be any functor C° x K from into the category Set of sets. A universal
object associated to an object @ in C is an object F(x) in K, together with a
mapping ¢, € H(x, F(x)), such that for any other object y in K, together with a
mapping ¢ € H(x,y), there exists a unique morphism F(z) N y, with ¢ = £ 0 .
If such a couple (F(x),¢,) exists for each object x, then it is a classical exercise to
verify that F'is a functor, called universal functor. Dually, we have couniversal
objects and couniversal functors. l.e. a couniversal object associated to y € K
is an object G/(y), together with a mapping ¢, € H(G(y),y), such that the natural
universal property holds.

Usually, H(x,y) is the set of homomorphisms from x to G(y), where G is some
functor from K to C. In that case, a universal functor is called a left-adjoint for G.
Similarly, a couniversal functor is called a right-adjoint. It is easy to verify that if
Fis a left-adjoint for G, then G is a right adjoint for F' and the following relation
holds:

home(z, G(y)) = homk(F(x),y).

Theorem B.1. Let U be the forgetfull functor from (X, C)-PAlg to (X', C")-PAlg,
where X' C Y and C" C C. Then U admits a left adjoint.

Proof. Let A be in (¥/,C")-PAlg and let I4 be the free full ¥-algebra over A.
Consider the family Q = (5, — [a/~;< I4)er of subquotient (X, C)-objects, such
that each A — I4/~; is of the from A £ S; — I4/~;, where ¢; is a ¥/'-morphism.
The maximal subquotient object is in £, whence Q # ¢. By proposition B.1 we
may consider the partial (2, A)-algebra U, which is the infimum of all elements in
Q. Then A — I4/~ factors through U by mapping @ to ;e ¢i(x). Here N;er i)
is well defined in view of the proof of proposition B.1. Moreover, A — U is a
Y/-morphism, so that U € ). We claim that U satisfies the universal property.

Let A% B be a ¥'-morphism into a partial (X, C)-structure B. Then ¢ factors
uniquely through the smallest partial (X, C')-subalgebra (im ) of B containing im ¢.
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Let us show that (im¢) is a subquotient object of [, and therefore of 4. First,
we have a natural maximally defined partial ¥-morphism p from [y, into B. It
is straightforward to verify that imp is a (X, C)-algebra, whence (imp) C imp.
Therefore, we can canonically extend the injection of im ¢ into im ¢ into a mapping

¢ of (im¢) into im ¢, by sending each p(x) in (imy) to . Then ¢ is injective, since
(imp) — (ime) is. In fact, we have (im¢) = im .

We now observe that the resulting subquotient object (imp) — Tmp < I4 is
in . Hence, there exist unique Y-morphisms U — (im ) and [4/~— [4/~' such
that

T4/~

commutes. Now let U 5 B be another Y-morphism with ¢ = A — U % B. We
decompose ¢ = U ki (im) “ B, and observe that (im¢) C (imt). Again, the

Y -morphism from im ¢ into im ¢ naturally extends to an injective ¥-morphism from
(ime) into im . Thus, (im) is a subquotient algebra of 14 in €, and we have a
unique morphism from U into (im ) which makes all relevant triangles commutative.

We deduce that ¢y = U — (im¢) — (im), whence (imp) = (im ). O

Let GG be a graph, where we allow multiple edges and let C be a category. Then
the category C% is defined in the following way: objects are pairs (o0,m), where
o : V(G) — obj(C) is a labeling of the vertices of ¢ with objects in C and m :
E(G) — hom(C,C) is a labeling of the edges with morphisms in C, such that the
obvious commutation rules hold. A morphism from (o,m) to (o/,m’) is a family
of morphisms from o(a) to o'(a), where @ runs over V((G'), such that the obvious
commutation rules hold. The category C?¢ is called a C-pointed category. We
have the so called diagonal functor from C into C“, such that A(z) = (G, V(G) =
z, E(G) — Idy).

Theorem B.2. Let G be a graph. Then there exists a left adjoint and a right
adjoint to the diagonal functor (X, C')-PAlg LY (3, C)-PAlg)“.

Proof. The existence proof of the left adjoint runs along the same lines as the
proof of theorem B.1. This time, assuming that O = (o,m) € ((Z, C)-PAlg)“ and
denoting X = [l ev(q)o(v), we take © to be the set of subquotient (X, (')-objects

S — Iy /~¢ Ix of Ix/~, such that each o(v) — Ix/~ factors through S and such

that for each vw € E we have o(v) = U = o(v) mﬂ) o(w) — U. We leave it as an

exercise to the reader to carry out the remaining details.
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Let us now treat the right adjoint. Suppose that O = (o, m) is in ((2, C)-PAlg)“.
Let P = [l,ev(s) o(v) and denote by m, the natural projection from P onto o(v),
for each v € V(). We give P the natural partial (X, C)-algebra structure, by
setting 7,y (fp(2)) = fow)(mo(2)), and Rp(z) iff Yo € V(G) Ryuy(mo(z)). Then
the projections m, are ¥-morphisms. Let U be the set of points € P, such that
m(vw)(m,(z)) = m,(x), for all vw € E(G). For each f € X and = € dom f N UN7,
we have f(x) € U. From this, it is straightforward to verify that U is a partial
(3, C)-subalgebra of P. We claim that AU — O satisfies the universal property.

Let AB — O be a morphism. Then there exists a unique mapping B - P such
that AB — O = AB 2{ AP (%E;(G) O as a family of mappings. This mapping

factors uniquely ¢ = B — (im¢) — P. We observe that imp C U, whence
(imp) C U. Denoting the corresponding inclusion by ¢, we deduce that

AB

i
>

AU AP

commutes. We thus get a morphism B % U which is unique with the property
that AB — O = AB 2¥ AU — 0. Indeed, if ¢’ is another such morphism, then

BLUP=BAU P, because of the uniqueness of ¢ and its factorization.
Hence 9" = 1) since U — P is injective. g

Many universal results about the category (X, C')-PAlg can be deduced immedi-
ately from the two above theorems. Taking the category of sets Set for (X', C’)-Palg
in theorem B.1, we prove the existence of the free partial (X, C')-algebra (X) on X
for any set X. In particular, (¥, C)-PAlg has an initial object, by taking X = ¢.
(3, C')-PAlg also has the trivial full singleton ¥-algebra as a terminal object. Taking
a suitable C', (X, C')-PAlg is the category of full ¥-algebras. Hence, we can reinter-
pret the Y-closure for partial X-algebras as the left adjoint of the forgetfull functor
from (X, C)-PAlg to (X, ¢)-PAlg.

From theorem B.2 it follows that direct sums, direct products, pushouts, pull-
backs, direct and inverse limits exist in (X, C')-PAlg. Taking the direct sum A(X) =
AII(X) of A and (X) gives the free extension of a partial (X, C')-algebra by a set X.
It can also be proved (exercise; this does not follow from theorem B.2) that for each
partial (X, C)-algebra B the functor A — A x B admits a left adjoint. Together
with the existence of a terminal object and the existence of direct products, this
implies that (X, C')-PAlg is Cartesian closed.
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B.5 Varieties

B.5.1 Definitions and the right adjoint functor theorem

In algebraic geometry, it is a classical wish to interpret elements of partial (2, C')-
algebras as functions on a variety. In general, partial (X, C')-algebras may contain
functions without any direct pointwise geometric interpretation, although such an
interpretation is sometimes possible. By definition, varieties are partial (X,C)-
algebras F' in which such a suitable pointwise interpretation of the elements of F'is
possible. In this section we will see that the notion of a point is in fact variable, but
once we made it precise, an appropriate theory of varieties can be developed. As is
customary in algebraic geometry, we will work over a fixed partial Y-algebra A.

The category of (X, C)-prevarieties over A (or shortly prevarieties, if no con-
fusion is possible) is defined to be (3, C')-PVary = hom(A, (2, C')-PAlg)?, which we
also denote by PVary, if ¢ = ¢. That is, a prevariety is a X-morphism from A
into a partial (X, C)-algebra. A morphism between two prevarieties A — F' and
A — F'is a ¥-morphism F' — F so that A - FF = A — F' — F. Given a variety
V = A — F, we say that F(V) = F is the function space of V. A morphism
between two prevarieties (A — F) — (A — F') maps functions in F’ to functions
in F. Partial (¥, C)-algebras A — F' are often abusively denoted by F. To avoid
confusion, we will denote A — F considered as a prevariety by V(F').

A natural question is how to define the points of a prevariety. Using a simplistic

point of view, the point-prevariety is defined by x = A "4 A, Then a point of a
prevariety V' is just a morphism from x to V. We denote the set of these points by
P(V), and call it the point space of V. We observe that a morphism V' % W from
one variety to another induces a mapping P(¢) from P(V) to P(W) and that this
association is functorial. Pursuing this geometric point of view, we would like to be
able to interpret functions on V' as actual morphisms between prevarieties. This can
be done by considering the line-prevariety L = V(A(x)), whose points correspond
precisely to the elements of A. We have a natural bijection between the elements of

F and morphisms from V into L, by mapping f € F' to the morphism A(x) w(i) F,
with o(f)(x) = f.

More generally, the point-prevariety does not need to be the identity morphism
Id4. In fact, we may allow different types of points: let P be a subcategory of
(3, C)-PVary, whose objects are called point types. Given a variety V, a point
of type B € obj(P) in V is a morphism B — V. Such points are also called B-
points and the set of B-points is denoted by Pg(V). The point space of V is
by definition the meta-set P(V) = Upgcobjp) Pr(V). The point space of the line-
prevariety V(A(x)) from above is isomorphic to the disjoint union of all B in obj(P).

Now consider the mapping x : (V 5 L) = (P(V) P P(L)). This mapping is

not necessarily injective, as shows the example V = Z = Z/2Z from the category
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of rings (with obj(P) = {Z I Z). A prevariety for which y is injective is said to be
reduced. This is equivalent to the condition that

(VF S BeP(V)) = =g ¢of) =¢lg), (B.1)

for all f,g € F. Dually, y generally is not surjective. Nevertheless, the relations and
the domains of partially defined functions on F' can often be extended in a natural
way. If this is not the case, then V' is said to be full. More precisely, this means
that

(VE S BeP(V) (pov)()#) = v(t)# (B.2)

(VE S BeP(V) (pov)(P)) = v(P). (B.3)

for all ground terms ¢, ground properties P and assignments v into F'. A prevariety
which is both reduced and full is said to be a variety' relative to P (or shortly a
variety, if no confusion about P is possible).

The idea behind the definition of varieties is that the properties of the different
types of points should be reflected in each point of a variety. As a consequence, if
B models a certain Horn clause H, for each B € obj(P), then any Y-variety relative
to P automatically models H too (see the proposition below). In particular, the
category Varp of varieties relative to P is a subcategory of (X, C')-PVar,.

Proposition B.4. Let V = A — F be a variety. Then Upeonjpy Cp is included in
Cr.

Proof. Let ((F;)icr, @) be a Horn clause in Upgopypy CB- Let v be an assignment

into F', such that all v(P;) are valid. Let F' % B be a point of V. Then all (pov)(F)
are valid in B. Therefore, (¢ o v)(Q) is valid. Consequently, v(Q) is valid. O

Theorem B.3. The forgetfull functor from Varp into PVary admits a right ad-
joint . The points of any prevariety V and the variety V associated to V are in
a natural one-to-one correspondence.

Proof. Let V = V(F') be a prevariety, and let ¢ be the canonical inclusion from F
into Ir. Let S be the subset of Ir given by
(tov)(t) €S & VF L BeP(V) (pov)(t)#, (B.4)

for all ground terms ¢t and assignments v into F'. Notice that «(F') C S. We define
the relations R € ¥r on S by

(tov)(R(t)) & VF A Be PV) (eov)(R(1)), (B.5)

We notice that varieties are not necessarily irreducible, when using this definition. In algebraic
geometry it is often assumed that varieties are irreducible.
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for all families ¢ of ground terms and assignments v into F. Finally, let ~ be the
equivalence relation on S defined by

(Low)(t) ~ (tov)(t') & VE 5 BeP(V) (por)(t)=(por)t), (B.6)

for all ground terms ¢ and ¢’ and assignments v into F'. The equivalence relation
is compatible with the partial Y-algebra structure on S, whence I V(S/~) is
a partial Y-algebra. By construction, the points of V' and V are in one-to-one
correspondence and Visa variety. We claim that V satisfies the desired universal
property.

Let F % G be a morphism of a variety W = V() into V. There is a natural
maximally defined partial ¥-morphism 5 from Ir into G. Now let ¢t be a ground
term and v an assignment into F', such that (cov)(¢) € S. Then (¢ ov)(?) is defined
for all points ¢ € P(V). In particular, (¢ 0 £ ov)(t) is defined for points ¢ € P(W).
Hence (£ ov)(t) is defined in G, since W is a variety, so that ¢ is totally defined on
S. Similarly, it can be shown that € preserves the relations R € Yg, whence is a
Y-morphism. Finally, again using the same type of arguments, 5 maps equivalent
elements in S to the same elements in . In other words, ¢ factors uniquely through

S/~ £ = é o7. Then é is the desired ¥-morphism. g

Proposition B.5.  Let V be a variety, let P be a ground property and let v be
an assignment into F(V). Then there exists a natural subvariety of V, whose point
space is in one-to-one correspondence with those points ¢ : F(V) — B in 'V, such

that (¢ o v)(P) is valid.

Proof. Consider the smallest partial -subalgebra G of m, which contains
F(V) and in which v(P) is valid. The point space of the prevariety V(G) is in a
natural one-to-one correspondence with those points ¢ : F(V) — B in V, such that
(p ov)(P) is valid. We now apply theorem B.3 to this prevariety. The terminology
“subvariety” is justified below. O

B.5.2 Elementary properties

Let us now investigate the properties of the categories of prevarieties over A and
varieties relative to P. First, for each set X we have the free prevariety V(A(X))
over A in X. The variety AY relative to P associated to this prevariety is called
the affine X-space relative to P Next, we observe that theorem B.2 still holds,
if we replace (X, C')-PAlg by PVar4. Indeed the right adjoint version is obtained by
joining a new vertex to the graph with edges to all other vertices and applying the
theorem for left adjoints. What concerns the left adjoint: suppose that O = (0, m) is
in (PVary)“. We can interpret O as a morphism from AA to O’ = (o/,m’) for some
object O" in ((3,C)-PAlg)“. Applying the right adjoint to the diagonal functor to
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O', we get partial (X, C')-algebra U and a morphism from A to U, by the universal
property. Composing with the functor” we deduce that the analogue of theorem B.2
also holds for varieties.

From what precedes it follows that direct sums and products, pushouts and
pullbacks, direct limits and inverse limits, etc. exist in Varp. In the case of direct
products, pullbacks, inverse limits, etc. the corresponding right adjoint functor
commutes with the functor which associates to each variety its point space. This is
easily proved by abstract nonsense. For instance, P(V x W) is naturally isomorphic
to P(V) x P(W). A similar statement does not hold for direct sums, pushouts,
etc. Nevertheless, in the case of entire rings, P(V II W) is naturally isomorphic
to P(V)IL P(W) (i.e. ¥ contains the ring operations and B € obj(P) is an entire
ring). Indeed, if ¢ is a ring homomorphism from R x S into an entire ring B, then
©(1,0)¢(0,1) = 0. Hence ¢ is either of the form ¢(z,y) = ¥(x) or p(x,y) = ¥(y),
where 1 is a ring homomorphism from R resp. S into B.

From now on, it will be convenient to identify varieties V' with their point spaces
P(V), Let X be any meta-subset of points in V. Replacing P(V) by X in (B.4),
(B.5) and (B.6), we construct a variety Vix = V(Fjx) instead of X. Each point
Fix = Ain V|x determines a unique point /' — Fix — A in V, and we will identify
both from now on. We say that V|x is the smallest subvariety of V' containing
X. In particular, a subvariety of V' is a meta-subset X of V', such that Vjy = X.
The meta-set of subvarieties of V' is stable under arbitrary intersections. This can
be shown by considering the pullback of the inclusion morphisms associated to a
family (U;)ier of subvarieties of V| and observing that this pullback satisfies the
same universal property as the smallest subvariety which contains the intersection
of the U..

It should be remarked that a variety often has a lot of subvarieties. For instance,
assume that A is a field and that obj(P) = {I/d4}. Then As\{a} is a subvariety
of the affine line A4, for any a € Ap = A, whose function space is isomorphic to
Alz,1/(x—a)]. Hence, all subsets of Ap are subvarieties. A subvariety W of V is said

to be Zarisky closed, if F(W) = fWN for some quotient relation ~ on F(V).
By abstract nonsense, the intersection of an arbitrary family of closed subvarieties
is closed. Hence, the Zarisky closed subvarieties determine a closure operator, the
Zarisky closure. Usually, the Zarisky closed subvarieties of V' do not determine
a topology. Nevertheless, in the case of entire rings, the Zarisky closed subsets do
determine a topology, because the zero-set of fg is then given by the union of the
zero-sets of f and g. This topology generalizes the usual Zarisky topology.

B.5.3 Partial functions on a variety

A partial function on a variety V is an element of the function space Oy (U) =
F(U) of a subvariety U of V. In fact, Oy is a functor which associates Oy (U) to

each subvariety U of V, and a ¥-morphism Oy (Us) P Ov (Uy) to each inclusion
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morphism U; — U,. This functor determines a presheaf: the presheaf of partial
functions on V. We recall that a presheaf is defined by the following conditions:

P1. Oy(9) is the trivial full ¥-structure {0}.
P2.  We have pyy = Ido, ) for each U.
P3. We have pr,i, = pu,u, © puo,, for Uy C Uy C U3

Let us finally investigate what are the analogues of stalks and function fields in
our context. Restricting the presheaf Oy to the open subvarieties of V for some
topology or closure operator, we can define the stalk of Oy at P € V to be the
direct limit of the Oy (U) with open U 3 P via the restriction morphisms. Here the
concept of functions defined in a neighbourhood of P is not always the best reflected
by taking the Zarisky closure. For instance in the case of the line transvariety (see
chapter 6), any series in @ should clearly be a function in the neighbourhood of
x = 0. This will not be the case if we take the Zarisky topology.

Similarly, if V' is the variety associated to an integral domain, then its function
field is the direct limit of all Oy (U) with non empty Zarisky open U, via the restric-
tion morphisms. In our context, the Zarisky topology is again replaced by any other
topology on V. We remark that for this definition the function “field” does not ne-
cessarily extend F(V): in the classical case F(V') needs to be an integral domain for
this. Nevertheless, the direct limit along all monomorphisms Oy (U;) — Oy (Us),
for open subvarieties U; and U, of V' always extends F(V). In the commutative
algebra setting, this corresponds to inverting all non zero divisors.

B.6 Complements

B.6.1 P-structures

The concept of varieties as introduced in the preceding section has sometimes the
disadvantage that the analogues of nilpotent elements in the category of rings do
not exist. An obvious solution would be to work in the category of partial (X, C)-
algebras itself. However, this is not possible if the properties of the objects we want
to manipulate can not adequately — or easily — be modelized by Horn clauses.
This happens for example in the case of transseries. The solution to this dilemma
is to generalize a trick, which was invented by Lawvere (see [MoRe 91]) in order to
define C"*°-rings.

Let us explain this trick. Let B be a ring. Then every map Z" % Z™ given by
(p)

. . ® .
an m-tuple of polynomials, naturally induces a map B™ — B™, in such a way that
projections, composition and identity are preserved by ®. Actually, this can be taken
as an equivalent definition for rings. Now a C'*°-ring is defined analogously, except

that we now ask that each smooth map R" L R™ induces a map B" @(4) B™ (i.e.
can be interpreted in B). We remark that any smooth map R” — R™ can be seen
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as an m-tuple of smooth maps R"” — R. Hence, it suffices to have interpretations
for these latter maps.

In our case, we are given a partial 2-structure A and a category P of point types.
In order to apply Lawvere’s trick, we have to consider those partial Y-algebras F,
in which we can interpret all partially defined functions and relations on all affine
spaces AY. Let us reformulate this by introducing a signature %(P) and axioms
C(P), taking into account the discussion at the end of section B.2. The function
symbols of arity N of X(P) are partially defined functions on AY and the relation
symbols of arity N are the subvarieties of AY. Now consider Horn clauses of the
form R(x) = P(x), where R is a relation symbol, (z;);en, a family of variable
symbols, and P(x) a ground property in the x;. Such a Horn clause is in C'(P), if
P(x) is well defined and valid for all points « in R (considered as a subvariety of
ADR).

We define a P-structure to be a partial (X(P),C(P))-algebra. Let us now as-
sume that each B € obj(P) is a partial (X, C')-algebra and let F' be an P-structure.

Then each function symbol f € ¥ determines a function in A]F,Vf and hence a func-
tion on F'. Similarly, the relation symbols determine relations on F'. Consequently,
we can see each partial (X(P), C'(P))-algebra as a partial ¥-algebra. Now all axioms
in C' which are equations are also satisfied by F'. However, this is not the case for
general Horn clauses: for instance, if we take A = Z and obj(P) = {[dz}, then we
obtain nothing but the category of rings. Now Z is a ring without nilpotent elements
(which can be modelized using Horn clauses), while every ring is not.

Example B.1. Using the notion of partial (X(P), C'(P))-algebras, we can define a
transring to be a P-structure, where P is one of the point type categories given in
chapter 6. Transrings can have nilpotent elements, as in the case of R{x|z* = 0).
In fact, R(z|z* = 0) = R? where x corresponds to (0,1). We have exp(a + bz) =
(expa)(l 4 bx) and log(a + bx) = loga + bx/a. Finally, > .c;a; + bix is defined if
and only if 3";c7a; + (e bi)x is, in which case they are equal.

B.6.2 Generalized varieties

Another disadvantage of the theory of varieties from the previous section is that we
do not have the analogues of projective varieties (and more generally of schemes).
In fact, following [MoRe 91], the concept of a point can still be extended. In the
previous section, we had for each B € obj(P) the set Pg(V) = hom(F(V), B) of
B-points for a given variety V. The association B — Pg(V) is functorial, and this
is precisely the property we retain in order to generalize. More precisely, we define a
generalized variety to be a contravariant functor from P into Set. The category of
generalized varieties is denoted by (Set™)?, morphisms of generalized varieties being
natural transformations. The category of varieties relative to C'P can be embedded
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into (SetP)? by the Yoneda embedding Y
Y(B): P — Set; B — hom(F,B).

In fact, the category SetP can be seen as an enriched set-theoretic universe, in which
we can perform algebraic as well as set-theoretic constructions, using a non standard
language. We will not go any further into this, but we remark that properties of a
variety V' in the usual sense may no longer hold if we consider V' as a generalized
variety, using non-standard logic. However, the preservation of properties can often
be forced by considering certain subcategories of (Set”)°. We refer to [MoRe 91] for
such a study in the case of C'*-rings.

Example B.2. Take A = Z and let obj(P) be the category of rings. Then the plane
is the generalized set Y (Z[x,y]). The circle can be considered as the generalized
subset of the plane which associates to each B the set of those ring homomorphisms
Zlx,y] 5 B, such that ¢(x)?4+¢(y)? = 1. The projective line associates to each ring

B the set of those ring homomorphisms Z[z,y] % B, quotiented by the equivalence
relation ~ defined by

p o~ e Jue BT (o), ply)) = u(d(e), ¥(y)).

Here B* denotes the set of invertible elements of B.
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Appendix C

Fast evaluation of holonomic
functions

C.1 Introduction

A holonomic function is an analytic function f, which satisfies a linear differential
equation over C[z]. In other words,

Po(2)[P(2) + - + Po(2) f(2) = 0, (C.1)

for some polynomials Py, --- , P, € C[z], with P, # 0. Many classical special func-

tions like the exponential, the logarithm, trigonometric functions, Bessel functions,

hypergeometric functions, etc. are holonomic. It is a well known fact, that a function

f which satisfies (C.1) can be analytically continued in all points where P, does not

vanish. Hence, denoting the zeros of P, by wy,--- ,w,, f is defined on a Riemann

surface X over U = C\{wy, -+ ,w,}. We denote by 7 the natural projection X — U.
For each point £ on X', we denote by F({) the vector

f()
F(¢) = :
(g

If £~ & is a path! on X, from ¢ to another point £ € X', then f(¢') is uniquely
determined by F'(¢) and & ~ &', by integrating (C.1). The aim of this article is to
compute f(£') as a function of F/(§) and & ~ ¢&’. The effective point of view requires
to make two additional assumptions on f: first, Fy,--- , P, should be polynomials
over some algebraic number field K. Secondly, F'(¢) and £ ~» £ need to be effective,
in a sense that will be made precise in section C.2.

Tn all what follows, we assume that paths are determined up to homotopy;i.e. a path on X is
really the homotopy class of a continuous mapping [0, 1] — X.

330
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In section C.3, we treat the simplest case when & ~» & is a straight line path
between two sufficiently close points £ and ¢ above Z[%, i] on the Riemann surface
X. In section C.4 we extend this result to compute so called truncated transition
matrices between £ and ¢'. In section C.5, such matrices are used to perform analytic
continuations and to tackle the general case. We will show that the asymptotic cost
of the computation of the first n digits of f(¢') is O(nlog”® nllog*n + T'(n 4+ O(1))),
if the first n digits of (&), 7(¢') and F(£) can be computed in time O(T'(n)).

Our algorithms involve bounds for f and its iterated derivatives on certain com-
pact subsets of X'. Although the existence of such bounds is guaranteed theoretically,
we show how to compute them in section C.6.

C.2 Preliminaries

In this section, we establish an effective framework for dealing with complex numbers
and points on Riemann surfaces over open subsets of C. Throughout this article,
we will use the notation size(O) for the natural size of an object O. For instance,
the size of an integer is its length in bits, the size of a matrix is the sum of the sizes
of its entries, etc. We will also denote llog x = loglog x.

A complex number z € C is said to be effective, if there exists an approx-
imation algorithm for z, which given n € N computes a Z € Z[%, i], such that
|2 — 2| < 27". The set of these numbers is denoted by C¥/, and numbers in C#/ are
redundantly represented by approximation algorithms for them. A number z € C¥#/
is said to have time complexity O(7T'(n)) if there exists an O(T'(n)) approximation
algorithm it; i.e. the computation of an approximation Z of z with |2 — z| < 27"
is performed in time O(T'(n)). The following theorem is classical (see [SS 71], [Kn
81]):

Theorem C.1. Let 21,2, € C¥ have time complexities O(T(n)). Then z +
Zo, 21— 22, 2122 and z1/zy (provided zy # 0) admit approximation algorithms with time
complezxities O(T(n)), O(T(n)), O(T(n) +nlognllogn) and O(T(n)+ nlognllogn)
respectively. O

Using Newton’s method for the approximation of roots, the following theorem is
also classical:

Theorem C.2. Letz € Q be an algebraic number. Then z has an O(nlognllogn)
approximation algorithm. O

Let X be a connected Riemann surface over an open subset U of C and let
7 : X — U denote the natural projection. For each z € U, let d(z,0U) denote the
distance between z and the frontier QU of U. For {, € X and |u| < §((o), there is
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a unique point (; = (o + u € X at distance |u| of (o, with 7(¢1) = 7((o) + u. Such
points (o, (; are said to be close, if |(; — (o| < L max{d(7 (), dU), d(7((r,0U )}

Paths £ ~ & on X can always be written as compositions

il =E=0—=G—2—¢=¢)

of straight line paths (o — (1, ,(x—1 — (x, where (;41 and (; are close for each
0 < i<k Ifa(€) and 7(¢&') are effective, then we say that the path £ ~» ¢ is
effective. Such paths are represented as above, where we require 7(¢1), -+ , 7(Ce1)

to be in Z[%, i]. Points & on X" are represented by paths & ~» ¢ from a fixed point
€ to &, If such a path is effective, then so is the point £'.

We recall that an algebraic number field K is a field of characteristic zero of
finite dimension over the rationals Q. During intermediate computations, we will
frequently approximate complex numbers by elements of a fixed algebraic number
field K 3 4. For most practical applications, we may assume that K = QJ¢].

Let us now detail how arithmetic in K is performed. We assume that K is
given through a subring Z of K, which is a free Z-module with K = QZ. Then
we have a basis for K resp. Z, such that each b;b; is a Z-linear combination of
the by. We represent elements in Z by d-tuples of integers: (aq,--- ,a4) represents
a1by+ -+ agby. Then FFT-multiplication naturally extends to Z and has the usual
asymptotic complexity O(nlognllog n). Elements of K are represented as elements
of Z divided by a strictly positive integer, where common factors in the numerators
and the denominator are allowed. Then the naive addition, and multiplication
algorithms in K, based on those in 7, have complexities O(nlognllogn).

A truncation of an element z € K" at precision 0 < ¢ € Z[1] is by definition an
approximation Z = (a4 bi)/2™ € Z[3,1] of z, with [Z — z| < £ and 2*7™ > ¢. Hence,
the asymptotic size of a truncation at precision € = 27" is O(n). By theorem C.2, a
truncation of z € K at precision ¢ = 27" can be computed in time O(slog sllog s),
where s = max{size(z),n}.

Remark C.1. For some applications, we may restrict ourselves to effective real
numbers instead of effective complex numbers. In this case, numbers are approxim-
ated by elementsin Z [%], and we do not need require 7 € K. The theory of this article
is easily adapted to this case, but no analytic continuation around singularities is
possible.

C.3 Evaluations near a non singular point above
Z[3%, 1]

279

Let D be a compact disk on X with center above Z|[3,1] and radius in Z[1]. Let (o
and ¢; be points in D, such that the compact disk with center (4 and radius 2|(; — (o]
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is contained in the interior of D. We denote by 4((o) the distance between ¢, and
0B. Let f be the function, which satisfies (C.1) and such that the entries of F'((o)
are effective, of time complexities O(T'(n)). Let By € Z[3] be a bound for |f| on
D. In what follows, we will denote by |M]|, resp. |M|; the L> resp. L'-norm of a
matrix (or vector) M.

Let f((o+u) = fo+ fiu+ fou? + -+ be the power series expansion of f at (p.

Using the rewriting rules

{ [uFug(u) = [uF ] g(u);
[u¥]g'(w) = (k 4+ 1" ]g(u)

for the extraction of k-th coefficients in power series, the relation (C.1) transforms
into a linear difference relation for fy, f1,--- over K[k]. Substitution of fi by (fx((1—
0)¥)(¢1—Co)™" and division by a suitable power of k yields a linear difference relation

Jrrqg(G — Co)k+q = Qrtg—1(k) frpq-1(C1 — Co)k+q_1 + -+ Qol(k) (G — fo)k, (C.2)

with Qo, -+ ,Q,-1 € K[1/k]. We notice that the polynomials Qq,--- ,Q,—1 depend
on (o and (7. Furthermore, ¢ # p, in general, but ¢ does not depend on (, nor (;.

Example C.1. Let us perform the above rewritings, if we take a simple Bessel
differential equation

P+ e+ (1 5 ) ) =0 (C.3)
for (C.1) and (o = 3,¢; = 5. Writing z = 3 + u, (C.3) becomes
(W +6u+9)f"B+u)+(u+3)fB+u)+ (u*+6u+8)f(3+u)=0.
Using the rewriting rules, this leads to the following recurrence relation for the fy:
(9% 4 63k + 108) frya + (657 + 31k +39) fros + (k* + 8k + 14) fryo + 6 fri1 + fr = 0.
Substitution of f, by 27%(f,2*) in this equation and division by k? finally yields

(9 4+ 637 4+ 1085 ) (fega2®T) 4 2(6 + 311 + 395 ) (frgs2"2)+
(1485 4 1455) (fer22"?) + 3( o 2MY) + (2") = 0.

This is the desired equation (C.2).

S

Denote by ®; the column vectors formed by fi(¢1 — (o)¥, -, frag(G — Co)FH.
Repeated differentiation of (C.1) and substitution of z by 7((y) yields expressions for
any finite number of coefficients fi as linear combinations of f((o),--- , f®™(().
In particular, we have a matrix A((y) with ®¢ = A((o)F (o).

Let o0 = fo(Ci—Co) 4+ frra1 (G —Co)f o Hor all @ € N and let ¥y, denote

the column vectors with entries o, , Opyqo. We claim that if o is a power of
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two, then there exist matrix equations with coefficients in K of the following form:

Zk—l—a;a — Mk;ozq)k;

CA4
(I)k—l—oz = Nk;aq)k- ( )

If @ = 1, this follows directly from (C.2). Now assume that we have proved the
claim for a certain a. Then the claim also holds for 2¢, by taking

Mk;?oz — Mk;a + Mk—l—oz;osz;oz;

C.5
Nk;2a — Nk+a;aNk;a. ( )

From an effective point of view, the matrices My, and Ny, are represented as
matrices My, and Ny, with entries in 7, divided by a common denominator g,
In this representation, (C.5) becomes:

dk:20 = Gk+o;09k;0
/ _ / / .

Mk;?oz - Qk—|—oz;onk;a + Mk—l—oz;osz;ou (06)
! _ ! !

Nk;Qoz - Nk—l—oz;osz;oz‘

We now have the following approximation algorithm for f(¢):

Algorithm approximatel (path length 1, begin and end points in Z[1, i]).
INPUT: A precision 0 < ¢ € Z[3].
OUTPUT: An approximation of f((;) with error < e.

STEP 1. Compute the difference equation (C.2) from (C.1) as a function of (y and

Ci-
STEP 2. Compute the smallest 3 = 2! for which

G- Gl e
QBO( 5(G) ) Sy

STEP 3. For a = 1,2,4,--- .3 compute My, -+, Ms_p.o and Ny, -+, Ng_gia,
using (C.2) and (C.6).

STEP 4. Compute A((o) by repeated differentiation of (C.1), and the first line L.
of the product Mo.5A((o).

STEP 5. Compute an approximation F(ﬁo) of F({p), with r|L;5|1|F(§0) — F({)| <
£/2. Return LgF((o).

Proposition C.1.  The algorithm approximatel is correct and has asymptotic
complexity O(nlog® nllogn + T(n + O(1))), for e =27".

Proof. Let us prove the correctness of approximatel. By Cauchy’s formula:

Jul=5(¢o) h

il = 2me yktl §(Co)*




C.4. TRANSITION MATRICES 335

for all k. In particular,

_ Ié]
| f5(C = o) + fapa(G — )"+ -+ | < 2B (|§3(§0§0|) <

DO ™

Hence,
L (Go) = FCON < |Lig P (Go) = Ll (Go)| + [Lig F'(Go) — f(Gi)] < e

Let us now estimate the complexity of approximatel: step 1 is a precomputation
of cost O(1). In step 2, we have 3 = O(n).

In step 3, we have size(My,1)+size( Ny ) = O(log k), since the (); are polynomi-
als in K[1/k]. By induction, it follows that size( My, )+ size(Ni,.) = O(a(log k)).
Hence, the computations of M., -, Mg_n.n require 3/a operations of costs
O(alog®nllogn) for fixed a. Thus, the computation of My requires
O(nlog® nllog n) operations.

In step 4, the computation of A((p) is actually another precomputation of cost
O(1). The matrix multiplication Mo,sA (o) takes a time O(nlog® nllogn).

In step 5, Lg tends to the first line in the transition matrix between (y and
(1 (see the next section) for § — oo. Hence, limg_.. |L.g| is finite and F(ﬁo) is
computed in time O(T'(n 4 O(1))). Finally, the multiplication L;ﬁﬁ(ﬁo) takes a time
O(nlog® nllogn). O

C.4 Transition matrices

In this section we introduce the main tool for performing analytic continuations:
transition matrices and their truncations. Let (, € A and let [ be a column vector
with p entries. Let f[(o : I] denote the unique function f, which satisfies (C.1) and
such that F((y) = I. Denote f[( : 1]¥) = fD[(y : I] for each i. We notice that
FOIG : T+ J) = fOlo - I+ fO[Co : J] for all 4,1 and J, by linearity. If (o ~» (; is
a path on X from (o to (1, then F((;) depends linearly on I, by integrating (C.1).
The matrix A¢ .., such that

F(Cl) = ACOWQF(CO)

for all F'({p) is called the transition matrix associated to (o ~» (; (and of course
to the equation (C.1)). Obviously,

ACOWCl ~C T AC1WC2AC0WC1 )

for all compositions (g ~ (4 ~ (3 of (o ~» (; with a path (; ~» (; on X.
Assume now that D, (o, (1,0((o) are as in the previous section. Let

FOlUo : N(Co+u) = £ - 11+ A7 G Nut -
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denote the power series of f)[(y : I] at y for each i. For 3 > p, let Fi5(¢;) be the
column vector

fot 4 foma (G = Go)
Fa(G) = :
| S (SR

The matrix A¢ ¢, with

Ea(G) = Agserpt(Co)

for all F'((p) is called truncated transition matrix at order [ associated to
(o — (4. The following technical lemma gives us precise information about the
computational complexity of truncated transition matrices:

Lemma C.1. Let s = size(m((y))+ size(n(¢1)). There exists an algorithm which
computes A¢,ye,.p tn lime

O(B(s + log 3) log? 3llog 3 + slog sllog s),

uniformly in (o, (1 € D, provided that [¢; — (o| < $6(Co).

Proof. The computation of Ay ¢ .5 1s done by steps 1, 3 and 4 of approximatel
with the following modifications: instead of working with coefficients in K, we work
with coefficients in K[n]/(n?). Instead of starting from the difference relation (C.2),
we now start from the difference equation satisfied by the sequence fo, f1((1 + 1 —
o), f2(C1 + 17— (o)?, -+ - . Modulo these changes, the line L.g computed in step 4 has
the form L.s = Lgo+ Lgin+---+ L.gp_1n?~', where L.gq,- -+, L.5,_1 are precisely
the lines of A¢,_y¢,5. Intuitively speaking, n is a formal infinitesimal variable, which
enables us to compute formal expansions at (; up to the order p.

Let us now bound the complexity: step 1 is a precomputation of cost
O(slog sllog s).

In step 3, we have size(My,) + size(Ni1) = O(s + logk), since the @, are
polynomials in K[1/k] with coefficients of sizes O(s). By induction, it follows
that size(My,) + size(Ny,) = O(a(s + logk)). Hence, the computations of
Moo, -+, Mg_p.o require 3/« operations of costs O(a(s+log 3)log 3 llog 3) for fixed
. Thus, the computation of My.s requires O(B(s + log 3)log” Bllog 3) operations.

In step 4, the (pre-)computation of A({y) has cost O(slog sllogs). The matrix
multiplication Mo.3A((o) takes a time O(3(s + log 3) log 3 llog [3). O

The remainder of this section is devoted to the obtaining of theoretical bounds
concerning transition matrices.
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Forward transitions. Let FEy,---,FE,_; be the columns of the identity matrix.
Then the entry A¢, ¢ i, equals fO[¢ 1 E;](¢1). By Cauchy’s formula, we have:

1 FOo : Ej](Go + U)du < SUPp 96 : E)]
2m/—1 Jlul=5(co) ukt! h o)

Let 3 > p. Summing over k > 3, we have for each ¢; with |{1 — o] < 36((o):

uﬁm:@nz\

; G — G\
|Acomseripig — DNomcri] < 2sup fO[G 1 1) 6~ G (C.7)
D (o)
Hence, denoting
5(Go) = x| sup f [Co + Ej],
we have
|C1 o C0| ﬁ+1_p
[Agmcrs — Agpmar| < 25(60) : (C.8)
(o)

Notice that this proves in particular our claim in the prootf of proposition C.1 that
L.5 tends to the first line of A¢ ¢, for § — oo.

Backward transitions. Let Cy be a constant with Ciy > sup,, - ep P|A¢ ¢ |1- Let
Z((o) resp. Z(¢1) be the matrix, with entries fO[( @ E;] resp. fO[¢, : E;]. We
observe that

E(gl) = AC1—>COE(§0)'
In particular, S(¢1) < CoS((o). Let C1 be a constant with C; > CyS((p). Then (C.8)

implies

B+1—p
S 40') , (C.9)

3(¢o)

and this relation is valid for all (o, (1 € D with [¢; — (o| < £6((o). In particular, for
Cz > plF(Go)[Co, we get

Agymiis — Agoa | <O (

B+1-p
S §0|) , (C.10)

8(Go)
where the bound is again valid for all (o, {; € D with |¢; — Co| < $0(Co)-

|&ﬁmwww—F@n<@(

Infinitesimal transitions. Let p be the radius of D. Then substitution of 3 by p
in (C.9) yields
[Agy—crip — Ld] < (e = 1)[¢ — Gol-

Applying (C.9) once, we get

|AC0—>C1 - [d| < (Cl +e” — 1)|§1 - §0|
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Let C3 > (e” — 1) 4+ 2Cy. Applying (C.9) once more, we deduce that

|A¢ymciys — 1d| < Cs]¢ — Gol,

whence

PlAGocisl < 14 CslG = Gol, (C.11)
for all 8 > p.

C.5 Analytic continuation

In this section, we give the complete evaluation algorithm for holonomic functions.
Let C be a connected finite union of compact disks in X with centers above Z[3, ]
and radii in Z[}]. For each ¢ € C, denote by 4(£) the distance between ¢ and 9C.
Let By € Z[3] be such that

|8-—a)ﬁ+*m
5(¢) ’

for all 8 > p and &, & € C, such that [¢ — €] < $6(€). Such a constant By exists
by (C.10). Let 1 < B, € Z[}] be a constant, such that for all £, ¢ € D; with
|&— €| < %5(5’), we have

PlAcersli < 1+ Bal¢ — ¢ (C.12)
Such a constant By exists, by (C.11).

mgwﬂo—ﬂ&K34

C.5.1 Begin and endpoints above Z[3, 1]

We first consider the case of an effective path
Ewr €= G o G,

with 7(Co), 7(Cx) € Z[%, 1] and such that [¢y1 — G| < $0(¢) for all 0 < i < k. For
each 0 <1 < &k, let

I = (1 + BalGrr — Gl) -+ (1 + Bz — Camnl)-

Let B3 € Z[5] be a constant for which Bz > Il,.

1
2
Algorithm approximate2 (begin and end points in Z3,1]).
INPUT: A precision 0 < ¢ € Z[]].

OUTPUT: An approximation of f((,) with error < e.
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STEP 1. For¢=0,--- .k do the following:
A. Compute the smallest 3; = 2! > p for which

Bi+1-p
B1B3 (%) < 5/4/43.

B. Compute A¢,¢,, .5, by the algorithm from lemma C.1.
STEP 2. Compute an approximation F\((y) of F((o), with Bs|EF(Co) — F(Co)| < /4.
STEP 3. Foreachi =0, ---,x—1, compute a truncation F(Q_H) of AQ_}QH;&F(Q)
at precision ¢/4k Bs.
STEP 4. Return the first element of F(g})

Remark C.2. The need of truncating the F(Q) will become apparent in the next
algorithm, which uses approximate?2 as a subalgorithm.

Proposition C.2.  The algorithm approximate?2 is correct and has asymptotic
complexity O(nlog®nllogn), for e = 27",

Proof. For each 0 <1 < &, we have:

Hin|F(Gir) = F(G)l < Wip] F(Gigr) = Acisiprin 1G] +
I F(G) — F(G)] +
Hi—l-l|ACi—>Ci+1;ﬁiF(Ci)ACi—KiHF(Q’)|
e/26 + ILIF(C) — F(G).

N

By induction, we get
[F(Ga) = F(C)| < 2/2+ ol F(Go) — F(Go)l,

whence the correctness of approximate?2, since H0|F(§o) — F(()| < ¢/4. The com-
plexity bound is proved in a similar way as in proposition C.1, using lemma C.1.

4

C.5.2 Arbitrary paths

Now let £ ~» ¢ be an arbitrary effective path on D, represented by ¢ — & —
oo = & = £ We assume that d = | — & < 18(8), &' = €' — & < 10(¢') and
€1 — & < %5&, for all 0 <7 < A. Clearly, any effective path can be represented
in this way, by subdividing abnormally long segments.

To approximate f(&'), we need two special paths in order to connect good ap-
proximations £, and ¢, above Z[%, i] of £ resp. ¢’ to their rough approximations &,
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and &,. Then the effective path to compute f(¢') has the form
Xy == xo—=b—= = b= = X (C.13)

Given 0 < ¢ € Z[ 2], such a path is called an e-refinement of £ ~» ¢, when com-

puted as follows: first compute approx1mat10ns ¢ and & of £ resp. & with error
< e. Next, truncate € at precisions 272°d,272'd, .-+ ,272"d, until 272"d < &; this

yields xo,- -, xu. Similarly, we truncate 5’ at precisions 2_20d’, e ,Z_QM/d’ until

9-2"J < = in order to yield xg, -+, xs. Of course, the starting point of the refine-
ment is € + (x, — 7(£)).

In order to apply approximate2 we have to find a suitable constant Bz, which
works for all possible e-refinements (C.13). We observe that

= Byd
H (1 + 2; ) < 03 — 2(1 + Bzd)flog(logmax{Bg,?}/log2)/log2-| (014)
=0
and
- BQd/ 1\ [log(log max{B2,2}/log 2)/log 2]
=0

Now for Bs we take a constant in Z[3], such that
A—
C3C4(1 + Bad)(1 + Bad') H (1 + By|éii1 — &) < Ba. (C.16)

Hence B3 > 1l,. Finally, let By € Z[%] be a constant, with sup, |f| < By for all
1 << p.

Algorithm approximate3 (general case).
INPUT: A precision 0 < ¢ € Z[]].
OUTPUT: An approximation of f(¢') with error < e.

STEP 1. Compute an (¢/8Bs By)-refinement of £ ~» ¢, and let (o — --- — (,; be its
representation.
STEP 2. Apply approximate2 to the path (;, — --- — (., with initial conditions

F(f) at Co.

Theorem C.3. Let [ be a holonomic function satisfying (C.1), such that Fy,---,
P, € Klz] for an algebraic number field K. Let X be the Riemann surface of
f oover C\{wy,--- ,w,}, where wy,--- w, are the zeros of P,. Let &~ & be an
effective path on X, such that the initial conditions f(€),--- , f@=V(&) are effective.
Assume that ©(€),7(&), f(€),---, FP=V(E) have time complexities O(T(n)). Then
there exists an O(nlog” nllog®n + T(n + O(1))) expansion algorithm for f(£).

Proof. Let us first prove the correctness of approximate3. Since [(o—¢| < ¢/8B3 By,
we have |F((o) — F(§)] < ¢/8Bs < ¢/8Ily. Hence, |F(¢o) — F()| < 3¢/8. As in
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the proof of proposition C.2, we deduce that |F(§H) — F(¢:)| < 7¢/8. Finally,
|F(&) — F(()] < /8, since [¢' — (x| < ¢/8B3By and By > 1. It follows that
|F(¢') — F(()| < &, which completes the correctness proof.

Let us now prove the complexity bound. First we notice that [¢iy1 — (| < $6(&)
for all 0 < 7 < k, so that lemma C.1 applies. Now, using similar notations as
above, let (o — -+ — (, be the path (C.13) and let ¢ = 27". By the definition
of e-refinements, we have k = O(logn), size(m(x;)) = O(2'), size(m(x}) = O(2%),
log |xit1 — xil = O(2%) and log |x},; — x| = O(2'). Furthermore, if v; resp. !
denotes the 3; which corresponds to x; resp. x%, then

»—O( loge — log 4k By Bs )—O(ﬁ)
7 Nog T = vima [ = Tog (€ + (it — 7(9))) 2

—o(Z
”_O(Qi)‘

Hence, by lemma C.1, the execution time of approximate3 is bounded by

resp.

O(logn) '
O (n log’nllogn + > %(22 + log n) log® n llog n) :

1=0
Now
O(logn) N
> 5(2Z +logn)log®nllogn =
1=0

|loglogn| O(logn) n '
Z + Z 5(2Z +logn)log®nllogn = O(nlog’nllog®n),
1=0

i=|loglogn|+1

whence the desired complexity bound. O

C.6 Computation of the constants B;

In this section, we show how the constants By, By, B3, By can be computed effect-
ively. We first show how to compute bounds for |f],|f'],- -+ on a fixed compact disk
D on X, which center (o above Z[,i] and radius p € Z[1], where we assume that
F((o) is effective. Let f((o 4+ u) = fo + fiu+ --- be the power series expansion of
[ at Co. Let (1 = (o + p, and let the matrices Ni,, be defined as in section C.3. We
start by showing how to compute suitable bounds for the fj.

For each a = 2! there exists a matrix N,, with coefficients in K (k), such that
Ny, 1s obtained by replacing & by &’ for all £'. Indeed, such matrices are obtained
in a similar way as the Nj, from (C.2) and (C.5), by considering k as a formal
parameter. Hence, we even have an algorithm to compute the N,.
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Substitution of k by infinity in N, yields a matrix Ne.,, which is an O(1/k)-
perturbation of Ne.., (i.e. the entries of No., — N, are O(1/k)). Intuitively speak-
ing, taking £ = oo amounts to neglecting the contribution of the terms stemming
from P,_; f®=Y ... Pyf in the recurrence relation (C.2). Therefore, N..., reflects
the linear recurrence relation satisfied by the coefficients of the Taylor series ex-
pansion of 1/P,((o + up) in u. In particular, the non zero eigenvalues of N, are

(p/(wr = Go)) -+ 5 (p/(wn = o)™

Now consider the following algorithm:

Algorithm bound.
INPUT: (o, (1 € Z[3].
OuTPUT: Constants Cs and |7 < 1, such that |fi(¢(1 — Go)F| < Cs7F for all k.

STEP 1. Compute the smallest ag = 2!, such that P Nooiag |1 < 1.

STEP 2. Compute the matrix N,,, — Noo.o, With O(1/k) entries in K (k).

STEP 3. Compute a kg and 1 < 1 — p|Neosag |1, such that p|Ni.ay — Nociaglt < 1,
for all & = k.

STEP 4. Let 7 := (p|Noosao |1 + 77)1/%7
and Cs := max{|f|, -+, [ fro_1 (<1 — Co)/m)o7 Y}

In particular, the algorithm yields the desired upper bounds

» < (k+q9)lr" Cs7ls!
sup|f(2)|<05 - < . -
D ;;)k”fl = Gol" T (L =7)FHG = Goff
In section C.3, this yields an algorithm to compute By, if we take (y to be the center
of D. Adopting the notations from section C.4, we also obtain an algorithm to

compute upper bounds for supp | fP[¢ : B, for all i and j.

(C.17)

Correctness and termination proof of bound. In step 1, the power of two
ap indeed exists, because the eigenvalues of N, are all strictly inferior to 1, and
Nocioo = Ngo;a, for all powers of two «, by (C.5). The validity and termination of
the remainder of bound is trivial. O

For the computation of the constants B;, By, B3, By, we have to show how to
compute Cy in section C.4. We start with the following preliminary: let D and (o
be as above, and let (; be such that |(; — (o| < Lp. Applying (C.8) twice, we deduce
as we did in section C.4 that

[ Ay — 1d] < (25(C0) +€” = 1)|G = Gol.
Using (C.17), we can compute a constant Cs(¢o) € Z[3], such that Cs((o) > 25(¢o)+

e? — 1. We have
Cs(Co)|C1 = Go

A —Id| € ’
AV | 1 — Cs(¢o)|¢1 — Col
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for (1 — (o] < Cs(¢1)™t. In particular, this yields the bound
plAG gl < 4 (C.18)
for all ¢}, (] € D, with |¢} — (o] < 1/2Cs((o) and |(] — (o] < 1/2C6((o). Hence we

may take Cy = 4, whenever (; is sufficiently close to (y.

Let us now treat the general case. We construct a sequence Uy, U;,--- of open
disks on & as follows: assuming that U, --- ,U, have been constructed for n > 0,
the center &,11 of D, is taken to be any point above Z[%, i) in D\(Uy U---UU,);
if such a point does not exist, the construction is terminated. Next, we let D, 14
be any compact disk on X', with center &, and radius in Z[%] We next compute
a number p,y1 € Z[3] in the way described above, such that (C.18) holds for all
(6, ¢4 € Dpyr, with |(§ — &ua1] < puar and |(] — &ur1] < pog1. Termination of this
procedure is guaranteed by the compactness of D. Ultimately, we take Cy := 4".

Proposition C.3.  There is an algorithm to compute the bounds By, By, B3, By
involved in approximate2 and approximate3.

Proof. Using the algorithms above, we compute the constants Cy, Cy, C5, Cy by the
formulas from section C.4. To compute the constants By, By and By, we use the fact
that C is a finite union of compact disks, each on which the preceding algorithms
apply. In the case of By, we use (C.10) and (C.1) (for supc |f®)]). Finally, Bs is
computed using (C.16). O

Remark C.3. For simplicity of the presentation, the constants By, By, B3, B, are
“relative to C as a whole”. In practice, we compute such constants on each com-
pact disk, which constitutes C. This allows us to avoid the computation of the
sequence Uy, Uy, - -+ by precomputing a suitable refinement of the path £ ~~ & in
approximate3.

C.7 Conclusion and extensions

We have presented an algorithm to evaluate certain holonomic functions. Although
our algorithm has a good asymptotic complexity, it also has several disadvantages:

— Bad complexity as a function of ¢ (= order of (C.2)).
— The initial conditions need to be specified in a point different from wy,--- ,w,.
— Bad behaviour near singular points.
— Not clear how to choose the path for analytic prolongation.
On the other hand, several generalizations of the algorithm are possible:

— Holonomic functions in several variables.
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— Small perturbations of (C.1).

In this section, we briefly discuss these issues.

Dependence on g. Our algorithm has a quite dramatic complexity as a function
of ¢, namely the complexity of ¢ by ¢ matrix multiplications (which is O(¢*®*')
[Str 69]).

Nevertheless, we are currently investigating an optimization of the algorithm,
where the matrices My.,, N, are not computed up to order 3 in approximatel, but
up till a slightly smaller power of two; the last steps of the evaluation are performed
by a more classical Horner-like method. This should lead to a general purpose

, see

algorithm, which reduces to the standard way of evaluating power series for small
precisions and which partially uses our optimized algorithm for large precisions.
Moreover, this approach should extend to the case when the coefficients are no longer

algebraic numbers, although the complexity drops down to O(n% log® nllogn) in this
case, at a first sight.

Let us finally notice that for large values of ¢, FFT-multiplication becomes prof-
itable for smaller precisions, since we can FFT-transform the entire matrices.

Initial conditions. Sometimes, f may be analytically continued above some of
the points wy, -+ ,w,. For many classical special functions, the initial conditions
are even specified in such “fake singularities”: as an example, we mention the sine-
integral function

Siz = /090 t~tsintdt,
which satisfies the equation
281" 24+ 251" 2+ 251"z =0,
with initial conditions Si(0) = 0,Si'(0) = 1,Si"(0) = 0. Using the recurrence relation

2

Sigto + 3

Sigt1 + Sip = 0,

(k+1)(k+2)
approximatel still applies in this case. Moreover, modulo some precautions, this
is a general situation: it suffices that the power series expansion be convergent and
that K contains 7({o). Then taking (; — (o € Z[1,i], a suitable adaptation of lem-
ma C.1 applies. This reduces the problem to the case when the initial conditions
are specified in (;. The bounds involved in these computations are computed in a
similar way as in section C.6.

Singularities. When the point ¢ in which we want to evaluate f is very near to
a singularity, the bounds B; and the complexity of the algorithm as a function of
¢ may become very bad. No straightforward numerical methods can be applied to
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solve this problem, and resummation techniques are essentially needed to handle
this situation (see [Th 95], for instance). Here we notice that the Borel and Laplace
transforms preserve holonomy. Therefore, our algorithm can theoretically be used
in the resummation process.

Analytic continuation path. Clearly, the complexity of the algorithm heavily
depends on the choice of the path used for analytic continuation. At present, we have
not studied this point in detail. We expect several similarities with the way paths
are chosen for the computation of Laplace transforms in resummation algorithms.

Multivariate holonomic functions. A multivariate function f(zq,- -, z;) is said
to be holonomic, if f is holonomic in each of its variables. It is classical that
the restriction of a multivariate holonomic function to a straight line segment is a
holonomic function in one variable only. Moreover, the differential equation satisfied
by this restriction can be computed in a generic way, i.e. for a generic straight line
segment. Consequently, our algorithms generalize in a straightforward way to the
multivariate case.

Small perturbations. In the proof of lemma C.1, we used a trick to compute
F(G), -+, fP=9(¢) simultaneously, by introducing the infinitesimal variable n. If
instead of working in the ring K[n]/(n?), we work in the ring K[n]/(n"), the same
method yields approximations for the first r terms of the power series expansion of
fin (1. Moreover, the cost is just multiplied by a factor O(r) in this case. More
generally, we may allow the polynomials F,--- , P, themselves to depend on ». In
this case, we compute the effect of such a small perturbation in (7, up to a precision
of r terms.

Divergent series. In priciple, the techniques of this appendix can also be used to
effeciently evaluate holonomic functions in the neighbourhood of points where the
series expansion diverges, by summing “up to the smallest term”. Of course, we only
get approximations of the value of the holonomic function in this way, but it is well
known that these approximations have exponential accuracy, when we approach the
singularity.
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Appendix D

Computations with special functions

D.1 Introduction

Transcendental functions like exp,log,sin, p, etc. have been studied since a long
time. In our age of symbolic computation it is natural to ask whether computations
with such functions can be done automatically. Essentially, this question can be
reduced to the following one: given an expression built up from the rationals, a finite
number of indeterminates and a given set of elementary functions, can we decide
whether the expression is zero? Since the expressions are not necessarily canonically
determined (they usually admit non trivial Riemann surfaces), the problem should
be specified further: can we decide whether the expression is locally zero at a given
point on the Riemann surface? We also have to specify what we mean by elementary
functions: in this chapter, we will consider a very large class of elementary functions,
namely those which can be entirely specified by a finite number of algebraic partial
differential equations with initial conditions. In what follows, such functions will be
called D-algebraic functions.

Let us first briefly discuss some of the history of the above problem. Initially,
most of the research has been centered around finding canonical ways for represent-
ing expressions of the above type, based on our experience with polynomials. The
study of functions built up from algebraic functions, exponentiation and logarithm
was started by Liouville (see [Li 1837] and [Li 1838]) and culminated one and a half
century later in the Risch structure theorem (see |Ris 75]). These techniques were
extended to include a few other transcendental functions such as the error function
by Cherry and Caviness (see [Ch 83|, [CC 85]). However, for many other special
functions, the desire of having canonical representations seems to be to ambitious.

The emergence of holonomic functions has provided a new way of looking at the
question. Holonomic functions (in one variable) are functions which satisfy a non
trivial linear differential equation over the polynomials with rational coefficients.
They are represented, although not uniquely, by such a differential equation and
a number of initial conditions. The basic idea is now to compute with these rep-

347
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resentations, without searching for canonical ones. Denef and Lipshitz, followed by
others have generalized the holonomic function approach to D-algebraic functions
(see [DL 89], [SH 89]). At this moment, the most promising algorithm for computa-
tions with D-algebraic functions is due to Péladan-Germa (see [Pél 95]). However,
no implementation of this algorithm is available yet.

We finally mention that in the above discussion, we implicitly assumed the exist-
ence of an oracle, to perform the necessary computations with constants. Actually,
this is a very strong hypothesis since computations with transcendental numbers
turn out to be even harder than computations with transcendental functions (mod-
ulo a suitable oracle for the constants). Although it is often easy to decide whether
a constant is zero (it suffices to perform a floating point evaluation at a sufficient
precision), it can be very hard to prove that a constant is zero. Nevertheless, in the
case of constants determined by exp-log equations, an algebraic zero-test does exist
modulo Schanuel’s conjecture and we refer to the introduction for more details.

B>

Let us now come more particularly to the contents of this chapter. We have
chosen the differential algebra with initial conditions setting to study local func-
tions. This has the disadvantage of restricting the class of functions which can
be studied, but the advantage of being suitable for effective computations by its
algebraic character.

In section D.2, we introduce the formalism of D-rings. This formalism is due
to Nichols and Weisfeiler (see [NiWe 82|, [Bu 92]) and provides an algebraic setting
for studying p.d.e.’s on curved geometrical objects. Its originality with respect to
the classical theory of differential algebra (as developed by Riquier, Janet, Ritt,
Raudenbush, Seidenberg, Kolchin, etc.; see [Riq 10], [Jan 20], [Ritt 50], [Kol 73],
[Kap 76]) is that the derivations do not necessarily commute. Consequently, p.d.e.’s
on non affine objects such as spheres can be considered, even though no essentially
new functions are introduced by this. Actually, the formalism of D-rings mainly
allows us to place ourselves in the coordinates, which correspond to the underlying
geometry of the problem. Moreover, in [VdH 96¢| it is shown that the main res-
ults from classical differential algebra can be generalized without much effort. In
section D.3, we introduce D-rings with initial conditions. We will mainly consider
initial conditions in a point, which correspond to (non differential) maximal ideals
of the D-ring.

In section D.4, we establish the main algorithms for computations with D-
algebraic functions. We start with a generalization of an algorithm due to Shackell
and an optimization of this algorithm using a local pseudo-Buchberger algorithm.
This work was carried out jointly with A. Péladan-Germa in [PV 96]. For the
local pseudo-Buchberger algorithm, we refer to section D.6. We proceed with a
zero-equivalence algorithm which is particularly useful when the point in which the
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zero-test is performed may be chosen randomly: in that case, virtually all functions
which evaluate to zero are zero, and this property is exploited in the algorithm.

In section D.5 we consider some other computations which can be done with
D-algebraic functions. Most importantly, we obtain an implicit function theorem,
which permits to solve effectively certain systems of implicit equations determined
by D-algebraic functions. This is a crucial result on which many algorithms in part
B of this thesis rely.

D.2 Basic concepts

D.2.1 Definition of a D-ring and examples
A D-ring is a couple (A, D) satisfying

DR1. A is a commutative ring.
DR2. D is an A-module of derivations on A satistying

Opa = 0;
(bd)a = b(da);
(dl + dg)a = dla + dga,

for all d,dy,dy; € D and a,b € A.
DR3. D has the structure of a Lie algebra and

[dl, dg]a = dldga — dgdla;
[dl, Cldg] = (dla)dg —|— Cl[dl, dg],

for all dy,dy € D and a € A.

For simplicity, we often write A instead of (A, D). In practice, (A, D) is finite
dimensional, i.e. D is a finitely generated A-module. We notice that D-ring
theory generalizes ring theory, by taking D = 0 for the set of derivations.

Example D.1. If %k is a field, then (k[x,y],(d,, d,)) is a D-ring. Here d, and
d, denote the partial derivatives with respect to x resp. y and D = (d,,d,) the
k[x,y]-module generated by d, and d,. D has a natural Lie algebra structure, given

by
Ad, + Bd,, A'd, + B'd,] = (AA + BA — A, A" — A,B)d, +
Yy Yy z Yy Yy
(AB. + BB; — B.A"— B,B")d,.

The D-ring (k[x,y], (ds, d,)) corresponds to the plane (over k). In a similar fashion,
one defines affine n-space (k[xy, -+, @], (dyy, -+ ,ds,))-

Example D.2. If k is a field, then (k[z,y]/(z* + y* — 1), (yd. — zd,)) is a D-

ring. This object corresponds to the circle with its natural derivations. Similarly,
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(klz,y,2]/(z* + y* + 2* — 1),(d1,dz,d3)) is a D-ring, where d; = yd, — vd,,d> =
zdy — yd, and d3 = xd, — zd,. We have [dy,dy] = ds, [d2,d3] = dy and [d3,d;] = d.
Finally, (k[z,y]/(2y), (2ds, yd,)) is a non entire D-ring, which corresponds to the
union of two lines.

Example D.3. Assume that (A, D) is a D-ring and that [ is a usual ideal of
A. Then A = A/I can naturally be given the structure of a D-ring by taking
Dy ={d e D/ID|dI C I} for the derivations. Indeed, we have a natural induced
Lie bracket on Dy, since dI C [ and d'I C I imply [d,d'|I C I, for all d,d’" € D.
The D-ring (A7, D)) is called the restriction of domain of (A, D) by I. If Ais
Noetherian and finite dimensional, then so is A);. The D-rings of example D.2 are
obtained as restrictions of domain of k[x, y] by a?+y*—1, of k[, y, 2] by a*+y*+22—1
and of k[x,y] by zy.

Example D.4. Let A be an algebra over R. Denote by Derg(A) the set of R-
derivations on A (i.e. the set of derivations d : A — A with dR = 0). Then
(A, Dergr(A)) is a D-ring. If A is finitely generated, then this D-ring is finite dimen-
sional.

D.2.2 Morphisms of D-rings

Let us now show how familiar concepts in differential algebra generalize to the
context of D-rings. A morphism of D-rings or D-morphism (A, D) LN (A, D)
is a pair of mappings A - A’ and D A D', preserving all D-ring operations.
Clearly, D-rings with their morphisms form a category. Let us show that each
morphism (A, D) 1A (A, D) can be factored canonically through (A’, A’ @4 D),
where we consider A’ as an A-algebra, by Aa = ¢(A)a, for A € A and a € A'.
Roughly speaking, this means that we can decompose a morphism in a part which
preserves the structure of the module of derivations, and in a part which preserves
the structure of the ring.

As we have a A-bilinear mapping p : A’ x D — D' (a,d) — ap(d), there
exists a unique A-linear mapping A’ ®4 D LN D', such that ¢ = £ o (1 @ Id).
This mapping induces a canonical operation of A’ ®4 D on A’ by da = &(d)a.
This makes it possible two define a Lie bracket on A’ @4 D by [a ® d,d' @ d'] =
aa' @ [d,d'] + a(da’) @ d' — a'(d'a) @ d. Then we have the desired factorization

(A, D) “2AT A A @, D) S (A, D).

A D-morphism is said to be pure, if £ = Id in the above decomposition. By the
transitivity of base change, D-rings with pure D-morphisms form a category.

Remark D.1. Consider the D-ring (k[z,y], (ds, dy)). Then interchanging = and y
resp. d, and d, gives a D-automorphism ¢ of k[, y]. We remark that this would not
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be the case in differential algebra, because the derivations d, and d, are restricted
to remain fixed. Nevertheless, ¢ is not a k[, y]-morphism of D-algebras (see below).

D.2.3 D-ideals, D-A-modules and D-A-algebras

A D-ideal of (A, D) is an ideal, stable under D. We denote by [X] the D-ideal
generated by a subset ¥ of A. If [ is such a D-ideal, then A/ has a canonical quo-
tient D-ring structure. If S is a multiplicatively stable subset, we each derivation
d € D naturally gives rise to a derivation on S™'A by d(a/s) = (da/s) — (a/s*).
Therefore, S™'A has a canonical D-ring structure and is called a local D-ring of
A. We recall that A — S7'A is injective if and only if S contains no zero divisors.
The total D-ring of fractions is the D-ring Q(A) = S™'A, where S is the set of
non zero-divisors. In particular, Q(A) is the quotient D-field, if A is entire.

A D-A-module or D-module over A is an A-module M, such that each deriv-
ation d € D gives rise to a derivation d on M, satisfying cZ(a:L') = (da)x + adzx and
[m]x — dydyx — cizcilx, fora € A, d,dy,dy € D and v € M. A morphism of
D-modules over A is an A-linear mapping, which commutes with the derivations
of D.

A D-A-algebra or D-algebra over A is a D-A-module, which is an A-algebra
B, such that cz(:zjy) = ady + (cz:zj)y, for each x,y € B. We remark that (B, Dp)
is a D-ring in this case (assuming that B has a unit), where Dg = B @4 Dy acts
naturally on B by (¢ @d)y = xdy. We have a canonical D-morphism of (A, D4) into
(B, Dp). Inversely, given such a morphism, we can consider B as a D-A-algebra in
a natural way. A morphism of D-A-algebras is a morphism of A-algebras, which
commutes with the derivations of D.

D.2.4 D-operator algebras

Let (A, D) be a finite dimensional Ritt D-ring. One can naturally associate the
free linear D-operator algebra Q) = A[D] to (A, D): this is the free associative
A-algebra, generated by A and D, subject to the relations

a-qd = ad;
d-ga = da;
diqdy—dy-qdi = [di,dy].

We also define Qg = A and Q,; = Q, U DQ,, for each r € N. These sets are subsets
of O, with @ = U, e, If w € Q, we define its order to be the smallest r, with
w € N,.

Proposition D.1. Letdy,--- ,d, be in D. Then dyy)---dyiy —dy -+ d, has order

strictly inferior to r, for any permutation o.
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Proof. It suffices to prove this, in the case when o is a transposition of two sub-
sequent indices ¢ and 7 + 1. In that case, we have

dy - odipd; o dy —dy - didigy o dy = dy - [disy, di] - d,
which has order at most n — 1. O

Operators of the form d - - - d, are called words. The word operator d,(1y - - doy)
is said to be a shuffle of the word operator d; ---d,.. Suppose that we have fixed
generators or a basis dy, - -+ , d,, for D. Then we denote @ = {d{* --- d%" |y, -+ , v, €

N} and ©, ={d{"* ---di"|ay + - - - + a,, < 1}, for each r. Then we have

Proposition D.2. The set O (resp. O, ) generates Q (resp. §,.) as an A-module.
It even forms a basis, if di,--- ,d, form a basis of D.

Proof. Let us show by induction over r that ©, generates €}, as an A-module. This
is clear for r = 0. Assume that ©,_; generates €),_;. By linearity, it suffices to
show that d;di* ---do~ € (0,), for each ¢ and dj*---d2" € O,_;. By the previous
proposition, we have d;d" ---df* -+ don — dy' - dPT o do 4w, with w € Q.
This completes the induction. As = e and © = U,y O, this implies that
) is generated by O.

Suppose now that dy,--- ,d, form a basis for D. The free A-module €)' gener-
ated by O, can naturally be given the structure of an associative A-algebra, and
it is easily checked that this algebra satisfies the universal property of 2. Hence,
0 is isomorphic to . Therefore, © is linearly independent over A, and so is ©,,
for each r. O

D.2.5 Geometric interpretation of D-rings

The concept of D-rings has a strong geometric appeal: we can interpret A as the
space of functions on a manifold and D as its tangent bundle. In order to let
things correspond properly, assume that A is entire and that D finitely generated
by dy,--- ,d,. Then we remark that D is locally trivial. Indeed, whenever we have a
relation ayd; + -+ -+ a;d; = 0, with a; # 0, then D is generated by {dy,--- ,d,}\{d:},
when localizing with respect to the multiplicative subgroup generated by a;. After
a finite number of such localizations, the tangent bundle becomes trivial.

Now the analogy can be carried out further. Finitely generated A-modules (which
are locally trivial, by the above argument) correspond to vector bundles. For ex-
ample, we have the cotangent space D* = Lina(D, A), the tensor bundles

n times m times

D@y aD @4 D*"®@4 - @aD7,
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etc. Other geometric structures can be imposed on A such as metrics (which are
just elements of D* @4 D*), connections (which are Z-bilinear maps from D x D
into D, such that

Vad = aVad';
Valad) = (da)d + aV4d',

and, optionally, Vyd' — Vad = [d, d']), etc.

Many differential geometric properties admit straightforward algebraic analo-
gues. This observation, combined with the results of subsequent sections, makes it
possible to perform many differential geometrical computations automatically.

D.3 D-rings with initial conditions

In this section we will algebrize the notion of a system of partial differential equations
with boundary conditions. In section D.3.1, we first give a very general definition,
with arbitrary partial differential equations and partially specified boundary con-
ditions. In section D.3.2, and all what follows, we will restrict ourselves to initial
conditions in a point.

D.3.1 D-boundary value problems

A D-boundary value problem is a chain of triplets (A,, J,, 1), - , (A1, J1, 1),
where the J; are D-ideals of the D-rings A;, where the I; are ideals of A;/J; and
where A,y = (A;/Ji)1,, for each 2 <1 < n. Denote Ag = (A1/J1)r,. We have

canonical mappings
A, = Aty = Ancr — - = AL — AL — Ao

The composite of these mappings is denoted by ¢ and it is called the evaluation
mapping. We define an equivalence relation ~ on A, by

a~bs V00, c(0(a)) =c(6(b)),
for all @ and bin A,,.

Remark D.2. This definition of equivalence may appear non natural at a first time,
because of the example f = e=1/**. However, f can not be specified in # = 0, because
1/2* would not be defined. In fact, the theory of D-rings with initial conditions
somehow generalizes complex function theory, where a function is also determined
by the values of its iterated derivatives in a point.

The zero-equivalent elements form an ideal, which is easily checked to be a
D-ideal. If this ideal is non zero, we say that the D-boundary value problem is
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non reduced. In that case we can transform the problem into a reduced D-

boundary value problem (A!,J/ 1), --- (A}, J], I]), with Al = A;/~, J/ = J; ® Al

and I! = I, @ (A}/J!), for all . If I is a maximal ideal, then A is a field and the
D-boundary value problem is said to be completely specified.

Example D.5. Suppose that we wish to represent f = e**¥ as a function which
is equal to €Y, for + = 0, and which satisfies the differential equation f, = f. We
take Ay = K[z, y|{f}, Jo = [fe — f] and I, = (2). Then Ay = k[y]{ f|.} and we take
Ji = [(file)y — fie] and I} = (2, fj. — 1). We remark that f can also be specified
by two partial differential equations and initial conditions in a point (see the next
example).

D.3.2 D-systems

In the rest of this chapter, we will restrict our attention to D-boundary value prob-
lems, with n = 1, J; = 0 and where [; is maximal. This leads to the notion of a
D-system, which is a pair ((A, D), m), where (A, D) is a D-ring and m a maximal
ideal of A. Again, we often write A instead of ((A, D), m). D-systems correspond to
D-rings with initial conditions in a point. We have an evaluation mapping A — A/m.
A morphism of a D-system ((A, D4), my) into a D-system ((B, Dg), mp) is a morph-
ism of D-rings (A, D4) — (B, Dg), which commutes with the evaluation mappings.
This means that m4 is the inverse image of mp.

Example D.6. A D-system in which we can represent the function f = €%V is

(k[xvy]{f}/[fl’_ fvfy _f]7(x7y7f_ 1))7

with the usual partial derivations d, and d, on k[x,y]. Indeed, f is determined
by the equations f, = f, = f and the initial condition f(0,0) = 1. To represent
* . we build a tower on this D-system. Indeed, it suffices to consider the

D-supersystem

(k[xvy]{fvg}/[fl’ - f7 fy - fvgl’ - f - xfmgy - xfy]v (xvyvf - 179 - 1))

ze®t
g=2=c

Example D.7. An example of a non reduced system is k[z]{f,¢}/[fo — [, 9. —

gl,(xz, f—1,9g—1). Indeed, f # g are formally different in k[z|{f,g}/[fx— [, 9= — 9],
but they both represent the function ¢*, so that f ~ g¢.

Example D.8. Consider the D-system ((k[x,y]/(zy), (vd,,ydy)), (x — 1,y)). A
polynomial P(xz,y) = ¢ + xPi(x) + yPa(y) is zero-equivalent, iff ¢((P)) = 0, for
any linear differential operator §. Now e(yd,Q) = 0, for any @, so that P ~ 0 &
x = P, = 0. This means that the behaviour of P on the y-axis is irrelevant for its
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zero-equivalence. This should not surprise, since the initial point does not lie on the
y-axis.

More strikingly, if we took (x,y) as our initial condition, then all polynomials
vanishing in 0 would even have been zero-equivalent. This comes from the fact that
0 is a singular point. The same holds true, if we consider ((k[z, y]/(2?—y?), (3y*d. +

2zdy)), (,y)).

Proposition D.3. Let ((A, D), m) be a D-system, such that A/m has characteristic
zero. Then A/~ is an entire ring.

Proof. Suppose that xy ~ 0, but % 0 and y £ 0. Let § and ¢’ be linear differential
operators, of minimal orders k and [, such that ¢(fx) # 0 and ¢(8'y) # 0. Thus, for
any £ € Op_y and {' € ©;_y, we have e({x) = e(€'y) = 0. As dy - - dy, — do(1y -+ dyiy
has order < k, for any derivations dy,--- ,d; and any permutation o, we have
e(dy -~ dpx) = e(don) - - doryx). Similarly, e(dy - -~ dyy) = e(dory - - - doyy).

Let us fix some well ordering < on D). This ordering induces well orderings on
the M, (D), the sets of multisets of p elements of D. More precisely, we order the
elements of multisets in increasing order and take the lexicographical orderings. We
also have a well ordering on M(D) = Il,en M, (D), by ordering first on size and then
using the above ordering on each component. We remark that the union operation
is compatible with this ordering, so that M(D) is an ordered commutative monoid.

Now take {dy, - ,dr} € Mp(D) and {dgy1,-- ,drr1} € M(D) minimal, such
that e(dy - - - dpx) # 0 and e(dgy1 - - - diy) # 0. Then

e(dy -+~ dpa(2y)) = > e(d, -+~ dix)e(dy, -+~ djy) = 0.
{iv, g SO0, y={1, k41

Now if {d;,---.,d;,} # {di,---,dp} as a multiset, then either {d;,--- ,d;.} <
{dy, -+ ,dp}, or {d;, -+ ,d;,;} < A{dks1, -+ ,drs1}, because of the compatibility of
the union with the ordering. Therefore, either e(d;, ---d;,x) = 0ore(d;, ---djy) =0
from the minimality hypothesis. We conclude that

€(d1 ce dk-l—l(l'y)) = me(dl ce dkl’)af(dk_H ce dk-l—ly) = 0,
for some integer m > 0. This yields a contradiction, since m # 0 in A/m. O

We can perform different constructions on a D-system ((A, D), m). First, we
can naturally associate the reduced D-system ((A/~, D/~),m/~) to it, where,
denoting by 3 the D-ideal of zero-equivalent elements, D/~= D/3D and m/~=
m/3m, with A/3 = A/~.

Secondly, we can associate the local D-system (( Ay, D), My) to it. Here My,
denotes the localization of any A-module or ideal M w.r.t. m. We say that A/~
is the local ring of functions at m.
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Finally, if I C m, we have the restriction of domain ((Aj;, D), m;) of
((A,D),m) wrt. I, where m; = m/Im. The next propositions show how these
constructions are related.

Proposition D.4.  Let ((A,D),m) be a D-system. Then An/~= (A ~)mp

as D-systems.

Proof. We claim that the mapping from Ag/~ into (A/~)ms defined by a/s s
@/ is well defined and bijective. Indeed, a/s = 0 is equivalent to saying that
e(f(a/s)) =0, for any § € O4,.. By induction over the order of 8, this is equivalent
to £(f(a)) = 0 for each 6 € O, since £(s) # 0. Hence, a/s = 0 & @ = 0. Next,
@/3 = 0 is equivalent to the existence of an s’, with s’@ = 0. By a similar argument,
one shows that this is also equivalent to @ = 0. g

Proposition D.5. Let I C m be a finitely generated ideal of a D-system
(A, D),m). Then (Am)j1, = (Alf)mu as D-systems.

Proof. Let M be an A-module. Then we have a natural isomorphism between
My /oMy and (M/IM )y, which sends z/s to T/3. Therefore, it suffices to
check that {d/3|dI C I} = {d/s|(d/s)ln C In}, when identifying Dy/InDm with
(D/ID)w,. It dI C I, then clearly (d/s)lm C In. Inversely, suppose that (d/s)lm C

In. If a1, -+, a, are generators for I, then we have s;((d/s)a;) € I, for certain s,
and all 7. This means that 'l C I, where d' = s;---s,d, and d/s = d'[(s81 -+ 3p).
O

Example D.9. The restriction of domain operator does not satisfy any simple
commutation rule with the equivalence operator: take A = Klx,y], D = (d,),
m = (x,y) and [ = (zy). Then y ~ 0, so that A/~= K[z] and I/~= 0. However,
Pd,(xy) = Py, so that the set of derivations leaving invariant [ is generated by zd,.
Thus, all elements of Aj; are zero-equivalent.

Example D.10. The restriction of domain operator does not necessarily satisty
A|I|J|I = Ay for I C J. A counterexample is given by A = K[z, y], D4 = (d,,dy),
I = (zy) and J = (x). Similarly, we do not necessarily have ((A/ ~)ja/ ~
Nmnpr = (A/~)p

D.4 Zero-equivalence algorithms

In this and the next section, we shall borrow without further mention some concepts
of the theory of Groebner bases (see for instance [CLO 92]). The sections D.4.1
and D.4.2 are the result of a collaboration between A. Péladan-Germa and the

author (see also [PV 96]).
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Let € be an effective field — i.e. we have algorithms for performing the field
operations of € and we have an effective zero-test (see also section 9.2.1 for this
terminology). A simple effective D-system over € is a couple ((2,D), m) which
satisfies the following conditions:

ES1. A =¢[f1, -, fi]/i and we have a Groebner basis Gy for the ideal i.

ES2. © is a free A-module with basis dy,--- ,d,.

ES3. (2,9) is an effective D-ring — i.e. 2, the action of © on 2A and the Lie
bracket on © are effective.

ES4. mis a maximal ideal of 2, such that 2/m = €, and the evaluation mapping
¢ : A — € is effective.

In the remainder of this section, ((2,®), m) is a D-system which satisfies the above
requirements.

The aim of this section is to show how to compute with special functions in 2, /~.
Such functions are redundantly represented by rational fractions in €[fi, -+, fx],
whose denominators do not evaluate to zero, whence the ring operations in A/~
can be implemented in a straightforward way. However, for the equality test, we
need a zero-equivalence test in 2. In this section, we shall provide several of such
zero-equivalence tests.

D.4.1 A naive zero-equivalence algorithm

In what follows, Groebner-basis stands for an algorithm to compute Groebner basis
in €[f1,---, fr]. Given a polynomial P € €[fy,---, fr], we will abusively denote its
natural projection on 2 by P as well. The following zero-equivalence algorithm
generalizes the first algorithm from [Sh 89] to test zero-equivalence in the context
of ordinary differential equations over Q:

Algorithm zero_equivalence_1(P).
INPUT: A polynomial P € €[fy, -, fil.
OUTPUT: The result of the zero-equivalence test for P.

if ¢(P) # 0 then return false

(7 := Groebner-basis(Gy U {P})

while 31 3Q €G d;) mod G # 0 do
if ¢(d;()) # 0 then return false
(i := Groebner-basis(G U {d;Q})

return true

Proposition D.6. The algorithm zero_equivalence_1 is correct and terminates.

Proof. Let us first prove the correctness. It is clear that if the algorithm returns
false, then P is not zero-equivalent. If the algorithm returns true, then let GG be
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the Groebner basis at the end of the algorithm. We have (d;Q) € (G), for each
1 <@ < k,Q € G. Hence, (G) is stable by A, and ¢(P) = 0 for each P € (G).

Consequently, all elements of (G') — which contains P — are zero-equivalent.

As to the termination of zero_equivalence_1, the heads (see also section D.6
for this terminology) of the polynomials in the successive values of GG form a strictly
increasing chain of ideals. Now the termination follows from the Noetherianity of
polynomial rings. O

Remark D.3. A slight modification of the algorithm allows us to exploit previous
computations: since we are interested in 2/~ rather than 2 itself, we may turn
(g into a global variable. Then setting G9'° := (& just before we return true in
zero_equivalence_1 has the effect of remembering all non trivial relations we find
between the f; in 2A/~.

Remark D.4. It is also possible to test several polynomials Py, .-, P, for zero-
equivalence at the same time. This is done by checking first whether they evaluate
to zero and then replacing the line ¢ := Groebner-basis(Gy U {P}) by G :=
Groebner-basis(Go U {P,- -, P,}).

Remark D.5. The algorithm naturally extends to the case when the initial
conditions depend on parameters via the automatic case separation strategy (see
chapter 8). More precisely, we may take € to be a parameterized constant field
¢ = K(A1, -+, A,) over an effective field K. This means that the elements in € are
rational fractions in a finite number of parameters Ay, -, A,. These parameters
are subject to polynomial constraints, which are either equations or inequations.
The consistency of such systems of constraints can be checked by Groebner basis
techniques. Moreover, no infinite loops can arise from the parameterized Groebner
basis computations in zero_equivalence_1 (see [GoDi 94|, for instance).

D.4.2 An optimized zero-equivalence algorithm

In the naive zero-equivalence algorithm, we do not exploit the local character of
our problem from an algebraic point of view. Now in section D.6, we show that
Buchberger’s algorithm can be generalized to local rings, although the computed
pseudo-Groebner bases do not possess all of the nice properties of usual Groebner
bases. Nevertheless, this local pseudo-Buchberger algorithm can be used instead
of the usual one in zero_equivalence_1, yielding the following optimized zero-
equivalence test:
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Algorithm zero_equivalence_2(P).
INPUT: A polynomial P € €[fy, -, fil.
OUTPUT: The result of the zero-equivalence test for P.

if ¢(P) # 0 then return false
(¢ := Pseudo-Groebner-basis(Gy U {P})
while 31 3Q € G Red(d;(),G) # 0 do

if ¢(d;()) # 0 then return false

(i := Pseudo-Groebner-basis(G U {d;Q})
return true

Proposition D.7. The algorithm zero_equivalence_2 is correct and terminates.

Proof. The termination is proved in a similar way as before. As to the correctness,
it is again clear that if the algorithm returns false, then P is not zero-equivalent.
It the algorithm returns true, then let G be the pseudo-Groebner basis at the end
of the algorithm. We have Red(d;Q,G) = 0, for each 1 < i < k,Q € G. In
particular, AG C (G)yye, where (G)g e denotes the ideal in /& generated by G.
This implies that (G)eye is stable by A. Since all elements of G evaluate to zero,
so do all elements of (G)a/s. Hence all elements of (G)o/e — which contains P —
are zero-equivalent. O

The interest of this local pseudo-Buchberger algorithm is illustrated on the fol-

lowing example, proposed by Shackell: let % = €[f1, fo, f3, f1], ® = Ud,., d.f1 =
Lodofa = fo, dofs = 2f1f3, defa = 2f1fa, e(fr) = 0, e(f2) = e(f3) = e(fs) = 1.
Then the polynomial P = (f 4+ f,)(fs — f4) is zero-equivalent since fs — fy is.
However, the naive algorithm needs O(M) steps to conclude this, whereas the new
one terminates after one step: d, P is pseudo-reduced to zero by P.

D.4.3 A randomized zero-equivalence algorithm

Often, if we want to determine whether some special function — such as an exp-log
function — is zero, then the initial point may be chosen randomly, provided that we
avoid singularities. Now the set of points in which a non zero function vanishes, has
measure zero. In this section, we show how this observation can be used to speed up
the zero-equivalence algorithm, if the initial point may be chosen by the algorithm.

The idea of the algorithm is the following: an initial point is said to be good,
if all polynomials P € m considered during the computations are actually zero-
equivalent. Otherwise, the initial point is said to be bad. Under the hypothesis
that an initial point is good, we can insert any polynomial which vanishes under
evaluation into the Groebner basis Gg. Whenever 1 is in the ideal generated by
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the Groebner basis (7, this means that the initial point is bad, and an exception is
raised. This leads to the following algorithm:

Algorithm zero_equivalence_3(P).

INPUT: A polynomial P € €[fy, -, fil.

OUTPUT: The result of the zero-equivalence test for P. The algorithm aborts
whenever a bad initial point was chosen.

if ¢(P) # 0 then return false

(/9 := Groebner-basis(Gy U {P})

while 3 3Q € Gy d;) mod Gy # 0 do
if ¢(d;()) # 0 then raise “bad initial point”
(7 := Groebner-basis(Gy U {d;Q})

return true

Remark D.6. The Groebner basis computations may also be speeded up by in-
serting each polynomial P € 9 we encounter during these computations into G'y.

Let us now sketch in which circumstance the above algorithm applies. Assume
that we are given an analytic function f defined on some Riemann surface. Assume
also that we are given a sequence of points 2y, z3,--- in which f is defined, such
that {z1,29, -} is dense in some open set U. Assume finally that to each initial
point z; corresponds a simple effective D-system ((2A,D),m;), which specifies f in
z; (notice that 2 and ® do not depend on ). Then we claim that we can test the
zero-equivalence of f by the above algorithm, by running it successively in zq, 29, - - -
until we have found a good initial point.

First, the zero-equivalence algorithm can be aborted due to the vanishing of only
a finite number of non zero functions at the initial point. Now at least one of the
parts of a finite partition of U is also dense in some open subset (the measure of
the closure of one of the parts has to be non zero). Therefore, if there were no good
initial point in the sequence z1, z5, - - -, there would exist an open subset on which a
non zero function would vanish. This is not possible.

D.4.4 Other algorithms and conclusion

A very nice zero-equivalence algorithm — quite different in spirit from those con-
sidered in the previous sections — has been given by Péladan-Germa in [Pél 95] in
the context of commutating derivations dy,--- ,di. In a nutshell, the idea is to con-
sider both the initial points and the initial conditions to be variable. Then algebraic
conditions on the initial point and the initial conditions are given under which a
fized function in 2 is zero-equivalent. These algebraic conditions are obtained via
Ritt’s classical differential elimination theory.

Another advantage of Péladan-Germa’s approach is that her algorithm partially
generalizes to the case of more general boundary value problems, where the initial
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conditions are no longer specified in a point (see [Pél 96]). However, in its full
generality, this algorithm crucially depends on Kolchin’s problem (see [Kol 73] and
also [VAH 96¢|). Nevertheless, the algorithm can be applied in several non trivial
and interesting cases.

It should be noticed that certain more general boundary value problems can
also be treated by the approach of this section. This is for instance the case if the
quotient field of 2/~ is taken as the constant field w.r.t. a new derivation. We
also notice that the algorithms from this section apply in characteristic p, while
Péladan-Germa’s approach fails in this case.

Another question which can be raised is the following: since the zero-equivalence
elements in 2 form an ideal, there exists an ideal 3 with 2/~= €[f1,--- | fr]/3. Now
can we compute a Groebner basis for 37 This question is very hard in general, and
algorithms are only known in the case of exp-log functions, using the Risch structure

theorem (see |Ris 75]), and in a few other cases (see [Ch 93], [CC 85]).

<>

After all the theoretical considerations made up till here, the reader might wonder
how to implement an efficient zero-equivalence algorithm. For this purpose, several
remarks of a more heuristic nature should be made.

1. In the zero-equivalence problem the hard thing is to prove that a function
is zero-equivalent, whenever this is the case. On the contrary, it is usually easy to
prove that a function is not zero-equivalent, either by evaluating some terms of the
power series expansion, or by choosing a suitable initial point (when we are allowed
to do so).

2. Following the previous remark, two types of zero-equivalence problems should
be distinguished: those in which the initial point is fixed, and those in which the
initial point may be chosen by the algorithm. In the first case, only power series
expansions can be used to prove that a function is not zero-equivalent — and many
terms may need be evaluated. In the second case, we would rather search for a
point in which the function does not vanish; such a point is chosen at random with
probability 1.

3. Many different (partial) methods may be used to prove or disprove a function
to be zero-equivalent. A good final algorithm should start with cheap tests for zero-
equivalence and non zero-equivalence and proceed with the more expensive ones,
whenever these tests fail to decide. In particular, the time spent on tries to prove
zero-equivalence should be proportional to the time spent on tries to disprove zero-
equivalence.

4. In some circumstances, it is not reasonable to demand an immediate answer
to a zero-equivalence quest, but we rather postpone a decision to a later moment
and temporarily perform a case separation (see chapter 8).
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5. In relation to 4. it should be noticed that the efficiency of successive zero-
equivalence tests may crucially depend on the order in which we perform them (when
applying remark D.3).

D.5 Implicit functions

D.5.1 Inversion of regular matrices

Let (A, m) be a simple effective D-system and let (M, ;) be a matrix with 1 <@ < p,
1 <j<nand p<n Wesay that M is regular matrix, if its evaluation
e(Myy) -+ (M)
(M) =1 :
€(Mp71) o g(Mp7n)'
has rank p. Given such a matrix, we will now show how to compute an invertible
square matrix U with entries in 2y, such that

1 -+ 0 0 ... 0
MU=I,=[: 1 1 : : (D.1)
O --- 1.0 ... 0

in Ay/~. The algorithm proceeds by swapping rows and columns in a straightfor-
ward manner:

Algorithm invert(M)
INPUT: A regular n by p matrix M with entries in 2.
OUTPUT: An invertible n by n matrix U with entries in 2y, satisfying (D.1).
U:=1d
for 7 :=1 to p do
let j > 1 be such that e(M;;) # 0
swap(M;., M;.)
swap(U;.,U;.)
Mi,~ = (digi)_1M¢7.
Ui,' = (digi)_lUL.
for je{l,--- ,n}\{i} do
M.J‘ = M.J‘ - Mi,jM~,i
U.J‘ = U.J‘ — Mi,jU~,i

D.5.2 Restriction of domain and resolution of implicit equa-
tions

Let (2, m) be a simple effective D-system of characteristic zero, such that Dy admits
di, -+ ,d, as a basis. Let j = (g1,---,¢g,) be a finitely generated ideal of A, such
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that e(¢1) = --- = e(g,) = 0. The Jacobian matrix of ¢;,--- , g, is defined by
digi -+ dog
J=1: :
digy -+ dngy

We say that the ideal j is regular, if rank(e(.J)) = p. Under this assumption, we
will now show how to compute a simple effective D-system (B, n), such that

B/~ (i)~ ) fjp [~ -

We take B = €[f1, -, fx]/(i,j), so that we start by computing a Groebner basis
for (i,j). In order to compute a basis for Dg, we first compute a matrix U with
JU =1, , by invert. Performing the base change

d d
=0
dy dy
we then reduce the general case to the case when J = I, ,. In this case, dj41, -+ ,d,

leave j invariant and it is easily seen that their natural images in (Un/~)jupr/~

form a basis for (Am/~)jnpr/~-

In practice, when we solve the equations ¢ = --- = ¢,, we often want to express
the solutions w.r.t. given coordinates ¢,41, - ,9, € A. In order to make this
possible, we need assume that the evaluation

e(digr) -+ eldugn)
()= :
6(dlgn) Y 5(dngn)‘
of the Jacobian matrix of ¢1,--- , g, is invertible. Now compute a matrix U with

JU = Id by invert. We again reduce the general case to the case when J =1 via
the base change

dy dy
=0
d, d,
Then the natural images of dyi1,- - ,d, in B, /~ have the desired property that
dpt1gpr1 0 dngpt
: : = Id.
dps19, - dpgn.

Remark D.7. Asin remark D.5, the above computations generalize in a straight-
forward way to the case when the initial conditions depend on parameters, using
the automatic case separation strategy (see chapter 8).
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D.5.3 D-algebraic power series

In this section, all D-systems (A, m) we consider have characteristic zero; i.e. A/m
has characteristic zero.

Let ((A, D), m) be a reduced D-system, such that A is a finitely generated algebra
over C = A/m, and D is a free A-module, which is finitely generated by pairwise
commuting derivations 9/0z1,- -+ ,0/0z,. Then A admits a natural differential em-
bedding v into the ring C[[z1,- - , z,]] of formal power series by

Girtein , ,
f=vif)= > - ! ( )Zil"‘Z;n.

S i\ Dy e,
A power series of the form v(f) (for some D-system ((A, D), m) which satisfies the
above hypotheses) is called a regular D-algebraic power series.

Remark D.8. In characteristic p > 0, the above embedding does not exist. Actu-
ally, we may interpret elements in A as formal Borel transforms of power series in
this case.

From our definition, it follows immediately that the regular D-algebraic power
series form a local ring, which is stable under the partial derivations, and per-
mutation of coordinates. Moreover, if we are given a regular D-algebraic power
series f € C[[z1,-*+ , Znt1]], such that f(0,---,0) = 0 and (0f/0z,4+1)(0,--- ,0) #
0, then by what has been said in the previous section, there exist derivations
di,- -+ ,dny1, such that the Jacobian matrix of zy,--- , z,, f is the identity (assum-
ing that z,---,2z, € A). It is easily checked that dy,--- ,d, commute for the Lie
bracket, whence we have the natural embedding

1 . . . .
g > ———eldt 2 d T zag) 2yt )

. .. Z M
i1, vin n

from Ayy)/~ into C[[z1,- -, 2,]]. This mapping sends f to zero and fixes zy,- - - , z,.
In other words, the mapping corresponds to the implicit definition of 2,41 by f = 0.
Consequently, the regular D-algebraic power series form a local community (see
page 9.6.1).

If (A, m) is a simple effective D-system with a basis of pairwise commuting deriv-
ations, the above passage from functions in 2y, /~ to power series yields an effective
way to compute with regular D-algebraic power series over € = 2/m. In view of the
algorithm from the previous section to solve implicit equation, it follows that the
set of regular D-algebraic power series over € forms an effective local community.

A regular D-algebraic Laurent series is a Laurent series f, such that
zit oo z0n fis a D-algebraic power series for suitable ay,---,a, € N. Unfortu-
nately, we did not solve the following problem: prove or disprove that if z; is a
power series in zy,---, 2z, and z;f is D-algebraic, then so is f. Consequently, we



D.6. A LOCAL PSEUDO-BUCHBERGER ALGORITHM 365

have no proof that the set of D-algebraic Laurent series forms a local community.
Nevertheless, we will now define D-algebraic power and Laurent series, which do
have the desired property.

Let A be as in the beginning of this section and denote by A the set of those
fractions f/sin Q(A), such that there exists a power series g with v(f) = gv(s). We
extend the evaluation mapping on A to A by e(f/s) = ¢g(0,---,0), where v(f) =
gv(s). Clearly, A forms a reduced local D-system over C'. The natural inclusion of A
into C[[z1,- - , 2,]] also extends to A by v(f/s) = g, where v(f) = gv(s). A power
series ¢ of the form v(f/s) (for some A) is said to be D-algebraic. A Laurent series
f is said to be D-algebraic, if fz7" ---z2" is a D-algebraic power series for certain
op, e o, € N

Now let (2, m) again be a simple effective D-system with a basis of pairwise

N

commuting derivations. The set 2 = A/~ is clearly an effective D-algebra, since it
is a subfield of the field of fractions of Ay, /~. Notice however, that we do not claim
that we can test whether a given fraction f/s € 2/~ is in 2 (actually, we think
that such a test can be designed using the theory from chapter 10, but we have not
studied this issue in detail).

Given an element f/s € 2, we can also compute its evaluation: we first compute
a dominant monomial z7'* - - - 227 for v(s) by idm (see section 9.3.1). Then e(f/s) =
252 [ 2], N

Having shown that all D-system operations in 2 can be carried out effectively,
the algorithm to solve implicit equations from section D.5.2 naturally generalizes,
if we replace 2,/~ by 2. In particular, the sets of D-algebraic power series resp.
Laurent series over € are both effective local communities.

D.6 A local pseudo-Buchberger algorithm

This section is the result of a collaboration between A. Péladan-Germa and the
author (see also [PV 96]).

Let 2 = €[xy,...,x,] be the ring of polynomials in n indeterminates over an
effective field € of constants, and & be an effective multiplicative subset of A —
that is, provided with an effective membership test. We present here a method to
test whether a given polynomial P € 2 belongs to the ideal generated by polynomials
Q1,...,Q; in the quotient ring A/G&. We only give a weak membership test in the
sense that P € (Q1,...,Qs)ua/s, whenever the algorithm returns true. However, in
the case of a negative response, P might still be in (Q1,...,Q;)a/s. Nevertheless,
for the application in section D.4.2 such a weak membership test is sufficient.

Actually, our algorithm is based on the heuristic idea that the exploitation of local
information should accelerate Buchberger’s algorithm. Unfortunately, the pseudo-
Groebner bases we compute does not have all the theoretical properties of classical
Groebner bases. However, up to our knowledge, no complete membership test has
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been given yet in the case of a general effective multiplicative set &. Only in some
particular cases, Mora’s tangent cone algorithm, and A. Logar’s algorithms give
complete membership tests (see [MPT 92], [Lo 87]).

D.6.1 Pseudo-reduction

Let % = €[y, ..., x,] be the ring of polynomials in n indeterminates over an effective
field €. We use the pure lexicographical order on monomials, with z; < --- < z,,.
Let & O €* be a multiplicative subset of € with an effective membership test.

In order to compute “pseudo-bases” of ideals of /&, we use a classical reduction-
completion approach. The keystone of our method lies in the non-classical definitions
of the head H(P) and the leading-coefficient C'(P) of non-zero polynomials P: they
are inspired both by Ritt-Wu’s work and Buchberger’s terminology.

Each non constant polynomial P in % can be written P = [pl’;lgp + Rp, where
xp is the greatest indeterminate involved in P, and dp the highest order of P with
respect to xp. Ip is usually called the initial of P. Now we define H(P) and C(P)
for non-zero polynomials:

— if P € & then H(P)=1and C(P)=P;
— if P ¢ & and Ip € & then H(P) = 2% and C(P) = Ip;
— if P ¢ & and Ip ¢ & then H(P) = 2% H(Ip) and C(P) = C(Ip).

Example D.11. Let & be the set of polynomials that do not vanish at z; = ... =
r, = 0. If P = (214 l)ag + 21, then H(P) = 23 and C(P) = 21 + 1. Now if
P = ((z1 + D)oy + x1)23 + 322, then H(P) = z323 and C(P) = x; + 1.

Suppose @ # 0, Q) € & and P # 0. We say that P is reducible with respect to @)
if H(P) is divisible by H(Q). In this case, write P = UH(Q) 4+ V, where U,V € 2,
and no monomial appearing in V is divisible by H(Q). P is then elementary
reduced to red(P,Q) = C(Q)P —UQ by Q. If Q@ € &, then P is reducible with
respect to @ and red(P, Q) = 0. It can be easily checked, although this is a little
technical, that H(red(P,Q)) < H(P) (H(0) = —oco by convention). Repeating the
elementary reduction of P by @), that is

P — P =redP,Q) — red(P,Q) — -,

we end up with a polynomial R such that H(()) does not divide H(R) or R = 0. This
process stops because the heads of the intermediate polynomials strictly decrease.
This polynomial R is called the reduction of P by @ and is denoted by Red(P, Q).
More generally, we can reduce P by a set £ of polynomials by reducing P by () € £
as long as we can. Although the result R of this procedure is not necessarily unique,
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we will abusively denote R = Red(P, E). Note that R belongs to the ideal (P, F)y/s
generated by P and I in /& and if R =0, then P € (F)y/s.

Let P, () be nonzero elementsof €[xy, ..., z,]. Let ¢ be the highest index such that
C(P)and C(Q) are both in A; = €y, -+, x;-1]. Wewrite P = C;(P)H;(P)+R(P),
where H;(P) is highest monomial occurring in P, when considered as a polynomial
in a;,---,x, with coefficients in ;. Similarly, we write @) = C;(Q)H;(Q) + R(Q).
Then the S-polynomial of P and @ is defined by

CLQIQ) _,  CLPH(P)
sed (H(P), Q) wed(H(P), Q)

This definition enables us to assert that H(SPol(P,Q)) < scm(H(P), H(Q)). Note
also that Spol(P,Q) € (P,Q) and a fortiori Spol(P,Q) € (P,Q)y/s-

SPol(P,Q) :=

D.6.2 The algorithm

We now apply Buchberger’s algorithm (see [CLO 92|, [Buch 65]) with our alternative
definitions of heads, leading coefficients, reduction, and S-polynomials. We recall
hereafter a compact but non optimized version of this algorithm.

Algorithm Pseudo-Groebner-basis(F)
INPUT: A finite set £ of non zero polynomials in 2.
OUTPUT: A pseudo-Groebner basis GG of the ideal generated by F in /6.

G:=F
repeat
G'=G
for each P € (" do
P := Red(P,G —{P})
if R # 0 then G:= GU{R}
for each pair P # @) in ' do
R := Red(SPol(P,Q),G")
if R # 0 then G:= GU{R}
until G = &'

The ideals generated by the heads of the elements of the successive values of
GG form a strictly increasing sequence of ideals, whence the algorithm terminates.
The subsets I and G of A/& generate the same ideal Iy/g. Indeed, we only insert
elements that are already in (F)g/e into G. 7 is not a Groebner basis, but has the
property that if P is in 2 and Red(P,G) = 0, then P € Iy/s. The computation
of GG enables us to quickly extract much information about Iy/g, without obtaining
a complete description of Ig/g. Notice that if (G contains a polynomial in &, then
Iyg is trivial, and every polynomial in 2l is reduced to zero by G.

Our algorithm reduces to the usual Buchberger algorithm if & = €*; that is the
reason why we call G a pseudo-Groebner basis rather than a pseudo-Ritt basis.
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Conclusion

Etant arrivé au terme de la thése, on peut toujours se poser les questions
suivantes :

— Quelles sont les applications ?

— Peut-on simplifier les résultats obtenus, les formuler ou expliquer autrement,
ou les réorganiser d’une facon différente ?

— Comment aller plus loin ?

En ce qui concerne les applications, j’avoue pleinement que cela n’a pas encore
vraiment été & l'ordre du jour. La cause en revient partiellement & ce que nous
avons considéré jusqu’ici surtout des comportements fortements monotones — une
restriction sévére pour des applications en physique. Néanmoins, cette thése peut
d’ores et déja avoir des applications significatives en combinatoire et en analyse
d’algorithmes, car dans ces domaines, les comportements fortement monotones sont
plus fréquents. Le lecteur pourra se rapporter a [FSZ 89], [Sal 91|, [Sor 90] et [FS
96| pour plus de détails.

Considérons maintenant la deuxiéme question. Avec un peu de recul, il m’est
apparu & l'issue de cet épais travail, que si certaines parties de la thése étaient a
refaire, alors nous nous y prendrons différemment. Premiérement, nous sommes de
plus en plus convaincus que les deux parties de la thése auraient pu faire 1’objet
de deux publications différentes: le choix de travailler avec des transséries bien
ordonnées est surtout justifié d’un point de vue théorique. En effet, ceci permet
d’étudier des équations fonctionnelles bien plus générales que les équations différen-
tielles algébriques (voir aussi plus bas). En revanche, d’un point de vue pratique,
c’est surtout les applications au calcul différentiel qui intéressent les mathématiciens
et informaticiens.

Quoi qu’il en soit, il faut noter que la restriction aux transséries réticulées
n’apporte pas autant de simplifications que 1’on pourrait penser dans les chapitres 3,
4 et 5. En effet, on ne pourra se débarrasser des récurrences transfinies que dans
le calcul des monémes dominants des solutions distinguées, mais pas dans la cons-
truction de ces solutions elles-mémes. En outre, dans ce cadre il faut vérifier que la
propriété des supports réticulés se préserve lors de la résolution d’équations différen-
tielles algébriques (voir la section 12.3).

371



372 CONCLUSION

D’autre part, les transséries réticulées interviennent essentiellement dans 1’étude
de singularités plus générales que celles qui interviennent dans la résolution d’équa-
tions différentielles linéaires a coefficients dans les séries. En effet, c’est ’extension
la plus simple du corps des séries qui a les propriétés de cloéture appropriées pour une
étude asymptotique des singularités qui interviennent lors de la résolution d’équa-
tions différentielles algébriques. Donc toute restriction supplémentaire sur le type
de transséries considérées réduirait notre théorie & une théorie plus « banale » et
porterait essentiellement atteinte au type de résultats obtenus.

Mais venons en maintenant a la troisiéme question, car nous avons surtout ima-
giné notre thése comme ouvrant la porte vers des théories plus générales, inacces-
sibles jusqu’alors. Nous diviserons la présentation en trois parties: d’abord nous
avons obtenu quelques « résultats », que nous avons pas eu le temps d’écrire en dé-
tail et qui étaient originalement destinés a faire partie de la thése. Deuxiémement,
nous prévoyons quelques extensions de la théorie, sur lesquelles nous avons déja des
idées assez précises. Enfin, nous réverons un peu a des extensions plus lointaines,
mais pas pour autant farfelues.

Extensions dans un avenir proche.
1. Dans [VdH 95a], nous avons donné une premiére approche visant a utiliser
les méthodes de cette thése pour calculer les signes de constantes exp-logs comme

610100_|_10—200 610100 —|—61099
c=c¢e —¢ ,

et plus généralement pour obtenir des renseignements sur leur ordre de grandeur.
Ceci est en fait un probleme plus difficile que le développement de fonctions exp-
logs, car la substitution d’une valeur trés grande & = dans une fonction exp-log f(x)
nécessite en particulier une connaissance précise du comportement asymptotique de
f. Pour résoudre ce probléme, nous avons introduit dans [VdH 95a] des « dévelop-
pements asymptotiques avec estimation de 'erreur ». Aprés, nous avons su raffiner
et simplifier ces résultats, mais ceci reste a étre développé complétement.

2. Dans la partie B de cette thése nous supposons fréquemment ’existence d’un
oracle pour tester si un systéme d’équations et inégalités exp-logs sur les constantes
admet une solution. En généralisant les techniques évoquées au point de 1. et en
employant les techniques d’élimination exp-logs du chapitre 11, nous préconisons
une réduction de ce probléme au probléme du test & zéro pour les « constantes
élémentaires » de Richardson, qui a été réduit a la conjecture de Schanuel dans
[Rich 95]. Nous avons récemment appris dans [Mar 96| que ce probléme peut-étre
résolu par d’autres techniques (voir [Wil *|, [MW *]|). Quoi qu’il en soit, notre
approche peut conduire & des algorithmes efficaces pour ce probléme.

3. On peut regretter le résultat un peu vague de l'existence d’un algorithme
théorique pour résoudre n’importe quelle équation différentielle algébrique dans les
transséries dans le chapitre 11. Nous avons aussi un résultat, qui bien que moins
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fort, est plus frappant: si P est un polynoéme différentiel & coefficients dans T, et
f < g sont telles que P(f) <0 et P(g) > 0, alors il existe un h € T avec f <h < g
telle que P(h) = 0. On pourrait dire que T est D-réellement clos. Ce théoréme se
montre naturellement & ’aide des techniques du chapitre 5.

4. Bien que ceci introduise quelques difficultés techniques supplémentaires, la
théorie des chapitres 4 et 5 se généralise au cas d’équations différentielles aux
différences algébriques. Ici, on exige que les opérateurs aux différences soient des
compositions & droite par des transséries d’exponentialité zéro. Le résultat men-
tionné au point 3. se généralise également & ce cas. En fait, ces résultats ont été a
Iorigine de I’emploi systématique des transséries bien ordonnées dans la partie B de
cette thése, mais leur rédaction n’a malheureusement pas pu aboutir a temps.

5. Nous voulons également implanter une partie plus importante des algorithmes
de cette thése. Un probléme majeur que l'on rencontre ici, est que la stratégie de
la séparation automatique des cas ne puisse pas s'implanter de facon naturelle dans
la plupart des langages de programmation actuels. Durant la préparation de cette
thése, nous avons consacré beaucoup de temps & la mise au point d'une extension
de C+4+ pour remédier a ce (et d’autres) probléme. Nous espérons transformer nos
idées sur ce sujet dans un logiciel concret.

Extensions dans un avenir moyen.

6. Nous nous sommes récemment rendu compte que notre algorithme de résolu-
tion d’équations différentielles algébriques peut étre interprété d’une fagon différente,
en l'intégrant dans le cadre de I’algorithme de développement de transséries multivar-
iées du chapitre 11. En effet, considérons f, f<>, .-+ | f<> et x comme des transséries
génériques, avec lordre d’élimination f > f<> > ... > f<> > 2. Initialement, les
F< sont les dérivées logarithmiques, itérées r fois, de f. Mais les f<* peuvent étre
raffinés durant ’exécution. Pour résoudre 1’équation différentielle, on élimine f en
utilisant "algorithme du chapitre 11 avec les changements suivants:

Premiérement, on impose toujours les contraintes f = --- 3= <2, Deuxiém-
ement, lorsque ’on raffine

f = n(a)(p(2) + f) (J& =< 1),

avec p(x) < 1, on vérifie que les dérivés logarithmiques itérées de () vérifient bien
les contraintes imposés sur les dérivés loga/ri\th/miques de f<>. Apres, on « oublie »
oo f97 et on les remplace par des fIH> ... . f<> «neufs », qui correspond-
ent aux dérivés logarithmiques itérés de f<>. Troisiémement, lorsque 1'on impose
la contraite ci-dessus, on sépare les cas ou n(z)f< »= 1 et u(z)f<> <« 1. Dans le

dernier cas, on impose la contrainte

19 < exp( [ m(a)p(e).
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uatriémement, si ’on veut 1 oser une contrainte de la forme
’ P
(f<i>)oz,‘ . (f<7’>)0ér — g@(l’)

on le transforme en une contrainte équivalente qui ne fait pas intervenir ,
F9>, en utilisant le fait que f< 3+ ... 3 fI> et des propriétés différentielles.
Enfin, on prend soin a faire les mouvements montants nécessaires pour rester dans
le cas purement exponentiel.

fH L

7. L’avantage de I'approche décrite ci-dessus est qu’elle se généralise a des sys-
témes d’équations plus générales, comme:

— Des systémes d’équations différentielles algébriques aux dérivés partielles. No-
tons que dans ce cas, le réle des « constantes » sera joué par des fonctions
arbitraires en moins de variables, vérifiant des équations aux dérivés parti-
elles.

— Des systémes d’équations différentielles ordinaires non nécessairement algé-
briques. Dans le cas extréme, on fera intervenir simultanément la dérivation
et I’exponentation.

— Des mélanges de ces deux choses.

8. Dans le cas ot 1’'on considére des équations différentielles non algébriques de
la forme

S Paga SO (fU)

g, 00 €N
il est important pour des raisons d’effectivité d’avoir une théorie d’élimination ana-
logue & la théorie de Ritt pour ce genre d’équations. En supposant que les coefficients
sont « sympathiques », nous pensons que l'on peut développer une telle théorie,
justement a l’aide des techniques exposées dans cette these.

9. On peut enrichir la classe des expressions £-exp-logs avec la composition a
gauche par des fonctions réelles analytiques sur des intervalles fermés. D’un point
de vue théorique, cette extension est facile, mais d’un point de vue effectif, il faut
trouver des classes de ce genre de fonctions réelles qui se comportent bien.

10. On peut donner le développement du n-iéme zéro positif de tan x = x, pour
x — oo. On bénéficie ici du fait que les singularités de la fonction tangante se
trouvent dans les points 7/2 4+ 7Z. Or considérons maintenant la fonction

flz) =sinz +sinex — 1 — x L.

Clairement, on peut a nouveau exprimer le n-iéme zéro positif de f en fonction du
n-iéme zéro de sinx + sinex — 1. Plus généralement, nous pouvons considérer les
fonctions

Jar e an by bon (@) = sin(agx 4+ by) + - - + sin(a,x 4+ b,) — A,



CONCLUSION 375

et les suites Ny ..o ap by, by qui donnent le n-iéme zéro de fu, .. 4,6 0,0 (quand
il y a une infinité de zéros). Alors se posent plusieurs questions. Quelles relations
algébriques sont vérifiées par ces suites 7 Quelles sont les relations avec les dévelop-
pements en fractions continues? Quelles sont les relations avec le groupe linéaire

sur Q"7

11. L’algorithme de résolution asymptotique d’équations différentielles algébri-
ques se généralise vraisemblablement au cas des équations aux différences algébriques,
si on ne recherche que les solutions réticulées. Ceci tient au faite que la théorie de
Ritt s’adapte a ce cas (voir par exemple [VdH 96¢|), et que I'on peut se ramener au
cas ou f(g(x)) se développe par la formule de Taylor dans le cas réticulé.

12. 1l est aussi possible de donner des algorithmes pour calculer des transformées
intégrales. Ecalle a donné des formules pour les transformées de Borel et Laplace
formelles pour les transséries dans [Ec 92], et Salvy a donné des algorithmes dans
des classes plus restreintes (voir [Sal 91]), mais il prouve la validité analytique des
résultats. Il reste a étendre ses travaux a des classes plus étendues de fonctions.

Discussion finale.
Grossiérement parlant, on peut résoudre les équations différentielles de trois
facons différentes:

— Résolution numérique.
— Résolution asymptotique.
— Recherche des solutions sous forme close.

Nous pensons que sur long terme, ces trois méthodes de résolution se mélangerons.
De plus, notre ultime espoir et conviction est qu’au moins dans le cas des équations
différentielles ordinaires, il existe une théorie de résolution asymptotique compléte.

Dans notre vision des choses, des algorithmes de résolution asymptotique seront
utiles d’un point de vue numérique de trois facons. Premiérement, ils permettrons
de déterminer dans quelles régions de I'espace des méthodes de résolution numérique
classiques échouerons & cause de 'imprécision des calculs. Deuxiémement, ils per-
mettront de savoir quand une résolution numeérique est possible d’un point de vue

pratique (penser & la détermination du signe de sin 10101010 D). Finalement, dans des
régions proches de singularités violentes, on pourra appliquer la théorie de resom-
mation numérique pour faire des calculs numériques fiables et efficaces.

Des techniques asymptotiques pourraient aussi s’avérer utiles lorsque 1’on cherche
des solutions sous forme close. Par exemple, étant données des transséries fi,--- , f,,
on peut donner des algorithmes efficaces pour déterminer les relations linéaires, Q-
linéaires, voire algébriques qu’elles vérifient. En effet, les propriétés asymptotiques
de fi,---, f, servent & «diriger » ce genre de calculs, tout comme la réduction
modulo p peut par exemple servir pour diriger les calculs de bases de Groebner (voir
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[Fau 94]). La détermination des relations Q-linéaires est par exemple importante
dans 'algorithme d’intégration formelle de Risch (voir [Ris 75]) et dans le test a
zéro de Richardson (voir [Rich 95]) pour les constantes exp-logs (voir le point 1.).
Des techniques asymptotiques ont aussi été appliquées avec succes a la factorisation
d’opérateurs différentielles linéaires (voir [VH 96]).

D’un point de vue logique, il y a aussi quelques remarques intéressantes a faire.
Pour un numeéricien acharné, un algorithme est correct quand il marche dans tous les
cas auquels il veut ’appliquer. Pour un mathématicien puriste, un algorithme doit
étre accompagné d’une preuve de correction et de terminaison a partir des axiomes
de Zermelo-Fraenkel. Or, les deux approches ont des avantages et des inconvénients.

Le numéricien a raison de se fier & son expérience: si un algorithme lui rend
systématiquement service pour résoudre ses problémes, une preuve de correction est
superflue. Mais le numéricien doit disposer d’un grand savoir faire pour juger s’il
a effectivement résolu son probléme initial. Et est-ce qu’il sera toujours capable
de déterminer « ce qui cloche » quand son algorithme cesse de donner les bonnes
réponses !

Le mathématicien a raison de faire confiance a des algorithmes dont il a su
démontrer la validité: & moins que les axiomes de Zermelo-Fraenkel soient contra-
dictoires, son algorithme produira toujours le bon résultat. Mais le mathématicien
puriste se trouve souvent « disconnecté » de la réalité: est-ce qu’il a déja appliqué
son algorithme pour résoudre un probléme concret 7 L’expérience montre que cer-

tains problémes décidables, comme la détermination du signe de sin 10101010 s’aveérent
indécidables dans la pratique, tandis que des problémes indécidables en analyse
peuvent souvent se « résoudre » d’un point de vue pratique!

On peut alors envisager de réconcilier les deux approches et de rechercher une
« déontologie » commune pour le numéricien et le mathématicien. Cette déontologie
doit étre régie par des axiomes précis, qui permettrons au mathématicien de valider
ses algorithmes. Ces régles doivent aussi étre orientées vers la pratique, pour que
les algorithmes développés soient utiles pour le numéricien.

Dans le cadre plus restreint de cette these, une telle déontologie consistera par
exemple & supposer la conjecture de Schanuel. Dans ce cas, le mathématicien sera
content de pouvoir affirmer que les algorithmes dans la partie B de cette these
terminent. De plus, on n’a toujours pas trouvé de contre-exemples a cette conjecture,
tout comme on n’est jamais arrivé & une contractiction a partir des axiomes de
Zermelo-Fraenkel. Et il n’est a priori pas moins raisonnable de faire confiance a la
conjecture de Schanuel qu’a ces derniers axiomes.

Cependant, le numéricien n’est pas tout a fait satisfait encore, car le test a zéro
pour les constantes exp-logs de Richardson cotite souvent trés cher; en particulier,
il n’y a pas de bornes de complexité. On est alors amené a la question de savoir
si la conjecture de Schanuel peut étre remplacée par une autre conjecture, qui ser-
vira alors de «régle de déontologie ». Proposons en une, dans le cadre restreint
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des constantes exp-logs. Pour tout entier N > 3, soit Ey la classe d’expressions
construites & partir de 1,4, —, -, /,exp et log | - |, telle que la valeur absolue de toute
sous-expression stricte s’évalue vers une valeur entre N=! et N. Nous notons par
X(f) la taille d’une telle expression f. Nous proposons alors:

Conjecture. Pour tout N > 3, il exviste une constante Cy, telle que pour toute
expression [ dans Ey, i suffit d’évaluer f a une précision de Cﬁf décimales, pour
savoir st elle s’évalue a zéro.

Si on remplace la fonction C;ff(f) par une fonction calculable quelconque, la con-
jecture est impliquée par la conjecture de Schanuel. D’une autre c6té, on pourra
peut-étre remplacer C;@f par x(f)“¥. Dans la nouvelle version de 1’algorithme
mentionné dans le point 1., il sera possible de remplacer la conjecture de Schanuel
par la conjecture ci-dessus.

Il est clair que pour des applications plus générales, il sera intéressant de faire
une conjecture plausible, dans le style de notre conjecture, mais pour des classes
plus vastes de constantes.
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(Glossary

Conventions

fij = (fi); index convention

<g,+E, - the implicit ordering, sum, etc. on a set F

E+F sum of two sets: F 4+ F = {z 4+ y|le € E,y € F}. A similar notation
is often used for other operations

(i)ier sequence or family notation

Idg the identity mapping ¥ — F

ENIF the disjoint union or direct sum of A and B

E\F the set of elements in £ which are not in F

EAF the set FA\F U F\FE

|z], | E| absolute value of x or cardinality of F

N the natural numbers including zero

Ny the set {1,--- &k}

Z,Q,R C the integers, rationals, reals and complex numbers

R* the set of invertible (resp. non zero) elements of a ring (resp. a field)

RT positive elements of an ordered ring

RF positive invertible elements of an ordered ring

Part A

f<Xy f is dominated by ¢ (Hardy’s notation), 38, 43, 147

F=0(y) idem (Landau’s notation), 38, 43, 147

f<y f is negligible w.r.t. g (Hardy’s notation), 38, 43, 147

J=o(g) idem (Landau’s notation), 38, 43, 147

=g [ is asymptotic to ¢, 38, 43, 147

f~g [ is equivalent to g, 38, 43, 147

f =<y f has a smaller comparability class than g, 39, 43, 147

=9 f and ¢ have the same comparability classes, 39, 43, 147

CLXT ring of grid-based series over C'in X, 40

supp f support of f, 40

CLXT° set of infinitesimal elements of C[XT, 41

crx1° set of bounded elements of CLXT, 41

ClLz1,- -, 2,0 ring of grid-based series in zy,--- , z, over C, 41

ClLzy;- 52,0 ring of lexicographical grid-based series in zq,---, 2z, over C, 41

My dominant monomial of f, 42
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390 GLOSSARY

¢ dominant term of f, 42

cr dominant coefficient of f, 42

lim f limit of f, 43

F=fr+f+ canonical decomposition of a series f, 43

crx1’ set of purely unbounded series with 0, 43

Kt dominant exponent of f, 47

log,, k-th iterated logarithm, 49, 87

expy k-th iterated exponential, 49, 87

log,, « logarithmic monomial 2% - - -logh* x, 49

logen x group of logarithmic monomials, 49

C9 [T field of alogarithmic transseries, 50

C=T field of grid-based transseries over C' in z, 50

T field of transseries, 51

C, LIl set of transseries with exponential depth bounded by r, 51
T set of positive infinitely large transseries, 55

Fi) upward shift of f, 56

fl downward shift of f, 56

expo f exponentiality of f, 56

g functional inverse of g, 56, 78

C[[X]] ring of series with Noetherian support over C'in X, 62
w smallest infinite ordinal, 63

CY[[=]]] field of well-ordered transseries of exponential depth < «, 64
C< ([=]]] field of well-ordered transseries of exponential depth < «, 64
fdyg fis a truncation of g, 67

stat lim; s f; stationary limit of (f;);ez, 67

T compactification of T, 81

Tewp field of purely exponential transseries, 100

<, <, = asymptotic relations <« , < , =< modulo <K h perturbations, 101
on, Op Landau’s notation for <« , <X, , 101

L linear differential operator, 101

m(L) dominant monomial of L, 101

Ly multiplicative conjugate of L, 102

Lt upward shifting of L, 102, 120

L=t distinguished right inverse of L, 107

P differential polynomial with transseries coefficients, 116
Py additive conjugate of P, 118

Py multiplicative conjugate of P, 118

L quasi-linear operator, 127

Ty dominant term of distinguished solution to £f = g, 129
! distinguished right inverse of £, 134

b3 grid-based summation symbol, 147

GTVe category of grid-based transvarieties over C', 147
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Z=Az, )

Appendices
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FIOF

E*

E¢

E+

Etf
r1---Tp
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category of Noetherian transvarieties over C' of finite logarithmic and
exponential depths, 156

effective field of constants, 166, 187, 216

set of exp-log expressions, 167

(effective) asymptotic scale generated by B, 167
(effective) asymptotic (normal) basis, 167, 203, 212, 238
set of exp-log Z-expressions w.r.t. B, 167

coefficient of z{* in u, 172

finite set of infinitesimal elements in Sp, 172, 204

set of exp-log Laurent series in Z, 172

(trans)series represented by w, 172, 204

set of monomials in Z, 173

natural product ordering on Sz, 173, 204
quasi-ordering on Sz induced by B, 174

direct limit of C, C[[#]], C[[#1, #2]], - - -, 201

direct limit of C,CL[x11,C Lz, 221, -, 201

effective Cartesian algebra or local community, 201, 216, 226, 241
effective (quasi-ordered) monomial group, 204, 266
quasi-ordering on Sz induced by X, 204

“natural” Cartesian representation of f, 208, 212, 243, 244
pseudo-coefficient of f, 211

lexicographical decomposition of normal basis, 238
exponential part of 1, 253

“free part” of 1, 253

operator support of a linear operator, 271

effective differential field of transseries over €, 275

shift operators, 285

[ is steadily dominated by ¢, 287

final segment generated by A, 305

disjoint union of F and F', 306

set of words over F, 307

set of commutative words over F, 307

set of non empty words over F, 307

set of non empty commutative words over F, 307
product notation for words, 307

n-tuple notation for words, 307

set of finite F-labeled trees, 308
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tree with root labeled by & and children 77y, ---,7T,, 308

the root of a tree T, 308

set of leafs of a tree T', 308

ancestor relation on a tree 7', 308

signature, 315

function resp. relation symbols of X, 315
arity of a function f resp. a relation R, 315
domain of f, 315

category of ¥-algebras, 316

category of partial 3-algebras, 316

free full X-algebra on X, 316

t is defined, 316

Horn clauses w.r.t. 3, 316

Horn clauses valid in F, 316

category of partial 3-algebras modeling C', 316
Y-closure of F/, 319

free extension of A by X, 322

function space of V', 323

category of point types, 323

category of varieties relative to P, 324

affine X -space relative to P, 326

a D-ring, 349

the Lie algebra of derivations on A, 349
D-ideal generated by a set >, 351

quotient field or total ring of fractions of A, 351
free linear D-operator algebra Q2 = A[D], 351
basis for A[D], 352

evaluation mapping, 353

effective D-ring of the form €[fy,-- -, fi]/i, 357
Groebner basis for i, 357

effective Lie-algebra of derivations on %, 357
maximal ideal of &, which determines ¢, 357
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A

Abelian, group, strong 145
absolute value 38
additive, conjugate 118
ade_mod_solve 137
ade_solve 137
adjoint 320
admissible
Cartesian coordinate 243
Cartesian representation 243
g-labeled tree in tree 74
refinement 93, 97, 124
algebra
Archimedian 38
Cartesian
effective 201
exp-log 212
linear 145
algebraic
Newton polynomial 121
regular — function or extension 155
structure, effective 199
algebraically closed, field, effective 199
A-algebra, ordered 38
Y-algebra 315
full 315
free 316
partial 315
morphism 315
quotient 317
subquotient 317
algorithm
approximation 331
asymptotic expansion 168, 212, 247
asymptotic zero test 179

dominant monomial computation 234

renormalization 246

theoretical 199

ultra-regularization 251
alogarithmic transseries 50
ancestor, node 308

antichain 304

approximatel 334
approximate2 338
approximate3 340
approximation, algorithm 331
Archimedian

algebra 38

element 38

arity 315

ascending chain condition 304
assignment 316

asymptotic

algebraic differential equation 116
basis 46
effective 167
density 288
ordering 39
scale 45, 62, 149, 157, 243

Asymptotic, scale 243
asymptotic

scale, effective 167

series 43

strongly monotonic — behaviour 37, 88,
158

system 151

weakly oscillatory — behaviour 158

automatic

case separation 182
partial constraint checking 186

expansion tree 202

Laurent series 201

lexicographically — Cartesian represent-
ation 266

lexicographically — Laurent series 266

lexicographically — power series 265

power series 200

transseries 202

updating 228

automatic Laurent series 172
axiom 316



394

bad, initial point 359
bad sequence 307
minimal 307
base, change 46
basis
asymptotic 46
effective 167
canonical 53
normal 52
effective 168, 244
level 53
renormalization 246
better-quasi-ordering 309
bounded 38
series 42
bound 342
bundle
cotangent 153
tangent 153, 352

C

C 187
C-infinitesimal, Cartesian representation 173
C-regular, Cartesian representation 173
canonical

basis 53

expansion 82
canonical decomposition of a series 43
Cartesian

algebra
effective 201
exp-log 212

change of coordinates 204
coordinate 204
admissible 243
faithful — representation 205
representation 172, 204
admissible 243
C-infinitesimal 173
C-regular 173
infinitesimalization 205
lexicographical 266
lexicographically automatic 266
regularization 205
wider — coordinates 204
Cartesian closed 322
case, singular 235
case separation
automatic 182
partial constraint checking 186

INDEX

category
opposite 320
C-pointed 321
chain 304
change
base 46
Cartesian — of coordinates 204
of coordinates 224, 241
of variables 224
scale 46
checker, constraint 184
children, node 308
choice operator 310
extensive 310
Noetherian 310
strictly extensive 310
circle 329
class, comparability 39
classical, potential dominant monomial 121
close, point 332
closed, exp-log 187
closure
exp-log 187
Zarisky 326
Y-closure 319, 322
coefficient 40
dominant 42, 167
iterated 167
combinatorial, Newton polytope 219
community
local 214, 215
effective 216
exp-log 216
compactification, continuous total ordering 81
comparability, class 39
comparability class 43
comparable 304
compatible, facet 219
complete
field of transseries 63
subset of T 68
totally ordered vector space 193
completion
weakly oscillatory 160
free 159
complex
transplane 161
transseries 161
transvariety 161
complex number, effective 331



INDEX

complexity, problem 84
composition 55

compatible with derivation 55

grid-based series 46

grid-based transseries bb

transseries 151

well-ordered transseries 72
computation

tree 93, 184
computation model, parallel 184
computer algebra system, parallelism 186
condition, initial 182
conjecture

Hardy 57

Schanuel 17

Shackell 142
conjugate

additive 118

multiplicative 101, 118
connection 353
consistent, generic output 186
constraint

checker 184

normal 258

partial — checking 186
constraint 228, 253, 254, 255
g-constraint 258
construction, elementary 303
continuous

ordering 80

total ordering, compactification 81
contraction 56, 68
coordinate 223

Cartesian 204

admissible 243

Cartesian change of —s 204

change of 224, 241

wider Cartesian —s 204
coordinates, restriction 224
cotangent, bundle 153
cotangent space 352
couniversal

functor 320

object 320
critical, case 225
curve, transvariety 151

D

D-algebra 351
D-algebraic
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Laurent series 365
regular 365
power series 365
regular 364
D-boundary value problem 353
completely specified 354
reduced 354
D-field, quotient 351
D-ideal 351
D-module 351
morphism of 351
D-morphism 350
pure 350
D-operator algebra, free linear 351
D-polynomial
additive conjugate 118
dominant monomial 119
multiplicative conjugate 118
D-ring 349
finite dimensional 349
local 351
morphism of 350
quotient 351
D-system 354
effective, simple 357
local 355
reduced 355
restriction of domain 356
D-A-algebra 351
morphism of 351
D-A-module 351
decomposition
along orders 117
into homogeneous parts 117
natural 117
degree
Newton 95, 126, 229
purely exponential 121
density, asymptotic 288
depends 210
depth
choice word 311
weakly oscillatory 160
dep_dom_mon 257
derivation 153
grid-based transseries bb
partial exp-log ring 49
well-ordered transseries 69
derivative
transseries 154, 160
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descending chain condition 304
desingularization 224
effective 227
diagonal 208
generalized 209
diagonal functor 321
Dickson, lemma 306
difference, operator 55
differential
asymptotic — algebraic equation 116
Newton polynomial 120
polynomial 116
dilatation 56
dimension
transvariety 153
Zarisky 153
Diophantine approximation 84
direct limit 322, 326
direct product 151, 322, 326
direct sum 151, 322, 326
disjoint union, ordering 306
distinguished
right inverse 107
solution 107, 134
domain
exp-log expression 187

system of exp-log equalities and inequal-

ities 187
dominant
coefficient 42, 167
exponent 47
potential 91
intermediary — monomial 174, 204
monomial 42, 167
classical potential — 121
D-polynomial 119
linear differential operator 101
potential 95, 121, 126
term 42, 167
potential 91, 95, 121
vector exponent 46
dominated 38
series 43
domination, steady 287
dom_mon 234
dom_sub 234
downward
movement 56
shifting 56

dynamic, effective normal basis 168

INDEX

dynamic evaluation 182

effective

algebraic structure 199
algebraically closed field 199
asymptotic basis 167
asymptotic scale 167
Cartesian algebra 201
complex number 331
D-system, simple 357
desingularization 227
exp-log field 199

group 199

local community 216
normal basis 168, 203, 244
path 332

refinement 227

ring 199

Y-structure 199

totally ordered exp-log closed field 187

effectively generated 200
elementary, reduced 366
elementary construction 303
elementary function 158
ellipsoid method 189
equality, expo-linear 192
equation

Newton 91
Riccati 109, 123

equivalent, series 43
evaluation

dynamic 182
lazy 200
mapping 353

exp-log

Cartesian algebra 212

closed 187

closure 187

effective totally ordered — closed field

187

equalities and inequalities
solution to system of 187
system of 187

expression 187

field, effective 199

local community 216

ring 49
ordered 49, 147
partial 49



INDEX

L-exp-log, expression 212
expand 168, 212, 247
expansion

canonical 82

nested 85

w.r.t. normal basis 53
expo-linear

equality 192

inequality 190
exponent

dominant 47

potential 91

dominant vector 46
exponential

R-module 39

g-monomial 253

purely — Newton degree 121

purely — Newton regularity 129

purely — refinement 124

rewriting 245

transseries, purely 100
exponential depth

transseries b1, 64
exponentiality, transseries 56
expression

exp-log 187

L-exp-log 212
extension

by strong linearity 46

regular algebraic 155
extensive

choice operator 310

operation 309

F

facet, compatible 219
faithful, Cartesian representation 205
family
grid-based 40
Noetherian 62
field
algebraically closed, effective 199

effective totally ordered exp-log closed

187
elementary function 158
exp-log, effective 199
Hardy 261
stable — of transseries 78
totally ordered, with R-powers 39
field of transseries, complete 63

final, segment 173
final segment 305
generated by 305
finite, transseries 51
finite dimensional, D-ring 349
finite tree 308
L-finite, transseries 212
forgetfull functor 320
fractional, iterate 87
free
extension 322
full 3-algebra 316
partial (X, C')-algebra 322
weakly oscillatory completion 159
free linear D-operator algebra 351
full
Y-algebra 315
free 316
prevariety 324
function
arity 315
prevariety 323
quasi-analytic 88
regular algebraic 155
symbol 315
variety 323
partial 327
functor
couniversal 320
diagonal 321
forgetfull 320

universal 320

G
generalized
diagonal 209
variety 328, 329
generic
consistent — output 186
output 183

variable 186

virtual — output 186
geometry 352
good, initial point 359
graph minor ordering 309
grid-based

family 40

linear operator 270

series 40, 167

composition 46

397
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inversion 48
set 39
summation symbol 147
transring 149
transseries 50
composition 55
derivation 55
in several variables 147
inverse 56
ground
g-monomial 253
property 316
valid 316
term 316
totally defined 316
group
Abelian, strong 145
effective 199
monomial 40, 43
quasi-ordered 43
with R-powers 39

H

Hardy
conjecture 57
field 261
notation 38
Higman, theorem 307
homogeneous, decomposition into — parts 117
Horn clause 316

valid 316

I

ideal, regular 363
idm 175, 205, 207, 267
ij_monomial 139
ill-founded, transseries 86
incomparable 304
induction principle
Noetherian 306
transfinite 306
inequality, expo-linear 190
infinitely large 38
infinitesimal 38
series 42
infinitesimalization 205
initial 366
initial condition 182
initial object, partial (X, C)-algebra 322

INDEX

initial segment 305
intermediary
dominant monomial 174, 204
interval 80
open 80
inverse
grid-based transseries b6
transseries 56
well-ordered transseries 78
inverse limit 322, 326
inversion, grid-based series 48
invertible, series 44
iterate, fractional 87
iterated, coefficient 167
iterator 87

J
Jacobian, matrix 363

K
Kruskal, theorem 308

L

L-transseries 58
X-labeled structure 310
E-labeled tree 308
g-labeled tree
in tree 73
admissible 74
Landau, notation 38
Laurent series
automatic 172, 201
lexicographically automatic 266
lazy evaluation 200
leaf, tree 308
left-adjoint 320
lemma
Dickson 306
Zorn 44, 305
level, normal basis 52
lexicographical, Cartesian representation 266
lexicographically
automatic Cartesian representation 266
automatic Laurent series 266
automatic power series 265
limit 43
stationary 67
line, projective 329
linear



INDEX

algebra 145
differential operator 101
dominant monomial 101
multiplicative conjugate 102
upward shifting 102, 120
operator, grid-based 270
optimization 184
programming 184, 189
linear D-operator 351
order 351
linearity
extension by strong — 46
strong 146
local
community 214, 215
effective 216
exp-log 216
D-system 355
local D-ring 351
locally trivial vector bundle 352
logarithmic, transseries 51
logarithmic depth
transseries 50, 64
logarithmic monomial 49
logical, programming 185

M

main theorem 258
manifold 352
MAPLE 172
mapping
evaluation 353
support 40
matrix
Jacobian 363
regular 362
transition 335
truncated 336
meta-set 317
method
ellipsoid 189
Newton polygon 90
simplex 189
metric 353
minimal bad sequence 307
mixed, g-monomial 253
model, set of axioms 316
R-module, strong 146
monomial 40, 167
dominant 42, 167

399

classical potential — 121
D-polynomial 119
linear differential operator 101
potential 95, 121, 126
group 40, 43
quasi-ordered 43
intermediary dominant 174, 204
logarithmic 49
ultra-regular 243
(¢, 7)-monomial 138
t-monomial 138
g-monomial 253
exponential 253
ground 253
mixed 253
morphism, partial X-algebra 315
morphism of
D-module 351
D-ring 350
D-A-algebra 351
Y-morphism 316
movement
downward 56
upward 56
multiplicative
conjugate 101, 118
multiplicity 121

N

natural, decomposition 117
negligible 38
series 43
nested
expansion 85
form 85
transseries 86
Newton
combinatorial — polytope 219
degree 95, 126, 229
purely exponential 121
equation 91
polygon 95
polygon method 90
polynomial 95, 229
algebraic 121
differential 120
polytope 219
prepared 229
regularity 129
purely exponential 129
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Newton_degree 140
Newton_step 230
node
ancestor 308
children 308
leaf 308
parent 308
predecessor 308
tree 308
Noetherian
choice operator 310
family 62
induction principle 306
ordering 303, 304
series 62
transseries 156
transvarieties 156
non degenerately, ordered group 44
normal
basis
effective 168, 244
level 53
constraint 258
set 240
system of constraints 237, 259
normal basis 52
effective 203
expansion w.r.t. 53
notation
Hardy 38
Landau 38
vector 46

0]

object
couniversal 320
quotient 317
subobject 317
universal 320
open, interval 80
operation, extensive 309
operator
choice 310
extensive 310
Noetherian 310
strictly extensive 310
difference 55
linear, grid-based 270
linear differential 101
dominant monomial 101
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multiplicative conjugate 102
upward shifting 102, 120
support 270
word 352

opposite, category 320
order

decomposition along —s 117
linear D-operator 351
total 117

ordered

A-algebra 38

complete totally — vector space 193
exp-log ring 49, 147

group, non degenerately 44

group with R-powers 39

partial exp-log ring 49

ring 38

semigroup 38

set 304

totally — field, with R-powers 39

ordering 304

ascending chain condition 304
asymptotic 39
better-quasi- 309
continuous 80
descending chain condition 304
disjoint union 306
final segment 305
graph minor 309
initial segment 305
Noetherian 303, 304
non degenerate 44
partial 304
product 306
strict 304
topology determined by 305
total 304
compactification 81
interval topology 80
well- 304
well-quasi- 304
well founded 304

ordinary

refinement 245
variable in 229

output

consistent generic 186
generic 183
virtual generic 186
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parallel, computation model 184
parallelism, computer algebra system 186
parent, node 308
partial
Y-algebra 315
morphism 315
constraint checking 186
exp-log ring 49
function, variety 327
ordering 304
partial constraint checking
automatic, case separation 186
case separation, automatic 186
partial morphism 315
partial (X, C)-algebra
Cartesian closed 322
Y-closure 319, 322
direct limit 322
direct product 322
direct sum 322
free 322
extension 322
initial object 322
inverse limit 322
pullback 322
pushout 322
terminal object 322
partial X-algebra, subalgebra 317
path
effective 332
e-refinement 340
pdm 140
plane 329
curve transvariety 151
point
close 332
prevariety 323
reparameterization 151
space 323
time complexity 331
type 323
B-point, prevariety 323
C-pointed category 321
polygon
Newton 95
Newton — method 90
polynomial
differential 116
Newton 95, 229
algebraic 121
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differential 120
reducible 366
polynomial_solve 98
polytope
combinatorial Newton 219
Newton 219
potential
classical — dominant monomial 121
dominant exponent 91
dominant monomial 95, 121, 126
dominant term 91, 95, 121
power series
automatic 200
lexicographically automatic 265
predecessor, node 308
prepared, Newton 229
prevariety 323
full 324
function 323
point 323
B-point 323
variety associated to 324
privileged, refinement 135
privileged_refinements 138
product, ordering 306
programming
linear 189
logical 185
projective
line 329
transvariety 151
PROLOG 185
property
ground 316
valid 316
pseudo-coefficient 211
Pseudo-Groebner-basis 367
pseudo_coefficient 211
pullback 322, 326
pure, morphism of D-rings 350
pure D-morphism 350
purely
exponential
Newton degree 121
refinement 124
exponential transseries 100
purely unbounded series 43
pushout 322, 326

Q
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quasi-analytic, function 88
quasi-linear 95
quasi-ordered, monomial group 43
quasi-ordering 304
quotient

(3, C')-algebra 317

Y-algebra 317

object 317
quotient D-field 351
quotient D-ring 351
quotientsub algebras 319

R

real, resummation theory 294
recursively, well-ordered support 89
reduced
D-boundary value problem 354
D-system 355
elementary 366
reduced prevariety 324
reducible, polynomial 366
reduction 366
refinement 93, 96, 224
admissible 93, 97, 124
effective 227
ordinary 245
privileged 135
purely exponential 124
region 183
regular
algebraic function or extension 155
case 225
D-algebraic Laurent series 364
D-algebraic power series 364
ideal 363
matrix 362
series 42, 221
regularity
Newton 129
purely exponential 129
regularization 205
relation
arity 315
symbol 315
renormalization, basis 246
renormalize 246
reparameterization 151
representation
Cartesian 172, 204
admissible 243

INDEX

C-infinitesimal 173
C-regular 173
infinitesimalization 205
lexicographical 266
lexicographically automatic 266
regularization 205
faithful Cartesian 205
restriction 173
coordinates 224
restriction of domain 350
D-system 356
resummation, theory, real 294
rewriting, exponential 245
Riccati
equation 109, 123
right-adjoint 320
ring
effective 199
elementary function 158
exp-log 49
ordered 49, 147
partial 49
ordered 38
strong 145
C*-ring 327
root, tree 308

S

S-polynomial 367
scale
asymptotic 45, 62, 149, 157, 243
Asymptotic 243
asymptotic, effective 167
change 46
Schanuel, conjecture 17
segment, final 173
semi-distinguished, solution 280
semigroup, ordered 38
series
asymptotic 43
bounded 42
canonical decomposition 43
D-algebraic Laurent — 365
regular 365
D-algebraic power — 365
regular 364
dominated 43
equivalent 43
grid-based 40, 167

composition 46



INDEX

inversion 48
infinitesimal 42
invertible 44
Laurent
automatic 172
lexicographically automatic 266
negligible 43
Noetherian 62
power
automatic 200
lexicographically automatic 265
regular 42, 221
unbounded, purely 43
well-ordered 62
set
grid-based 39
normal 240
ordered 304
small 317
totally ordered, interval topology 80
Shackell, conjecture 142
shifting
downward 56
upward 56, 244
linear differential operator 102, 120
shuffle 352
signature 315
simple, effective D-system 357
simplex method 189
singular
case 225, 235
small set 317
solution
distinguished 107, 134
semi-distinguished 280

system, exp-log equalities and inequalit-

ies 187
split-off 245
stable, field of transseries 78

stalk, sheaf of partial functions on variety 327

stationary limit 67
steady domination 287
strategy, automatic updating 228
strength, transseries 87
strict, ordering 304
strictly extensive, choice operator 310
strong
Abelian group 145
linearity 146
R-module 146
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monotonic asymptotic behaviour 37, 88,

158
ring 145
structure
algebraic, effective 199
X-labeled 310
theorem 53, 203
P-structure 328
Y-structure, effective 199
subalgebra, partial X-algebra 317
(2, C')-subalgebra 317
subobject 317
subquotient
(3, C')-algebra 317
Y-algebra 317
object 317
subquotient algebra 317
substitution 187
subtree 308
subvariety 326
transvariety 151
support
linear operator 271
mapping 40
operator 270
recursively well-ordered 89
symbol
arity 315
function 315
grid-based summation 147
relation 315
variable 316
system
asymptotic 151
exp-log equalities and inequalities 187
domain 187

T

tangent, bundle 153
tangent bundle 352
term 40
dominant 42, 167
potential 91, 95, 121
ground 316
totally defined 316
terminal object, partial (X, C)-algebra 322
theorem
Higman 307
Kruskal 308

main 258
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structure 53, 203
theoretical algorithm 199
theory, resummation, real 294
time complexity, point 331
topology

determined by ordering 305

totally ordered set 80

transvariety 153, 160

Zarisky 151, 326
total, order 117
total D-ring of fractions 351
total ordering 304
totally defined, ground term 316
transfinite, induction principle 306
transition

matrix 335

truncated 336
transline

interval topology 153, 156
transmonomial 51, 149
transplane, complex 161
transring 328

grid-based 149
transseries

alogarithmic 50

automatic 202

complex 161

composition 151

derivative 154, 160

exponential, purely 100

exponential depth 51, 64

exponentiality 56

finite 51

L-finite 212

grid-based 50

composition 55
derivation 55
inverse 56

ill-founded 86

in several variables 147

inverse 56

logarithmic 51

logarithmic depth 50, 64

nested 86

Noetherian 156

of exponential depth < o 64

of exponential depth < o 64

stable field of — 78

strength 87

structure theorem 53, 203

tree representation 66
truncation 67
ultra-regular 243
weakly oscillatory 160
well-ordered 62
composition 72
derivation 69
inverse 78
transvarieties, Noetherian 156
transvariety 147, 151
affine space 151
complex 161
cotangent bundle 153
curve 151
dimension 153
direct product 151
direct sum 151
point, reparameterization 151
projective 151
tangent bundle 153
topology 153, 156, 160
weakly oscillatory 160
Zarisky dimension 153
Zarisky topology 153
tree 308, 316
automatic expansion 202
computation 93, 184
E-labeled 308
g-labeled tree in 73
admissible 74
leaf 308
node 308
representation 66
transseries 66
root 308
truncated, transition matrix 336
truncation 332
transseries 67
type
point 323
real number 84

U

ultra-regular, monomial 243
ultra-regular , transseries 243
ultra_regularize 251
unbounded 38
unbounded series, purely 43
universal

functor 320

INDEX
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object 320
updating, automatic 228
upward
movement 56
shifting 56, 244
linear differential operator 102, 120

A\

valid
ground property 316
Horn clause 316
valuation 47
variable 223
change of 224
generic 186
symbol 316
variety 324
affine space 326
associated to prevariety 324
direct limit 326
direct product 326
direct sum 326
function 323
generalized 328, 329
inverse limit 326
partial function 327
stalk of sheaf of 327
pullback 326
pushout 326
subvariety 326
Zarisky
closure 326
topology 326
vector
dominant — exponent 46
notation 46
vector bundle 352
locally trivial 352
vector space, complete totally ordered 193
virtual, generic output 186

A%%

weakly oscillatory
asymptotic behaviour 158
completion 160
free 159
depth 160
transseries 160
transvariety 160
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well-ordered
recursively — support 89
series 62
transseries 62
composition 72
derivation 69
inverse 78
well-ordering 304
well-quasi-ordering 304
well founded 304
wider, Cartesian coordinates 204
word
commutative 307
non commutative 307
word operator 352

Z

Zarisky

closure 326

dimension 153

topology 151, 326
Zermelo-Fraenkel axioms 317
zero_equivalence 357
zero_equiv 359, 360
zero_test 179
Zorn

lemma 44, 305



