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intervient dans l��tude d�un point cuspidal en x � y � �� Naturellement� ces
exemples sont tr�s simples et peuvent �tre trait�s � la main de fa�on relativement
ais�e� Mais la n�cessit� d�une d�marche plus universelle devient plus apparente
lorsque l�on consid�re un syst�me asymptotique comme�����

�f ln f � x	 � e�g � � �
�g� � f	� lnx

g
� � �

x �� ��
Dans cette th�se nous d�veloppons des outils su�samment puissants pour r�soudre

��
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un tel syst�me de fa�on enti�rement automatique� En particulier� nous pouvons
a�rmer que ce syst�me n�admet qu�un nombre �ni de solutions�

Plus g�n�ralement� on �tudie des syst�mes asymptotiques qui font intervenir la
d�rivation� voire m�me la composition fonctionnelle� Outre des �quations lin�aires
du style

f ��� � xexf � � ex
�

f � xx �x��	�
on envisage des �quations non lin�aires comme

W � �W � � e�x �x��	�
ou

f �f ��� � f ��� � e�e
x

f � e�x
�

�x��	�
On peut �galement consid�rer des syst�mes di
�rentiels plus complexes avec param��
tres� perturbations et�ou contraintes asymptotiques� dont voici un exemple ������

f� � eax
��bxf � � g �

g� � ax�fg � b log xf � ex �
� �� x�

Pour les exemples ci�dessus� nos algorithmes permettent � nouveau de d�terminer
de fa�on enti�rement automatique leurs ensembles de solutions�

Nous avouons avoir choisi des exemples un peu orient�s � comme le lecteur le
constatera� aucun d�entre eux ne fait intervenir des ph�nom�nes oscillatoires� Nous
dirons que nous nous sommes restreints � des syst�mes asymptotiques fortement
monotones� Bien que ceci soit un d�savantage majeur de la th�orie actuelle� nous
avons tout de m�me franchi quelques premiers pas vers une th�orie plus g�n�rale� qui
incorpore ce genre de ph�nom�nes� En particulier� nous verrons comment calculer
les limites inf�rieures et sup�rieures � l�in�ni d�une fonction comme

��x	 �

 sin x� � sin�x���x� �		
� � sin ex� � sin�ex� � �	 �

Plus g�n�ralement� on est capable de d�terminer automatiquement les comporte�
ments limites possibles d�une fonction comme

f�x	 �
ex

� sin x sin x� � ex
sin �x sin x�

��log x log log x sin x	
�

pour x�� et sous la contrainte sinx �� �� Finalement� on sait trouver toutes les
solutions de certains types d��quations di
�rentielles lin�aires comme

log xe�x
�
f ��� � �e�x � ex	f �� � 
exf � � �� � x���x�	f � sin���ee

x

		�

En�n� il convient de noter que pour des raisons qui seront d�velopp�es davantage
plus bas� il est recommandable de passer par l��tude de syst�mes asymptotiques
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fortement monotones� avant de s�attaquer au cas g�n�ral � premi�rement� le cas
fortementmonotone comporte d�j� un grand nombre de di�cult�s qu�il faut r�soudre
de toute fa�on� Deuxi�mement� la th�orie g�n�rale s�appuiera vraisemblablement sur
les m�thodes d�velopp�es pour le cas fortement monotone�

��� Historique et introduction g�n�rale

Apr�s l�acceptation du formalisme rigoureux de l�analyse moderne� les aspects plut�t
concrets du calcul in�nit�simal n�ont pas connu un d�veloppement aussi explosif que
l�analyse classique� Cependant� � l��poque de Newton� on concevait souvent le calcul
in�nit�simal comme un calcul plut�t concret sur des s�ries formelles� Aujourd�hui� ce
point de vue est encore partag� par beaucoup �d�utilisateurs � de math�matiques�
qui souvent ne voient pas en quoi la rigueur ��� leur est utile dans leurs calculs� Or�
comme nous allons le montrer ci�dessous� derri�re ce point de vue quelque peu na�f se
cache une formidable th�orie� dont certains aspects n�ont pas tellement �volu� depuis
l��re de Newton� Cette th�orie� initi�e par  calle� s�appelle la th�orie des fonctions
analysables !voir "Ec ��#$� Retra�ons maintenant les origines de cette th�orie�

����� La th	orie de resommation

La premi�re source des fonctions analysables est la th�orie de resommation� dont les
d�buts se situent d�s l��poque d�Euler� qui �tudia la s�rie formelle

f�x	 �
�X
n	


���	nn�xn���

laquelle ne converge qu�en x � � au sens usuel� Par une intuition remarquable�
il parvint � calculer des valeurs non triviales de cette s�rie�  videmment� ceci est
absurde au sens moderne de la convergence % mais la s�rie f v�ri�e l��quation di
�ren�
tielle

x�f ��x	 � f�x	 � x� !���$

et il fait sens de parler de solutions de cette �quation� En privil�giant une solution
particuli�re � cette �quation� on peut donc �valuer f en des points di
�rents de z�ro�

& la �n du dix�neuvi�me et au d�but du vingti�me si�cle� on a beaucoup cherch�
� donner des sens plus pr�cis � des s�ries divergentes comme f � L�introduction de
la m�thode de Borel a �t� particuli�rement importante � elle consiste � appliquer
d�abord l�op�rateur de Borel formel

P
fnx

n �� P
fnx

n�n�� et puis l�op�rateur de
Laplace � la somme convergente du r�sultat� Ce proc�d� produit une fonction f
qui v�ri�e l��quation di
�rentielle !���$� Ce proc�d� a la propri�t� importante de
pr�server l��quation di
�rentielle v�ri��e par f �

Apr�s une p�riode de silence relatif� la th�orie de la resommation a recommenc�
� int�resser les math�maticiens vers la �n des ann�es soixante�dix� avec l�arriv�e



���� HISTORIQUE ET INTRODUCTION G�N�RALE ��

des r�sultats de Ramis� Balser�  calle� Braaksma� etc� !voir "Ram ��# et "Bal �	#
pour des discussions$� Un des aspects les plus importants des nouvelles m�thodes
de resommation et multisommation� est la stabilit� de la classe des fonctions resom�
mables par de nombreuses op�rations alg�briques� comme les op�rations de corps� la
d�rivation� la composition� etc� En particulier� dans une th�orie id�ale on s�attend
� ce que toutes les fonctions ayant une source naturelle !c�est � dire des solutions
d��quations di
�rentielles ou fonctionnelles� des transform�es int�grales� etc�$ soient
resommables�

����� L
analyse asymptotique

Une deuxi�me source de la th�orie des fonctions analysables est la th�orie des
d�veloppements asymptotiques� D�s son introduction par Du Bois�Raymond� Poin�
car� et Stieltjes� de nombreuses fonctions non d�veloppables dans l��chelle ordinaire
apparurent� Pour rem�dier � ce d�faut� Hardy �tudie dans "Har ��# les L�fonctions
!qui apparaissent par ailleurs d�j' dans les travaux de Liouville !voir "Li ���#� "Li
��#$$ comme �tant des fonctions construites � partir de R et x par les op�rations
de corps� l�exponentielle� le logarithme et composition par des fonctions alg�briques
r�elles� La plupart des fonctions ayant une source naturelle admettent des d�velop�
pements asymptotiques dans l��chelle de ces L�fonctions�

Apr�s avoir introduit les L�fonctions� Hardy a d�montr� un th�or�me essentiel �
les germes des L�fonctions � l�in�ni forment un corps di
�rentiel totalement ordonn��
En autres termes� l�ensemble des L�fonctions forme un corps stable par d�rivation� et
le signe de toute L�fonction f�x	 reste constant lorsque x tend vers l�in�ni� Bourbaki
!voir "Bour ��#$ a postul� cette propri�t� comme la base d�une nouvelle th�orie � un
corps de Hardy est un corps di
�rentiel de germes de fonctions � l�in�ni� Cette d��n�
ition donne en particulier une premi�re formalisation au concept de comportement
asymptotique fortement monotone� dont nous avons parl� dans la section pr�c�dente�
Ensuite on a �tabli divers th�or�mes de cl�ture pour les corps de Hardy !voir "Bour
��#� "Rob ��#� "Kho �#� "Ros �a#� "Ros �b#$� Par exemple� �tant donn�e une fonc�
tion f dans un corps de Hardy H� il existe un corps de Hardy H � qui contient H etR
f �
Malheureusement� la th�orie classique des d�veloppements asymptotiques� m�me

dans des �chelles g�n�ralis�es comme l��chelle des L�fonctions� admet deux inconv�ni�
ents importants� Premi�rement� cette th�orie manque de propri�t�s de cl�ture sous
di
�rents types d�op�rations � si f et g sont deux fonctions ayant le m�me d�velop�
pement asymptotique� la fonction f � g n�admet pas n�cessairement un d�velop�
pement asymptotique� Deuxi�mement� en faisant le d�veloppement asymptotique
d�une fonction� on a tendance � �perdre� de l�information � lorsque l�on d�veloppe
la fonction

�

�� x��
� e�

x� logx � � � �

x
�
�

x�
� � � �
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on a �perdu� le terme e�

x� logx� Ceci est d�autant plus nuisible� que ce terme
d�termine l�ordre de grandeur de la fonction tant que x	 e�
�

La th�orie des corps de Hardy admet quant � elle aussi plusieurs inconv�nients�
Premi�rement� il peut �tre assez di�cile de montrer qu�une fonction f donn�e appar�
tient � un corps de Hardy � pour cela� il faut v�ri�er que le signe de tout polyn�me
di
�rentiel en f est constant � l�in�ni� Deuxi�mement� puisque les fonctions appar�
tenant � un corps de Hardy sont condamn�es � ne jamais s�annuler au voisinage
de l�in�ni� il est di�cile de s�imaginer une th�orie plus g�n�rale qui incorpore des
fonctions oscillantes�

����� La gen�se des transs	ries

Par les critiques formul�es ci�dessus� on en vient � la troisi�me source de la th�orie
des fonctions analysables � le calcul sur des s�ries formelles� En e
et� puisque les
s�ries formelles sont des objets enti�rement formels� elles ne sou
rent d�aucun des
inconv�nients mentionn�s ci�dessus� Le prix � payer est qu�elles n�ont pas toujours de
signi�cation analytique� Mais c�est l� o� intervient l�id�e majeure de la th�orie des
fonctions analysables � on s�int�resse surtout aux s�ries formelles � ayant une source
naturelle �� La th�orie de la resommation permet alors de donner un sens analytique
� ces objets formels� Cependant� puisque l�on veut �tendre autant que possible cette
classe de � fonctions ayant une source naturelle �� on ne peut pas se contenter de
travailler avec des s�ries formelles ordinaires� D�o� la justi�cation principale de
l�introduction des transs�ries !voir "Dahn 	#� "DG �# et " c ��#� la terminologie
�transs�rie� �tant d( �  calle$� qui sont des expressions form�es � l�aide de R� x� les
op�rations de corps� l�exponentielle� le logarithme� et surtout un op�rateur somme
d�arit� in�nie� Les transs�ries g�n�ralisent en particulier les L�fonctions�

 tant donn� que la puissance du calcul sur les s�ries formelles s�est montr�e dans
de nombreux domaines au �l des si�cles� il est surprenant de constater qu�il a fallu
attendre si longtemps l�introduction des transs�ries� Cependant� les transs�ries ont
quelques pr�curseurs� que nous allons tenter de pr�senter bri�vement�

Tout d�abord� pour la division et la r�solution des �quations alg�briques� il a
fallu autoriser des s�ries avec des puissances n�gatives et fractionnaires � les s�ries de
Laurent et de Puiseux� Au d�but de ce si�cle Hahn a consid�r� des exposants encore
plus g�n�raux � il montre dans "Hahn ��# qu��tant donn� un groupe commutatif
totalement ordonn� X et un corps K� l�ensemble K��X�� des s�ries f �

P
x�G fxx

� support bien ordonn� est naturellement muni de la structure de corps totalement
ordonn�� Ce r�sultat a �t� �tendu par Higman dans "Hig ��# au cas o� G n�est plus
que partiellement ordonn� et non n�cessairement commutatif� et o� les s�ries ont des
supports belordonn�s� Pour l��tude de solutions formelles d��quations di
�rentielles
et � di
�rences� on a �galement introduit la notion de s�ries formelles comportant
des logarithmes !voir par exemple "LoRo �#$�

 calle� qui utilise les fonctions analysables dans sa d�monstration de la conjec�
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ture de Dulac� s�est davantage int�ress� � la resommation des transs�ries qu�� leurs
propri�t�s alg�briques� De plus�  calle se limite � l��tude de transs�ries fortement
monotones en une variable� parce que la d�monstration de la conjecture de Dulac
repose pr�cis�ment sur ce caract�re fortement monotone� Dans la partie A de cette
th�se� nous nous sommes alors propos� de donner une contribution � la th�orie al�
g�brique des transs�ries� d��tudier des transs�ries en plusieurs variables� ainsi que
de pr�parer la route pour l��tude des transs�ries � faiblement oscillantes ��

Comme r�sultats principaux� il y a d�abord la mise en place d�un formalisme
rigoureux pour l��tude de transs�ries � di
�rents types de support� Utilisant ce
formalisme nous apportons la r�ponse � une conjecture de Hardy !voir "Har ��#% nous
notons que notre r�sultat a �t� d�montr� ind�pendamment dans "MMV )#$� Ensuite�
nous nous int�ressons aux �quations fonctionnelles� et nous proposons un algorithme
th�orique pour la r�solution d��quations di
�rentielles alg�briques dans les transs��
ries fortementmonotones� Finalement� nous introduisons des transs�ries en plusieurs
variables et des transs�ries faiblement oscillantes� L�id�e majeure derri�re cette
introduction est que les transs�ries faiblement oscillantes sont en fait des transs�ries
en plusieurs variables dans lesquelles on substitue aux variables des composants
oscillants�

����� L
aspect eectif

Une derni�re source majeure de la th�orie des fonctions analysables est le constructi�
visme� En e
et� les calculs sur les transs�ries� ainsi que les m�thodes de resommation
d�ploy�es pour leurs donner un sens analytique� sont toujours enti�rement construc�
tifs� Cependant� entre le constructivisme th�orique et la mise en place concr�te
d�un logiciel de calcul formel� susceptible de faire ces calculs de fa�on enti�rement
automatique� il y a un grand �cart� en particulier parce que les transs�ries sont des
objets de nature in�nie�

Les premiers algorithmes dans cette direction� qui d�passent la manipulation des
� vulgaires s�ries de Taylor�� sont dus � Shackell� Il a commenc� par s�int�resser
aux d�veloppements asymptotiques des fonctions exp�logs� qui sont des fonctions
construites � partir de x et R par les op�rations du corps� l�exponentielle et le log�
arithme� Travaillant dans le cadre des corps de Hardy� il obtient dans "Sh ��# le
premier algorithme pour d�terminer la limite d�une fonction exp�log � l�in�ni� mod�
ulo l�existence d�un oracle pour tester si une fonction exp�log est nulle au voisinage de
l�in�ni� Pour ce faire� il utilise des formes imbriqu�es et plus tard des d�veloppements
imbriqu�s� qui sont en quelque sorte des objets � mi�chemin entre des limites et des
transs�ries compl�tes� Le principal probl�me que l�on rencontre dans ce domaine est
celui de � l�annulation ind��nie� � un algorithme de d�veloppement �brutal � ne
termine pas sur un exemple comme

�

� � x�� � e�x
� �

� � x��
�
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Il est alors n�cessaire de trouver la bonne �chelle de d�veloppement fx�e�xj�� � 
 Rg
et de d�velopper d�abord par rapport � ex� les coe�cients de ce d�veloppement �tant
des transs�ries eux�m�mes� dont on garde des repr�sentations exactes� Aussi� cet
exemple illustre � nouveau l�int�r�t de consid�rer des d�veloppements asymptotiques
plus g�n�raux que ceux qui sont employ�s classiquement�

Apr�s ce premier algorithme de Shackell� il y a beaucoup d�autres r�sultats
qui ont suivis � d�abord� Shackell met au point la technique �des ombres et des
fant�mes� pour donner un algorithme de d�veloppement complet !au sens des
transs�ries$ pour les fonctions exp�logs dans "Sh ��# !toujours modulo l�oracle men�
tionn� plus haut$� Des r�sultats allant dans ce sens ont �t� obtenus par Salvy dans sa
th�se "Sal ��#� Il y obtient aussi des r�sultats concernant la cl�ture alg�brique r�elle et
l�int�gration� Ensuite� Shackell revient aux d�veloppements imbriqu�s pour lesquels
il donne un proc�d� in�ni pour d�terminer les types de d�veloppements imbriqu�s
possibles des solutions � une �quation di
�rentielle alg�brique donn�e !voir "Sh ��#$�
En collaboration avec Salvy il obtient �galement un algorithme pour calculer des
d�veloppements imbriqu�s d�inverses fonctionnels dans "SS ��# et des r�sultats en
vue du traitement des fonctions implicites !voir "SS ��#$� Ceci a notamment des
applications dans le calcul d�int�grales !voir "Sal ��#$�

Notre premi�re contribution au calcul e
ectif sur des transs�ries est de simpli�er
l�algorithme de Shackell pour l�obtention du d�veloppement complet d�une fonction
exp�log� Pour ceci� nous nous sommes bas�s sur les travaux de Gonnet et Gruntz
sur les calculs de limites !voir "GoGr ��#� "Gr ��#$� Ensuite� nous avons ra�n� cet
algorithme de sorte que l�on n�a plus besoin que d�un oracle pour tester la nullit�
de constantes exp�logs� Par ailleurs� ce probl�me des constantes est tr�s profond� et
nous y reviendrons plus loin�

Nos principaux r�sultats concernent le d�veloppement de fonctions exp�logs avec
param�tres� la r�solution de syst�mes asymptotiques� la r�solution d��quations alg��
briques di
�rentielles� et quelques premiers pas vers le traitement des transs�ries
faiblementmonotones� En simpli�ant� nous d�montrons dans le chapitre ��� qu��tant
donn� un oracle pour tester si un syst�me d��quations et in�galit�s exp�logs admet
une solution� il existe un algorithme pour trouver les d�veloppements asymptotiques
g�n�riques de transs�ries exp�logs en plusieurs variables� solutions d�un syst�me
asymptotique exp�log� Dans le chapitre ��� nous montrons comment r�soudre dans le
corps des transs�ries fortement monotones des �quations di
�rentielles alg�briques
dont les coe�cients sont des fonctions exp�logs !par exemple$� Dans le cas des
�quations di
�rentielles lin�aires� nos r�sultats g�n�ralisent des r�sultats plus classi�
ques !voir "DDT �# par exemple$� En�n� le chapitre �	 fournit un premier pas vers
le traitement de transs�ries faiblement oscillantes�
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����� Outils de calcul formel

Tous les algorithmes de d�veloppement asymptotique mentionn�s plus haut pr�sup�
posent la possibilit� de faire des calculs exacts sur les transs�ries� en plus d�en
extraire les coe�cients� Or ceci a pos� de nombreux probl�mes en calcul formel �
comment d�cider par exemple qu�une s�rie fabriqu�e � partir de fonctions transcen�
dantes usuelles est nulle * Et m�me� comment d�cider si une constante exp�log est
nulle *

Ces deux probl�mes ont fait l�objet de recherches intensives ces derni�res ann�es�
Au d�part� il y a les travaux "Li ���# et "Li ��# de Liouville sur les fonctions exp�
logs� Risch est le premier � exploiter ces travaux d�un point de vue algorithmique
et il d�montre le th�or�me de structure de Risch !voir par exemple "Ris ��#$� Ces
travaux permettent en particulier de tester si deux fonctions exp�logs sont identiques
au voisinage d�un point o� elles sont toutes les deux d��nies !modulo un test � z�ro
pour les constantes exp�logs$�

Dans "DL �#� Denef et Lipshitz montrent de fa�on plus g�n�rale le th�or�me
suivant � soient f�� � � � � fn des s�ries formelles � coe�cients dans un corps e
ectif� qui
v�ri�ent des �quations di
�rentielles alg�briques �non singuli�res �� Alors il existe
un algorithme pour d�cider si un polyn�me P en f�� � � � � fn induit la s�rie formelle
nulle� Malheureusement� leur solution est bas�e sur la d�composition d�un id�al dans
un anneau de polyn�mes en id�aux premiers� ce qui est un probl�me tr�s couteux�
Shackell propose d�autres approches dans "Sh �# et "Sh ��b#� L�algorithme le plus
prometteur dans ce domaine est d( � P�ladan�Germa !voir "P�l ��#$� et traite m�me
de s�ries formelles en plusieurs variables� Dans l�annexe D� nous donnons encore
d�autres approches� un des algorithmes ayant �t� obtenu en collaboration avec A�
P�ladan�Germa� On y �tudie aussi les solutions de syst�mes d��quations implicites�

Un probl�me beaucoup plus profond est de tester si des constantes exp�logs !voire
des constantes transcendantes plus g�n�rales$ sont z�ro� Ceci n�est pas �tonnant�
dans la mesure que l�on ne sait m�me pas si des constantes � simples � comme
e � 	 sont transcendants� & ce titre nous mentionnons l�importante conjecture de
Schanuel �

Conjecture �� �Schanuel� Si ��� � � � � �n sont des nombres complexes Q�
linearement ind�pendants� alors de degr� de transcendance

trdegQ�Q���� � � � � �n� e��� � � � � e�n�	
est au moins �gal � n�

Cette conjecture exprime entre autres l�id�e !voir "CP �#� "Mac ��#$ qu�il n�existe
pas de relations �non triviales � entre les constantes exp�logs !c�est � dire� des rela�
tions qui ne se d�duisent pas des lois habituelles sur l�exponentielle et le logarithme$�
Plus r�cemment� Richardson a donn� un test � z�ro pour des � constantes exp�logs
implicites � modulo la conjecture de Schanuel !voir "Rich ��#$ � soient c�� � � � � cn
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des constantes� qui sont les uniques solutions locales � non singuli�res � d�un sys�
t�me d��quations exp�logs� alors il existe un algorithme pour tester si la valeur d�un
polyn�me P � coe�cients dans Q en �c�� � � � � cn	 est nulle� modulo la conjecture de
Schanuel� De plus� l�algorithme� s�il termine� rend toujours le r�sultat correct� En
outre� en cas de non terminaison� les entr�es fournissent � en quelque sorte� un
contre�exemple concret � la conjecture de Schanuel�

Bien que les r�sultats pr�c�dents nous permettent en th�orie de r�soudre des
probl�mes tr�s g�n�raux� dans la pratique il est souvent n�cessaire de recourir � des
m�thodes plus heuristiques pour des raisons d�e�cacit� !voir aussi la discussion dans
la section D�	�	$� Pour ces m�thodes heuristiques� il est particuli�rement import�
ant d�avoir des m�thodes rapides d��valuation de fonctions sp�ciales � de grandes
pr�cisions� & ce titre� nous avons inclus l�annexe C� Nous remarquons aussi� qu�au
moins dans tous les exemples qui nous sont connus� les algorithmes heuristiques
ne cessent de fonctionner que lorsque l�on recontre des ph�nom�nes importantes
d�annulations num�riques� Un exemple notable est l��valuation de

�e�

����� � �	���


�

Il est d�cevant de constater que la plupart des syst�mes de calcul formel renvoient
la valeur z�ro � cette �valuation� Une approche pour la r�solution de ce probl�me a
�t� propos�e dans "VdH ��a# % voir aussi la conclusion de cette th�se�

��� Alg�bre asymptotique

Dans la partie A de cette th�se nous �tudions d�un point de vue th�orique les as�
pects purement formels du calcul in�nit�simal� et du calcul asymptotique� Ce sujet�
que nous avons quali�� d�alg�bre asymptotique� se fonde sur les transs�ries� que
nous d��nissons d�une fa�on aussi g�n�rale que possible� et dont nous �tudions les
propri�t�s�

����� Les di	rentes transs	ries

Les transs�ries forment une g�n�ralisation des s�ries formelles� en autorisant l�intru�
sion r�cursive d�exponentielles et de logarithmes� En voici un exemple simple �

��ee
x�ex�x�ex�x����� � 
� log�� xee

x�ex�x�ex�x����� � �� log�� xee
x�ex�x�ex�x����� � � � � �

o� x tend vers l�in�ni� Les transs�ries se rencontrent naturellement lorsque l�on
cherche des solutions formelles � des �quations di
�rentielles non lin�aires dans le
voisinage d�une singularit� � explosive�� Un exemple simple est l��quation

ff �� � f �� � ff � !���$
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qui admet comme solutions toutes les transs�ries �nies de la forme

f � aebe
x

�

En modi�ant l�g�rement !���$ �

ff �� � f �� � ff � � ��

les solutions deviennent vite plus complexes % en voici une �

f � ee
x

� �
�
e��xe�e

x

� � � � �
On peut �galement envisager des �quations fonctionelles plus g�n�rales� comme

f�x	 �
�

x
� f�x�	 � f�elog

� x	� !���$

qui admet

f �
�

x
�
�

x�
�
�

x�
� � � ��

�

elog
� x
�

�

e� log
� x
�




e� log
� x
�




e� log
� x
� � � ��

�

elog
� x
�

�

e� log
� x
� � � � �

���

comme solution particuli�re�
Comme on l�expliquera avec plus de d�tails ci�dessous� un probl�me majeur que

l�on rencontre lors de la d��nition des transs�ries est que leurs �di
�rentes origines
naturelles � !�quations di
�rentielles� �quations aux di
�rences� transformations in�
t�grales� etc�$ induisent des types di
�rents de transs�ries� Dans les chapitres �
et � nous pr�sentons une �tude d�taill� de ces di
�rents types de transs�ries� Nos
conclusions principales sont les suivantes �

� Il existe trois types principaux de transs�ries � les transs�ries r�ticul�es� les
transs�ries bien ordonn�es� et les transs�ries imbriqu�es de force sup�rieure�
Chaque type est caract�ris� par des propri�t�s de cl�ture quant � la r�solution
d��quations fonctionnelles�

� Il n�existe pas de corps de transs�ries� qui soit � la fois stable par sommation
in�ni et par exponentiation� En revanche� il existe un tel corps� si l�on se
restreint a des sommations d�nombrables�

� Les corps des transs�ries r�ticul�es et bien ordonn�es !de profondeur loga�
rithmique �ni$ sont stables pour la � r�solution fortement monotone� d��qua�
tions di
�rentielles alg�briques� Ce r�sultat semble se g�n�raliser au cas des
�quations fonctionnelles g�n�rales dans le cadre des transs�ries imbriqu�es de
force sup�rieure�
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S�ries formelles Commen�ons par l��tude des g�n�ralisations classiques des s�ries
formelles� Par analogie avec la d��nition des alg�bres de polyn�mes sur un groupe
quelconque� on souhaiterait d��nir des s�ries g�n�ralis�es en prenant les mon�mes
dans un groupe X quelconque� Le probl�me majeur ici est la d��nition du produit
de deux s�ries� Pour que cela devienne possible� il faut supposer l�existence d�un
!quasi�$ordre partiel sur X� et imposer des conditions sur les supports des s�ries�
Higman a d�montr� dans "Hig ��# qu�il su�t de demander aux s�ries d�avoir des
supports belordonn�s� pour que l�on puisse d��nir les op�rations habituelles sur les
s�ries� Dans le cas o� X est totalement ordonn�� ceci revient � exiger des supports
bien ordonn�s % par ailleurs� ce cas avait d�j� �t� consid�r� par Hahn dans "Hahn
��#�

Disposant des r�sultats g�n�raux de Hahn et de Higman� on peut se demander
si ce genre de supports se rencontre dans des probl�mes concrets� Consid�rons pour
cela les s�ries suivantes �

f � � � x�� � x�� � x�e � x�� � x�e�� � x�� � x�e�� � x�� � x��e � � � � �
g � � � x� log� � x� log � � x� log � � x� log� � � � � �
h � � � x���� � x���� � x��� � � � �� x�� � x���� � x��� � � � �� x�� � � � � � � � �
le groupe de mon�mes �tant X � xR� c�est���dire le groupe formel de puissances
r�elles de x� Nous avons

f �
�

�� x�� � x�e
�

donc f est en particulier la solution d�une �quation di
�rentielle alg�brique � coef�
�cients dans R� Nous avons

g�ex	 � 
�x	�

o� 
 est la fonction 
 de Riemann� Finalement � � h�x� �	 satisfait l��quation aux
di
�rences

��x	 � x� ��
p
x	�

Bien que f ne soit pas une s�rie de Puiseux� nous observons que le support de
f est contenu dans le sous�groupe Z� eZ�niment engendr� de R� Or Grigoriev et
Singer !voir "GS ��#$ ont d�montr� qu�il s�agit ici d�une propri�t� g�n�rale� r�sultant
du fait que f v�ri�e une �quation di
�rentielle alg�brique sur R� Dans cette th�se�
on montrera m�me un peu plus � le support d�une solution � � une telle �quation est
toujours inclu dans un ensemble de la forme a�N�� � ��anN�b �a�� � � � � an � �	 % nous
disons que supp� est r�ticul�� Nous notons qu�un sous�ensemble bien ordonn� de R�
qui est inclus dans un sous�groupe �niment engendr� de R n�est pas n�cessairement
r�ticul�� L�int�r�t des s�ries r�ticul�es est qu�elles se repr�sentent comme des s�ries
de Laurent en plusieurs variables� dans lesquelles on substitue des mon�mes dans X
aux variables�

Les exposants en x�� des �l�ments successifs dans le support de g tendent vers
��� En particulier le type d�ordre de supp g est � le plus petit ordinal d�nombrable�
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Plus g�n�ralement� consid�rons l�ensemble de s�ries dont le support n�admet pas de
borne sup�rieure� � moins d��tre �ni !de telles s�ries apparurent pour la premi�re fois
dans "LC ���# sous une forme l�g�rement di
�rente$� Comme l�ensemble des s�ries
r�ticul�es� cet ensemble forme �galement un corps� Les d�veloppements asymp�
totiques de certaines fonctions sp�ciales n�cessitent ce genre de supports� De plus�
ces s�ries peuvent encore �tre implant�es de fa�on relativement ais�e � l�aide de
l��valuation paresseuse !voir "Gr ��#$� bien qu�une approche na�ve puisse entra+ner
des augmentations dramatiques en complexit� !voir la section ���$�

Le dernier exemple montre que des supports bien plus g�n�raux peuvent ap�
para+tre� d�s que l�on consid�re des �quations aux di
�rences� En particulier� nous
observons que le type d�ordre de supp h est �� La th�orie e
ective des s�ries avec
des supports bien ordonn�s g�n�raux est bien plus complexe que celles des exemples
pr�c�dents� Pour une approche� nous renvoyons vers "VdH �	a#�

� � �

Venons en maintenant � l�introduction des transs�ries� Les transs�ries sont
d��nies r�cursivement comme des s�ries g�n�ralis�es� o� le groupe totalement or�
donn� X des transsmon	mes est un groupe d�exponentielles formelles de transs�ries
� plus simples �� les transmon�mes � les plus simples � �tant des logarithmes it�r�s�
Comme on l�a montr� plus haut� on peut envisager plusieurs types de supports pour
ces s�ries g�n�ralis�es� les choix les plus restrictifs ayant des avantages calculatoires�
et les choix les moins restrictifs ayant des avantages au niveau des propri�t�s de
cl�ture�

Transs�ries r�ticul�es Dans le chapitre �� nous consid�rons des transs�ries
dont les supports sont r�ticul�s� c�est���dire inclus dans un ensemble de la forme
cN� � � � cNnw� o� c�� � � � �cn sont des transmon�mes in�nit�simaux� et w un trans�
mon�me arbitraire� Par exemple� tout germe � l�in�ni d�une fonction exp�log d�ter�
mine une transs�rie r�ticul�e� En voici une

ex
��e�x

�� log�� x � ex
�
�

ex
�

log x
�

ex
�

log� x
� � � � � ex

�

ex
�

ex
�

log xex
� � � �� � � � �

dont le support est contenu dans log�Nxe�Nxex
�
�

Une propri�t� importante de la d��nition des supports r�ticul�s est la �nitude de
n� D�un point de vue asympotique elle a�rme qu�il existe une �chelle qui est g�n�r�e
par un nombre �ni d��l�ments dans laquelle on peut exprimer la transs�rie� En fait�
on peut m�me exiger de plus que les logarithmes de ces g�n�rateurs !sauf un$ sont
de nouveau exprimables par rapport � la m�me �chelle � c�est grosso modo l��nonc�
du th�or�me de structure d�montr� dans le chapitre �� Dans la partie e
ective de
cette th�se ce genre d��chelles joue un r�le tr�s important�

Une autre cons�quence importante des transs�ries r�ticul�es est qu�elles se ma�
nipulent bien d�un point de vue e
ectif� � nouveau gr,ce aux conditions de �nitude�
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Pour cette raison� nous ne consid�rons que ce type de transs�ries dans la partie B
de cette th�se�

Finalement� le corps des transs�ries r�ticul�es admet d�excellentes propri�t�s de
cl�ture� Notamment� il est stable par d�rivation� int�gration� composition et inver�
sion fonctionnelle� En outre� il est stable pour la r�solution d��quations di
�rentielles
alg�briques� tant que l�on n�introduit pas des ph�nom�nes oscillants� En conclusion�
les transs�ries r�ticul�es sont su�samment g�n�rales pour couvrir la majorit� des
applications de l�alg�bre asymptotique et� en plus� elles pr�sentent des avantages
calculatoires�

Transs�ries bien ordonn�es Cependant� les transs�ries r�ticul�es ne su�sent
plus� d�s que l�on consid�re des �quations fonctionnelles comportant la composition�
ou des transformations int�grales complexes� Pour cette raison� nous introduisons
dans le chapitre � des transs�ries aux supports bien ordonn�s� Ceci ne se fait qu�au
prix d�une technicit� accrue � nous avons besoin de m�thodes sophistiqu�es de la
th�orie du belordre !voir l�annexe A$� rien que pour d��nir la d�rivation et la com�
position fonctionnelle pour de telles transs�ries�

De surcro+t� cette th�orie plus g�n�rale introduit de nombreuses pathologies�
Premi�rement� il n�existe pas de corps de transs�ries qui est � la fois stable par
l�exponentielle� le logarithme et la sommation in�nie� Deuxi�mement� des transs�ries
convergentes comme

f � x�� � e�x � e�e
x

� e�e
ex

� � � � !��$

ne sont pas analytiques� mais seulement quasi�analytiques !voir " c ��# pour plus
de d�tails$� Troisi�mement� on n�a pas toujours la stabilit� par l�int�gration� Par
exemple� l�int�gration de

g �
�

x log x log log x � � � � e� logx�log logx�log log logx���� !���$

n�cessite l�introduction d�un � it�rateur� du logarithme !voir plus bas et " c ��#$�
N�anmoins nous isolons dans le chapitre � le corps des transs�ries bien ordonn�es

de profondeurs exponentielle et logarithmique �nies� Cette classe ne pr�sente aucune
des pathologies mentionn�es ci�dessus� et on exclut en particulier des transs�ries
comme dans !��$ et !���$� Nous montrons dans les chapitres 	 et � que cette classe
est stable pour la r�solution des �quations di
�rentielles alg�briques�

Plus g�n�ralement� mais nous le d�montrons pas dans cette th�se !voir aussi la
conclusion$� cette classe est stable pour la r�solution d��quations di
�rentielles aux
di
�rences alg�briques� o� les op�rateurs aux di
�rences sont des compositions �
droite par des transs�ries d
exponentialit� z�ro � ce sont des transs�ries g telles qu�une
contraction su�samment it�r�e��ng de g est asymptotique � x� La contraction���

est d��nie par f �� log �f � exp� En particulier� on peut prendre g � x� �� g � qx�
ou g � xM � et traiter les �quations aux di
�rences les plus fr�quentes�
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Transs�ries imbriqu�es et de force sup�rieure Comme nous l�avons soulign�
plus haut� l�int�gration d�une transs�rie g comme dans !���$ n�cessite l�introduction
d�un it�rateur du logarithme � un it�rateur d�une transs�rie f �� x est une transs�ries
f� v�ri�ant

f��x	 � f��f�x		 � ��

Les it�rateurs successifs log�� log��� � � � du logarithme ne sont pas des transs�ries au
sens habituel� N�anmoins� nous discutons dans la section ��� la construction de
corps de transs�ries de force sup�rieure� qui comprennent ce genre de transs�ries�

Une autre source d�instabilit� des corps de transs�ries consid�r�s plus haut provi�
ent de la r�solution d��quations comme

f�x	 � ex
��f�log� x��

o� log� d�signe le logarithme it�r� deux fois� Pour r�soudre cette �quation� il faut
recourir � des transs�ries imbriqu�es du style

f � ex
��elog

�
� x�e

log�� x�

���

�

De telles transs�ries seront �tudi�es davantage dans la section ����

Transs�ries en plusieurs variables et transs�ries faiblement oscillantes
Au del� des transs�ries fortement monones en une seule variable� on peut consid�rer
des transs�ries en plusieurs variables� et les transs�ries � faiblement oscillantes ��
L�id�e � force� derri�re l�introduction des transs�ries faiblement oscillantes est que
ce sont des transs�ries fortement monotones en plusieurs variables� dans lesquelles
on substitue des composantes oscillantes aux variables� De ce point de vue� on
comprend pourquoi l��tude approfondie des transs�ries fortement monotones est
essentielle pour aller plus loin� Ceci explique aussi la restriction principale de cette
th�se� qui peut para+tre arbitraire au premier abord�

Dans le chapitre � nous �tudions les transs�ries en plusieurs variables et faible�
ment oscillantes d�un point de vue th�orique� Nous donnons di
�rentes voies de
g�n�ralisations pour les di
�rents types de transs�ries� Plut�t que d��tablir une
th�orie profonde� nous �tudions les premi�res cons�quences des di
�rents choix pos�
sibles� En particulier� on verra que les transs�ries Noeth�riennes en plusieurs vari�
ables !qui g�n�ralisent les transs�ries bien ordonn�es$ doivent �tre d��nies avec beau�
coup de soin� si l�on veut que les d�riv�es partielles existent sur tout ouvert d�un
espace a�ne� Nous montrons aussi qu�il y a un certain �cart entre l�alg�brique et
l�analytique dans la d��nition des transs�ries faiblement oscillantes et complexes�
Nous montrons �nalement que les transs�ries r�ticul�es et fortement monotones
gardent toujours un sens dans un petit voisinage de l�axe r�el � l�in�ni !dans le
plan complexe des transs�ries$�
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Dans le chapitre ��� nous �tablissons une th�orie e
ective pour les transs�ries
r�ticul�es en plusieurs variables� que nous discutons de fa�on plus d�taill�e plus bas�
Ce chapitre peut �tre lu ind�pendamment du chapitre ��� qui n�a pas d�applications
dans cette th�se�

����� La r	solution d
	quations fonctionnelles

Dans les chapitres �� 	 et �� nous consid�rons la r�solution d��quations alg�bri�
ques� di
�rentielles lin�aires et di
�rentielles alg�briques dans les transs�ries� Nous
donnons des algorithmes th�oriques !et non des proc�d�s in�nis$ pour d�terminer
toutes leurs solutions !et non seulement les d�buts potentiels de solutions$�

Nous employons syst�matiquement deux techniques classiques � la m�thode des
polygones de Newton et la lin�arisation� Dans le cas des �quations di
�rentielles
alg�briques� la deuxi�mem�thode consiste � se ramener soit � des �quations � quasi�
lin�aires �� soit � des �quations de Riccati d�ordre inf�rieur� & titre historique� nous
remarquons que les polygones de Newton furent invent� par Newton dans "New
����#� mais il ne les utilisa pas pour donner toutes les solutions � une �quation
donn�e� Pour cela� il a fallu attendre Puiseux !voir "Pui ���#$� Dans le cas des
s�ries formelles� les polygones de Newton furent utilis�s pour la premi�re fois pour
r�soudre des �quations di
�rentielles dans "BB ���# et "Fi ��#� Plus r�cemment�
ils sont r�apparus dans "GS ��# et "Cano ��#�

Nous traitons les deux techniques de fa�on d�taill�e� car leur application � la
th�orie pr�sente est nouvelle� et comporte un certain nombre de subtilit�s qui ne
sont pas toujours mentionn�es dans des trait�s classiques �

L�approche de Smith et am�liorations D�abord� nous notons que la m�thode
classique des polygones de Newton est un processus a priori in�ni� Ceci pr�sente
des probl�mes calculatoires lorsque l�on consid�re des �quations du genre

f� � 


�� x��
f �

�

�� � x��	�
� �e�x�

En e
et� en appliquant brutalement la m�thode classique� on trouve successivement
les termes �� x��� x��� � � � de f � sans s�aper�evoir que cette �quation n�admet pas de
solution dans les transs�ries -

Une approche pour ce probl�me fut donn� par Smith !voir "Sm ���#$� et consiste
� trouver d�abord les solutions de l��quation d�riv�e


f � 


�� x��
� ��

Maintenant� au lieu de substituer �� �f � f � puis ��x��� ��f � f � etc� dans la m�thode
classique de Newton� on substitue directement �� �f � f � o� � � ���x��	�� est une
solution de l��quation d�riv�e� Nous pensons que cette approche est aussi importante
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que la m�thode de Newton elle�m�me et nous l�utilisons syst�matiquement pour
garantir la terminaison de nos algorithmes� Dans le chapitre �� nous l�am�liorons
m�me� en l�incluant en quelque sorte directement dans la m�thode des polygones de
Newton elle�m�me� Ceci entra+ne d�importantes simpli�cations techniques pour les
g�n�ralisations de la m�thode de Newton consid�r�es dans cette th�se�

Les supports des solutions La m�thode de Smith n�est pas seulement import�
ante � titre calculatoire � elle intervient aussi pour d�montrer des propri�t�s sur les
supports des solutions� En e
et� lorsque les coe�cients d�une �quation di
�rentielle
alg�brique sont r�ticul�s� bien ordonn�s ou de profondeurs logarithmiques �nis� il
n�est pas �vident a priori qu�il en est de m�me pour ses solutions� La m�thode
de Smith avec nos am�liorations peut alors �tre utilis�e pour r�duire en un nombre
�ni d��tapes la r�solution d��quations di
�rentielles alg�briques asymptotiques ar�
bitraires � la r�solution d��quations dites quasi�lin�aires�

Un exemple d�une �quation quasi�lin�aire est

f � e�x � e�x
�

ff � � f� �f �� �	�

L�id�e est que les termes non lin�aires sont asymptotiquement n�gligeables� lorsque
l�on prend e�x comme terme dominant pour f � Ensuite� la quasi�lin�arit� est pr�ser�
v�e lorsque l�on retranche ce terme dominant de f et on r�soud la nouvelle �quation�
En it�rant� on obtient alors une solution de l��quation !comme on montrera dans le
chapitre �$� qui est dite distingu�e�� Bien que le d�veloppement de cette solution
distingu�e ne puisse �tre calcul� que par un proc�d� in�ni en g�n�ral� nous avons
d�j� atteint deux objectifs� Premi�rement� on dispose d�une description pr�cise
d�une solution !au moins du point de vue th�orique$� Deuxi�mement� en vue de
ce qui pr�c�de� il su�t de d�montrer que le support de cette solution poss�de les
propri�t�s voulues� pour pouvoir conclure qu�il en est de m�me pour toute solution
de l��quation di
�rentielle alg�brique originale�

La di�cult� principale est donc de d�montrer l�existence des solutions distingu�es
et que leurs supports v�ri�ent les propri�t�s souhait�es� Dans le cas des �quations
di
�rentielles alg�briques� on tombe alors sur un probl�me di�cile� qui est d�exclure
la possibilit� de l�intrusion de logarithmes it�r�s arbitrairement souvent� Pour cette
raison� nous avons introduit un nouvel invariant discret� que nous appelons la r�gu�
larit� de Newton� Cet invariant est born� par l�ordre de l��quation� et augmente
chaque fois qu�un nouveau logarithme appara+t lors du calcul des termes successifs
de la solution distingu�e�

Les polygones de Newton g�n�ralis�s Pour traiter des �quations di
�renti�
elles alg�briques� il faut �videmment adapter la m�thode classique des polygones
de Newton� Une approches pour cela avait d�j� �t� propos� dans "GrSi ��# lors

�Nous notons que de telles solutions �tait d�j� calcul�es de fa�on syst�matique par Newton �voir
�New ��	�
��
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de cas plus restreints� L�id�e dans tous les cas est de d�composer le polyn�me
di
�rentiel en composantes homog�nes et de consid�rer les valuations de ces com�
posantes� Malheureusement� ceci ne donne pas directement un polygone de Newton
avec des propri�t�s ad�quates dans notre cas� En e
et� d�j� dans le cas tr�s simple
de l�int�gration �

f � � ee
x

� ��

ee
x
n�est pas le premier terme d�une solution de l��quation� Par ailleurs� il existe des

�quations di
�rentielles comme

ff �� � f �� � ��

dont les mon�mes dominants potentiels de solutions ne correspondent pas � des
pentes du polygone de Newton� mais seulement � des droites � admissibles � qui les
coupent en des points extr�maux�

Pour cette raison� nous introduisons un nouvel arti�ce � la conjugaison multipli�
cative� Plus pr�cisement� au lieu de d��nir un v�ritable polygone de Newton� nous
consid�rons l�e
et de la substitution f � c �f dans l��quation di
�rentielle alg�brique
P �f	 � �� o� c d�signe un transmon�me� En fonction de l��quation P �c �f 	 ainsi
obtenue� nous donnons alors de fa�on indirecte un crit�re� pour dire quand c cor�
respond � une pente du polygone de Newton ou � une droite admissible qui le coupe
dans un point extr�mal� Ces pentes sont toujours en nombre �ni % les droites admis�
sibles correspondent � des !presques$ solutions des �quations de Riccati associ�es
aux composantes homog�nes de P �

En conclusion� il existe donc toujours quelque chose comme un polygone de
Newton� mais on ne peut pas � le tracer� directement en regardant les mon�mes
dominants des coe�cients de P �

��� Asymptotique automatique

����� Les fonctions exp�logs

Le probl�me le plus naturel d�asymptotique automatique� qui d�passe substantielle�
ment le cadre des � vulgaires d�veloppements en s�rie de Taylor�� est celui du
d�veloppement des fonctions exp�logs� La r�solution de ce probl�me est � la fois
n�cessaire et une source de nouvelles techniques pour traiter des cas plus complexes�

Le premier algorithme Le premier algorithme pour manipuler automatiquement
les !germes de$ fonctions exp�logs � l�in�ni fut donn� par Shackell dans "Sh ��#� et est
bas� sur l�utilisation de � formes imbriqu�es�� Un exemple d�une forme imbriqu�e
est donn� par

f � exp exp�� log x exp�log log log��� � o��				�
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Bien que ce premier algorithme de Shackell permette de contourner le probl�me de
l�annulation ind��nie !voir la section ����	$� il se limite !grosso modo$ au calcul de
limites et est peu e�cace dans la pratique !voir "Gr ��#$�

Les d�veloppements complets Dans "Sh ��#� Shackell donne une deuxi�me ap�
proche� qui ne pr�sente pas ces d�savantages� et qui conduit � des d�veloppements
complets au sens des transs�ries� Dans le cadre du calcul des limites� une vari�
ante de cette approche fut retrouv�e ind�pendemment par Gonnet et Gruntz dans
"GoGr ��#� et implant�e par Gruntz dans Maple V�� !voir "Gr ��#$� Nous avons
adapt� l�algorithme de Gonnet et Gruntz dans "VdH �	b# pour obtenir � nouveau
des d�veloppements complets� Bien que plus ou moins �quivalent � l�algorithme
donn� par Shackell dans "Sh ��#� nous y introduisons la notion importante de �base
normale� !voir aussi la section �����$� qui joue un r�le cl� dans la suite de la partie
B de cette th�se�

Grosso modo� les bases normales sont des ensemble �nis B � fb�� � � � �bng qui
g�n�rent des �chelles asymptotiques SB � fb��

� � � �b�nn j��� � � � � �n 
 Rg� satisfaisant
� quelques conditions suppl�mentaires� Ces conditions facilitent les manipulations
e
ectives de fonctions exp�logs d�veloppables dans cette �chelle� De surcro+t� les
bases normales se laissent construire e�cacement de fa�on dynamique !une id�e qui
remonte � "Sal ��#$� Par cons�quent� on obtient rapidement une �chelle naturelle
dans laquelle une fonction exp�log peut se d�velopper � l�in�ni� La pr�sentation
de l�algorithme "VdH �	b# fut encore am�lior�e dans "RSSV ��#� pour donner un
algorithme r�unissant simplicit�� e�cacit� et la possibilit� d�obtenir des d�veloppe�
ments complets�

Repr�sentations cart�siennes Cependant� deux probl�mes importants ne furent
pas trait�s dans "RSSV ��# � comment r�duire le probl�me du d�veloppement des
fonctions exp�logs au probl�me des constantes !voir aussi la section �����$� et com�
ment s�parer des ordres de grandeurs tr�s di
�rents dans une m�me �chelle� Le
second probl�me est illustr� par l�exemple suivant �

f �
�

�� x�� � x�N
� �

�� x��
� !����$

o� N est tr�s grand !disons N � ���

$� Bien que cette fonction se d�veloppe �
l�in�ni par rapport � l��chelle x�R� l�algorithme dans "RSSV ��# prend un temps
O�N	 pour calculer le premier terme de f �

Dans "VdH ��a# !voir aussi le chapitre �$� nous avons r�solu les deux probl�mes
en introduisant un autre concept cl� de la partie B de cette th�se� les repr�sentations
cart�siennes� Dans l�exemple pr�c�dant� ceci revient � repr�senter x�� et x�N par
des variables formelles z� et z�� et � d�velopper f � la fois par rapport � z� et z��
Voici une liste des avantages des repr�sentations cart�siennes �
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� Leur utilisation �vite des annulations massives dans la m�me �chelle�

� Elles permettent de r�duire des questions sur des s�ries r�ticul�es g�n�rales �
des questions sur des s�ries formelles� En particulier des questions de tests �
z�ro�

� Elles ont des avantages calculatoires � puisqu�elles sont des s�ries de Laurent en
plusieurs variables� les algorithmes e�caces de calcul avec des s�ries formelles
s�appliquent !multiplication par dichotomie� par FFT� les algorithmes de Brent
et Kung� etc�$

Fonctions exp�logs d�pendants de param�tres Le premier avantage des re�
pr�sentations cart�siennes mentionn� dessus est d�autant plus important� quand on
autorise les fonctions exp�logs � d�pendre de param�tres� En e
et� en consid�rant N
comme un param�tre� l�utilisation des repr�sentations cart�siennes garantit alors la
terminaison du calcul du premier terme de f dans l�exemple !����$� contrairement
� l�algorithme pr�sent� dans "RSSV ��#�

Plus g�n�ralement� le d�veloppement de fonctions exp�logs d�pendant de param��
tres peut n�cessiter la s�paration de plusieurs cas � soit f � ee

�x
pour x � ��

Alors f se d�veloppe comme f � ee
�x
� f � e ou bien f � � � e�x � �

�e
��x � � � �

suivant que � � �� � � � ou � � �� Dans la section �� !voir aussi "VdH ��a#$�
nous donnons un algorithme� pour d�velopper des fonctions exp�logs f d�pendant
de param�tres� qui s�pare ce genre de cas de fa�on automatique� Cet algorithme
pr�suppose l�existence d�un oracle pour tester la consistence de syst�mes d��quations
exp�logs sur les constantes�

N�anmoins� il est important de noter qu�une partie importante de ce r�sultat
subsiste sans cet oracle � l�algorithme donne alors une liste� toujours �nie� de cas� et
le d�veloppement de f pour chaque cas� Ces cas sont d�termin�s par des contraintes
exp�logs sur les param�tres� et deux���deux exclusif� L�oracle est seulement utilis�
pour d�terminer quels cas peuvent r�ellement appara+tre� Nous pr�cisons aussi� que
l�on n�a pas besoin d�un test � z�ro pour les constantes exp�logs non plus�

Les algorithmes ci�dessus reposent sur une technique importante� et utilis�e
fr�quemment dans cette th�se� de s�paration automatique des cas� En termes d�infor�
matique th�orique ceci correspond � du non�d�termisme ou de la programmation
logique� Cette technique apparut pour la premi�re fois en calcul formel dans
"DDD �#� et est aussi connue sous le nom d��valuation dynamique�

����� Syst�mes de s	ries formelles en plusieurs variables

Dans le chapitre �� nous montrons comment r�soudre des syst�mes de transs�ries
en plusieurs variables� & cause de la complexit� de notre m�thode� nous consid�rons
d�abord dans le chapitre �� le cas plus simple de syst�mes de s�ries formelles en
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plusieurs variables� Les techniques d�velopp�es dans ce chapitre nous reserviront
pour le traitement du cas g�n�ral�

Comme toujours� l�ingr�dient principal de notre algorithme de r�solution est une
g�n�ralisation de la m�thode de Newton� avec les compl�ments discut�s dans la
section ������ Cependant� pour pouvoir appliquer cette m�thode� il a fallu r�soudre
de nombreux probl�mes techniques % d�crivons les bri�vement �

La m�thode de Newton lexicographique Dans la m�thode classique de New�
ton� nous consid�rons des s�ries formelles f�x�� x�	 en deux variables� que nous
d�composons

f �
X
��N

f��x�	x
�
� �

Chaque f��x�	 admet une valuation en x�� et ces valuations d�terminent le poly�
gone de Newton� Dans le cas d�une s�rie f�x�� � � � � xp	 en plusieurs variables� nous
pouvons toujours d�composer

f �
X
��N

f��x�� � � � � xp	x�� �

mais en g�n�ral� les f��x�� � � � � xp	 ne sont pas r�guliers� donc elles n�admettent pas
de valuations� Ici� une s�rie est dite r�guli�re si elle admet un terme dominant
unique�

Modulo des � ra�nements� !voir la section �����$� il est n�anmoins possible de
distinguer un nombre toujours �ni de � r�gions� sur lesquelles les f��x�� � � � � xp	
sont r�guli�res� Par exemple la s�rie x�� � x�� n�est pas r�guli�re en g�n�ral� mais
elle l�est� si x�� �� x�� !c���d� que x�� est n�gligeable devant x

�
�$� ou x�� �� x��� En

g�n�ral il est n�cessaire pour cela de r�soudre de fa�on approch�e les �quations
f��x�� � � � � xp	 � �� En e
et� dans l�exemple de dessus� il faut entre autres traiter le
cas ou x�� est tr�s voisin de x

�
�� Dans ce cas� il faut faire le changement de variables

x� � x
���
� �� � x��	 avec x

�
� �� � pour rendre x�� � x�� r�guli�re�

Ainsi� on voit que pour r�soudre l��quation f�x�� � � � � xp	 � � en x�� il faut
non seulements appliquer la m�thode de Newton � f en x�� mais aussi de fa�on
lexicographique � ces coe�cients it�r�s en x�� � � � � xp��� Il se trouve qu�un traitement
uniforme pour cela est possible� ce qui est l�objet de la section ���	�

Les syst�mes de contraintes asymptotiques On vient de voir qu�en g�n�ral�
les coordonn�s x�� � � � � xp de la s�rie f v�ri�ent des contraintes comme x�� �� x���
Nous les appelons des contraintes asymptotiques et ce concept rentre naturellement
dans le cadre des syst�mes asymptotiques� dont on a parl� dans la section ���� Dans
le chapitre ��� les contraintes asympotiques consid�r�es sont toujours de la forme�

x��
� � � � x�pp �� � �

x��
� � � � x�pp � �� !����$

et on parle de contraintes expo�lin�aires� En fait� il s�agit de contraintes lin�aires�
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mais �crites sous forme multiplicative� En particulier la th�orie de la programma�
tion lin�aire permet de tester si un tel syst�me de contraintes est consistant ou
contradictoire�

Repr�sentations cart�siennes Car les s�ries qui interviennent lors de la r�solu�
tion d�un syst�mes de s�ries formelles en plusieurs variables ne sont pas n�cessaire�
ment des s�ries formelles� nous avons besoin de les repr�senter par des repr�sentations
cart�siennes� Une s�rie comme �� � x��x�	��� o� x� �� x� peut par exemple �tre
repr�sent�e par ��� z	��� o� z � x��x� 
 Sfx��x�g�

Or pour appliquer la �m�thode de Newton lexicographique�� il faut pouvoir
d�velopper une s�rie en fonction des vraies coordonn�es x�� � � � � xp et non seule�
ment en les variables z�� � � � � zk de sa repr�sentation cart�sienne� Nous n�avons pas
d�algorithme pour faire cela en g�n�ral� mais dans la section ��	 nous introduisons les
pseudo�coe�cients� que nous pouvons calculer� et qui sont su�samment proches des
v�ritables coe�cients pour que la m�thode de Newton lexicographique s�applique
encore�

Communaut�s locales e
ectives Pour garantir que toutes les repr�sentations
cart�siennes qui interviennent dans les calculs interm�diaires puissent se faire de
fa�on e
ective� il faut formuler les propri�t�s e
ectives de cl�ture que la classe
des s�ries !en fait les repr�sentations cart�siennes$ consid�r�es doit poss�der� Pour
pouvoir appliquer la m�thode Smith� il est en particulier n�cessaire que cette classe
soit stable pour la r�solution d��quations implicites�

Dans la section ���� nous introduisons les communaut�s locales e�ectives qui sont
pr�cis�ment les classes de s�ries qui poss�dent les propri�t�s de cl�ture appropri�es�
Dans la section D����� nous montrons que la classe des s�ries D�alg�briques est
une communaut� locale e
ective !les s�ries D�alg�briques �tant grosso modo des
solutions d��quations di
�rentielles alg�briques dans les s�ries$� En particulier� cette
classe contient les s�ries fabriqu�es � l�aide de la plupart des fonctions sp�ciales� et
en particulier les s�ries exp�logs� La classe des s�ries convergentes sur R est un
autre exemple d�une communaut� locale !non e
ective$� En particulier� la plus
petite communaut� locale qui contient les s�ries exp�logs ne contient que des s�ries
convergentes� Dans le chapitre ��� ceci entra+nera que les solutions de syst�mes
d��quations exp�logs sont toutes convergentes�

����� Syst�mes de transs	ries en plusieurs variables

Lorsque l�on consid�re des transs�ries en plusieurs variables au lieu de s�ries formelles
en plusieurs variables� les di�cult�s techniques se multiplient encore� En plus des
m�thodes expos�es dans la section pr�c�dente� nous utilisons de fa�on syst�matique
les bases normales� D�crivons bri�vement les points essentiels �
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Les syst�mes de contraintes asymptotiques Outre les contraintes de la for�
me !����$� nous consid�rons aussi des contraintes de la forme�

x��
� � � �x�pp ��� x��� � � � x�pp �

x��
� � � �x�pp �� x��� � � � x�pp

!����$

dans le chapitre ��� Ici f ��� g� si log jf j �� log jgj et f �� g� si log jf j � log jgj�
Ces relations expriment que f est d�une � �chelle plus faible � resp� � de la m�me
�chelle �� ou dans les termes de Shackell que f a une � classe de comparabilit�
inf�rieure� � g� resp� f est �de la m�me classe de comparabilit� � que g� Par
exemple x �� x�


���
� mais x ��� xlog logx� pour x � �� Dans la section �	� nous

montrons que l�on peut toujours d�cider si ce genre de syst�mes plus g�n�raux de
contraintes sont consistants�

Les bases normales Au lieu de travailler avec une grande base normale B� nous
travaillons plut�t avec p bases normales B�� � � � � Bp� une pour chaque coordonn�e
x�� � � � � xp� Le jeu est alors d�introduire le moins possible de nouveaux �l�ments
dans B � B�  � � �  Bp lors de la r�solution d�un syst�me de transs�ries� Plus
pr�cis�ment l�introduction d�un nouvel �l�ment dans Bj doit toujours �tre compens�e
par l��limination d�un �l�ment dans Bi pour un i � j� Mais une telle �limination
compense autant d�insertions dans Bj� � � � � � Bjl avec j�� � � � � jl � i que l�on souhaite�

Cependant� il faut de l�astuce pour arriver � cette �n� Une de ces astuces est la
suivante � lorsque l�on veut r�soudre une �quation comme

xex � y� !����$

avec x� y �� �� il faut en particulier d�terminer la classe d��quivalence de x !pour
�$� Notons que xex � y s�exprime par rapport � la base normale B � B�  B� �
fx��� e�xg  fy��g� La fa�on la plus simple de faire serait de prendre le logarithme
de l��quation !����$ �

x� log x � log y�

et de constater que x � log y� Cependant� le calcul de ce logarithme n�cessite
l�insertion de log�� x et log�� y dans B�

Pour contourner ce probl�me nous remarquons que x ��� ex� et pour que xex �
y� il faut en particulier que ex �� y� donc x � log y� Ceci permet � nouveau de
d�terminer la classe d��quivalence de x� mais cette fois�ci sans ins�rer log�� x dans
B� De plus� puisque xex � y� nous obtenons ex � y� log y� et apr�s plus de calculs�
il devient possible de r��crire ex en fonction de y� log y et log log y seulement� On
peut donc �liminer ex de B� et le rajout des deux logarithmes log�� y et log�� log y
est compens� par cette �limination d�un �l�ment de B��

Ultra�r�gularisation Pour pouvoir !entre autres$ extraire les pseudo�coe�cients
d�une transs�rie en plusieurs variables� les variables de sa repr�sentation cart�sienne
doivent �tre ultra�r�guli�res � grosso modo� ceci veut dire que ces variables repr�sen�
tent des transmon�mes dont les classes de comparabilit� sont bien d�termin�es� Par
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cons�quent� nous montrons dans le chapitre �� comment �ultra�r�gulariser � des
transs�ries� et comment conserver cette propri�t� lors des calculs�

R�sultats principaux Le r�sultat principal du chapitre �� est un algorithme de
r�solution de n�importe quel syst�me de transs�ries qui admettent des repr�senta�
tions cart�siennes dans une communaut� locale e
ective �x�e� Comme dans le cas
de l�expansion de fonctions exp�logs param�tr�es� on suppose l�existence d�un oracle
pour tester la consistance de syst�mes exp�logs sur les constantes� N�anmoins� en
absense d�un tel oracle� nous avons quand m�me un algorithme presqu�aussi fort�
comme dans le cas des fonctions exp�logs d�pendant de param�tres�

De plus� on remarque que l�oracle ne concerne que la consistance de syst�mes exp�
logs sur les constantes� m�me si la communaut� locale contient les d�veloppements
asymptotiques d�autres fonctions sp�ciales que l�exponentielle et le logarithme� Cette
observation justi�e d�une autre mani�re la place sp�ciale accord�e aux fonctions exp�
logs dans l�asymptotique automatique� une chose qui est souvent surprenante pour
les gens ext�rieurs du domaine� En e
et� lorsque l�on calcule avec des formes closes
il n�y a point d�int�r�t � accorder une place si sp�ciale aux fonctions exp�logs�

En appliquant notre r�sultat principal � des communaut�s locales pr�cises� nous
obtenons divers th�or�mes � l�algorithme peut s�utiliser en particulier pour r�soudre
des syst�mes asymptotiqes d��quations exp�logs en plusieurs variables� mais on peut
aussi traiter des syst�mes de transs�ries bien plus g�n�rales en prenant la classe des
s�ries D�alg�briques comme communaut� locale e
ective� De fa�on th�orique� nous
pouvons aussi consid�rer les communaut�s locales de toutes les s�ries convergentes ou
de toutes les s�ries� Dans le premier cas� il s�ensuit que toute transs�rie� solution d�un
syst�me de transs�ries convergentes� est convergente elle aussi� Dans le deuxi�me
cas� nous avons une description th�orique de l�ensemble de solutions d�un syst�me de
transs�ries� En�n� on obtient la stabilit� par composition et inversion fonctionnelle
des di
�rentes classes de transs�ries�

����� Les 	quations di	rentielles alg	briques�

Dans le chapitre ��� nous rendons r�ellement e
ectif l�algorithme du chapitre � pour
r�soudre des �quations di
�rentielles alg�briques � coe�cients dans les transs�ries�
dans le cadre des transs�ries r�ticul�es� Comme les solutions d�une �quation di
�ren�
tielle d�pendent des conditions initiales� la solution asymptotique g�n�rique d�une
telle �quation doit faire intervenir des param�tres� La particularit� de notre al�
gorithme est qu�il d�termine lui�m�me les param�tres qu�il convient d�introduire et
qu�il calcule la solution g�n�rique en fonction de tels param�tres�

Le traitement e
ectif soul�ve� comme toujours� un certain nombre de di�cult�s
suppl�mentaires� Discutons les bri�vement ici�

L�oracle pour les constantes Dans le cas des �quations di
�rentielles alg�briques�
nous avons besoin d�un oracle pour les constantes encore plus fort que dans les
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chapitres  et ��� nous supposons que nous pouvons tester la consistance de n�impor�
te quel syst�me du premier ordre form� � partir des rationnels !disons$� les op�rations
du corps� l�exponentielle� le logarithme et la relation d�ordre� Dans "VdD 	#� van
den Dries montre que de tels syst�mes ne se ram�nent pas toujours � des syst�mes
exp�logs comme dans les chapitres  et ��� Un exemple de cette situation est donn�
par la formule

y � � � �w �wy � x � z � yew	� !���	$

N�anmoins� nos r�sultats subsistent dans un sens plus faible sans l�oracle� comme
expliqu� dans la section ��	�� � propos des fonctions exp�logs param�tr�es�

Th�or�mes de stabilit� Dans le chapitre �� nous avons montr� comment r�soudre
des �quations di
�rentielles alg�briques quand les coe�cients sont des transs�ries
bien ordonn�es� Nous montrons dans la section ���� que si les coe�cients sont
r�ticul�s� alors il en est de m�me pour les solutions�

Calculs e
ectifs avec les solutions distingu�es Le point le plus d�licat du
chapitre �� est le calcul exact avec les solutions distingu�es� Plus pr�cis�ment� si
les coe�cients d�une �quation quasi�lin�aire vivent tous dans un corps di
�rentiel
e
ectif T de transs�ries� on souhaiterait pouvoir �tendre T avec la solution distingu�e
f de l��quation� Bien que nous disposions d�une caract�risation de f � en regardant
son support� cette caract�risation ne permet pas toujours de r�soudre se probl�me�

Dans le chapitre ��� nous r�solvons ce probl�me en introduisant des solutions
semi�distingu�es� Ces solutions sont d��nies de fa�on dynamique� et elles remplacent
les solutions distingu�es f dans les cas o� l�on n�est pas capable d�e
ectuer un test �
z�ro dans l�extension de T par f � Ce traitement est assez d�licat et nous renvoyons
vers le chapitre �� pour plus de d�tails� Un aspect bizarre de cette th�orie est que
l�on sait calculer avec des solutions g�n�riques d��quations di
�rentielles alg�briques�
mais pas avec des solutions particuli�res -

����� Des comportements asymptotiques oscillants

Nous allons discuter ici les r�sultats du chapitre �	� qui forme une premi�re contri�
bution au calcul asymptotique g�n�ral en pr�sence de ph�nom�nes oscillants�

L�alg�brique versus l�analytique Dans le cas des comportements fortement
monotones� les propri�t�s analytiques des transs�ries co�ncident . pour ce que
l�on en sait . avec les propri�t�s alg�briques� Pour la version la plus simple des
transs�ries faiblement oscillantes� ceci n�est pas toujours le cas� Consid�rons par
exemple la relation


 � sinx� sin ex ��
�

��x� 
	
�
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qui est analytiquement valide pour tout x su�samment grand� � cause du d�velop�
pement en fraction continue de e� En revanche� dans les mod�les les plus simples
de calcul avec des transs�ries faiblement oscillantes� cette relation n�est pas tou�
jours vraie� mais plut�t ind�cidable� On peut n�anmoins imposer ce genre de re�
lations dans le mod�le alg�brique� mais il faut des connaissances ext�rieures� non
alg�briques� pour cela % ici� ce r�le est jou� par la fraction continue de e�

 tant donn� qu�il ne va pas de soi que l�alg�brique et l�analytique co�ncident�
il est important d��tudier dans quels cas on a correspondance� Le premier r�sultat
du chapitre �	 r�gle ce probl�me dans un cas non trivial� En e
et� consid�rons
des fonctions exp�logs !ou d�autres transs�ries r�ticul�es ayant un sens analytique$
f��x	� � � � � fp�x	� positives � l�in�ni� Si � est une fonction sympathique !disons
alg�brique$ sur ���� ��p� on peut se demander quelles sont les limites sup�rieure et
inf�rieure de ��sin f��x	� � � � � sin fp�x		� Il se trouve que la r�ponse � cette question
peut �tre donn�e de fa�on e
ective en n�utilisant que des calculs alg�briques� Ceci
se d�montre en g�n�ralisant un th�or�me classique de Bohr� Sierpi/ski et Weyl sur
la distribution uniforme� disons des progressions arithm�tiques de pas irrationnel
modulo un !voir "Kok �	#� "KN �	#$�

D�veloppements de fonctions sin�exp�logs Plus g�n�ralement� au lieu de ne
calculer que des limites sup�rieures et inf�rieures� on peut se demander comment
d�velopper des � fonctions sin�exp�logs� � l�in�ni� Il faut� pour cela� utiliser les
r�sultats ci�dessus et l�algorithme du chapitre �� pour calculer les d�veloppements
g�n�riques de transs�ries en plusieurs variables� Bien qu�en toute g�n�ralit�� ceci
n�cessite des oracles tr�s puissants pour r�pondre � des questions d�approximation
diophantienne� nous donnons dans la section �	���� une approche qui pourrait per�
mettre de traiter la plupart des cas que l�on rencontre dans la pratique� et ceci
seulement � l�aide de l�oracle employ� dans le chapitre ���

Et au del� des fonctions sin�exp�logs � Dans le chapitre �	 nous discutons en�n�
mais pas en d�tail� l�extension de nos r�sultats � certains types d��quations di
�ren�
tielles� et nous soul�vons quelques probl�mes qui restent � r�soudre� Grosso modo
nous savons assez bien traiter � pr�sent le cas ou l�on consid�re des d�veloppements
par rapport aux transmon�mes fortement monotones� mais avec des coe�cients qui
sont des fonctions analytiques en des sinus de transs�ries fortement monotones�
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Chapter �

Grid�based transseries

��� Introduction

In this chapter we de�ne grid�based transseries� Thereby� we lay the theoretical
foundation for most algorithms of part B of this thesis� and provide the basics for
the further development of �asymptotic algebra� as a subject on its own� Trans�
series were �rst introduced in "Dahn 	#� "DG �# and " c ��# in order to describe
very general types of strongly monotonic asymptotic behaviour near in�nity� This
means that the functions we consider do not present any oscillatory phenomena at
in�nity� It can be seen as the algebraic counterpart of the theory of Hardy �elds
!see "Bour ��#� "Har ��#� "Har ��#� "Ros �#$� which is also frequently used in the �eld
of automatic asymptotics�

In fact� we think that the theory of transseries is more natural as a foundation for
automatic asymptotics� because of its algebraic nature� Actually� the theory serves
as an algebraic model for our computations� The advantage with respect to the
former model of Hardy �elds is that there is no need to establish any analytic lemmas
in order to justify computations which are essentially algebraic� As a consequence�
it is possible to solve certain types of functional equations� which had not previously
been solved using the theory of Hardy �elds� Moreover� the notion of a transseries is
easier to generalize� in chapter � we will consider transseries in several variables and
transseries with weakly oscillatory !in contrast to strongly monotonic$ behaviour at
in�nity� Finally� resummation theory can be used to recover the analytic properties
of transseries in many cases !see " c ��#$� although we will not be concerned with
this here�

Let us now come more speci�cally to the contents of this chapter� In section ���
we study ordered rings� In section ��� we introduce grid�based series� which gen�
eralize classical power series� Grid�based power series satisfy a strong �niteness
condition on their supports� This condition is veri�ed for many practical purposes
!including the theory of algebraic di
erential equations$� and simpli�es a lot of com�
putations� However� it is sometimes necessary to consider more general types of

��
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supports� which will be done in the next chapter� In section ��	 we de�ne the notion
of an asymptotic scale in the context of grid�based series�

In section ��� we introduce grid�based transseries� The transseries form a totally
ordered �eld� in which we have an exponentiation� a logarithm and an in�nite sum�
mation operator� In section ��� we proceed with the study of some asymptotic
properties of the �eld of transseries� In particular� we introduce the concept of nor�
mal bases and we prove a structure theorem� In the last section we de�ne most of the
common operations on transseries� that is the di
erentiation w�r�t� x� composition
and functional inversion� We conclude this chapter by giving a natural solution to
a conjecture of Hardy�

Throughout this chapter� we will frequently use order theoretic concepts� For
de�nitions and elementary properties� we refer to appendix A�

��� Ordered rings

An ordered semigroup is a semigroup X� together with an ordering �� which is
compatible with the multiplication . i�e� x � y � x� � y� � xx� � yy�� An
ordered ring is a ring A� together with an ordering �� which is compatible with
the ring structure� This means that x � y � x� � y� � x � x� � y � y�� � � ��
and � � x � � � y � � � xy� Such an ordering is characterized by the set of
positive elements� Let A be an ordered ring� An ordered A�algebra is a morphism
of ordered rings A

�� B . i�e� an increasing morphism of A into an other ordered
ring B� In particular� A itself is an ordered Z�algebra�

Let A
�� B be a totally ordered A�algebra� The absolute value jxj of x 
 B

is de�ned by jxj � x if x � �� and jxj � �x otherwise� We denote x �� y� if
j�xj � j�yj� for some � 
 A and all � 
 A� and we say that x is negligible w�r�t�
y� Similarly� we denote x �� y� if jxj � j�yj� for some � 
 A� and we say that
x is dominated by y� Instead of Hardy�s notation� one often uses Landau�s
notation� according to which we write x � o�y	 resp� x � O�y	 instead of x �� y
resp� x �� y�

If x �� �� then we say that x is in�nitesimal� If � �� x� then we say that x
is in�nitely large� If x �� �� then we say that x is bounded !and x is said to
be unbounded if not$� The sets of in�nitesimal resp� bounded elements of B
are denoted by Bo resp� BO� We also de�ne x � y � x �� y � y �� x� and
x � y � x � y �� x� Both relations are equivalence relations� Elements x in A
with x � � are called Archimedian� If all non zero divisors in B are Archimedian�
then we say that B is Archimedian� In particular� an ordered ring is said to be
Archimedian� if it is Archimedian as a Z�algebra�

For the de�nition of the last asymptotic relations� we need a preliminary� Any
commutative group G can be seen as aZ�module� If G is multiplicative� thenZacts
onG by exponentiation� and we say that G is a group withZ�powers� More generally�
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if R is any ring� then a group with R�powers G is an R�module� whose underlying
group is multiplicative� and such that R acts on G by exponentiation� We also say
that G is an exponential R�module� If G is ordered and R is an ordered ring� then
we say that G is an ordered group with R�powers� if � � x � � � �� � � x��
Similarly� a totally ordered �eld with R�powers is a totally ordered �eld K�
whose multiplicative ordered group of strictly positive elements K�

� has R�powers�
Assume now that A and B are totally ordered �elds with R�powers� such that

�xy	� � x�y�� for all x 
 A�
� � y 
 B�

� and � 
 R� We denote �x � jxj and �x � ��jxj�
for x 
 B� with � � jxj and jxj � � respectively� The comparability class over
R of an element x 
 B� is the set of y 
 B�� such that there exist �� � 
 R�

� � with
�x � fy� and �y � fx�� We write x��Ry if x and y have the same comparability class�
We also write x���Ry� if fx� � fy�� for some � 
 R�

� and all � 
 R�
� � If this is the

case� then we say that x has a smaller comparability class than y over R !indeed�
the relation ��� determines an ordering on the set of comparability classes$� If no
confusion about R can arise then we will denote ��R and ���R by �� resp� ��� �

Remark �� The above de�nitions of the asymptotic relations �� � �� � etc� are
only valid in the case when B is totally ordered� However� as we will see in the
next section� these asymptotic relations can often be introduced without having an
ordering on B� Constructions such as completions and methods like the Newton
polygon method can also be carried out independently from orderings� In fact� it
is possible to introduce the concept of �asymptotic orderings� in a more axiomatic
way� but this point of view will never be used in the rest of this thesis�

An asymptotic ordering on a ring A is a transitive relation 	� such that for
each y 
 A� the set fx 
 Ajx 	 yg is an additive subgroup of A� and such that
x 	 y � xz 	 yz� for all x� y and z in A� If A is a �eld� then 	 is determined
by the additive subgroup fx 
 Ajx 	 �g� The relations �� and �� from above
are asymptotic orderings� However� we notice that an asymptotic ordering is not
necessarily an ordering� Indeed� �� is not a strict ordering� since � �� �� The
relation �� is only a quasi�ordering� Other examples of asymptotic orderings will
be encountered in this thesis each time we extend the de�nitions for �� and �� �
Yet some other examples can be given� and we refer to "VdH �	a� p� ��#�

��� Grid	based series

����� Algebras of grid�based series

Let X be an ordered commutative multiplicative semigroup� A subset � � X is said
to be grid�based� if we have

� � cN� � � � cNnW� !���$

for w� � �� � � � �wn � � in X� and a �nite subsetW of X� If X is a group� which is
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generated by the set of elements which are strictly superior to �� then we can take
a singleton forW� Moreover� we have

� � c
�N�p�
� � � �c�N�p�n � !���$

for certain c� � �� � � � �cn � � and p 
 Zin this case� We remark that a grid�based
subset of X is necessarily Noetherian by Dickson�s lemma !see page ���$�

Proposition �� Each �nite subset of X is grid�based� If � and �� are grid�based
subsets of X� then so are �  ��� ���� Moreover� if c � �� for all c 
 �� then
�� def

� fc� � � �cnjc�� � � � �cn 
 �g is grid�based�

Proof All assertions except the last one are trivial� So assume that � is a positive
grid�based subset of X� and let c�� � � � �cn�W be such that !���$ is satis�ed� We
claim that W may be taken equal to f�g% from this we trivially deduce that �� is
grid�based� Let w be inW� By Dickson�s lemma� the �nal segment of Nn of those
�a�� � � � � an	� such that ca�� � � �cann w � �� is �nitely generated� Let cn��� � � � �cm
be those elements of X of the form c

a�
� � � �cann w� where �a�� � � � � an	 is one of the

generators mentioned above� and wherew runs overW� Then we have � � cN� � � �cNn �
which proves our claim� �

Now let C be a ring� We denote by C��X��� or by C��X�� the set of mappings
from X to C with grid�based support� and we call it the set of grid�based series
in C over X� Here the support of a mapping � � X � C is the set supp� � fc 

Xj��c	 �� �g� Such mappings are also denoted by sums Pc�X �cc� More generally�
we say that a family �fi	i�I of elements in C��X�� is a grid�based� if

S
i�I supp fi

is grid�based� and if fi 
 Ijc 
 supp fig is �nite for each c 
 X� If �fi	i�I is such a
family� then we de�ne X

i�I
fi �

X
c�X

�X
i�I

fi�c

�
c� !���$

The elements of X are called monomials and the elements of C coe�cients% X
itself is also called a monomial group If f 
 A and c 
 X� then we say that fc is
the coe�cient of c in f and we say that fcc is a term occurring in f �

Let us show that C��X�� can naturally be given the structure of a C�algebra�
First of all� C and X can be embedded canonically into C��X��� by c �� c � � resp�
c �� � � c� Let f and g be in A� Then we de�ne

f � g �
X

c�suppf�suppg
�fc � gc	c�

Similarly� their product is de�ned by

fg �
X

�c�w��suppf	suppg
fcgwcw�
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To see that fg is well de�ned� we �rst observe that supp fg � �supp f	�supp g	�
Furthermore� each set of pairs �c�w	 which give rise to the same monomial cw forms
an antichain for the product ordering on supp f � supp g� Hence such sets are �nite
by proposition A��!d$� We leave it to the reader to verify that A is indeed a ring for
these operations�

We denote by C��X��o resp� C��X��O !see below for a justi�cation of these
notations$ the sets of series f 
 C��X�� such that c � � resp� c � � for all
c 
 supp f � Now let � 
 C��t�� be an ordinary power series� Then � induces an
application � � � from C��X��o into C��X��O� de�ned by

� � f � X
c
k�
� ���cknn ��suppf��

�k������knf
k�
c�
� � � fkncnck�� � � � cknn � !��	$

Using proposition ��� and the corollary of Higman�s theorem !see page ���$� ��f is
seen to be well de�ned as in the case of the multiplication� Moreover� the association
� �� �� � is a morphism of algebras� As an application� we observe that any element
of � � C��X��o is invertible� In the case when C is a �eld and X a totally ordered
group� we therefore conclude that C��X�� is a �eld� Indeed� let m be the smallest
element of the support of a non zero f � Then we can write ��f � �fmm	���f�fmm	���
As another application� we remark !assuming that C � Q$ that we can take the
exponential of any in�nitesimal series� and the logarithm of any element in � �
C��X��o� Moreover� exponentiation and logarithm are inverse one to another�

Example �� Let A be an ordered commutative group and z a formal in�nitesimal
variable� We denote by zA the formal multiplicative group� which is isomorphic to
A !via the isomorphism a �� za$� We call C��zA�� the ring of grid�based series over
C in z along A� If no confusion about A can arise� then we also denote C��zA�� by
C��z���

We can de�ne grid�based series in several variables z�� � � � � zn along A in di
erent
ways� First� we can give zA� � � � � � zAn the natural product ordering �prod� In this
case

C��z�� � � � � zn�� � C���zA� � � � � � zAn 	
�prod��

is said to be the ring of grid�based series over C in z�� � � � � zn along A� Secondly� we
can give zA� � � � � � zAn the lexicographical ordering �lex� In this case

C��z�� � � � � zn�� � C���zA� � � � � � zAn 	
�lex��

is said to be the ring of lexicographical grid�based series over C in z�� � � � � zn along
A� We have C��z�� � � � � zn�� � C��z�� � � � � zn��� where the inclusion is strict if C is
non trivial and n � ��

� �
z�
z�
�
z��
z��
� � � � 
 C��z�� z���nC��z�� z����
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If C is a �eld� and A is totally ordered� then C��z�� � � � � zn�� is a �eld� Finally� we
can consider the ring C��z��� � � � ��zn��� which contains C��z�� � � � � zn��� Again� this
inclusion is usually strict�

� �
z�
z�
�

z��
z���
�

z��
z���
� � � � 
 C��z�����z���nC��z�� z����

����� Asymptotic relations

The set of minimal elements of the support of a series f is said to be its set of
dominant monomials� If this set consists of a singleton� the unique minimal
element is said to be the dominant monomial of f � and we denote it by mf � In
this case f is said to be a regular� and we also de�ne cf

def

� fmf to be its dominant
coe�cient and �f � cfmf to be its dominant term� Each series f can be written
as a �nite sum of regular series� Indeed� let fm�� � � � �mng be the set of dominant
monomials of f � Then we write

f �
nX
i	�

X
c��m����� �mi�n�m����� �mi���

fcc� !���$

Here we recall that �E	 � X denotes the �nal segment generated by a subset E
of X�

Let us now suppose that X is totally ordered� Then all series in C��X�� are
regular� If C is an ordered ring� then we give C��X�� the structure of an ordered
C�algebra� by setting f � � if f �� � and cf � �� If C is a totally ordered ring� then
so is C��X���

Warning �� It should be noticed that the ordering on the monomials in X is
precisely the opposite from the ordering on X� considered as a subset of C��X��� For
instance� if C �Zand X � zA in example ���� then z �X z�� although z �

C��zA�� z
��

In cases where confusion might arise� we will usually precise that the monomial c is
smaller than the monomial w� if c �X w� Moreover� monomials are usually denoted
by the Cyrillic characters c and w� Nevertheless� the reader should always be aware
of this warning�

In the previous section we introduced the asymptotic relations �� � �� �� and
� for totally ordered algebras� We will now give equivalent de�nitions in the case of
C��X��� when both C and X are totally ordered� In fact� these alternative de�nitions
can still be used when C is no longer ordered� and X only partially ordered� In
particular� this will justify the above reintroduction of the notations C��X��o and
C��X��O�

We say that f is in�nitesimal� if and only if � � supp f � Similarly� f is
bounded� if and only if � � supp f � The relations �� resp� �� are de�ned by
f �� g � f 
 C��X��og resp� f 
 gC��X��O� and we respectively say that f is
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negligible w�r�t� g and that f is dominated by g� We say that f is asymptotic
to g� if f �� g �� f � and we write f � g� We say that f is equivalent to g� if
f � g �� f � and we write f � g�

If X is totally ordered� then we still have some other characterizations of �� �
�� � � and �� f �� g � mf � mg� f �� g � mf � mg� f � g � mf � mg and
f � g � cfmf � cgmg� Here m
 � ��X � by convention� We can also make
some more de�nitions� If mf � �� then we de�ne its limit to be limf � f�� If
mf � �� we set limf � �� If mf � �� we de�ne limf � ��C� depending on the
sign of cf � An unbounded series !which is necessarily in�nitely large$ is said to be
purely unbounded � if there does not exist any c 
 supp f with � � c� The set
of purely unbounded series together with � is denoted by C��X��
� Then we have
the canonical decomposition C��X�� � C��X��
 � C � C��X���� and we denote by
f � f
 � f c � f� the corresponding decomposition of an element f 
 C��X��� We
also denote f � � f
 � f c and f

�
� f c � f��

Assuming that X is a totally ordered group with R�powers� for some totally
ordered ring R� we can also give some alternative de�nitions of ���R and ��R� Again�
we denote �c � c� if � � c� and �c � c�� otherwise� Then the comparability
class over R of an element f 
 C��X�� is the set of g 
 B� such that there exist

�� � 
 R�
� with fmf � fm�g and fmg � f

m
�
f � We denote f��Rg� if f and g have the

same comparability class over R� We also denote f���Rg� if for some � 
 R�
� and

all � 
 R�
� we have fm�f � f

m
�
g � and we say that f has a smaller comparability class

than g over R� Indeed� it can be veri�ed that ���R induces an ordering on the
compatibility classes over R� If no confusion about R can arise� then we denote
��R � �� and ���R � ��� �

����� Quasi�ordered monomial groups

A quasi�ordered group !with R�powers$ is de�ned in a similar way as an ordered
group !with R�powers$� by replacing �ordering� by �quasi�ordering� !see page ��	$
in the de�nition� For certain purposes !see chapters �� and ��$� it is useful to
extend the notion of grid�based series to the case when the monomial group X
is only quasi�ordered� It is easily checked that all what has been said in the two
previous sections generalizes to this case� when systematically replacing �ordered
group !with R�powers$� by �quasi�ordered group !with R�powers$��

LetX be a quasi�ordered monomial group� and U its subgroup of elements c with
c � �� Selecting a �natural right inverse� 	�� for the projection 	 � X � X� �� we
obtain natural inclusions

�� � C��X� � ���U � �� C��X��

and
�� � C��X�� �� C�U ���X� � ���
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by setting

��

�	 X
c�X��

X
w�U

fc�wcw


A � X
c�X��

X
w�U

fc�w	
���c	w

and

��

�	 X
c�X��

X
w�U

fc�w	
���c	w


A � X
c�X��

X
w�U

fc�wcw�

However� these inclusions are generally strict in both cases� For instance� let X �
zZ� z

Z
� � with � � z� and � � z� but z� � z�� Then we have U � �z��z�	Zand

X� ��� z�
Z� Take 	���z�k	 � zk� for all k� Now ���� � z�� z�	 is in C��X�� but not

in im��� and
P

k�N�z��z�	
k�z�

k is in C�U ���X� � �� but not in im���

��� Asymptotic scales

����� Invertible series

Let R � Zbe a totally ordered ring and C � R a �eld with R�powers� In this
section we will only consider monomial groups with R�powers� Often� such groups
X satisfy the condition

c� � �� c � ��

for all c 
 X and � 
 R�
� � If this is the case� then we say that the ordering on X

is non degenerate and the invertible elements of C��X�� can be characterized as
follows�

Proposition �� Let X be a non degenerately ordered monomial group with
R�powers� Then a series f in C��X�� is invertible� if and only if f is regular�

Proof First observe that if���� is any other ordering such thatX�� is a monomial
group� then C��X��� � C��X�

�
��� Hence� if f 
 C��X��� is invertible in C��X�

�
���

then f is invertible in C��X�
�
��� and both inverses coincide�

Now if c 
 X is neither superior nor inferior to � for �� then � can be extended
into a total ordering �� on X� for which c � �� and for whichX remains a monomial
group� We �rst observe that we can de�ne an intermediate ordering �i by

w �i �� ��� �
R�
� w� � c� �

for which X remains a monomial group� and for which c � �� This intermediate
ordering extends into a total ordering by a classical argument� using Zorn�s lemma�

Now assume that f �� � is a series whose set of dominant monomials !for �$
contains more than one element� By what precedes� we can construct extensions ��

and ��� of � into total orderings !such that X�
�
and X�

��
are monomial groups$�
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for which the dominant monomials of f are di
erent� Hence the inverses of f in
C��X�

�
�� and C��X�

��
�� are di
erent� so that f can not be invertible in C��X��� �

Remark �� The condition on X is necessary� if X is the multiplicative group
f�� xg with x� � �� then �p
 � x	�

p

� x	 � �� although

p

 � x is not regular�

����� Asymptotic scales and extension by strong linearity

Let X be any monomial group !with R�powers$� If f is a regular series in C��X���
then we can de�ne f�� for any � 
 R� Indeed� we write f � cfmf����	� with � �� �
and take f� � c�fm

�
f p� � �� where p� � � � �z � ��� � �	z��
 � � � � 
 C��z��� A

multiplicative subgroup S of regular series with R�powers of C��X�� is said to be an
asymptotic scale� if the mapping S � X�c �� mc is injective� In this case� the
ordering on X induces an ordering on S by c �S w � mc �X mw� The regularity
condition is motivated by proposition ���� since the elements of an asymptotic scale
are in particular invertible�

Proposition �� Let S � C��X�� be an asymptotic scale� Then C��S�� is
naturally embedded in C��X���

Proof Let f �
P
w�S fww be an element of C��S��� We have to prove thatP

w�S fww is also well de�ned as an element of C��X��� i�e� that the family �fww	w�S
is grid�based� We have

suppS f � wN� � � �wNnfwn��� � � � �wNg�

for certain w�� � � � �wN in S� with w�� � � � �wn � �� We can write wi � cimi�� � �i	�
for each i� with ci 
 C� mi � mwi and �i �� �� We have suppX �i � cN� � � �cNk � for
certain c�� � � � �ck � � and all i� The sum f �

P
w�S fww can be rewritten as

f �
NX

j	n��

X
������ ��n�N

f������ ��n�jw
��
� � � �w�n

n wj � !���$

by choosing privileged ��� � � � � �n� j with w � w
��
� � � �w�n

n wj� for each w 
 S�
Expanding w�i

i � c�ii m
�i
i �� � �i	�i� for each i� we deduce that

suppX f � mN� � � �mNnfmn��� � � � �mNgcN� � � � cNk �

Moreover� each element of suppX f corresponds only to a �nite number of terms in
the sum !���$ by Dickson�s lemma !applied to Nn � Nnk$�

Finally� the set of dominant monomials DX of f 
 C��S�� w�r�t� X is given by
DX � fmwjw 
 DSg� where DS is the set of dominant monomials of f w�r�t� S� In
particular� DX � �� if and only if DS � ��� since S m� X�w �� mw is injective� Hence
the natural mapping C��S��� C��X�� is injective� �
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Remark �� If the mapping S m� X is not injective� then we still have a natural
mapping from C��S�� � C��X��� but this mapping is not necessary an embedding�
In this case it is also possible to take a family �ws	s�S of elements in C��X��� instead
of a subset S � C��X��� In each of these cases� we say that the resulting mapping
C��S�� � C��X�� is obtained by extension by strong linearity� Notice �nally
that extension by strong linearity naturally carries over to the case when X is only
a quasi�ordered monomial group�

If C��S�� � C��X��� then the mapping S
m� X is bijective� and we call it a

scale change� If B is a basis for X as an exponential R�module� then m���B	 is
a basis for S !such bases are also called asymptotic bases$� Hence� scale changes
are determined by base changes in this case� Inversely� if we have a basis B for S�
then the embedding C��S�� � C��X�� is entirely determined by its restriction to B
!where we make take S as in the above remark$�

����� Explicit base change formulae

We will now give some explicit formulae in the case when X admits a �nite basis
B � fz�� � � � � zng� These formulae are mainly useful in part B of this thesis and
this section may temporarily be skipped by the reader� Let g�� � � � � gm be regular
in�nitesimal elements of L � C��X�� and denote M � C��g�� � � � � gn�� � C��S���
where S � Rm has the natural product ordering� We will now give an explicit
formula for the natural mappingM � L� which can be seen as a right composition
with �g�� � � � � gm	� It will be convenient to use vector notation for this� This means
that we denote z � �z�� � � � � zn	 and g � �g�� � � � � gm	� We write z� � z��

� � � � z�nn �
for ���� � � � � �n	 
 Rn� Then the support of a series f in L can be seen as a set of
vectors supp f � If f is regular� then we denote by �f the minimal element in the
support of f � This element is said to be the dominant vector exponent of f � We
also denote by �g the matrix whose columns are �g�

� � � � ��gn� Matrix multiplication
is denoted by ��

We can write gi � ciz
�gi �� � �i	� for each i� with ci 
 C and �i �� �� If f 
 M

then its composition f � g with g is given by

f � g �X
�

f�c
�z�g���� � ��	

�� � � � �� � �m	
�m�

whence

f � g �X
�

X
k����� �km�N

X
�������� ��m�km

C���������� ��m�km
z�g�������������m�km � !���$

where

C���������� ��m�km
� f�c

�

�
��

k�

�
� � �
�
�m
km

�
������� � � � �m��m�km

�
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This formula often remains valid� if S is given a stronger ordering� It su�ces that
the matrix multiplication with �g maps grid�based supports in M into grid�based
supports in L� In particular� if g� ��� � � � ��� gm� thenM � C��g�� � � � � gm�� embeds
into L � C��z�� � � � � zn���

Assume that L � C��z�� � � � � zn�� and M � C��g�� � � � � gn��� with

g� ��� � � � ��� gn�

For computational purposes it is sometimes useful to have explicit formulae for
composition in terms of expansions w�r�t� zn� Indeed� we can see L as a subset of
C��z�� � � � � zn������zn��� The support of an element of C��z�� � � � � zn������zn�� is then
considered as a subset of R� The minimal element of the support of a non�zero
series f is denoted by �f � and we call it the dominant exponent or valuation of
f � Right composition with �	 !for n � �$ is just the identity mapping� If n � �� we
have

f � �g�� � � � � gn	 �
X
�n

X
������ ��n��

f�n���� ���g
��
� � � � g�nn �

Now� let � � i � n� �� If we put gi � gi�
 � g�i� we have

g�ii � g�ii�


�	� � �

gi�


X
�i�


gi��iz
�i
n


A�i

�
X
ki

�
�i
ki

�
g�i�kii�


X
�i������ ��i�ki�suppg�i

g�i��i�� � � � g�i��i�ki z
�i��������i�ki
n �

Similarly� if we put gn � z	gn �gn�	gn � g�n	�

g�nn �
X
kn

�
�n
kn

�
g�n�knn�	gn

z	gn�n
X

�n������ ��n�kn�suppg�n
g�n��n�� � � � g�n��n�kn z

�n��������n�kn
n �

Furthermore� for �xed �n and ki� we have

X
������ ��n��

f�n���� ���

n��Y
i	�

�i�

��i � ki	�
g�i�kii�
 �

�k������kn��f�n

�zk�� � � � �zkn��
n��

� �g��
� � � � � gn���
	�

Putting everything together� we obtain

f � �g�� � � � � gn	 �
X
�n

X
���� ���� ��n�kn

C���n g
�n�kn
n�	gn

z	gn�n�����������n�knn �

where

C���n �
g������� � � � g�n��n�kn

k�� � � � kn�
�k������kn��f�n

�zk�� � � � �zkn��
n��

� �g��
� � � � � gn���
	�
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If z�� � � � � zn and g�� � � � � gn correspond to normal bases !see section ���$� then the
above formulae may be simpli�ed� In fact� in this case� we have gi � gi�
� for
� � i � n� �� Hence� the above formula reduces to

f � �g�� � � � � gn	 �
X
�n

X
������ ��k

C���n g
�n�kn
n�	gn

z	gn�n���������kn � !��$

where

C���n �
g�n��� � � � g�n��k

k�
f�n � �g��
� � � � � gn���
	�

In particular� no partial derivatives are involved in this formula�

Still assume that L � C��z�� � � � � zn�� and M � C��g�� � � � � gn��� with
g� ��� � � � ��� gn�

We claim that right composition with �g�� � � � � gn	 admits an inverse� In other words�
the equation f � �g�� � � � � gn	 � h admits a unique solution in L� for each h 
 L�
We give a method to compute f using vector notation� As before� we write gi �
ciz

�gi �� � �i	 for each i� Now let

� � �inv
g � �supph� �supp ��  � � �  supp �n	�	�

Let us show that f � g � h admits a solution with supp f � �� by computing
the coe�cients of f by well�founded induction over � 
 �� More precisely� our
induction hypothesis assumes that we already computed the f�� for � � � and that
the equation �f � g	� � h� is veri�ed for all � � �g ��� whatever we might take as
coe�cients f�� for � � ��

We start with� � �inv
g ��h for which the induction hypothesis is trivially veri�ed�

Next� let � � �g ��� We must have

�f � g	� �
X

k� ���� �km�N

X
�������� ��m�km

C�������������m�km
���������� ��m�km

� h��

By the induction hypothesis� f� is well de�ned by this formula� Next� we observe
that the �rst �� � �� such that �f �g	�g��� might be non zero� is the smallest upper
bound of � in �� Hence� the induction hypothesis is satis�ed again� if we replace
� by ��� and we obtain a solution f by induction� Finally� as right composition
by a �xed g is a �eld homomorphism� whose kernel is easily seen to be trivial� the
solution f must be unique in L� Actually� it can easily be checked that there exists
a ginv with f � h � ginv for all h�

��
 Grid	based transseries

We will give purely algebraic variants to the de�nition of the �eld of grid�based
transseries as given by Ecalle in " c ��#� Actually� we give two equivalent de�nitions�
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the �rst one of which corresponds to Ecalle�s de�nition� In this chapter we restrict
ourselves to transseries with grid�based support and we shortly call them grid�based
transseries % for more general de�nitions� we refer to the next chapter�

Let R be a ring� We say that R is a partial exp�log ring� if there exists a
partially de�ned mapping exp � R� R�� which satis�es exp � � � and exp�x� y	 �
expx exp y� for all x and y� for which the identity make sense� Here we understand
that whenever exp is de�ned for two values among x� y and x� y� then it is for the
third� We remark that expx exp�x � �� for all x such that either expx or exp�x
is de�ned� Given a partial exp�log ring R� we de�ne the logarithm to be the partial
multivalued inverse of the exponentiation� If exp is totally de�ned� then we say that
R is an exp�log ring� A derivation on R is a derivation � on R as a ring� such
that ��expx	 � ��x	 expx� for all x 
 domexp� An ordered partial exp�log ring
is a partial exp�log ring with an ordering� such that x � � � expx � �� for all
x 
 domexp� In particular� log is univalued� If the ordering is total� then the image
of exp is strictly positive� An ordered exp�log ring is an ordered partial exp�log
ring R� for which exp is de�ned on R and log on R�

� � We remark that a totally
ordered exp�log ring is necessarily a �eld�

It will be convenient to adopt the notations logk resp� expk for the k�th iterated
logarithm resp� exponential� Here k can be taken inZ� with the conventions log
 x �
exp
 x � x and log�k � expk� More generally� let p � p
 � � � pk be a word in C��
Then we de�ne the logarithmic monomial logp x by logp x � xp� � � � logpkk x� The
multiplicative group of logarithmic monomials is denoted by logC� x�

From now on we assume that we are given a �xed totally ordered exp�log constant
�eld C and we will only consider totally ordered monomial groups with C�powers�
Given such a group X� we remark that whenever we de�ned exp f for all elements f
of a subgroup A of the additive group C��X��
� then we can canonically extend this
de�nition to A�C�C��X��� by exp f � exp f
 exp f c exp �f�� where f � f
�f c�f�

is the canonical decomposition of f �

First construction Let M denote the totally ordered monomial group M �
���x	C � with the same ordering as on C� Here x represents a variable which in�
tuitively tends to in�nity� The �rst step of the construction yields a sequence of
monomial groups

E
 � E� � E� � � � �
each of which is naturally embedded in the next one� The construction of this
sequence corresponds to the insertion of new exponentials and proceeds by induction
!see also example ��� below$�

We start with E
 �M � Assume now that we have constructed our sequence up
to Ek� Then we set

Ek�� �M � exp�C��Ek��

	�
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Here exp�C��Ek��

	 consists of the formal exponentials exp f for f 
 C��Ek��


% hence�
exp�C��Ek��


	 is a formal multiplicative monomial group which is isomorphic to the
additive group C��Ek��


� Furthermore� M � exp�C��Ek��	
 is ordered lexicograph�
ically� � � �c�w	� if either � � w� or w � � and � � c� We �nally have to check
that Ek is naturally included in Ek��� This is clear for k � �� In general� C��Ek�� is
naturally included in C��Ek���� by extension by strong linearity�

Example �� The �rst monomial groups E
� E� and E� are given by

E
 � fx�j� 
 Cg�
E� � fx�e����f�x

� j� 
 C� f 
 C��E
��

g�

E� � fx�ef j� 
 C� f 
 C��E���

g�

For instance� ee
x�x��ex�x��ex���� 
 E��

Now consider the inductive limit of the sequence of embeddings of totally ordered
partial exp�log �elds C��E
��� C��E���� � � � � This limit is denoted by Calog���x����
and we call it the �eld of alogarithmic grid�based transseries� over C in x�
Alternatively� one can see Calog���x��� as a �eld C��E�� of grid�based series� by taking
E �

S
n�NEn� The reason for this is that any grid�based subset of E is a grid�based

subset of Ek for some k� We also remark that the exponentiation is totally de�ned
in Calog���x���� We claim that we can naturally embed Calog���x��� into Calog��� log x����
Roughly speaking� this embedding stems from the systematic replacement of x by
elogx� Let us now give a more detailed description�

We already have a formal isomorphism between Calog���x��� and Calog��� log x����
by systematically replacing x by log x� This isomorphism� which will be denoted by
��log� maps f to f�log� Now the natural embedding of Calog���x��� and Calog��� log x���
maps C��Ek�� into C��Ek�� � log ��� for each k� For k � �� we send monomials
xc 
 E
 to monomials exp�c log x	 
 E� � log and extend by linearity� For k � �� we
use induction and send monomials xc exp�f	 
 M � exp�C��Ek����


	 to monomials
exp�c log x � f	 
 exp�C��Ek � log ��
	� Again� we extend by linearity� We observe
that for each monomial in Calog���x���� the logarithm of its image under the embed�
ding is de�ned� Hence the logarithm of the image of any strictly positive element is
de�ned�

We �nally consider the inductive limit of the sequence

Calog���x���� Calog��� log x���� Calog��� log� x���� � � �

of totally ordered exp�log �elds� This limit is denoted by C���x���� and we call it
the �eld of grid�based transseries over C in x� The logarithmic depth of a
transseries f is the smallest k with f 
 Calog��� logk x���� Often� when no confusion

�Alogarithmic means without logarithms�
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can arise� we will use the alternative notation T� C���x��� � and call it !abusively$
the �eld of transseries� Again� C���x��� can be seen as a �eld of grid�based series�
since C���x��� � C��C��� with C � E  E � log  � � � � for the same reason as above�
Elements of C are called transmonomials�

Second construction Instead of constructing alogarithmic transseries �rst� we
can also start with the construction of logarithmic transseries� More precisely� we
call ��L
�� with L
 � logC� x the set of logarithmic transseries� In a similar
way as above� we de�ne the Lk by Lk�� � exp�C��Lk��


	� using induction over k�
Again� we can canonically embed Lk into Lk�� by sending c to exp log c� Finally�
we consider the inductive limit of the sequence

C��L
��� C��L���� � � �

which happens to be isomorphic to C���x���� the equivalence of both constructions
is due to the �niteness condition in the de�nition of grid�based sets� In the next
chapter we will see that both constructions are no longer equivalent for well�ordered
supports�

The smallest number r such that f 
 C��Lr�� is called the exponential depth
of a transseries f 
 C���x���� The set C��Lr�� is also denoted by Cr���x���� More
generally� we denote by Ck

r ���x��� the set of transseries whose logarithmic depth is
bounded by k� and whose exponential depth is bounded by r�

Example �� Let us give some explicit examples of transseries� The following
transseries is in fact a series in R����x���

�

� � x�� � x�e
� ��x���x���x�e�x���x�e���x���x�e���x���x��e� � � � �

The transseries ex
�����x��� can be rewritten as an in�nite sum

ex
�����x��� � eex

��x � ex��ex
��x �

�e



x��ex

��x � � � �

The transseries
ee

x����x��� � ee
x�x��ex�x��ex����

can not be rewritten in a similar way� because ex��� � x��	 belongs to T
� In fact�
ee

x����x��� is a transmonomial of exponential depth �� The above transseries are all
�nite transseries� i�e� they all belong to the smallest exp�log sub�eld of R���x���
which contains x and R�

Example �	 The transseries

� � �log x	e�x � 
��log� x	e��x � ���log� x	e��x � � � �
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has logarithmic and exponential depths ��

Example �� The supports of

f� � x�� � x�
 � x�

�
� x�


�
� � � �

f� � x�� � e�x � e�e
x

� � � �
f� � � � xe�x � x��e��x � x��e��x � � � �

are well�ordered� but not grid�based� Hence f�� f� and f� are not transseries in the
sense of this section� although f� and f� satisfy simple di
erence equations� In
chapter ���� we will develop the theory of transseries with well�ordered supports�
Finally�

� � x�
�



x� �

�

�
x� � � � �

is not a transseries at all� because its support is not well�founded !since x��$�

��� Normal bases and the structure theorem

In this section T denotes the �eld of grid�based transseries in x over C� We state
without proof the following easy characterizations of the asymptotic relations ��
�� � �� ��� ��� and �� �

�� f � g � �log jf j	 � � �log jgj	 � � jfgj � fg�
�� f �� g � �log jf j	
 � �log jgj	
�
�� f �� g � �log jf j	
 � �log jgj	
�
	� f � g � �log jf j	
 � �log jgj	
�
�� f ��� g � log jf j �� log jgj�
�� f �� g � log jf j � log jgj�

In section ��	 we discussed asymptotic scales� For computational purposes special
types of asymptotic scales are particularly important when dealing with transseries�
In fact� such asymptotic scales are given by asymptotic bases which satis�es some
additional conditions� In section ��	 we already met an application of this concept
!see formula !��$$� and in part B of this thesis normal bases will be of a crucial
importance�

A linearly ordered set B � fb�� � � � �bng of positive in�nitesimal transseries is
called a normal basis� if the following conditions are satis�ed�

NB� b� ��� � � � ��� bn�
NB� n � � and b� � exp��l x for some l 
Z�
NB� For all i � � we have log bi 
 C��b�� � � � �bi���� where log bi �� bi��

The integer l in condition NB� is called the level of the normal basis B� Given
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a normal basis B� we say that a transseries f can be expanded w�r�t� B if f 

C��b�� � � � �bn��� Equivalently� we say that B is a normal basis for f �

Example �� The sets

B� � fx��� e�x� e�x� � e�x�g

and
B� � flog�� x� x��� e� log� x� e�x� e�e

x����x���g
are both normal bases� The set B� � fx��� e�x�e�xg is not�

Remark �	 There are some slightly di
erent alternatives for the de�nition of
normal bases� Notably� the condition NB� can very well be omitted� we only
use it to �standardize� our expansions with respect to the privileged transseries or
�coordinate function� x� In higher dimensions� the condition NB� does not admit
an analogue� unless we have a privileged system of coordinates !see chapter �$�

It is also possible to replace NB� by the slightly weaker condition that log bi 

C��b�� � � � �bi���� for all i � �� Although this leads to less �canonical� expansions�
for all our applications this weaker condition would also be su�cient� Inversely� we
can make the extra requirement that � log bi is a transmonomial for each i� Normal
bases with this property are called canonical bases� Canonical bases do not admit
higher dimensional analogues� This is due to the fact that the �coordinate function�
x is heavily involved in the de�nition of transmonomials% actually� we should rather
speak of transmonomials in x�

Having �xed a normal basis B � fb�� � � � �bng� we will usually denote elements
f of C��b�� � � � �bn�� by series f � P

������ ��n f�n���� ���b
��
� � � �b�nn � Alternatively� we

use vector notation instead and write f �
P

� f�b
�� Sometimes it is also useful

to see f as a series in bn with coe�cients in C��b�� � � � �bn����� and we write f �P
�n f�nb

�n
n � This last representation makes it often possible to solve problems by

induction over n� while using NB�� Other interesting properties of normal bases
are that they are stable under upward and downward movements !see section �����$�
and that C��b�� � � � �bi�� is stable under di
erentiation !see section �����$ for each i�
if B has level zero or one� We have the following structure theorem�

Theorem �� �Structure theorem� Let f be a transseries and let B
 be a
normal basis� Then there exists a normal basis B for f which contains B
�

Proof Let l be the level of B
� We can write f 
 Calog��� expl� x��� for some l
� 
Z�

If l� � l� then we insert exp��l� x� � � � � exp��l�� x into B
� Therefore� we may assume
without loss of generality that l� � l% hence� we can write f 
 Calog

k ��� expl x��� for
some k� We now prove the theorem by induction over k� if k � �� then we have
nothing to prove� Assume therefore that we proved the theorem up to k � ��
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Since the support of f is grid�based� we can write supp f � e��Z� � � e�qZ� for cer�
tain strictly negative ��� � � � � �q 
 Ck���x���


� By applying the induction hypothesis
for ��� � � � � �q� there exists a normal basis B� � fb��� � � � �b�n�g for ��� � � � � �q� which
contains B
� Now consider the following theoretical algorithm�

Algorithm add�g�B	
Input� A negative in�nitely large transseries g and a normal basis B �

fb�� � � � �bng� such that g can be expanded w�r�t� B�
Output�A normal overbasis of B for eg�

Step �� if g is bounded� then return B�
Step �� if there exists e� 
 Bnfb�g such that � � g�

then set g� �� g � ��� where � � limg��� and return add�g�� B	�
Step �� otherwise � let i� be such that g �� bi��

Set g� �� g

�
n�i� times��� �


and g� �� g � g��

return B  e�jg
�j�

To prove the termination of add� it su�ces to observe that no in�nite loops can
arise from step �� since � gets smaller and smaller for �� during such a loop� while
B remains �xed� Let us now prove the correctness of add� The computation of the
decompositions g � g��g� guarantees that Be�jg�j is a normal basis at the end of
the algorithm� Since g� is necessarily bounded in such decompositions� eg � eg

�
eg

�

can indeed be expanded w�r�t� this normal basis� Whenever g � �� � g� in step ��
the same thing holds by induction�

Now we apply the algorithm for the �i� by executing B �� add�g�B	 for each
g 
 f��� � � � � �qg� starting with B �� B�� This yields a normal overbasis B �
fb�� � � � �bng for fexp��� � � � � exp�qg� We claim that f can be expanded w�r�t� B�
Indeed� e��� � � � � e�q are in�nitesimal elements in C��b�� � � � �bn��� Using the results
from section ��	� we therefore have a natural embedding of C��e��� � � � � e�q�� into
C��b�� � � � �bn��� �

Remark �� Intuitively speaking� g� and g� correspond to the parts in the
exponential which we do not resp� do expand in step � of add� If we decompose
g � g
 � g

�
instead of g � g� � g�� then we obtain the analogue of the theorem

where �normal basis� is replaced by �canonical basis��

��� Common operations on transseries

In this section T denotes the �eld of grid�based transseries in x over C� We show
that we can de�ne a natural derivation� composition and functional inversion on T�
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����� Dierentiation and composition

To de�ne the derivation� we proceed along the same lines as in the �rst construction
of T� For f 
 C��E
��� we de�ne the derivative of f w�r�t� x !over C$ by

f � �

�X
��C

f�x
��
��
�
��
x

X
��C

�f�x
���

Assuming that we de�ned the derivation w�r�t� x on C��Ek��� we de�ne it on
C��Ek���� by

f � �

�	 X
c�x�C exp�C��Ek��

��

fcc


A� � X
c�x�C exp�C��Ek��

��

fc�log c	
�c�

If the support of f is contained in � � c
N�p
� � � � cN�pn � then the support of f � is

contained in �supp log c�  � � �  supp log cn	�� Finally� we de�ne �f � log x	� �
�f � � log x	�x� for f 
 Calog��� logk x���� The so de�ned mapping T� T� f �� f � is a
derivation over C� as is readily veri�ed !see the next chapter for an explicit proof in
a more general context$�

The composition of f 
 T with a positive in�nitely large transseries g 
 T�
�

is de�ned in a similar way� If f 
 C��E
��� we consider the natural embedding
C�����g	C��

�� T !see proposition ���$ and the natural isomorphism C�����x	C��
��

C�����g	C��� which corresponds to the substitution of x by g� Then we de�ne f �
g � ����f		� Assume now that we de�ned f � g� for f 
 C��Ek��� Then we
de�ne �exph	 � g � exp�h � g	� for h 
 C��Ek��


� Using induction over k� we
observe that these �exph	 � g form an asymptotic scale S� Hence we have a natural
embedding of C��S�� into T� We also have a natural mapping from C��Ek�� into
C��S��� obtained by substituting c 
 Ek�� with c � g� The composition of these two
mappings determines the right composition by g on C��Ek����� Finally� we de�ne
�f � log	 � g � f � �log �g	�

Let us mention some properties of �� First of all� �g � � � g is a di
erence
operator for any g 
 T�

�� This follows directly from the fact that �g is de�ned
as an inductive limit of ring homomorphisms� It is also readily veri�ed that � is
associative� by using a double induction !see the next chapter for an explicit proof
in a more general context$� The above two properties are summarized by saying
that � is a composition� We also have �f � g	� � �f � � g	g�� and we say that � is
compatible with the derivation� We �nally have f � �g�h	 � f �g��f � �g	h� � � � �
whenever both sides of the equation are well de�ned�

����� Upward and downward shiftings

It is interesting to study the action of the group of iterated logarithms and exponen�
tials by left or�and right compositions on T� Right compositions by exp resp� log
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are also referred to by upward shiftings !resp� downward shiftings$ or upward
movements !resp� downward movements$� The upward !resp� downward$ shift
of f 
 T is denoted by f� !resp� f�$� We observe that � and � are scale changes
which preserve the set of transmonomials� In chapters 	 and �� we will see that
upward shiftings are particularly useful for di
erential calculus� where they allow to
make transseries alogarithmic�

Other interesting related operations are the dilatation T�
�

�� T�
�� f �� exp�f �

log and the contraction T�
�

���� T�
�� f �� log �f � exp� We claim that after a

suitable number of contractions� any transseries f � � can be represented by��kf �
expl x� �� with l 
 Zand � �� �� Indeed� it su�ces to take the exponential depth
plus one for k� The integer l � expo l is called the exponentiality of f � Hence� by
using only left and right composition with exp and log we can recover T�

� from the
transseries of the form x� �� where f is in�nitesimal�

Let f and g be in T�
�� If f
 � g
� then exp f �� exp g� and in particular

�exp f	
 � �exp g	
� Assume that the exponentiality of f is strictly smaller than g�s�
Then we have �logk x � f � expk x	
 � �logk x � g � expk x	
� for k su�ciently large�
Hence� �f
�expk x	
 � �g
�expk x	
� by what precedes� Consequently� f
 � g
� since
downward shifting is a scale change of Twhich preserves the set of transmonomials�
Similarly� we have f �� g and f ��� g� using the characterizations of �� and ���
from the beginning of the previous section� In particular� we have mf �� mlogf � for
any f 
 T�

��

����� Functional inversion

Proposition �	 Any positive in�nitely large transseries g 
 T�
� admits a

functional inverse ginv 
 T�
� for ��

Proof Modulo some left and right compositions with exp and log� it su�ces to
show this in the case when g � x��� �	 with � �� � and g can be expanded w�r�t� a
normal basis B � fb�� � � � �bng of level zero� If n � �� then we claim that g admits
an inverse f in C��x����� Indeed� its straightforward to check that the equation

x �
X
��C

f�
x�

�
� � ���

�
�




�
�� � � � �

�
�

admits a solution f with supp f � x�supp �	�� by using well�ordered induction�
The general case is proved by induction over n� Taking n � �� our induction

hypotheses are the following�

!a$ There exists a functional inverse f
 to g
� when expanding g w�r�t� bn�
!b$ Denoting �b� � x� � � � � �bn�� � bn�� � f
�
� we have f
 
 C�� �b�� � � � � �bn�����
!c$ C�� �b�� � � � � �bn���� is stable under di
erentiation�
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Writing �bn � bn � f
� we have for each � � i � n�

�bi � g
 � bi � b�i� �
�



b��i �

� � � � � �

where � � g
 � x if i � �� and otherwise � � g
 � g

�
n���i times��� �


� Hence� right

composition with g
 maps C�� �b�� � � � � �bn�� into C��b�� � � � �bn��� Similarly� denoting
� � g � g
 and � � f
 � �g
 � �	� x� we have � 
 C��b�� � � � �bn���

Now let h � f � g
� We have �f � g
	 � f
 � �g
 � �	 � x� Hence� we can write

h � �x� �	 �
X
��C

h�b
�
n � �h�b

�
n	
�� � � � � � x�

Again by well�ordered induction� this equation admits a solution h whose support
in bn satis�es supp h � �supp �	�� In other words� h 
 C��b�� � � � �bn������bn��� To
prove that h is in C��b�� � � � �bn��� we need to consider vector supports�

We �rst observe that supp�� � supp���� for any � in C��b�� � � � �bn��� where
� � supp log b�  � � �  supp log bn � C��b�� � � � �bn����� Again using well�ordered
induction it can now be checked that

supp h � suppx� �supp � ��	��

It follows that f � h � f
 
 C���b�� � � � � �bn��� Finally� C��b�� � � � �bn�� is stable
under di
erentiation� because fb�� � � � �bng is a normal basis of level �� Hence�
C�� �b�� � � � � �bn�� is stable under di
erentiation� since �bn� � �b�n�f
	f �
� This completes
the induction� �

Remark �� It may be noticed that the �easier proof� of the above proposition in
" c ��# !page ���$ fails in general� because of the counterexample g � x���x�e�e

x
�

����� On a conjecture of Hardy

To illustrate the formalism of transseries at work� we claim that the innocently
looking property � from section ��� forms the key in the solution to a conjecture of
Hardy !see "Har ��#$� which states that the functional inverse of log x log� x is not
asymptotic to any L�function for x��� In other words� the conjecture states that
there is no function� built up from R and x using the exp�log �eld operations and
left composition with real algebraic functions� which is de�ned and asymptotic to
the functional inverse of log x log� x in a neighbourhood of in�nity� Shackell proved
in "Sh ��c# the slightly weaker assertion that the functional inverse of log� x log� x is
not equivalent to any L�function�

As our proof uses the theory of transseries� we will take for granted that the
analytic properties of transseries coincide with their algebraic counterparts% this is
indeed the case� because all the transseries we consider are convergent !see the�
orem ����$� We will also use the following facts�
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!�$ �x log x	inv is not an L�transseries�
!�$ The unbounded part f
 of an L�transseries is again an L�transseries�

Of course� an L�transseries is the transseries counterpart of an L�function� The
�rst fact was already proved by Liouville in "Li ��#� For the second fact� see
proposition �����

Theorem �� The functional inverse of log x log� x is not asymptotic to an
L�transseries�

Proof To prove our claim� we �rst observe that ���x log x � x � log�� � x�ex	�
By what precedes� x� log�� � x�ex	 admits a functional inverse

f � x� x

ex
� x�


e�x
�

x

e�x
� � � 
 R��x��� e�x���

Now
ef � ex

�
� � x

ex
�

x

e�x
� � � �

�

 R��x��� e�x��

and ee
f 
 ee

x�xR��x��� e�x��� In particular� we have �ee
f
	
 � ee

f
� Since

f �

log log exee

x
�inv

�

exee

x
�inv � exp � exp

and since �h � exp	
 � h
 � exp for all transseries h� we therefore obtain
�log�log x log� x	

inv	
 � �x log x	inv�

Hence� if �log x log� x	
inv were equivalent to an L�transseries g� then �x log x	inv

would be equal to the unbounded part �log g	
 of log g� which is an L�transseries by
!�$� This is impossible by !�$� �

Actually� we have a more general theorem�

Theorem �� Let f be a positive in�nitely large transseries� which is not an
L�transseries� Let k resp� r be minimal� such that f 
 Calog

r �� logk x��� Let l �
expo f � k be the exponentiality of f minus k� Then for all n � r � l � 
� the n�th
iterated dilatation �nf of f is not asymptotic to an L�transseries�

Proof It su�ces to prove that ��n��f	
 � �n��f � We prove this by induction
over r � l� If r � l� then any transseries in Calog

r �� logk x�� is negligible with respect
to ef � In particular�

�f � ef
��logef

��
�log 
 Calog

r�� �� logk x��

�

If r � l� then expo�f � expo f � �f 
 Calog
r �� logk�� x�� and the result follows by

induction� �
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Notice again that theorem ��� is purely algebraic% resummation techniques are
generally needed to let the algebraic assertion coincide with its analytic counterpart�
For instance� using these techniques� it can be shown that eI�x� is not asymptotic to
any L�function� where I ��x	 � ex

�
�

Notice also that the bound n � r � l � 
 in the theorem is sharp�

Remark �� We have learned recently� that theorem ��� was proved independently
by Macintyre� Marker and van den Dries in "MMV )#� They use a similar technique
and the analogue of proposition ���� used in their proof has been established by
Ressayre in "Res ��#�
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Chapter �

Well�ordered transseries

��� Introduction

In this chapter we introduce the concept of well�ordered transseries� thereby general�
izing the grid�based transseries from chapter �� Transseries of this type are naturally
encountered as solutions to functional equations like

f�x	 �
�

x
� f�x�	 � f�elog

� x	�

or as explicitly given expressions like

g�x	 �
�X
n	�

e�x
n

�

The price to be paid is that the classical operations� i�e� derivation� composition
and inversion� are more technical to de�ne� In fact� most of this chapter is devoted
to a correct de�nition of well�ordered transseries and these classical operations�

In section ���� we introduce power series with Noetherian supports� In section ���
we de�ne well�ordered transseries � However� we will see that there does not exist a
totally ordered exp�log �eld of transseries� which is stable under in�nite summation
in the most general sense� However� we shall see that any exp�log �eld of transseries
is included in a larger �eld of transseries which is stable under in�nite summation�
and vice versa�

In section ���� we prove a �xed point theorem for transseries�
In sections ��	 and ��� we de�ne the classical operations on transseries� namely

di
erentiation� composition and inversion�
In section ��� we describe the compacti�cation of the �transline� and establish

a characterization for transseries intervals�
Finally� we will show in section ��� that some strongly monotonic solutions to

very general systems of functional equations can not be represented by transseries
in the sense of section ��� and we discuss further extensions of the concept of a
transseries�

��
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��� Well	ordered transseries

����� Algebras of Noetherian series

The de�nition of a well�ordered transseries is similar to the de�nition of a grid�based
transseries� with this exception that the analogue of the identity T� C��C�� does
not hold anymore� Indeed� we essentially needed the built�in �niteness condition in
the de�nition of grid�based sets to prove this identity� As a consequence� larger and
larger �elds of transseries can be de�ned by trans�nite induction� Apart from this
major di
erence� the construction follows the same lines as in sections ��� and ����
We will therefore content ourselves to indicate the changes� and we leave the details
to the reader� A review of Noetherian orderings is available in appendix A�

As in section ���� we �rst assume that C is a ring of constants� and X a commut�
ative ordered semigroup� We denote by C��X��� or by C��X�� the set of mappings
from X to C with Noetherian support� and we call it the set of Noetherian series
in C over X� Such mappings are also denoted by sums

P
c�X �cc� More generally�

we say that a family �fi	i�I of elements in C��X�� is Noetherian� if
S
i�I supp fi is

Noetherian� and if fi 
 Ijc 
 supp fig is �nite for each c 
 X� Given such a family�
we de�ne

P
i�I fi by !���$�

As in section ���� we give C��X�� the structure of a C�algebra !instead of proposi�
tion ���� we use proposition A��!c$� proposition A��!d$� If X is totally ordered� then
C��X�� is even a �eld� by using A�� to Higman�s theorem% in this case� elements of
C��X�� are calledwell�ordered series� The asymptotic relations �� � �� ����� ��
and ��� are also introduced in a similar way as before�

Remark �� It was �rst observed by Higman !see "Hig ��#$ that C��X�� is a ring�
and even a �eld ifX is a totally ordered group and C a �eld� In fact�X does not need
to be commutative� but for our purposes we can restrict ourselves to commutative
semigroups�

Example �� By analogy with example ���� we can consider the !product order�
ing� resp� lexicographical ordering$ variants C��zA� � � � � � zAn �� resp� C��zA� � � � � � zAn �� of
C��z�� � � � � zn�� and C��z�� � � � � zn��� for a �xed ordered commutative group A� This
time� there exists an isomorphism between C��zA� � � � � � zAn �� and C��zA� �� � � � ��zAn ���

The de�nition of asymptotic scales needs some special care in our present
context� This is because the proof of proposition ��� essentially used the �niteness
condition in the de�nition of grid�based sets� However� if we add the condition
that for each well�ordered subset W of S� the family fwgw�W is Noetherian� then
the analogue of proposition ��� does hold� Asymptotic scales which satisfy this
additional condition are said to be of well�ordered type� Asymptotic scales in the
former sense are said to be of grid�based type�

Let us �nally remark that the ring C��X�� has been studied from an algebraic
point of view by Ribenboim and others !e�g� see "Rib#$� For instance� C��X�� is an
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entire ring� if and only C is entire and X is cancellative and torsion free� He also
gives su�cient conditions for C��X�� to be a Noetherian ring� We believe that his
results are also valid for C��X��� but we have not checked it�

����� Well�ordered transseries

Assume now that we are given a totally ordered exp�log constant �eld C of charac�
teristic zero� and a totally ordered monomial group X� The analogues of the two
constructions from section ��� can again be carried out� but in both cases� the res�
ulting �eld T is not complete !T is a complete �eld of transseries� if T� C��C���
where C is the set of transmonomials in T% complete �elds are the only ones which
are stable under well�ordered in�nite summation$� Moreover� both constructions are
not equivalent anymore� Indeed� f � x�log x�log� x� � � � is not an element of T� if
we apply the �rst construction� However� f 
 T if we apply the second construction�
since f 
 C��logC� x���

In fact� as we shall see below� it is not possible to construct a complete totally
ordered exp�log �eld of transseries� However� we will show that how to construct
�elds which are closed under exponentiation� by analogy with the second construc�
tion from section ���� Then we obtain larger and larger �elds of transseries� by al�
ternating closure under exponentiation and closure under in�nite summation� The
trans�nite induction we use for this generalizes the trans�nite induction used by
Conway to construct non standard numbers !see "Con ��#$�

Closure under exponentiation and logarithm Let X be a totally ordered
monomial group� Assume that C��X�� is a totally ordered partial exp�log �eld� We
say that C��X�� is admissible� if the logarithm is de�ned for all strictly positive
elements� and if we have expf � exp f
 exp f c exp f�� for all f 
 C��X�� such that
exp f or exp f
 is de�ned� Assuming that this is the case� let us show how to extend
C��X�� into a totally ordered exp�log �eld�

The construction proceeds by induction� starting with X
 � X� Next� let k � �
be given and assume that we have given C��Xk�� the structure of an admissible totally
ordered partial exp�log �eld� Then we de�ne Xk�� � exp�C��Xk��
	� and we embed
Xk into Xk�� by sending c to exp log c� Finally� we consider the inductive limit of
the sequence C��X
��� C��X���� � � � � which satis�es our requirements�

Trans�nite extensions In general� the inductive limit of C��X
�� � C��X��� �
� � � is strictly included in C��X���� whereX� is the inductive limit of X
 � X� � � � �
!we recall that  stands for the smallest in�nite ordinal number$� Moreover� C��X���
is also an admissible totally ordered partial exp�log �eld� We can therefore repeat
our construction with X� instead of X�

By using trans�nite induction� we can even go much further� Indeed� we de�ne
X��� � exp�C��X���


	� for any ordinal �� For limit ordinals� X� is by de�nition
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the inductive limit of all X� with � � �� The corresponding inductive limit of the
C��X��� has the structure of a totally ordered exp�log �eld�

Well�ordered transseries Now take the totally ordered group logC� x of logar�
ithmic monomials in x for X in the previous construction� Then we denote C��X���
by C�

� ���x���� and call it the �eld of well�ordered transseries of exponential
depth � �� The exponential depth of a transseries f is the smallest ordinal �
with f 
 C�

� ���x���� For limit ordinals �� the inductive limit of all �elds C��X���� with
� � � is denoted by C�

����x���� and is the totally ordered exp�log �eld of transseries
of exponential depth � ��

Alogarithmic transseries We de�ne the logarithmic depth of a transseries to
be the highest iterated logarithm �occurring� in its expansion� mimicking the �rst
construction of grid�based transseries� we build the hierarchy of �elds of alogarithmic
transseries Calog

� ���x��� of exponential depth � �� for each ordinal �� and the induct�
ive limits C����x��� of Calog

� ���x��� � Calog
� ���logx��� � � � � � Then the logarithmic

depth of f is the smallest k� with f 
 Calog
� ���logk x���� We extend the notations

Ck
����x��� � Calog

� ���logk x���� C
�
� ���x��� � C����x���� etc� Hence� the analogue of the

�rst construction from section ��� yields C���x��� � C�
� ���x���� and the second one

yields C����x��� � C�
����x����

Example �� The following is a transseries of exponential depth �

e�x � e�e
x

� e�e
ex

� � � �
The transseries

expn

�p
x� e

p
logx � exp�

q
log� x� � � �

�
has exponential depth  � n� The transseries

x� log x� log� x� � � �
has in�nite logarithmic depth�

Some results from chapter � can be adapted in a straightforward way to our
present context� In particular� the properties ��� from section ��� still hold� The
paragraph in section ����� about upward and downward movements� contractions
and dilatations is also easily transposed� In particular� we still have mf �� mlogf � for
positive in�nitely large transseries f �

����� Closure properties

In what follows� by a �eld of transseries over C� we shall always mean a �eld of
transseries T of the form C�

� ���x����C����x���� C�
����x��� or C����x���� Here � �  and

� are ordinals� and � is a limit ordinal in the last two cases�
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Proposition �� Let f be a transseries of �nite logarithmic depth� Then f has
at most countable exponential depth�

Proof It su�ces to consider the case when f is alogarithmic� Let us �rst prove by
induction that each alogarithmic transmonomial c of exponential depth d satis�es
c ��� expd�� x� This is clear for d � �� Assume that we have proved the assertion
up to d !not included$� Let m be the dominant monomial of log c and assume
that m �� expd�� x� Then � �� w �� expd�� x for each w 
 supp log c� Hence the
exponential depth of each w 
 supp log c is bounded by d � 
� by the induction
hypothesis� But this means that the logarithmic depth of c is bounded by d � ��
This contradiction shows that we can not have m �� expd�� x� Therefore� log c �
m �� expd�� x� whence c ��� expd�� x�

Now letC be the set of alogarithmic transmonomials of �nite exponential depths�
We must show that C��C�� is stable under exponentiation� Let f 
 C��C��� Since
ef � ef

�
ef

c
ef

�
� we must show that f
 has �nite exponential depth� and we may

assume without loss of generality that f
 �� �� Now let d be the exponential depth
of the dominant monomial m of f
� Then we have c ��� expd�� x� for all monomials
c 
 supp f
� By what precedes� this means that the exponential depth of f
 is
bounded by d� 
� whence the exponential depth of ef

�
is bounded by d� �� �

As a consequence of the above proposition� the �elds C�
����x��� and C�

� ���x���
reduce to C�

� ���x���� if � �  and � � � Similarly� the �elds C����x��� and C����x���
reduce to C����x���� if � � � The next proposition shows that no other such collapses
take place�

Proposition �� The �eld C�
� ���x��� is strictly contained in C�

� ���x���� for � � ��

Proof Consider the sequence �f�	�� with f� 
 C�
� ���x���� de�ned by trans�nite

induction� we take f
 � �x�� For each ordinal �� we take f��� � f� � ef��log�
For limit ordinals �� we let f� � stat lim�� f� !see page �� for the de�nition of
stationary limits$� It is easily veri�ed that whenever � � �� then f� �
 C�

� ���x����
Actually� the ordering on ordinals is even reproduced by the sequence�

Now we have classi�ed the �elds of transseries� their respective closure properties
are listed in table ��� below�

Remark �� Although the table shows that there are no �elds of transseries
which are stable under logarithm� exponentiation and well�ordered summation� there
do exist �elds of transseries which are stable under logarithm� exponentiation and
countable well�ordered summation� Indeed� for each totally ordered monomial group�
we may consider the �eld C��X��� of countable well�ordered linear combinations of
monomials in X� Note that if the cardinal number of C  X is at least 
�� then
the cardinal numbers of C X and C��X��� coincide� Consequently� if we perform
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In�nite summation Exponentiation Logarithm
C l
d���x��� X

C l���x��� X

C l
����x��� X X

Cd���x��� X

C���x��� X X

C����x��� X X

C�
� ���x��� X X

C�
����x��� X X

Table ���� Closure properties of the di
erent types of �elds of transseries�

the construction from the previous section with �elds of the form C��X��� instead of
C��X��� the corresponding trans�nite sequence of �elds C�

� ���x���� is stationary� since
the cardinal numbers of these �elds are all the same� The limit of the sequence is
stable under logarithm� exponentiation and countable summation�

����� Tree representations of transseries

Let us show that each transseries f over C in x has a natural tree representation
Tf � If f is an iterated logarithm� then Tf is a leaf labeled by f � In the other case�
we write a transseries f as a well�ordered sum of transmonomials f �

P
i�I cici� Let

c � e�i� for some purely unbounded �i� Now assume that each �i admits a tree
representation T�i� Let Ui be the tree obtained by substituting the root of Ti by ci�
Attaching the Ui together to a new root� labeled by f � and in the order determined
by I� we obtain the tree representation of f � For an example� see �gure ����

Proposition �� Each well�ordered transseries f over C admits a tree represent�
ation Tf � which is well�founded�

Proof Let f �
P

i�I cici be as above� with ci � e�i for each i� If f is a �nite linear
combination of iterated logarithms� then T�i admits a tree representation for each
i� by de�nition� Hence� f admits a tree representation of depth � 
�

If f has exponential depth zero� then �i is a �nite linear combination of iterated
logarithms for each i� Hence� T�i admits a tree representation for each i� by what
precedes� Hence� f admits a tree representation of depth � ��

Now assume that f has exponential depth � and that we have proved the pro�
position for all strictly smaller exponential depths� Then T�i admits a well�founded
tree representation for each I� Hence f admits a well�founded tree representation
Tf � Indeed� any in�nite path in Tf would yield an in�nite path in one of the T�i�
which is impossible� This completes the proof� by trans�nite induction� �
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f

ee
x�����x���

ex
�

x�

log x

x��ex
�

x�

log x

log x

x��ex
�

x�

log x

log x

ex�logx����

x log x log� x

� � � � � �

Figure ���� The tree representation of f � ee
x�������x� � ex�logx�����

Tree representations provide good mental pictures for transseries� and will be
useful for the combinatorial de�nitions of the derivative of a transseries and the
composition of two transseries� Notice that the root plays a special r�le in a tree
representation�

��� The �xed point theorem

����� Stationary limits

Let T be a �eld of transseries� We say that a transseries f 
 T is a truncation
of another transseries g 
 T� and we denote f E g� if f � g or f �

P
cc� gcc� for

some transmonomial c
� This relation clearly determines an ordering on T� which
has the following properties�

!a$ � E f %
!b$ f E h � g E h� f E g � g E f �

for all f� g� h 
 T�

Proposition �	 Let T be a complete �eld of transseries� Let �fi	i�I be a family
of transseries in T� where I is totally ordered� Let T be the set of transseries f � such
that for all c 
 supp f we have f � fi �� c for all su�ciently large i 
 I� Then T
admits a unique maximal element for E � which is called the stationary limit of
�fi	i�I and denoted by stat limi�I fi�
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Proof Let �f �� f be in T � The dominant monomial m of �f � f must be in supp f �
in supp �f � or in both� Assume that m 
 supp f � Then we have f � fi �� m for all
su�ciently large i� If c 
 supp �f � then we also have �f � fi � f � fi � � �f � f	 �� c

for all su�ciently large i� Consequently� c �� m� whence �f � f � Similarly� we �nd
f � �f � if m 
 supp �f � We infer that T is totally ordered for � � In particular� a
maximal element of T � if it exists� must be unique�

Now let f� �f 
 T and let c 
 supp f� �c 
 supp �f be monomials with c � �c� If
f E �f � then we clearly have c 
 supp �f � Otherwise� �f � f and f � �f �� �c� since
�c 
 supp �f � Hence� we again have c 
 supp �f � Now consider the set S � Sf�T supp f
is well�ordered� Let �c 
 supp �f for some �f 
 T � By what precedes� all fc 
 Sjc �
�cg � supp �f � We deduce that S does not contain in�nite decreasing sequences�
Therefore� S is well�ordered�

Given c 
 S� there exists an f 
 T with c 
 supp f � and the coe�cient cc � fc
obviously does not depend on the choice of f � We claim that l �

P
c�S ccc is a

maximal element in T for E � Let f 
 T � Since supp f is an initial segment of S�
and cc � fc for all c 
 supp f � we have f E l� Hence� l is maximal for E � if l is
in T � Now given c 
 supp l� there exists an f 
 T with c 
 supp f � Then for all
su�ciently large i� we have l� fi � �l � f	 � �fi � f	 �� c� since f E l� �

A subset U of T� is said to be complete� if the stationary limit of any sequence
with values in U lies again in U � A �eld of transseries is complete in the new sense�
if and only if it is complete in the old sense� if T� C�

� ���x��� or T� C�
� ���x���� for

some �� then x� x�log x� x�logx�log� x� � � � is a sequence in Twithout stationary
limit !in T$� If � is a limit ordinal� then the sequence �f�	�� from proposition ���
is an example of a sequence in T� C�

� without stationary limit�
We state without proof the following easy closure properties of complete sets�

Proposition �� Let U be a complete set� Then

a� ff 
 U jf �� �g is complete� for all � 
 T��
b� Uc is complete� for all transmonomials c�
c� If C is a set of transmonomials in T� then U � C��C�� is complete�

����� The �xed point theorem

Let U be a complete subset of a �eld of transseries T� Let � be a mapping from U
into U � We say that � is a contraction� if

 f� g
U ��g	� ��f	 �� g � f� !���$

Then we have the following theorem�

Theorem �� Fixed point theorem Let U be a complete non empty subset of
T� Then any contraction � � U � U admits a unique �xed point�
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Proof De�ne a trans�nite sequence �f�	� of points in U as follows�

f
 � An arbitrary point in U �

f��� � ��f�	�

f� � stat lim
��

f� for limit ordinals ��

We claim that the stationary limit f of this sequence is a �xed point for ��
Actually� we will show by trans�nite induction that the sequence f��� � f� is

strictly decreasing for �� % this will imply that f��� � f� for all � � jTj� If
f��� �� f�� then

f��� � f��� �� f��� � f� !���$

immediately follows from !���$� Now assume that � is a limit ordinal and that we
have proved the induction hypothesis for all � � �� This implies in particular� that
f� � f� �� f��� � f� for all � � � � � !by a second� straightforward trans�nite
induction$� Consequently� f� � f� �� f��� � f�� whence f��� � f��� �� f��� � f��
by !���$� Similarly� we have f� � f��� �� f��� � f��� �� f��� � f�� Together this
yields

f��� � f� �� f��� � f�� !���$

as desired�
Now let f � �� f be a second point in U with ��f �	 � f �� Then we have f � �

f �� f � � f � ��f �	 � ��f	 � f � � f �� f � � f � This contradiction proves the
uniqueness of the �xed point� �

Remark �� By analogy with classical �xed point theorems� one might expect
the �xed point theorem to be very useful in the resolution of functional equations�
Unfortunately� this is usually not the case� and even when the �xed point theorem
can be applied� direct proofs are often shorter� Nevertheless� the trans�nite approx�
imation technique used in the proof is very powerful� and we will often use it in
what follows�

��� Di�erentiation of transseries

Let us �x a �eld of transseries T over C� In this section we show that T can
naturally be given a derivation over C� This derivation extends the derivation
de�ned in section ����� for grid�based transseries� Given f in T� we would like to
de�ne f � � df�dx by trans�nite induction� setting �logk x	

� � ��x � � � logk�� x� and
�
P

g�T� cgeg	� �
P

g�T� cgg�eg� Of course� elements of C are sent to zero� The hard
thing to show is that f � has well�ordered support� Instead of showing this directly�
we give an alternative combinatorial de�nition of f �� based on the tree representation



�� CHAPTER �� WELL
ORDERED TRANSSERIES

of f � Moreover� this combinatorial derivative has the properties mentioned above�

� � �

Consider a path P from a child of the root to a leaf in the tree representation
Tf of f � Let cP��� � � � �cP�jP j denote the labels of the consecutive nodes on this path�
with cP�jP j � logk x� We denote

P � �cP��� � � � �cP�jP j��
cP � fcP���log cP��	cP�� � � � �log cP�jP j��	cP�jP j �
cP � cP�� � � �cP�jP j�
c
�
P � cP �x � � � logk x�

Now we de�ne f � by

f � �
X

P�path�Tf�
cPc

�
P � !��	$

where path�Tf	 denotes the set of paths in Tf from a child of the root to a leaf�

Example �� Let us illustrate the de�nition !��	$ on the example f � e�e
�x�x��ex�

The paths from a child of the root to a leaf in Tf are

�e�e
�x�x�� e�x� x�� �e�e

�x�x� � x�� log x� and �ex� x��

The contributions of these paths to f � are respectively

��e�e
�x�x�e�xx�x� �e�e

�x�x�x� log x�x log x and exx�x�

Indeed� f � � ��e�e
�x�x�e�x � �e�e

�x�x�x� � ex�

In order to prove that f � is well de�ned by !��	$� we show that the ordering �
on paths de�ned by P � Q � c�P � c�Q is Noetherian !remind warning ���� the
ordering on transmonomials is opposite to the ordering on transseries$� The main
problem here is that it can happen that for paths P and Q with cP�� � cQ��� we do
not have P � Q� For instance� take f � ee

x�
p
x � ee

x
� P � �ee

x�
p
x�
p
x� log x� and

Q � �ee
x
� ex� x�� However� we have the following�

Lemma �� Let f be a transseries in T and let P �� Q be paths in Tf with
cP�� � cQ��� Assume that jQj � 
� Then jP j � 
 and cQ�� 
 supp log cP���

Proof Let logp x and logq x be the labels of the ends of the paths P resp� Q� Let
us �rst treat the case when jP j � 
 and p � q� We have

c�P
c�Q

�
cP�� � � �cP�jP j
cQ�� � � � cQ�jQj �
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Using that P �� Q and the fact that cP�j � � for j � �� we deduce

cP�� � cQ�� � � � cQ�jQj� !���$

Assume now that cQ�� were not in supp log cP��� Then cQ�� 
 supp log cP���cQ���
since

supp log cP�� � supp log cP��  supp log�cP���cP��	�
Recall that for any in�nitely large transmonomial w� we have w � w� for each
w� 
 supp logw� Hence� �

cP��

cQ��

����jQj���
� cQ�j�

for each j � 
� by induction over j� Consequently�

cP��

cQ��
� cQ�� � � � cQ�jQj�

which contradicts !���$�
Assume now that jP j � 
� but p �� q� If p � q� then we formally extend the path

Q to
Q �� �cQ��� � � � �cQ�jQj��� logq x� � � � � logp x��

We observe that this extension does not alter c�Q nor cQ��� This ensures that the
same arguments as in the case when p � q can be applied� The case p � q is treated
similarly� by formally extending the path P �

Assume �nally that jP j � � and let us come to a contradiction� Again� we
formally extend the path P to the path

P �� �logp x� � � � � logq x��

Then the same arguments as before can be applied� to yield cQ�� 
 log cP��� Hence
cQ�� � logp�� x and jQj � 
� Consequently� c�P �c�Q � logp x�cQ�� � � leads to the
desired contradiction� �

Theorem �� The ordering on the set of paths in the tree representation Tf of a
transseries f 
 T is Noetherian�

Proof Suppose that the conclusion of the theorem were false� and let P�� P�� � � �
be a bad sequence of paths !see page ���$� Using proposition A��!d$ !page ���$� we
may assume without loss of generality that cP��� � cP��� � � � � � Clearly� we can not
have jPij � jPj j � � for two di
erent indices i � j� Hence� for all su�ciently large
i � I � �� we have jPij � 
�

By lemma ���� we deduce that jP�j � 
 and cPi�� 
 supp log cP���� for each i � I�
Hence� Qi � �cPi��� � � � �cPi�jPi j� is a path in log cP���� for each such i� Moreover� we
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observe that c�Pi � c�Qi
cPi��� for each i � I� Consequently� QI � QI��� � � � is a bad

sequence of paths in TlogcP� �� � since cPI �� � cPI���� � � � � �
Repeating the argument� we can therefore construct an in�nite sequence f� �

f� f�� � � � � with fi�� 
 log ci and ci 
 supp fi� for i � �� and where none of the
fi is an iterated logarithm� The existence of such a sequence contradicts the well�
foundedness of Tf � �

The theorem justi�es our de�nition !��	$ of the derivative f � of a transseries
f 
 T� Let us now show that the mapping f �� f � is indeed a derivation� Its
linearity is clear� We also notice that �ef	� � f �ef for all transmonomials ef � Now
by linearity� we only have to show that �c�c�	� � m�

�c� � c�m
�
� for transmonomials

c� and c�� Writing c� � ef� and c� � ef�� we have �ef��f�	� � �f� � f�	�ef��f� �
�ef�	�ef� � ef��ef�	�� again by linearity and the fact that �ef	� � f �ef � for each purely
unbounded transseries f � The results of this section can be rephrased in

Theorem �� The relation ���� de�nes a derivation on the �eld of transseries�
�

��
 Composition and inversion of transseries

In this section we introduce composition and functional inversion for grid�based
transseries� thereby generalizing section ������

����� Functional composition of transseries

In this section� we de�ne the composition f � g of a transseries f by a positive
in�nitely large transseries g 
 T�� � for some �xed �eld of transseries T� In the
next section� we give necessary and su�cient conditions for T to be stable under
composition�

As in the case of the derivation� we would like to de�ne f � g by trans�nite
induction� setting logk x � g � logk g� and �

P
h�T� cheh	 � g �

P
h�T� cheh�g� The case

when f 
 C����x��� will be treated in a direct way� However� to show that f � g has
well�ordered support in general� we will give an alternative combinatorial de�nition
for the composition� Again� this de�nition will be equivalent to the de�nition by
trans�nite induction�

� � �

Let us �rst show that f � g is well de�ned� if f 
 C�

 ���x���� For each k � �� we

can write logk g � ckmk��� �k	� for ck 
 C� an in�nitesimal �k and a transmonomial
mk� Then we have

supp logp����pk g � m
p�

 � � �mpkk �supp �
	� � � � �supp �k	��
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for each word p 
 C� over C� Moreover� there exist k
 
 N and l 
 Z� such that
ckmk � logk�l x� for k � k
� Hence

supp �k�� � �supp �k	
y

logk�l�� x
�

for k � k
 !see page ��� for the notation �supp �k	
y$� By induction we get

supp �k�� � �supp �k�	�
�

�

logk��l�� x
� � � � � �

logk�l x

���
�

logk��l�� x � � � logk�l�� x

�y
�

Hence

supp �k � Sk� � �supp �k�	
�
�

�

logk��l�� x
�

�

logk��l�� x logk��l�� x
� � � �

��
�

for each k � k
� We deduce that if supp f � flogp��i���pni�i xji 
 Ig� then

supp f � g � S
 � fmp��i
 � � �mpk����i

k��� ji 
 Ig�supp �
	� � � � �supp �k���	�Sk� �

Moreover� m
 ��� m� ��� � � � � so that the ordering on fmp��i
 � � �mpk����i

k��� ji 
 Ig repro�
duces the ordering on flogp��i���pk����i

xji 
 Ig� Hence� f � g has well�ordered support�

� � �

Consider the tree representation Tf of C�
� ���x���� A g�labeled tree in Tf is a

�nite tree L� together with a mapping � � L� Tf and a labeling a �� �a of the leafs
of L� with the following properties�

LT� pred�� �root�L			 � root�Tf	�
LT� � �pred�a		 � pred�� �a		�
LT� a 
 leaf�L	� � �a	 
 leaf�Tf	�
LT	 If a �L b for the natural ordering !see page ��$ on L� then � �a	 �Tf � �b	�
LT� If � �a	 is labeled by logk x for a 
 leaf�L	� then �a 
 supp logk g�
Here pred�a	 denoted the predecessor of a node a� We remark that � is not neces�
sarily injective� For each a in L� we denote by ca the label of � �a	 and by ca its
coe�cient in log pred�a	 !resp� pred�a	� if a � root�L	$�

Assume now that for some ordinal � we have shown that f�g is well de�ned for all
f 
 C�

� ���x���� with � � �� Then the mapping � which associates the transmonomial
e�h�g�

�
to a transmonomial eh in C�

� ���x��� is a morphism of ordered groups� Let L be
g�labeled tree in Tf and L� a subtree of L� Let r be the root of L�� and L��� � � � � L�n
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exe
x�x

exe
x�x

xex

x log x

x

Tf L in Tf

e��x e�x e�x

e�x

Figure ���� Illustration of a g�labeled tree in Tf !see example ��	$

its children r� To L�� we associate

cL� �

�
cr�logk g	�r � if n � � and cr � logk x�
�
n�crcL�� � � � cL�n� if n �� ��

cL� �
Y

a�L�nleaf�L��
ca�

�L� �
Y

a�leaf�L��
�a�

c�L� � ��cL�	�L� �

We say that L is admissible� if c�L� �� �� for each strict subtree L� of L� We order
the set admtg�Tf	 of admissible g�labeled trees in Tf by L � L� � c�L � c�L� � We
de�ne f � g by

f � g � X
L�admtg�Tf�

cL��cL	�L� !���$

In order to prove that f � g is well�de�ned� it su�ces to show that the ordering �
on admtg�Tf	 is Noetherian�

Example �	 Let f � exe
x�x and g � x �

p
x � �e�x � e��x� In �gure ���� we

have illustrated a sample admissible g�labeled tree L in Tf � We have

cL �
�� � 

 � �� �

�

�
�

and
c�L � �xe

x�
p
x	�e�x�

p
x��ex�

p
x��e

p
x���e��x�
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Lemma �� Let f be a transseries in Tand let L ��M be admissible g�labeled trees
in Tf � with croot�L� � croot�M�� and �L � �M � Assume that M has size jM j � 
�
Then jLj � 
 and there exists a child M � of the root of M � such that croot�M �� 

supp log croot�L��

Proof Assume that the conclusion of the lemma were false� Then

croot�M �� 
 supp log croot�L�
croot�M�

�

for each child M � of the root of M � Hence�

croot�M �� �

�
croot�L�

croot�M�

����jM j���
�

for each such M �� Using structural induction� we deduce that

ca �

�
croot�L�

croot�M�

����jM j���
�

for any a 
Mnroot�M	� whence

cM � croot�M�

Y
a�Mnroot�M�

ca � croot�L� � cL�

This yields the desired contradiction� since c�M � ��cM 	�M � ��cL	�L � c�L� �

Theorem �	 The ordering on the set of admissible g�labeled trees in the tree
representation Tf of a transseries f 
 C�

� ���x��� is Noetherian�

Proof Suppose that the conclusion of the theorem were false� and let L�� L�� � � �
be a bad sequence !see page ���$ of admissible g�labeled trees in Tf � We say that
such a bad sequence is admissible� if croot�L�� � croot�L�� � � � � and �L� � �L� � � � � �
Recall that �Li is either in S
 !if Li consists of a leaf only$� or in fc 
 S
jc �� �g��
By proposition A��!d$� we can extract from each bad sequence an admissible bad
sequence� An admissible sequence is understood to be minimal� if for each i� and
each admissible bad sequence L�� � � � � Li� L

�
i��� � � � � L�i��� � � � the number of children

of the root of L�i�� is strictly superior to the number of children of the root of Li���
Without loss of generality� we may assume that L�� L�� � � � is a minimal admissible

bad sequence� From the minimality hypothesis� we deduce that the number of the
children of the root of Li increases� as i increases� We claim that for all su�ciently
large i � I � �� the root of Li has at least one child� whence jLij � 
� If this were
not so� then all Li would be roots whose images under � are labeled by iterated
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logarithms� But this is impossible� since supp g  supp log g  supp log� g  � � � is
well ordered by the discussion at the beginning of this section�

Applying lemma ���� we deduce that jL�j � 
 and for each i � I there exists
a child Mi of the root of Li� such that croot�Mi� 
 supp log croot�L��� Let L

�
i be the

admissible g�labeled tree obtained from Li by deletingMi� We claim that the induced
ordering on fL�I � L�I��� � � �g is Noetherian� Assuming the contrary� there exists an
admissible bad sequence L�i� � L

�
i�
� � � � � Let k be such that ik is minimal� and consider

the sequence L�� � � � � Lik��� L
�
ik
� L�ik��� � � � � This sequence is also an admissible bad

sequence� contradicting the minimality hypothesis� Indeed� we observe that L�ij �
Lij for each j� since c

�
Mij

� � and c�Lij � c
�
L�ij
c�Mij

�

By proposition A��!d$� we can extract an increasing sequence L�i� � L
�
i�
� � � � � from

L�I � L
�
I��� � � � � Using again that c�Lij � c�L�ij

c�Mij
for each j� we conclude that Mi� �

Mi�� � � � is a bad sequence of admissible g�labeled trees in Tlogcroot�L�� � Repeating the
argument� we obtain a contradiction as in the proof of theorem ���� �

Corollary The composition f � g is well de�ned by ����� for all transseries
f 
 C�

� ���x��� and all ordinals ��

����� Properties of functional composition

We now state some properties of the composition� leaving the proofs of !a$� !c$ and
!f$ as exercises for the reader�

Proposition �� Let f 
 C�
����x��� and g 
 �C��

�� ���x���	
�
� � Then

a� Right composition �g with g is a strong di�erence operator� i�e�

�
X
i�I

fi	 � g �
X
i�I

fi � g�

for all Noetherian families �fi	i�I�
b� �f � g	 � h � f � �g � h	 for all positive in�nitely large h�
c� �f � g	� � g��f � g	�
d� Let � �� � such that � �� c��c� for all monomials c �� � in the support of f �

Then

f � �x� �	 � f � f ���
�



f ���� � � � � � ����

Here � �� � �� c��c holds in particular� if expoc � ��

e� f � g 
 C���
��� ���x���� where �

�� � min�� � ���max�����	 � 	 and ��� � min�� �
��� 	�

f� expo�f � g	 � expo f � expo g�
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Proof We prove !b$ using a double trans�nite induction� We may assume without
loss of generality that � � � and that g and h are both in T�

�� Assume �rst that
f � logk x� If g � logl x� then we clearly have associativity� In the other case� we
write g � cgmg�� � �	 and

log�g � h	 � log

�
cgmg � h

�
� �

X
c

�cc � h
��

� log gm � logm � h� log
�
� �

X
c

�cc � h
�

� log gm � �logm	 � h� log
�
� �

X
c

�cc

�
� h

� log

�
cgmg

�
� �

X
c

�cc

��
� h � �log g	 � h�

The induction hypothesis is used to write down the identity log�m �h	 � �logm	 �h�
Iterating the obtained identity� we deduce that logk�g � h	 � �logk g	 � h� for all g
and k� For more general f � we use a second trans�nite induction and write�X

c

fcc

�
� �g � h	 �

X
c

fcc � �g � h	

�
X
c

fc�c � g	 � h

�

��X
c

fcc

�
� g
�
� h�

This concludes the proof of !b$�
The hard part of !d$ is to prove that the right hand side of !���$ is well de�ned�

To do this� we shall use the concept of Noetherian operators from section A�	�
Let X be the set of couples �c� n	 where c is a transmonomial with c � � or
� �� c��c and n 
 N� We order X by �c� n	 � �w�m	 � c�n � w�m� Let � be
the strictly extensive choice operator on X� which sends �c� n	 to the set of couples
�w� n � �	� with w 
 supp c�� From theorem ���� we deduce that the operator �
is actually Noetherian !apply the theorem to

P
c�C c for each well�ordered set of

transmonomials C$� Hence� the operator �� is Noetherian� by theorem A�	�
We have a natural injection � � supp f � X�c �� �c� �	� Let � � c�m��� � �	� An

element in �����supp f		�supp �	� is represented by a chain c
 
 supp f�c�� � � � �cn
of monomials with ci�� 
 supp c�i for all i and a chain w�� � � � �wm of monomials in
the support of �� If n � m� then we associate to such an element �c�w	 a term

��c�w� � fc�c
�

�c�

� � �c�n���cncncn�mn� �w� � � � �wn�
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If m �� n� then we take ��c�w� � �� Clearly� the mapping �c�w	 �� ��c�w� is increas�
ing� Therefore� the sum

P
�c�w� ��c�w� is well de�ned� since �����supp f		�supp �	

� is
Noetherian� But this sum is nothing else than the right hand side of !���$� We leave
it as an exercise for the reader to prove the equality !���$�

The only non trivial thing to prove in !e$ is the bound ��� � max�����	 � �
We may assume without loss of generality that g � x � �� with � �� �� by means
of a �nite number of left and right compositions with exp and log� Let us prove by
induction over l that if supp f contains only monomials with exponentiality� l� then
we may take ��� � max�����	 � l� If l � �� then this results from !d$� Otherwise�
let c � e� be a monomial in supp f � Then the exponentialities of the monomials in
supp� are all bounded by l�� by the induction hypothesis� whence the exponential
depth of e� � g is bounded by max�����	� l� We conclude by the strong linearity of
�g�

In the general case� we decompose f as a sum f � f
 � f� � f� � � � � � where the
monomials in supp f
 have exponentialities � �� and the monomials in supp fl have
exponentialities l� for each l � �� By what precedes� the exponential depth of fl � g
is bounded by max�����	 � l� for each l� We now infer !e$ from the strong linearity
of �g� �

Using proposition ���!e$� we can now characterize those �elds of transseriesTare
stable under composition� T� C�

� ���x��� is stable under composition� if and only if
� 
 f�� � � g� and � 
 f�� � g or � �� � with � � ��� In the cases when such
a �eld contains log x and expx� then we say that T is a stable �eld of transseries�
Summarizing� we have proved�

Theorem �� Let Tbe a stable �eld of transseries� Then the relation ���� de�nes
a composition on T� which is compatible with the derivation� �

����� Functional inversion of transseries

Theorem �� Let T be a stable �eld of transseries� Then each g 
 T�� admits a
functional inverse for � in T�

Proof Modulo a �nite number of left and right compositions of g with exp or log�
we may assume without generality that g � x� �� for some � �� �� We will denote
by � resp� � the exponential resp� logarithmic depth of g�

We �rst consider the case when all monomials in the support of � have exponen�
tiality � � or �xed exponentiality l� Then we de�ne the sequence �f�	 by trans�nite
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induction�

f
 � x�

f��� � f� � �f� � g � x	 � f��
f� � stat lim

��
f�� for limit ordinals ��

Using our hypothesis on �� it can be veri�ed by trans�nite induction that the ex�
ponential and logarithmic depths of the f� are bounded by � resp� �� so that the
stationary limits are well de�ned� Indeed� this follows from proposition ���!d$� by
noticing that the exponentiality of f� � x is either � � or equal to l for all � � ��

We claim that f� � g � x� for � su�ciently large !whence g � f� � x$� It su�ces
to show that f� � g � x �� f� � g � x� for all � � �� with f� � g �� x� Indeed� this
implies that f� � g � x for � � jTj� where jTj denotes the cardinal of T�

We �rst observe that for any in�nitesimal �� we have � � � � �x� �	� Hence

f��� � g � x � f� � g � x� �f� � g � x	 � �f� � g	 �� f� � g � x�

For a limit ordinal �� let � � � � �� We have

�f� � g � x	� �f� � g � x	 � f� � g � x � �f� � g � x	 � �f� � g	�

whence f��f� � �f��g�x	�f� � Passing to the limit� we deduce f��f� � �f��g	�f��
Hence

�f� � g � x	� �f� � g � x	 � f� � g � x � �f� � g � x	 � �f� � g	�

so that f� � g � x �� f� � g � x�
In general� we decompose g � x��
������� � � � � where the exponentialities of

the monomials in supp �
 are bounded by � and the exponentialities of the monomials
in �l are equal to l for each l � �� By induction on l� we now have functional inverses
f
� f�� f�� � � � for x� �
� x� �
 � ��� x� �
 � �� � ��� � � � respectively�

fl�� � fl � �x� �l � fl	inv�

here �x��l�fl	inv is de�ned by what precedes� We also observe that the exponential
resp� logarithmic depth of fl is bounded by � � l resp� � for each l� Hence f �
stat liml� fl exists and yields the desired functional inverse of g� Indeed� if f�g �� x�
then for any l 
 N� the exponentiality of f � g � x � fl � g � x would be at least l�
But this is impossible� �
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��� Transseries intervals and compacti�cation

Any totally ordered set E has a natural topology� called the interval topology�
whose open sets are unions of open intervals� We recall that an interval is a subset
I of E� such that for each x � y � z with x� z 
 I� we have y 
 I� An interval
is said to be open� if for each x 
 I we have� x is minimal resp� maximal� if and
only if x is minimal resp� maximal in E� We observe that an increasing union of
open intervals is an open interval� Hence� any open set U of E can be represented
as the !generally in�nite$ disjoint union of intervals� by considering the largest open
interval Ix � U for each x 
 U �

Now consider a �eld of transseries Twith the interval topology� T is �very� non�
Archimedian� whence disconnected and non compact� A natural question is how to
characterize intervals in T� Now open intervals in R are all of the form �a� b�� with
a � b� and a� b 
 R f����g� Hence� extending R with f����g yields a simple
description of the intervals of R� Moreover� Rf����g is a compacti�cation of R�
We claim that an analogue of this holds for T� but much more new values need to
be inserted� We will �rst give an abstract construction in section ����� which works
for any so called continuously totally ordered set� In section ����� we particularize
the obtained results for the transline T�

����� Compacti�cation of continuous total orderings

Let E be any totally ordered set� and denote by I�E	 the set of its initial segments�
ordered by inclusion� Let � be the equivalence relation on I�E	 de�ned by I � J �
jI ! J j � �� where jI ! J j denotes the cardinal of InJ  JnI� This equivalence
relation is compatible with the ordering on I�E	� Hence� we have a natural ordering
on E

def

� I�E	��� We also have a natural mapping i � x �� Ix from E into E� with
Ix � fy � xg� We say that the ordering on E is continuous� if for each x � y 
 E
there exists a z 
 E� with x � z � y� This is always the case when E is a totally
ordered �eld�

From now on we assume that �E is continuous� We �rst observe that Ix ! Iy is
in�nite� for any x �� y in E� so that i is an embedding� Let us show that E �� E�
i�e� that the natural mapping j from E into E is an isomorphism� Let I � J
be in E� Then there exists x 
 JnI� At least one of IxnI and JnIx must be
non empty� If y 
 IxnI� we have I � Iy � Iz � Ix � J for any y � z � x�
Similarly� if y 
 JnIx� then I � Iz � J for any x � z � y� We conclude that the
ordering on E is continuous� whence j is injective� Next� let I be in I�E	� Consider
U �

S
V �I V 
 I�E	� Then IU � I and I � j�U 	�

Let us now show that E is connected� Assume the contrary� Then E is the
disjoint union of two open sets� whence the disjoint union of at least two non empty
open intervals� Let I� � I� be summands of this partition� Writing

E � x�I� ���E� x�q �x�I� �x��E��
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we observe that we may assume without loss of generality that E � I�qI�� Consider
U �

S
V�I� V 
 I�E	� We have either U 
 I� or U 
 I�� In the �rst case� U would be

a maximal element of I� di
erent from E� In the second case� it would be a minimal
element of I� di
erent from ��� This gives us the desired contradiction�

Let us �nally show that E is compact� It su�ces to show that from a covering
�I�	��A of E with open intervals we can extract a �nite subcovering� This is done by
the following procedure� let x
 � �� be the minimal element of E� For each k � �� we
inductively de�ne xk�� �

S
V �I��xk�I� V � We remark that we either have xk�� � E�

or I� � xk��� for any � with xk 
 I�� We claim that xk � E for k su�ciently large�
Suppose the contrary and consider x �

S
Uk	xk

Uk� There exists an � with x 
 I��
Since I� is open� there exists an y � x in I�� By the de�nition of x� there exists an
n with y � xn� But then xn and xn�� � E are both in I�� which contradicts the
fact that xn�� � E or I� � xn��� Having proved the claim� we successively choose
�k� � � � � �
� such that xi 
 I�i !� � i � k$� and I�i � I�i�� �� �� !� � i � k$� This is
possible by the construction of the xi� and we have E � I��  � � �  I�k�

We have proved�

Proposition �� Let E be set with a continuous total ordering� Then

a� E �� E�
b� E is connected�
c� E is compact� �

����� Compacti�cation of the transline

Let T be a �eld of transseries and C the subset of transmonomials� We will give a
concrete description of T� Besides C and Twhich are naturally embedded into T�
T contains also two special elements�T� supT and ���C � supff 
 Tjf �� �g�
If T is not complete� then let �Tdenote the smallest complete subset containing Tof
a complete �eld of transseries T� which contains T� �T is also natural embedded in
T� and consists precisely of those elements f in T�� such that for any g � f we have
g 
 T�

Let us now show that the usual �eld operations� exponentiation and logarithm
extend to T� Any increasing function � � I � T on an interval I of T naturally
extends into an increasing function � � I � Tby ��sup J	 � sup��J	� for all initial
segments J of I� Indeed� this yields a function from I into T since each element
in InI can be represented uniquely in such a way� In particular� this shows that
exponentiation and logarithm naturally extend to T� Right composition with a �xed
in�nitely large transseries is also de�ned on T�

In a similar way� decreasing functions � � I � T naturally extend into decreas�
ing functions � � I � T by ��sup J	 � inf ��J	� In particular� opposites !�f$ and
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inverses !f�� for f �� �$ are de�ned in T� Furthermore� the derivation is strictly
decreasing on in�nitesimal intervals� whence it can be extended to the compacti�c�
ations of such intervals� Finally� functional inversion on T�

� naturally extends to
T���

Addition and multiplication also extend to T� addition is de�ned by sup I �
supJ � sup I � J for all initial segments I and J of T� Similarly� multiplication
on T� is de�ned by sup I supJ � sup IJ for all initial segments I and J of T��
Multiplication is extended to T by ��x	y � x��y	 � ��xy	 and ��x	��y	 �
xy� We notice that T does not possess much algebraic structure� For instance�
�T��T��T� whence T is not even a group�

To characterize T� only one type of elements can still not be constructed from
�T� C��T and ���C by using the above operations� Consider an expansion of the
form

�
 � �
e
�����e

�����e

���

� !��$

where the �i are transseries in T� and the �i non zero constants� If T is stable under
exponentiation� then such expansions can be interpreted as elements in T in the
following way� for each i� let Ii be the initial segment of Twith maximum

�
 � �
e
�i���e

���

�i

�

Then the expansion !��$ can either be interpreted as the element sup
T
i�N
S
j�i Ii

or sup
S
i�N
T
j�i Ii in T� In general� both interpretation yield di
erent elements in

T� Nevertheless� for what follows� we will only consider canonical expansions�
We say that an expansion of the form !��$ is canonical� if the following condi�

tions are satis�ed�
!a$ �i � �� for each i�
!b$ �i is purely unbounded for each i � ��
!c$ for each i and each c 
 supp�i� there exists a j � i� such that for all � with

supp�j �C supp�� we have

c �� e�i����i��e

���

�j��

�

Given a canonical expansion of the form !��$� both its interpretations as elements
in T coincide� Moreover� for each i and each c 
 supp�i� we have

c �� e�i����i��e
�i����i��e

���

�

Here f �� g for f� g 
 T if �C jf j � jgj or f � g � ��
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In fact� we extend the notion of canonical expansions to certain other elements
in T� �rst� ��T� elements of �T and elements of the form cc !c 
 CnC�c 
 C$ and
�c � ���	c !c 
 C�c 
 C$ are de�ned to be canonical expansions of themselves�
Now assume that we are given � 
 Tand a canonical expansion �g of g 
 T� such that
�g �� c for each c 
 supp �� Then the expression � � �g is by de�nition a canonical
expansion of �� g� If � is purely unbounded and g �� �� then the expression �e���g

is by de�nition a canonical expansion of �e��g�
Theorem �� Each f 
 T admits a unique canonical expansion of one of the
following types�

I� f 
 T�
II� f � ��T�

III� f � �
 � e���e

���

�r��c

� � 
 CnC� c 
 C�

IV� f � �
 � e���e

���

�r���r	�	
C �c

� �r 
 C� c 
 C�

V� f � �
 � e���e

���

�r

� �r 
 �TnT�

VI� f � �
 � e���e��	e

���

�

Proof Let us describe a theoretical algorithm to compute the canonical expansion
of f � If f 
 �T or f � ��T� then we are done� In the remaining case� let I be the
initial segment of Twith sup I � f and let h � stat limg�I g� Since f �
 �T� we have
h 
 T� Distinguish the following cases�
�� The dominant monomial of h� g is constant� for g 
 I su�ciently large�
�� We are not in case �� and I � h�
�� We are not in case �� and g � h for some g 
 I�

In case �� we consider the set J of dominant coe�cients of g � h� where we take
g 
 I su�ciently large� so that its dominant monomial m is constant� Then J is
an initial segment of C� which admits a lowest upper bound sup J �� ��C in C�
If sup J 
 C� then we have f � h � �sup J � ���	m� If supJ �
 C� then we have
sup I � h� �sup J	m�

In case �� h� g is positive for all g 
 I� so that the dominant monomial of h� g
increases !remind warning ���$� when g approaches sup I� Consider the set L of
logarithms of dominant monomials of h � g� for g 
 I� We recursively determine
inf L� We have inf L �� ��T� since f �� h 
 T� If supL has the form supL � ���C�
with � 
 T
� then f � h��Ce

�� In the other case� we have f � h� einf L� Notice
that the case supL � �� c with � 
 T
 and c 
 Cnf�Cg is excluded�

In case �� h � g is negative for all su�ciently large g 
 I� so that the dominant
monomial of g�h decreases� when g approaches sup I� Let L be the set of logarithms
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of dominant monomials of g � h� for g 
 I with g � h� We recursively determine
supL� If supL has the form supL � ���C� with � 
 T
� then f � h�����C	e��
In the other case� we have f � h � esupL� Notice that the case supL � � � c with
� 
 T
 and c 
 Cnf��Cg is excluded�

In the case when the theoretical algorithm terminates� we clearly obtain a canon�
ical expansion for f of type I� II� III� IV or V� If the algorithm does not terminate�
then we obtain an expression of type VI� the successive values of h in the algorithm
determine �
� ��� � � � � The signs are determined by the successive cases considered
in the algorithm !case � versus case �$� The uniqueness of canonical expansions of
types I� II� III� IV� V and VI is trivial� �

Example �� The sequence log x� log� x� log� x� � � � admits �C 
 C as a limit�
The sequence x� x�� x�� � � � admits e� logx as a limit� The sequence x� x� log x� x�
x� log� x� x�x� log� x�� � � admits ������C 	x as a limit� The sequence ex

�
� exp�x��

elog
�
� x	� exp�x� � exp�log�� x� elog

�
� x		� � � � admits

l � ex
��elog

�
� x�e

log�� x�

���

� !���$

as a limit� The sequence x� x � log x� x � log x � log log x� � � � in C���x��� admits

x� log x� log log x� � � � in �C���x��� as a limit�

The above theorem also yields a classi�cation of transseries intervals�

Proposition �� Let I be a non empty interval of T� Then there exist unique
f � g 
 T� such that I has one and only one of the following forms�

I� I ��f� g��T�
II� I � �f� g��T� with f 
 T�
III� I ��f� g� �T� with g 
 T�
IV� I � �f� g� �T� with f� g 
 T� �

Our notation for elements in T and transseries intervals might for example be
useful in complexity theory� for a given problem� the set of complexities of algorithms
!representable inT$ which solve this problem form a �nal segment F of T� We de�ne
inf F to be the complexity of the problem in T� Similarly� one de�nes the type
of a real number in T� which is studied in the �eld of Diophantine approximations�

����� Nested forms and nested expansions

In his automatic expansion algorithms� Shackell !see "Sh ��#$ systematically uses
nested forms and nested expansions� any non zero non Archimedian transseries
f can be written in a unique way f � � exp�s��logdt x	g	 !s� t 
 N� � � ���
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d 
 C�� g � �$� where g ��� logt x� d � � unless s � �� and d �� � unless
s � � or t � �� Performing this operation recursively yields a nested form
f � � exp��s���logt� x	 � � � exp�nsn��logtn x	g		� where g tends to a �nite limit l� Re�
peating this procedure once again for g � l yields a nested expansion for f ��

Nested forms are useful for estimating the order of growth of a transseries� In
particular� the limit of a transseries can be deduced from its nested expansion�
whence its usefulness for limit computations� However� much information is lost�
even in the case of nested expansions� For instance� the nested expansions of ����x�
��x�� � � � and ����x���x� � � � �� e�x are the same� For a similar reason� nested
expansions do not yield equivalents� consider for example f � exp�ex��x� �	 � x	�
Finally� a transseries like x� e�x� whose �usual� expansion is �nite� has an in�nite
nested expansion�

By what has been said in the previous section� we observe that nested expan�
sions are special instances of expressions of the form !��$� Consequently� nested
expansions determine !and should be considered as*$ elements in T�

��� Complements

Certain� very general� functional equations admit solutions with a �strongly mono�
tonic 0avour� !Hardy �eld solutions� for instance$� which are not representable by
transseries in the sense of the previous sections� In this section we discuss pos�
sible extensions of the theory of transseries to cover such cases� Our presentation is
informal% the generalized transseries we discuss only occur in quite �pathological�
cases� Actually� their introduction is mainly motivated by the quest for a completely
general theory�

����� Nested transseries

The �rst class of equations which does not admit solutions in any of the �elds of
transseries previously studied admits the following representative example�

f�x	 � ex
��f�log� x�� !����$

The natural transseries solution of this equation would be given by a �nested ex�
pansion�

f � ex
��elog

�
� x�e

log�� x�

���

� !����$

Although such expressions do not belong to any �eld of transseries in the classical

�We note a slight di�erence between our de�nitions and Shackell�s in the case when f is Archi�
median� for us the nested form of f would just be f � Shackell requires one more term of the nested
expansion for the nested form of f �
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sense !see the previous section$� it is plausible that �elds of generalized transseries
can be constructed� which contain f as a transmonomial�

Actually� one might be tempted to generalize the concept of a transseries by
allowing tree representations which are not well�founded� However� to avoid para�
doxes� an additional condition need be imposed on such tree representations� Indeed�
consider the functional equation

g�x	 � ex
��g�log� x��logx� !����$

A �natural� transseries solution would be

g � ex
��elog

�
� x�e

log�� x�

��� �log	 x�log� x�logx�

and one would like to think of g as a transmonomial� However� the above formula
is misleading� because there exists a solution to !����$ of the form

g � f�� � �	�

Indeed�

log g � x� � g�log� x	 � log x

� x� � f�log� x	 � �� �
��

� � � � � � log f � log�� � �	�

whence
f�log� x	��log� x	 � log x � �� �

��
� � � � �

and we �nd a solution

��x	 � � ex

f�x	
� ee

ex

f�eex	
�

e�e
ex


f�eex	�
� � � � �

The point is that we should forbid transseries whose tree representation contains
an in�nite path such that an in�nite number of nodes on the path admit branches
to the right hand side� Such �transseries� will be called ill�founded� while the
remaining valid ones� like f � will be called nested�

Remark �	 It is interesting to notice that � � �� whence g is smaller than f �
Actually� a similar phenomenon is encountered when considering transseries whose
terms are ordered in the wrong way� For instance� let

� � � � �� x� � x� ��

which seems to be positive� However� � satis�es � � x� � �� and the correct
transseries solution to this equation is

� � ��
x
� �

x�
� �

x�
� � � � �

which is negative�
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����� Transseries of positive strength

Another source of instability for the �elds of transseries constructed in this chapter
is revealed by considering iterators of positive in�nitely large transseries of non zero
exponentiality� consider the equations

exp��x� �	 � exp�exp� x	 !����$

and

log��x	 � log��log x	 � �� !���	$

Any Hardy �eld solution to one of these equations has an order of growth which
is superior to any iterated exponential resp� inferior to any iterated logarithm� In
particular� such a solution can not be represented by a transseries in the sense of
the previous sections� although it has a de�nite �strongly monotonic 0avour��

Solutions exp� and log� are resp� called iterators of the exponential and the
logarithm� The reason is that they enable us to de�ne fractional iterates of the
exponential and the logarithm�

exp� x � exp��log� x� �	�

log� x � exp��log� x� �	�

More generally� even more violently increasing functions are obtained by repeatedly
taking iterators of exp�

exp��x� �	 � exp�exp��x		�

exp���x� �	 � exp��exp���x		�
���

Similarly� one de�nes log�� log��� � � � � We also notice an alternative� formal way of
introducing log� and its repeated iterators� by means of integration�

log� x �
Z �

x log x log� x � � �
�

log�� x �
Z �

x log x � � � log� x log log� x � � � log�� x � � �
�

���

A natural question is now to construct a �eld of transseries C����x����� which
contains exp� x� log� x� exp�� x� � � � � and which is stable under derivation� composi�
tion� etc� Moreover� we want each transseries in C����x���� to be a well�ordered sum
of transmonomials of bounded strength� Here the strength of a transseries f is
de�ned to be the maximal number s� such that exp�

s
or log�

s

occurs in f �
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The main di�culty we encounter here� is the characterization of transmonomials�
Our criterion is as follows� if f is a positive in�nitely large transseries in C����x����
and s 
 N� then exp�s f is a transmonomial� if and only if for each decomposition
f � f� � f� with � �� f� � f we have

f� �� exp�
s
f�

�exp�s	�f�
�

The problem with this criterion is that the construction of exp�
s
f requires the

preliminary construction of exp�
s
f�� �exp�

s
	�f�� � � � � for each strict truncation � ��

f� � f of f � Nevertheless� we have checked the possibility of constructing C����x����
using our criterion� by alternating inductive closures and applications of Zorn�s
lemma� Because of its technical character� we plan to come back to this construction
in a future paper�

Remark �� As usual� we have only been concerned with the algebraic side
of the story� Another interesting question is to construct solutions to equations
like !����$ and !���	$ at in�nity� Hardy already constructed continuous solutions to
similar equations� but his solutions are not even di
erentiable�  calle constructed
in " c ��# so called quasi�analytic solutions� which are in particular Hardy �eld
solutions� Here we recall that quasi�analytic functions generalize analytic functions
in the sense that they still admit derivatives up to any order and unique quasi�
analytic continuations along the real axis� Unfortunately� no criterion is presently
known to privilege particular quasi�analytic solutions to !����$ and !���	$�� In any
case�  calle proved that such a criterion can not be entirely algebraic !i�e� involving
�� �� d�dx� �� etc�$� this is his theorem of �indecernability�� For more details about
iterators� growth orders and �the Grand Cantor� we refer to " c ��#�

����� Conclusion

Summarizing� the transseries from section ��� do not su�ce to represent the strongly
monotonic solutions to very general systems of di
erential di
erence equations� The
source of troubles lies in the consideration of functional equations involving compos�
itions with transseries of non zero exponentiality� We have shown two extensions of
the concept of a transseries� nested transseries and transseries of positive strength�
We conjecture that it is possible to construct �elds of transseries which are stable
under the strongly monotonic resolution of any system of functional equations� by
combining these two extensions� In table ��� we have summarized the natural origins
of di
erent types of transseries in terms of the kind of functional equations which
can give rise to it�

�We notice that given an iterator log� of the logarithm� we have another iterator

glog�x � log� x� ��log� x��

for any periodic function � �� � of period ��
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type origin
Puiseux algebraic equations
grid�based algebraic di
erential equations
strength � functional equations� where only right compositions

with transseries of exponentiality zero are allowed
positive strength composition equations !see " c ��#$
nested� positive strength any functional equations

Table ���� Natural origins of transseries of a given type�

Let us �nally notice that instead of considering more general transseries� it might
also be interesting to study types of transseries between grid�based transseries and
well�ordered transseries� Consider for instance those well�ordered transseries f with
recursively well�ordered support� i�e� supp f � C for some set C of trans�
monomials� such that for all e� 
 C we have supp � � C� The set of recursively
well�ordered transseries is an exp�log �eld� stable under derivation� composition and
the resolution of many systems of functional equations� However�

f �
�X
i	�

ee
xx�i�xi

is an explicit example of a transseries whose support is not recursively well�ordered�
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Chapter �

The Newton polygon method

��� Introduction

Almost all techniques for solving asymptotic systems of equations are explicitly or
implicitly based on the Newton polygon method� In this section we explain this
technique in the elementary case of algebraic equations over the ring of grid�based
series R � C��X�� or well�ordered series R � C��X��� where C is a constant �eld
of characteristic zero and X a totally ordered monomial group with Q�powers� In
the subsequent sections� we will consider more and more general types of equations
over the transseries� Notice also� that all �computations� we perform in this chapter
are theoretical% for more details about the e
ective aspects of the Newton polygon
method and its extensions� we refer to chapters �� and ���

��� The method illustrated by examples

In this section� we show how to apply the Newton polygon method to two speci�c
examples� This will familiarize the reader with the basic concepts and some sub�
tleties of the method� Let us �rst consider the equation

P �f	 �
X
i

Piz
i � z�f� � z�f� � f� � 
f� � f� �

z

�� z�
f �

z�

�� z
� �� !���$

Assume that the Puiseux series f � cz	 � � � � 
 C ��zQ�� with c �� � and � as
dominant exponent is a solution to this equation� and let

� � minf�� �� �� 
�� ��� ��� � � �� �� � �g�
Since f is a solution� we in particular must have

�z��

�
z�f� � z�f� � f� � 
f� � f� �

z

� � z�
f �

z�

�� z

�
� �� !���$

By the choice of �� we have �z��Pif i � Pi���	ici� for each i� and Pi���	i �� � for some i�

��
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In view of !���$� this implies that Pi���	i �� � for at least two indices i� Consequently�
� occurs at least twice among the numbers �� ���� 
�� ��� ��� ���� ����� whence

� 
 f
� �� ����
�
g�

Graphically� these possible values of � can be determined by considering the
Newton polygon associated to !���$� which is de�ned to be the convex hull of all
points �f i� z�	 with � � �Pi � We have illustrated the Newton polygon associated
to !���$ in �gure ���� The diagonal slopes

��� z�	��f� z	 �� � 
	�
�f� z	 ��f�� �	 �� � �	�
�f�� �	��f�� �	 �� � �	�
�f�� �	��f�� z�	 �� � ��

�
	�

correspond to the possible values of �� These values are also called the potential
dominant exponents of f � where we consider f as an indeterminate solution
to !���$�

For given � 
 Q� the equation !���$ is actually a non trivial polynomial equation
in c over C � which we call the Newton equation associated to �� Hence� there are
only a �nite number of possible values for c� which are listed below as a function of
��

� � 
� c � ���
� � �� c � ���
� � �� c � � !double solution$�
� � �

� � c 
 f�i� ig�
The corresponding possible values for cz	 are called the potential dominant terms
of f �

For given cz	 
 C zQ� we can now consider the equation �P � �f 	 � � which is ob�
tained from !���$� by substitution of f with cz	� �f � where �f satis�es the asymptotic
constraint � �f � �� For instance� if cz	 � �z
� then we obtain�

�P � �f	 � z� �f� � ��z�	 �f� � ��z� �z�� �	 �f�� �
�z� ���z� �
	 �f� � ��z� ���z� �
�	 �f� � ��z� � z� � z���� z�		 �f � z� � z� � �z� � z� � z	��� � z�	 � �� !���$

The potential dominant monomials of solutions �f to !���$ are found by the same
method� except that we now require the potential dominant exponents �� of �f to
satisfy the additional condition �� � �� The Newton polygon associated to !���$ is
illustrated in !���$�

� � �

The above discussion illustrates that instead of studying polynomial equations
P �f	 � �� it is more appropriate to study polynomial equations P �f	 � �� which
satisfy additional constraints �f � � !the case of usual polynomial equations is
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fN

zQ

Figure ���� The Newton polygon associated to the equation

z�f� � z�f� � f� � 
f� � f� � zf��� � z�	 � z���� � z	 � ��

�fN

zQ

Figure ���� The Newton polygon associated to the equation

z� �f� � ��z�	 �f� � ��z� � z� � �	 �f� � �
�z� � ��z� � 
	 �f��

��z� � ��z� � �	 �f� � ��z� � z� � z��� � z�		 �f � z� � z� � �z� � z� � z	��� � z�	 � ��

This equation is obtained from the equation in �gure ��� when substituting f � �� �f �
The potential dominant monomial we chose corresponds to the horizontal slope�
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recovered by allowing �f � ��$� Then the above method yields a way to transform
such equations into new equations �P � �f	 � �� with f � �� �f � �� � �� � �f � �� � ���
Such transformations are called re�nements� which are said to be admissible� if
�P is either divisible by �f � or if there exists a potential dominant monomial relative
to �P � �f	 � ��

Unfortunately� the process of computing potential dominant terms and their
corresponding re�nements is generally in�nite and even trans�nite� Hence� we only
obtain necessary conditions for Puiseux series f to satisfy P �f	 � � by this process�
On the other hand� not all coe�cients of a solution f to P �f	 � � need to be
determined in order to determine f itself� we merely want a suitable description
for f � In our case� solutions to P �f	 � � are represented by re�nements as above�
for which �P � �f	 � � �� �f � ��	 has a unique solution� This leads to the question of
�nding a su�cient condition to guarantee this� It turns out !see the next section$
that a su�cient condition is that �P � �f	 � � �� �f � ��	 be quasi�linear� This means
that either �P is divisible once by �f � or the equation �P � �f	 � � admits a unique
potential dominant exponent� whose associated Newton equation has degree one�

� � �

Returning to our example equation !���$� we observe that the re�nements f �
�z� � �f� f � �z � �f� f � �iz���� � �f � resp� f � iz��� � �f are quasi�linear !i�e�
the corresponding equations in �f obtained from !���$ are quasi�linear$� The case
f � �� �f �� �f � �	 necessitates one more step of the Newton polygon method� this

yields the quasi�linear re�nements f � � � i
p
z � ��f resp� f � � � i

p
z � ��f with

� ��f
� �

�� Hence we obtain a complete description of the set of solutions to !���$� The
�rst terms of the expansions of the solutions are given by�

fI � �z� � � � � �
fII � �z � � � � �
fIII � � � iz��� � � � � �
fIV � � � iz���� � � � �
fV � �iz���� � � � � �
fV I � iz���� � � � � �

As explained in greater generality in chapter � the parallel process for computing
these solutions can be represented conveniently by a labeled tree� the root of the tree
is labeled by !���$� its inner nodes by non quasi�linear re�nements of !���$� and the
leaves by quasi�linear re�nements of !���$� This computation tree is illustrated in
�gure ����

In some cases� quasi�linear re�nements are harder to obtain� Consider for in�
stance the equation
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P �f	 � �

f � �z� � �f �
� �f � 


f � �z � �f�
� �f � �

f � � � �f�
� �f � �

f��iz����� �f�
� �f � ���


f� iz����� �f�
� �f � ���


f � �� iz��� � ��f�
� ��f

� ��

f � � � iz����

��f �
� ��f

� ��


Figure ���� Computation tree associated to !���$�

�
f �

�X
k	�

z����k
��

� z� !��	$

over C ��zQ��� In this case� iterated application of the ordinary Newton polygon
method does not yield a quasi�linear equation after a �nite number of steps� This
is due to the fact that the respective Newton equations all have the same degree �
and roots of maximal multiplicity �� Therefore� an additional trick is applied� we
take the �rst derivative


f �
�X
k	�


z����k � �

of the equation !��	$ w�r�t� f � which is quasi�linear� and which has a unique solution

� �
�X
k	�

z����k�

Now� instead of performing the usual substitution f � �� �f � we perform the substi�
tution f � �� �f � This yields the equation �f� � z� �� �f � �	� Applying one more step

of the Newton polygon methods yields the admissible re�nements �f � z� ��f �� ��f
� �	

and �f � �z� ��f �� ��f
� �	 for �f � In both cases� we �nally obtain a quasi�linear equa�

tion 
z ��f � ��f
�

� � �� ��f
� �	 resp� equation �
z ��f � ��f

�

� � �� ��f
� �	 in ��f � In the

next section� we will show that this trick generally applies� and that the resulting
method always yields a complete description of the solution set after a �nite number
of steps�

Remark �� The idea of using repeated di
erentiation in order to handle almost
multiple solutions has been used for the �rst time in "Sm ���#� The idea has also
been used in computer algebra before !see "Ch �# and "Gri ��#$� Our contribution
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has been to incorporate it directly into the Newton polygon process� as will be shown
in more detail in the next section�

��� The general method

Let C be a constant �eld of characteristic zero and X a totally ordered monomial
group with Q�powers� Having illustrated the Newton polygon method on some
speci�c examples� we now turn to the general case of a polynomial equation

Pnf
n � � � �� P
 � � �f �� q	� !���$

with coe�cients in C��X��� subject to the constraint f �� q for some q 
 X� A
potential dominant monomial of f relative to !���$ is a monomial c �� q in X�
such that there exist � � i � j � n and w 
 X with Pici � Pjc

j � w and Pkck �� w

for all other k� Graphically� potential dominant monomials correspond to diagonal
slopes of theNewton polygon associated to !���$� which is by de�nition the convex
hull of all points �i�c	 with c �� Pi� To each potential dominant monomial c we
associate the equation

mP�c�c	 � Pd�w�cdc
d � � � � � P
�w � �� !���$

and mP�c is called the Newton polynomial !relative to !���$ and c$� A potential
dominant term of f relative to !���$ is a term cc� where c is a potential dominant
monomial of f relative to !���$ and c 
 C� a non zero root of the corresponding
Newton polynomial� Notice that there are only a �nite number of potential dominant
terms relative to !���$�

Proposition �� Let f � cfmf � � � � be a non zero solution to ����� where cf
and mf are the dominant coe�cient and monomial of f � Then cfmf is a potential
dominant term of f � �

The Newton degree d of !���$ is de�ned to be the largest degree of the New�
ton polynomial associated to a potential dominant monomial� By convention� the
Newton degree is de�ned to be the valuation in f of P � if there exist no potential
dominant monomials relative to !���$� If d � �� then we say that !���$ is quasi�
linear� The previous proposition implies that !���$ does not admit any solution� if
d � �� The next proposition is a sort of implicit function theorem� which shows that
quasi�linear equations admit unique solutions�

Lemma �� If ���� is quasi�linear� then it admits a unique solution f in C��X���
This solution satis�es supp f � S� where

S �
m�P
	

m�P�	

�
suppP


m�P
	
 suppP�

m�P�	
 � � �  �suppPn	m�P
	n��

m�P�	n

��
�
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Proof The set S � X is well�ordered� by Higman�s theorem !see page ���$� Let
us now prove the existence of a solution to !���$� by computing the coe�cients fc�
For this we use trans�nite induction over c 
 S� and simultaneously prove that

P �
X

c� �� c

fc�c
�	 �� m�P�	c�

The existence and uniqueness of fm�P���m�P�� is guaranteed by the quasi�linearity
of !���$� Assume that c 
 S is given� and that the induction hypothesis is satis�ed
for all c� �� c in S�

Let � �
P
c� �� c fc�c

�� By the choice of S� we have

suppP ��	 �
n�
i	


�suppPi	�supp�	i

�
n�
i	


�suppPi	Si

�
n�
i	


�
m�P�	i��

m�P
	i
S

�
Si

� m�P�	S�

We claim that P ��	 �� m�P�	c� Let c� �� c be in S and denote � �
P
c�� �� c� fc��c

���
By the induction hypothesis� we have P ��	 �� m�P�	c�� Furthermore� �� � �� c��
whence

P ��	 � P ��	 � P ���	o�c�	 � �
�P

����	o�c��	 � � � �
� P ��	 � o�m�P�	c

�	 � o�m�P�	
�
c
���m�P
		 � � � �

� P ��	 � o�m�P�	c
�	�

It follows that P ��	 �� m�P�	c�� for all c� �� c in S� This proves our claim�
Taking fc � �P ��	�P ���		c� the induction hypothesis is clearly satis�ed for c�

For a similar reason as above� we have P �f	 �� m�P�	c�� for all c� in S� Since
suppP �f	 � m�P�	S� by the choice of S� we therefore have P �f	 � �� Now consider
the equation Q�g	 � � with g �� q� which is obtained by substitution of f by f � g
in !���$� We have Q
 � �� and Qi "" Q�q

��i for all i� Hence� Q�g	 � � does not
admit potential dominant monomials� whence g � � is its unique solution� �

A re�nement is a change of variables f � � � �f with � �� q� together with
the imposition of a constraint � "" �q �� �f on �f � Such a re�nement transforms !���$
into a polynomial equation in �f �

�Pn �f
n � � � �� �P
 � � � �f �� �q	� !���$
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where

�Pi �
P �i���	

i�
�

nX
k	i

�
k

i

�
Pk�

k�i� !��$

for each i� The Newton degree of the re�nement relative to !���$ is by de�nition the
Newton degree of !���$� and the re�nement is said to be admissible if its Newton
degree is strictly positive�

Lemma �� Let cc be a potential dominant term of f relative to ����� Then
the re�nement f � cc � �f � �f �� c	 is admissible relative to ����� and its Newton
degree is the multiplicity of c as a root of the Newton polynomial associated to c�

Proof Let d be maximal such that Pdcd is maximal for �� and denote w �
m�Pd	cd� Then we have

�Pi �
�

i�
P �i��cc	

�
�

i�

nX
k	�

�
k

i

�
Pkc

k�ick�i

�
�

i�

nX
k	�

�
k

i

�
�Pk�wc�k � o��		wc�kck�ick�i

�
�

i�
m
�i�
P�c�c	wc

i � o�wci	�

for all i� In particular� denoting the multiplicity of the root c by �d� we have �P �d �
wc� �d� Moreover� for all i � �d� we have �Pi �� wc�i� Hence� for any i � �d and �c �� c�
we have �Pi�ci �� �P �d�c

�d� This shows already that the Newton degree of �P � �f	 � � is
at most �d�

Let us now show that the Newton degree of �P � �f 	 � � is precisely �d� If cc is a
root of !���$ of multiplicity �d� then we have nothing to prove� Therefore� we may
assume without loss of generality that �Pi �� �� for a certain i � �d� Take i such that
�c �


d�i
q
m� �Pi� �f 		�m� �P �d�

�f 		 is maximal for �� � Then �c �� c is a potential dominant
monomial for �P � �f	 � �� and the associated Newton polynomial has degree �d� �

If one step of the Newton polygon method does not su�ce to decrease the Newton
degree� then two steps do� when applying the trick from the next lemma�

Lemma �� Let d be the Newton degree of ���� and let c be a potential dominant
monomial of f relative to ����� If mP�c admits a unique root c of multiplicity d�
then

a� P �d�����	 � � has a unique solution with � �� q�

b� The re�nement f � �� �f � �f �� m�	 is admissible relative to �����

c� The Newton degree of any re�nement �f � �� � ��f � ��f �� ��q	 relative to ���� is
strictly inferior to d�
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Proof Notice �rst that the equation P �d�����	 � � is quasi�linear� since taking the
derivative of an equation corresponds to translating the associated Newton polygon
by one place to the left� Hence� !a$ follows from lemma ���� The proof of !b$ is
analogue to the proof of lemma ���� To prove !c$� we �rst observe that �Pd�� �
P �d�����	 � �� It follows that if c is a potential dominant monomial of �f relative
to �P � �f	 � �� then m �P �c�d�� � �� In particular� there do not exist � �� �� � �� � with
m �P �c��c	 � ���c � �	d� In other words� m �P �c does not admit roots of multiplicity d�
We conclude by lemma ���� �

Theorem �� Let C be an algebraically closed �eld of characteristic zero and X
a totally ordered monomial group with Q�powers� Then both C��X�� and C��X�� are
algebraically closed�

Proof Consider the following theoretical algorithm�

Algorithm polynomial�solve

Input� An asymptotic polynomial equation !���$�
Output�The solutions to !���$�

Step �� Let d be the Newton degree of !���$� If P is divisible by fd� then separate
the following two cases�

a� Return ��
b� Proceed with step ��

Step �� Compute the potential dominant terms c�c�� � � � � c�c� of f relative
to !���$�

Step �� If � � � and c� is a root of multiplicity d of the Newton polynomial
associated to c�� then proceed with step ��

Step �� For each � � i � �� apply polynomial�solve to the equation obtained
from !���$� by re�ning f � cici � �f � �f �� ci	� Collect and return the so
obtained solutions to !���$

Step �� Let � be the unique solution to P �d�����	 � � �� �� q	� Apply
polynomial�solve to the equation obtained from !���$� by re�ning f �
�� �f � �f �� �	� Return the so obtained solutions to !���$�

The correctness of polynomial�solve is clear% its termination follows from lem�
ma ��� and lemma ���!c$� Since C is algebraically closed� all Newton polynomials
considered in the algorithm split over C� Hence� polynomial�solve returns d solu�
tions to !���$ in C��X��� If q is the formal monomial with c �� q for all c 
 X�
then we have d � n� Indeed� let i be such that c � n�i

q
m�Pi	�m�Pn	 is maximal

for �� � Then c is an potential dominant monomial for !���$ and its associated
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Newton polynomial has degree n� We conclude that C��X�� is algebraically closed�
Finally� if the coe�cients of P are all in C��X��� then all computations take place
in C��X��� because of the bound for supp f in lemma ���� We infer that C��X�� is
also algebraically closed� �

Corollary I Let C be a real algebraically closed �eld and X a totally ordered
monomial group with Q�powers� Then both C��X�� and C��X�� are real algebraically
closed�

Proof By the theorem� a polynomial equation of degree n over C�i���X�� admits
n solutions !counting with multiplicities$ in C�i���X��� Moreover� each root � which
lies in C�i���X��nC��X�� is imaginary� because C��X����� � C�i���X�� for such �� The
proof is analogue for C��X��� �

Corollary II The �eld C��zQ�� of Puiseux series over an algebraically closed resp�
real algebraically closed �eld C is algebraically closed resp� real algebraically closed�

�

��� A simple generalization

The restriction for P in !���$ to be a polynomial is essentially super0uous for the
method� and P can actually be replaced by any series in C��X� fZ�� or C��X� fZ���
However� in this case we have to exclude those potential dominant monomials which
lead to Newton polynomials of in�nite degree� We notice that once we have chosen
such a potential dominant monomial for the main equation !���$� then this problem
does not reappear for the re�nements� because of lemma ����

Let us also remark that� incorporating the above extension� there exist natural
examples where the main equation has an in�nity of potential dominant monomials�
Such examples are constructed by considering certain types of di
erence equations�
For instance� consider the system�

��x� f	 � x� f��x�� f	
��x� f	 � ��

where f is in�nitesimal and x in�nitely large� This system is equivalent to the
equation

x� x�f � x�f� � x�f� � � � � � ��
This equation can be solved by the Newton polygon method and we �nd an in�nite
number f
� f�� f�� � � � of solutions� with fi � �x��i�



Chapter �

Linear di�erential equations

��� Introduction

Let C be a totally ordered exp�log �eld of constants� We will show how to solve
linear di
erential equations

L�f	 � g� !	��$

where L is a linear di
erential operator

L � L
 � L�
�

�x
� � � �� Lr

�r

�xr
�Lr �� �	 !	��$

with coe�cients in the �eld T� C����x��� of transseries of �nite logarithmic and at
most countable exponential depths�

We focus on the case when the coe�cients of L are purely exponential� i�e� in
Texp � Calog

� ���expx���� In this case� L maps the space Texp�x� into itself� and we shall
show that L admits a linear right inverse L��� The general case when the coe�cients
of L are in Twill then be recovered by the use of upward shiftings� In sections 	��
and 	�	� we prove the existence of a distinguished linear right inverse L��� and give
a theoretical way to compute the distinguished solution L��g to !	��$� Intuitively
speaking� the distinguished solution to a linear equation is the simplest solution�
which does not depend on the solutions to the homogeneous equation� For instance�
in the case of integration !L � ���x$� the distinguished solution is precisely the one
which corresponds to taking zero for the integration constant� We will also present
a characterization for ��� in section 	�	�

In section 	��� we turn to the resolution of the homogeneous equation

Lh � �� !	��$

The solutions of this equation form a �nite dimensional totally ordered vector space
H over C� which admits a basis h� �� � � � �� hs !see lemma ��$� Using the dis�
tinguished right inverse L��� it will then be su�cient to determine the dominant
monomials of h�� � � � � hs�

���
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Finally� in section 	��� we outline how the theory of this chapter generalizes to
the case when we also allow oscillating solutions to !	��$� In this case� we show that
the vector space of solutions to !	��$ has maximal dimension r�

When we restrict ourselves to linear di
erential equations with coe�cients in
rings of formal power series� then our results are more or less analogous to classical
results� the introduction of formal local solutions for linear di
erential equations
goes back to "Fab ��#� The �rst algorithms are due to Della Dora� Tournier�
and others !see "DDT �#� "Tour �#$� Their work is based on theoretical results of
Malgrange and Ramis� who introduced Newton polygons in this context !see "Ram
�#� "Mal ��#$�

��� Preliminaries

For the purpose of di
erential calculus� we will need variants of the asymptotic
relations �� � �� and � modulo ��� h perturbations� let f� g and h be transseries
with h �� �� We denote f ��h g !or f � oh�g	$� if for all � ��� h we have f �� �g�
Similarly� we denote f ��h g !or f � Oh�g	$ resp� f �h g� if f �� �g resp� f � �g
for some � ��� h� We state without proof the following easy properties�

Proposition 	� Let h 
 T�� Then
a� ��h is a quasi�ordering on T and �h its associated equivalence relation�
b� For �xed g� the set of f with f ��h g resp� f ��h g forms an additive group�
c� f ��h g � f�g ��h � for all f� g 
 T� and similarly for ��h and �h �

Let L be an arbitrary linear di
erential operator !	��$ with coe�cients in T�
Then its dominant monomial m�L	 is de�ned by

m�L	 � max�� fmL� � � � � �mLrg�

����� Multiplicative conjugation

Given a non zero transseries h� there exists a unique linear di
erential operator L	h
such that

L	h�f	 � L�hf	

for all f � We call L	h a multiplicative conjugate of L� The coe�cients of L	h
are given explicitly by

L	h�i �
rX
j	i

�
j

i

�
Ljh

�j�i�� !	�	$
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Notice also that L	h�h� � L	h� �	h� for all h�� h� 
 T��

Proposition 	� If h ��� x� then

m�L	h	 �h hm�L	�

Proof By the hypothesis that h ��� x� it follows that h�i� �h h for all i� In partic�
ular� !	�	$ yields

L	h�i ��h hm�L	

for all i� whence m�L	h	 ��h m�l	� Letm be the highest index for which Lm �h m�L	�
Then !	�	$ yields

L	h�m � hLm � oh�hm�L		�

In other words� m�L	h	 ""h m�l	� �

����� Upward shifting

To solve the equation Lf � g� it may be necessary to perform one or several upward
shiftings� For this purpose� we de�ne the upward shifting L� of L by

�L�	�f�	 � L�f	��
for all f � In other words� solving the equation Lf � g is equivalent to solving the
equation �L�	�f�	 � g�� The coe�cients of L� are given explicitly by

�L�	i �
rX
j	i

Ci�je
�jx�Lj�	� !	��$

where the Ci�j are constants� determined by

�f�log x		�j� �
jX
i	


Ci�jx
�jf �i��log x	�

We have Ci�j � sj�i� where the sj�i are the Stirling numbers of the �rst kind� Upward
shifting is compatible with multiplicative conjugation� in the sense that

L	h� � �L�		h
� !	��$

for all non zero transseries h�

Proposition 	� For all i� j 
 N� we have

jX
k	


Ck�j�i� j	k �
�i� j	�

i�
�
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Proof Consider the operator L � �j

�xj
� The solution space of the homogeneous

equation associated to the operator L�	e�i�j�x admits e��i���x� � � � � e��i�j�x as a basis�
Hence� this operator factorizes

L�	e�i�j�x � A

�
�

�x
� i� j

�
� � �
�
�

�x
� i� �

�
�

and by looking at the coe�cient of �j

�xj
� we �nd that A � eix� It follows that

L�	e�i�j�x �
 �
�i� j	�

i�
�

On the other hand� we have
L�k � Ck�je

�jx�

for all k� by !	�	$� Hence

L�	e�i�j�x �
 �
jX

k	


Ck�j�i� j	k�

by !	��$� �

��� Dominant monomials of distinguished solutions

Let L be a linear di
erential operator !	��$ with coe�cients in Texp and consider
the equation !	��$ for f� g 
 Texp�x��

Theorem 	� There exists a unique transmonomial c 
 Texp� such that
mg�m�L	c	 
 xN�

Proof The uniqueness of c trivially follows from proposition 	��� Let us therefore
prove its existence� Let �c�	� be the trans�nite sequence of monomials� de�ned by

c
 � ��

c��� � c� exp �� �log�mg�m�L	c� 				� if mg�m�L	c�	 �
 xN�

c� � exp �stat lim
��

log c�	� for limit ordinals ��

here � �logmg�m�L	c� 		 denotes the dominant term of logmg�m�L	c� 	� Intuitively
speaking� this trans�nite sequence corresponds to the computation of the successive
terms of log c� We will show by trans�nite induction that for all ��
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� If � � �� then log c� � log c��

�  q
 supp log c� mg �eq m�L	c� 	�

This will imply in particular that mg�m�L	c� 	 
 xN� for some ordinal �� since the
length of the sequence �c�	� cannot exceed the cardinal number of Texp�x�� as a
result of the �rst assertion� The induction hypothesis is clearly satis�ed for � � ��
Assume now that for some � � �� the induction hypothesis is satis�ed for all smaller
��

Successor ordinals Assume that � � �� � and mg�m�L	c� 	 �
 xN� Let w denote
exp�� �log�mg�m�L	c� 				� so that mg �w wm�L	c�	� Since L	c� � L	c��	w� we have

m�L	c� 	 �w wm�L	c�	�

by proposition 	��� Hence�
mg �w m�L	c� 	�

More generally� mg �eq m�L	c� 	 for all q 
 supp log c�� since eq """ w� Therefore�
both induction hypotheses are satis�ed at stage ��

Limit ordinals Assume now that � is a limit ordinal� Given q 
 supp log c��
there exists an � � �� with q 
 supp log c�� By the induction hypothesis� we have

mg �eq m�L	c� 	�

We also have c��c� ��� q� since c� � c�� Therefore�

m�L	c� 	 �eq m�L	c� 	�

by proposition 	��� whence the second induction hypothesis is again satis�ed at stage
�� The �rst one is trivially satis�ed� �

With the notations from the theorem� let mg�m�L	c	 � xi� and let j be min�
imal� such that m�L	c	 � m�L	c�j	� Then i � j is unique with the property that
m�Lcxi�j 	 � mg� In the next section� we will show that there exists a �distinguished
solution� f to !	��$ with mf � cxi�j � Since this solution will be denoted by L��g�
we denote mL��g � cx

i�j by anticipation� Furthermore� the dominant coe�cient of
a solution to !	��$ with mf � mL��g is necessarily given by cL��g

def

� cg�Lf��cL�c�� �
i�e� the quotient of the dominant coe�cients of g � Lf� and L	c�
� We will denote
�L��g � cL��gmL��g�

The mapping mg �� m
�
��g preserves �� �

Proposition 		 If g� �� g�� then mL��g� �� mL��g� �
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Proof Modulo considering g��� L	mL��g�
instead of L� we may assume without loss

of generality that mL��g� � g� � �� If g� � xi� then we are done by the de�nition of
mL��g�� If g� ��� x� then mL��g� �g� g�� by construction !indeed� c� � exp�� �log g�		
and c� E logmL��g� in the construction of L

��g� whence mL��g� �� c� �� g�$� �

We also have compatibility with upward shifting�

Proposition 	� Let g be a non zero transseries� Then

a� m�L
���g
 � mL��g��
b� m�L	mL��g

�	 � m��L	mL��g
�	
	�

Proof Let i be such that mg�xi 
 Texp� and let j be such that mL��g � cxi�j �
with c 
 Texp� By construction� j is minimal such that m�L	c	 � m�L	c�j	 � mg�xi�
From !	��$� we deduce that

�L	c�	k � e�jxL	c�j��Ck�j � o��		� for k � j�

�L	c�	k �� e�jxL	c�j�� for k � j�

It follows that
m��L	c�		e�i�j�x 	 � mg��

Using !	��$� we get

m�L	mL��g
�	 � mg�� !	��$

The above relations for the �L	c�	k also imply that
�L	mL��g

�	
 � �L	c�		e�i�j�x �

�

rX
k	


�L	c�	k�i� j	ke�i�j�x

�

�	 jX
k	


Ck�j�i� j	k � o��	


A �L	c�	jeix�
By proposition 	��� we infer that � is the smallest index k� with m�LmL��g

�	 �
m��L	m

L��g
�	k	� Together with !	��$� this implies that m�L
���g
 � mL��g�� �

It is �nally natural to ask for which monomials m there exists a g �� � with
mL��g � m* Recalling that h� �� � � � �� hs form a basis for the solution space H
to the homogeneous equation !	��$� we have the following characterization of these
monomials�

Proposition 	� Let m be a transmonomial in Texp�x�� Then a necessary and
su�cient condition for the existence of a non zero transseries g 
 Texp�x� with
mL��g � m� is that m �
 fmh�� � � � �mhsg�
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Proof We will only prove the necessity of the condition here% the su�ciency will
be proved in the next section� In view of the proof of the previous proposition� we
may assume without loss of generality that m�L	m	 � m�L	m�
	 � mg� modulo one
upward shifting� Then for any h 
 Texp�x� with h � m� we have

Lh � L	m�h�m	 � cL�m��chmg � o�mg	 �� ��
where cL�m�� resp� ch denote the dominant coe�cients of L	m�
 resp� h� Hence� h
cannot be a solution to !	��$� �

��� Computation of distinguished solutions

Theorem 	� There exists a right inverse for L�

Proof Let us show how to compute a solution to !	��$ for �xed g� Let �f�	� be
the trans�nite sequence of transseries in Texp�x�� de�ned by�

f
 � ��

f��� � f� � �L���g�Lf��� if Lf� �� g�

f� � stat lim
��

f� for limit ordinals ��

We will show by trans�nite induction that for all ��

� If � � �� then f� � f��

�  q
 suppf� Lf� � g �� Lq�

This will in particular imply that f� � g for some � � jTexp�x�j� since the length of
the sequence �f�	� can not exceed the cardinal number of Texp�x�� The induction
hypothesis is trivially satis�ed for � � �� Assume now that � � �� and the induction
hypothesis is satis�ed for all smaller ��

Successor ordinals Assume that � � ��� and Lf� �� g� Denote c � �L���g�Lf���
Since cL���g�Lf�� is a constant� we have

L�cL���g�Lf��c	 � L	c�cL���g�Lf��	 � L	c�
cL���g�Lf�� � cg�Lf�mg�Lf��

In particular� Lc � g � Lf�� whence c �� q for all q 
 supp f�� by proposition 	�	
and the second induction hypothesis� Hence� the �rst induction hypothesis is satis�
�ed at stage �� As to the second� let q 
 supp f�� then either q � c or q 
 supp f�
and Lc � g � Lf� �� Lq� In both cases�

g � Lf� � g � Lf� � L	c�
cL���g�Lf�� �� g � Lf� �� Lq�
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Limit ordinals Assume that � is a limit ordinal and let q 
 supp f�� Then there
exists an � � � with q 
 supp f�� and by the induction hypothesis� we have

Lf� � g �� Lq�

for all � � � � �� Now we have

Lf� � g � �Lf� � g	 �
X

����

�Lf��� � g	� �Lf� � g	�

by the strong linearity of L and the fact that � is a limit ordinal� This implies the
second induction hypothesis at stage �% the �rst one is trivially veri�ed� �

In what follows� L�� denotes the right inverse of L as constructed in the above
proof� By construction� the dominant monomial of L��g coincides with mL��g as
de�ned in the previous section� The operator L�� satis�es the following character�
istic property� for which we call it distinguished�

Proposition 	� L�� is the unique right inverse of L� such that supp L��g �
fmh� � � � � �mhsg � �� for all g 
 Texp�x��

Proof By the necessity of the condition in proposition 	��� we infer that we never
have c 
 fmh� � � � � �mhsg during the construction of f � L��g� By a straightforward
trans�nite induction over �� it follows that f� � fmh� � � � � �mhsg � �� for all ��

Assume now that L �f � Lf � g� with supp �f � fmh� � � � � �mhsg � supp f �
fmh� � � � � �mhsg � ��� Then L� �f � f	 � �� whence �f � f is a linear combination of
h�� � � � � hs� Since� supp � �f � f	 � fmh� � � � � �mhsg � ��� we get �f � f � whence the
uniqueness of L��� �

Corollary I The operator L�� is linear� �

Corollary II Let m �
 fmh�� � � � �mhsg be a transmonomial in Texp�x�� Then there
exists a transseries g 
 Texp�x�� with mL��g � m�

Proof Taking g � Lm� we have m � L��g 
 kerL� If m � L��g� then we are
clearly done� Otherwise� we have m �� mm�L��g 
 fmh�� � � � �mhsg� If m� L��g �� m�
then L��g � m and we are done� The other case is impossible� since we cannot have
mL��g 
 fmh�� � � � �mhsg� �

It follows that H � kerL admits a supplement

Texp�x��H def

� ff 
 Texp�x�jsuppf � fmh� � � � � �mhsg � ��g

in Texp�x�� which is distinguished in the following sense�
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Proposition 	� The operator L determines an isomorphism

Texp�x��H � Texp�x��

whose inverse is given by L��� �

Let us now consider upward shifting of linear di
erential operators and there
right inverses�

Proposition 	� For all linear di�erential operators ���� with coe�cients in
Texp�x�� we have L��� � L����

Proof This is a routine exercise� since upward shifting commutes with all opera�
tions used in the construction of L��� and in particular with the computation of the
dominant monomials of solutions by proposition 	��� �

From proposition 	��� it follows that we can extend theorem 	�� and proposi�
tion 	� to the case when L is an arbitrary linear di
erential operator with coe��
cients in a �eld of transseries Twith �nite logarithmic depth�

Theorem 	� Let L be a linear di�erential operator ���� with coe�cients in
T� Let h� �� � � � �� hs be a basis for the vector space of solutions to ����� Then L
determines an isomorphism

T�H � T�
where

T�H � ff 
 Tjsuppf � fmh� � � � � �mhsg � ��g�
The inverse L�� of L is linear�

Proof Let g 
 T� For l large enough� g�l and the coe�cients of L�l are in Texp�
where �l denotes the l�th iteration of �� Then f�l � �L�l	���g�l	 is well de�ned� and
we have Lf � g� Moreover� supp f�l � fmh��l� � � � �mhs�lg � �� by proposition 	��
Consequently� f 
 T�H� Finally� f � L��g does not depend on the choice of l� by
proposition 	��� Consequently� L�� is linear by theorem 	��� �

Corollary There exists a unique integration operator
R
on T� such that �

R
f	� � f

and �
R
f	c � � for all f 
 T here we recall that �

R
f	c denotes the constant part ofR

f�� �

We have already shown that if f 
 Texp� then R f 
 Texp�x�� Actually� a slightly
stronger assertion holds�
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Proposition 	�� If f 
 Texp� then R f 
 Texp� Cx�

Proof Assume that
R
f �
 Texp� Cx and let q be the biggest monomial in supp f

for �� � with �
R
f	q �
 Texp fxg� Let � � f �Pc �� q fc� Then we have m� 
 Texp�

while m�
R
�	 �
 Texp  fxg�

If m� � �� then we must have m�
R
�	 � x and we are done� Otherwise� there exists

a unique transmonomial c 
 Texp with m�����x		c	 � m� by theorem 	��� Since
m� ��� x� we have m�����x		c	 � m�����x		c�
	� whence m�

R
m�	 � c� Therefore

m�
R
�	 � c by construction� contradiction� �

��
 Solving the homogeneous equation

Modulo upward shiftings� it su�ces to show how to �nd the solutions to !	��$ in
the case when L has coe�cients in Texp� Moreover� in order to compute a basis
h� �� � � � �� hs it su�ces to �nd the dominant monomials of h�� � � � � hs� Indeed�
given the dominant monomial mhi of hi� we take

hi � mhi � L��Lmhi �

A special case in which dominant monomials of basis elements are easily determined
is the following�

Proposition 	�� Assume that L
 �� m�L	� and let i be minimal such that
Li � m�L	� Then �� � � � � xi�� are dominant monomials of solutions to �����

Proof Let m � xj and h � m�L��Lm� with � � j � i��� We claim that mh � m�
Since j � i� we have Lm �� m�L	� Therefore� in the construction of mL��Lm� we
have c� �� �� Since log c� � log c� for all � � �� it follows that mL��Lm �� m� Hence
h � m� which proves our claim� �

The idea is now to determine those monomials c 
 Texp� such that L	c�
 ��
m�L	c	� and to prove that all mhi can be obtained from proposition 	���� after
multiplicative conjugation by such a c� For this� we look at the Riccati equation
associated to !	��$� which is an algebraic di
erential equation

L
R
��h	 � L�R���h	 � L�R���h	 � � � �� LrRr��h	 � � !	�$

in the logarithmic derivative �h of h� Here the Ri are determined by h�i� � Ri��h	h%
for instance�

R
��h	 � ��

R���h	 � �h�

R���h	 � �h� � �h��

R���h	 � �h� � ��h��h� �h���
���
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In the case when h ��� x� we have �h�i� ��h
�h� whence Ri��h	 � �hi � o�h�

�hi	 for all
i� Therefore� !	�$ becomes �quasi�algebraic��

L
 � L�
�h � L�

�h��� � o��		 � � � � � Lr
�hr�� � o��		�

In particular� the dominant monomial of any solution �h is in Texp� On the other
hand� if h ��� x is a solution to the homogeneous equation� then m�h	 is determined
via proposition 	����

Proposition 	�� If �h is a solution to ���� with h ��� x� then mh � xi for some
i 
 N� Moreover� Lj �� m�L	 for all j � i�

Proof Decompose h � �x�� with � ��� x� and assume that h �
 xN� If � �
 N� or
i � �� then we have

h�i� � �x��i�

Otherwise� we have x �� �� �� x �� ��� x and

h�i� � �x ��	�x��i�
In both cases� we thus have h�i� �x x

��i for all i� Since the coe�cients of L are all
purely exponential transseries� it follows that no cancelations can take place in !	��$�
contradiction�

Therefore� we have h � xi for some i 
 N� Let j be the smallest index with
Lj � m�L	� If j were smaller or equal to i� then we would have

L
R
��h	 � L�R���h	 � L�R���h	 � � � � � LrRr��h	 � LjRj��h	 � m�L	x�j �

since the coe�cients of L are purely exponential transseries� Consequently� we must
have j � i� �

Putting together the above results� we get�

Proposition 	�� If h is a solution to ����� then mh 
 TexpxN�

Proof Assume the contrary� Then �h �
 Texp% otherwise R �h 
 Texp � Cx� whence
h 
 Texp� Let q be the biggest transmonomial in supp �h for �� � such that q �
 Texp
and de�ne � �

P
c �� q

�hc�
Let us �rst assume that exp�

R
q	 ��� x� Then �h� � is a solution to the Riccati

equation associated to the equation L	 exp�
R
��
�h � �� Since this Riccati equation is

quasi�algebraic� the dominant monomial of �h � �� which is q� lies in Texp� Contra�
diction�

In the remaining case� the solution h exp�� R c	 to the equation L	 exp�
R
c�
�h � �

satis�es m�h exp�� R c		 � xi for some i 
 N by proposition 	���� This leads again
to the desired contradiction� �
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In view of the fact that the hi has been chosen such that hi � mhi �L��Lmhi for
all i� the above proposition immediately implies the following theorem�

Theorem 		 Assume that L has coe�cients in Texp� Then any transseries
solution h to ���� is in Texp�x�� �

Although the above theorem describes the structure of the solutions to !	��$� it
does not provide a theoretical way to construct the solutions� Therefore� we will
now brie0y describe how the algebraic Newton polygon method can be adapted to
solve the Riccati equation !	�$� More details in a more general context will be given
in sections ��	 and ����

First� we notice again that we only have to determine the dominant monomial
of each h 
 fh�� � � � � hsg� Instead of !	�$� we will consider Riccati equations with
an additional asymptotic constraint�

L
R
��h	 � L�R���h	 � L�R���h	 � � � � � LrRr��h	 � � ��h �� q	 !	��$

If h ��� x� then h is given by proposition 	��� and proposition 	���� In the other
case� the Riccati equation !	��$ is quasi�algebraic� and we de�ne potential dominant
monomials� Newton degree etc� as in the algebraic case� by neglecting the o��	�
terms� However� we restrict our attention to non in�nitesimal potential dominant
monomials� since we assumed h ��� x�

Now a re�nement
�h � ��

��h �
��h �� �	

corresponds to a multiplicative conjugation

L�f	 � L	 exp�
R
���
�f	 � �f ��� exp�

Z
�		�

Therefore ��h again satis�es an asymptotic Riccati equation of the form !	��$� which is
solved by trans�nite induction !in a similar way as in theorem 	��$� Actually� we can
reduce the necessity of trans�nite induction to the case when the asymptotic Riccati
equation is quasi�linear� by using a generalization of the trick from lemma ���� For
details� we refer to section ����

��� Oscillating solutions

The theory of linear di
erential equations is the only one� which can be fairly easily
generalized to include oscillating solutions� In this section� we brie0y present the
main di
erences that such a generalization introduces w�r�t� the theory from the
previous sections� The main reason why the generalization is possible is that we allow
oscillating behaviour in the space on which L operates� but not in the coe�cients of
L itself�
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����� Notations

Let C be a real algebraically closed totally ordered exp�log �eld� Then K � C � iC
is algebraically closed� as well as �T� T� iT and �Texp � Texp� iTexp�

Given ��� � � � � �n 
 T
nf�g� we may formally extend �Twith ei��� � � � � ei�n� Then
R � �T�ei��� � � � � ei�n� is a di
erential ring� when taking �ei�j	� � i��je

i�j for each j� In
what follows we will always assume that we have either �j���j 
 C or �j� �� �j� for all
j� �� j% this can always be accomplished� by replacing the �j by linear combinations
of them� The elements in R can be decomposed in two ways�

Polynomial decomposition Since elements in R are polynomials� we �rst have
the following trivial decomposition�

f �
X

k����� �kn
fk����� �kne

i�k��������kn�n��

with coe�cients fk����� �kn in �T�

Asymptotic decomposition Each element f in R can also be written uniquely
as a sum

f �
X
c

fcc�

where the c ranges over transmonomials in T and the coe�cients fc are in

K�ei��� � � � � ei�n��

In particular� the asymptotic relations �� � ��� � etc� naturally extend to R�

����� Distinguished solutions

Consider the linear di
erential equation !	��$� where the coe�cients of L are in �Texp�
and g 
 �Texp�x�� Let h� �� � � � �� hs denote a basis for the solution space of the
corresponding homogeneous equation !	��$ in �Texp�x�� Then we have the following
straightforward generalization of theorem 	�� and proposition 	���

Proposition 	�	 There exists a unique strongly linear right inverse L�� for L�
such that suppL��g � fmh� � � � � �mhsg � �� for all g 
 �Texp�x�� �

This right inverse L�� can be extended to �Texp�x��ei��� � � � � ei�n� !with the nota�
tions from section 	����$ as follows� for each g 
 Texp�x�ei�k��������kn�n� with k�� � � � �
kn 
 N� we take

L��g � �e�i�k��������kn�n�L	ei�k��������kn�n�	
���e�i�k��������kn�n�g	�
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Next� we use linearity

L��
�	 X
k����� �kn

gk����� �kne
i�k��������kn�n�


A � X
k����� �kn

L���gk����� �kne
i�k��������kn�n�	

to extend L�� to �Texp�x��ei��� � � � � ei�n��
For elements f in �T�x�ei�k��������kn�n� it is convenient to de�ne the oscillating

dominant monomial
�mf � ei�k��������kn�n�mf

for each k�� � � � � kn 
 N� Then we have�

Proposition 	�� There exists a unique basis h�� � � � � hs for the vector space of
solutions in �Texp�x��ei��� � � � � ei�n� to the homogeneous equation ����� which satis�es
the following hypotheses�

a� For each j� there exist k�� � � � � kn 
 N� such that hj 
 �Texp�x�ei�k��������kn�n��
b� With the notations from a�� we have

hj � �m�hj	 � L��L�m�hj	�

Proof Let h �� � be a solution to !	��$� Then for each k�� � � � � kn 
 N with
hm�h��k����� �kn �� ��

h�k�� � � � � kn� � �m�hk����� �kn	 � L��L�m�hk����� �kn	

is a solution to !	��$� Moreover� we have

h� def

� h� X
k����� �kn

c�hk����� �kn	h�k�� � � � � kn� �� h�

Now the vector space H of solutions to !	��$ is �nite dimensional� Hence� repeating
the argument on h�� we may write h as a linear combination of solutions to !	��$ inS
k����� �kn �T

exp�x�ei�k��������kn�n�� In other words� we have

H �
M

k����� �kn
H�k�� � � � � kn��

where
H�k�� � � � � kn� � H � �Texp�x�ei�k��������kn�n�

for each h�� � � � � hn� By lemma ��� there exists a basis of pairwise incomparable !for
�$ elements for each H�k�� � � � � kn�� Replacing each such basis element h by �m�h	 �
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L��L�m�h	� we obtain a basis for H with the desired properties� The uniqueness of
this basis is trivial� �

Let us now turn to the general equation !	��$� where the coe�cients of L are in
�T and the coe�cients of g in �T�ei��� � � � � ei�n�� Using upward shifting in a similar
way as before� we obtain the following theorem�

Theorem 	� Let L be a linear di�erential operator ���� with coe�cients in �T�
and let ��� � � � � �n be in T
nf�g� There exists a unique basis of the vector space H
of solutions to ���� in �T�ei��� � � � � ei�n� which satis�es the following properties�

a� For each j� there exist k�� � � � � kn 
 N� such that hj 
 �Tei�k��������kn�n��
b� With the notations from a�� we have

hj � �m�hj	 � L��L�m�hj	�

Furthermore� L determines an isomorphism

�T�ei��� � � � � ei�n��H � �T�ei��� � � � � ei�n��

where

�T�ei��� � � � � ei�n��H � ff 
 �T�ei��� � � � � ei�n�jsuppf � f�mh� � � � � � �mhsg � ��g�

The inverse L�� of L is linear� �

����� Solving the homogeneous equation

Let us now consider the homogeneous equation !	��$� where we assume that the
coe�cients of L are in �Texp�

Proposition 	�� There exist transseries ��� � � � � �r 
 �Texp	
nf�g� such the
vector space of solutions to ���� in �T�x��ei��� � � � � e�r � has dimension r� �

Proof Consider the analogue of the theoretical trans�nite algorithm at the end
of section 	�� to compute the set of dominant monomials of solutions to !	��$� Let
m be minimal such that m�L	 � m�Lm	 in !	��$� If q "" �� then f�� � � � � xm��g is
precisely the set of dominant monomials of a solution h ��� x to !	��$� by suitable
generalizations of proposition 	��� and proposition 	����
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On the other hand� since K is algebraically closed� there are exactly d � m
potential dominant terms cc for �h with c "" �� where d is the Newton degree of !	��$�
For each such dominant term cc� the re�nement

�h � cc�
��h �
��h �� c	

leads to a new asymptotic Riccati equation associated to the equation

exp�
Z
e���c�c	L	 exp�

R
ecc�h � � �

�h ��� exp�
Z
ecc		�

which has coe�cients in �Texp� By a suitable generalization of lemma ���� the Newton

degree of this asymptotic Riccati equation in ��h is precisely the multiplicity of c as a
root of the Newton polynomial associated to c�

By trans�nite induction� it follows that there are precisely r monomials of the
form cei�k with c 
 �Texp�x�� such that �mh � cei�k for some h 
 H� �

Modulo upward shiftings� we have proved the following�

Theorem 	� Let ���� be a homogeneous linear di�erential equation of order r
with coe�cients in �T� T� iT� where T is a �eld of transseries of �nite logarithmic
depths over a real algebraically closed totally ordered exp�log �eld of constants� Then
there exist transseries ��� � � � � �r 
 T
nf�g� such that the vector space of solutions
to ���� in �T�ei��� � � � � ei�r � has dimension r� �
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Chapter 	

Algebraic di�erential equations


�� Introduction

Let C be a totally ordered exp�log �eld of constants and T � C����x���� In this
chapter we study the asymptotic algebraic di
erential equation

P �f	 �
X

i����� �ir�N
Pi����� �irf

i� � � � �f �r�	ir � � �f �� q	� !���$

of order r� with coe�cients in T� P is also called a di
erential polynomial� We
will give a theoretical resolution algorithm� and bounds for the logarithmic depths
of solutions�

Questions of a similar nature were studied before by Strodt� Grigoriev� Singer
and Shackell� in "Str ��#� Strodt establishes a bound for the logarithmic depths of
solutions !without exponentials$ of certain �rst order di
erential equations� This
work was based on earlier work in "SW ��#� Grigoriev and Singer proved in "GS
��# that the exponents of power series solutions to !���$ are contained in a �nitely
generated group� if P has power series coe�cients� In chapter ��� we will prove
a similar theorem for transseries� using the techniques from this chapter� Finally�
Shackell described in "Sh ��# an in�nite process for obtaining the possible forms of
nested expansions of solutions to !���$�

The methods we use to solve !���$ are classical� namely the Newton poly�
gon method !see "New ����#� "Pui ���#� "BB ���#� "Fi ��#$ and linearization�
However� several technical di�culties arise� which were absent in the purely algeb�
raic case !see also the introduction$� In section ���� we give present the di
erential
version of the Newton polygon method� In section ��	 we show how to compute
distinguished solutions to �quasi�linear� equations� In particular� we show that at
most r�� upward shiftings are necessary to make the distinguished solutions purely
exponential� if the coe�cients of the quasi�linear equation are� Finally� we present
the theoretical resolution algorithm in section ��� and obtain bounds for the logar�
ithmic depths of solutions� using the bound mentioned above� and bounds for the
size of the computation tree�

���
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�� Preliminaries

����� Dierent decompositions of P

Let P be the di
erential polynomial from !���$� We will usually adopt vector nota�
tion and denote

f �i� � f i� � � � �f �r�	ir �
jjijj � i
 � � � � � ir�

for all i � �i
� � � � � ir	� Then the decomposition
P �f	 �

X
i

Pif
�i� !���$

of P is called the natural decomposition P � Another decomposition of P is given
by

P �f	 � P
�f	 � � � �� Pp�f	�
Pi�f	 �

P
jjijj	i Pi�f	 �� � i � p	�

!���$

where p is the degree of P � We call it the decomposition of P into homogeneous
parts�

In some cases� it is more convenient to decompose P as a sum

P �f	 �
X

��������j�j
Pi���f

���� � � � f ��j�j��

where � 
 f�� � � � � rg� is a non commutative word of length � p and

i��	j � jf� � k � j�j jk � jgj�
However� this formula presents the disadvantage of being asymmetric in �� � � � � j�j�
therefore we usually prefer the following symmetric version�

P �f	 �
X
�

� j�j
i��	
� � � � � i��	j�j

���
Pi���f

���� � � � f ��j�j��

This latter formula is conveniently rewritten as

P �f	 �
X
�

P���f
���� !��	$

where

P��� �

� j�j
i��	
� � � � � i��	j�j

���
Pi����

f ��� � f ���� � � � f ��j�j��
We say that !��	$ is the decomposition of P along orders� The total order of
P is de�ned to be the maximal number � such that there exists a � with jj�jj � �
and P��� �� ��
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����� Additive conjugation

Given a transseries h� there exists a unique di
erential polynomial P�h such that

P�h�f	 � P �h� f	

for all f � We call P	h an additive conjugate of P � We have P��h��h�� � P�h���h�

for all h�� h� 
 T�
Using a generalized Taylor series expansion� we obtain the following explicit

formula for the coe�cients of P�h�

P�h�i �
�

i�
P �i��h	� !���$

where

i� � i
� � � � ir��
P �i� �

�jjijjP
�i�f � � � �irf �ir� �

In expanded form� this yields

P�h�i �
X
j�i

�
j

i

�
h�j�i�Pj � !���$

Proposition ��

a� If h � �� then m�P�h	 � m�P 	�
b� If h � xi for some i 
Z� then m�P�h	 �ex m�P 	�

Proof Assume that h � �� By !���$� we clearly have P��i �� m�P 	 for all i�
whence m�P�h	 �� m�P 	� On the other hand� if i is chosen maximal for � with
m�P 	 � m�Pi	� then !���$ implies that m�P�h�i	 � Pi � o�m�P 		� This establishes
!a$% !b$ is proven in a similar way� �

����� Multiplicative conjugation

Given a non zero transseries h� there exists a unique di
erential polynomial P	h
such that

P	h�f	 � P �hf	

for all f � We call P	h amultiplicative conjugate of P � We have P	h�h� � P	h��	h�
for all h�� h� 
 T��
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To get an explicit formula for the coe�cients of P	h we decompose P along
orders�

P �hf	 �
X
�

P�� ��hf	
�� �

�
X
�

P�� �

X
���

�
�

�

�
h�����f ����

where

� � � � j�j � j� j � i � � � �� � � � � � i � � i�
�

�

�
�

�
��
�

�
� � �
�
�i
i

�
�

It follows that

P	h���� �
X
���

�
�

�

�
h�����P�� �� !���$

In particular� we notice that multiplicative conjugation acts by homogeneous parts�
i�e�

P	h�i � Pi�	h�

for all i�
The dominant monomial m�P 	 of P is de�ned by

m�P 	 � max
�� �i

mPi�

In the purely exponential case� we have the following straightforward generalization
of proposition 	�� to the homogeneous algebraic case�

Proposition �� If h ��� x and P is homogeneous of degree i� then

m�P	h	 �h h
im�P 	�

�

����� Upward shifting

The upward shifting P� of P is de�ned by

�P�	�f�	 � P �f	��

for all f � Upward shifting is compatible with multiplicative conjugation� in the sense
that

P	h� � �P�		h
� !��$
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For all non zero transseries h�
The coe�cients of P� are again determined most conveniently� when decompos�

ing P along orders�

P �f	 � P �f��log x		 �
X
�

P�� ��f��log x		�� �

�
X
�

P�� �

X
���

C���x
�jj� jj�f�	����

where
C��� � C����� � � �C�j
j��j� j �

and where we recall that the constants Ci�j are determined by

�f�log x		�j� �
jX
i	


Ci�jx
�jf �i��log x	� !���$

Actually� Ci�j � sj�i� where the sj�i are the Stirling numbers of the �rst kind� It
follows that

�P�	��� �
X
���

C���e
�jj� jjx�P�� ��	� !����$

for all �� Notice also that upward shifting naturally commutes with additive and
multiplicative conjugation�

Proposition �� For all P �� �� we have m�P�	�m�P 	� ��� ex�

Proof Since � acts by homogeneous parts� it su�ces to consider the case when P
is homogeneous� Let � be maximal for � such that m�P�� �	 � m�P 	� Then !����$
yields

P��� � � P�� �e
�jj� jjx�� � o��		�

!����$ also yields
P���� � O�m�P 	�	�

for each �� Hence m�P 	�e�jj� jjx �� m�P�	 �� m�P 	�� �


�� The di�erential Newton polygon method

Let us come back to the equation !���$� Except in the last paragraph� we assume
in this section that it is purely exponential� i�e� q and the coe�cients of P are
purely exponential� Let c 
 Texp be a transmonomial� The di
erential Newton
polynomial associated to c !relative to !���$$ de�ned by

mP�c�c	 �
X
i

P	c�i�m�P�c�c
i� !����$
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The purely exponential Newton degree of !���$ is the highest degree d of the
di
erential Newton polynomial associated to a monomial c 
 Texp� The algebraic
Newton polynomial associated to c is the algebraic part of mP�c� i�e�

m
alg
P�c�c	 �

X
i

P	c��i�
���� �
��m�P�c�c
i�

In what follows� by Newton polynomial� we mean di
erential Newton polynomial�
unless stated otherwise� We notice that mP�c�c	 � �� m

alg
P�c�c	 � �� for c 
 C�

We say that a monomial c 
 Texp is a potential dominant monomial of f �
if c �� q and mP�c admits a solution c 
 C�� In that case� cc is called a potential
dominant term of f � Furthermore� c !resp� cc$ is said to be classical� if the
algebraic Newton polynomial malgP�c is non trivial� The multiplicity of c as a root
of !����$ is the smallest integer i� such that there exists a i with jjijj � i and
m
�i�
P�c�c	 �� ��

����� Classical potential dominant monomials

The classical potential dominant monomials are analogous to the potential dominant
monomials encountered in the algebraic Newton polygon method� In particular� they
are �nite in number as follows from the following�

Theorem �� Assume that Pi� Pj �� � with i �� j� Then there exists a unique
transmonomial c 
 Texp� such that m�P	c�i	 � m�P	c�j 	�

Instead of proving theorem ���� we will prove a slightly stronger assertion� which
will be useful in section ��	� Actually� the proof . which is very similar to the proof
of theorem 	�� . is merely given for convenience of the reader� The trans�nite
induction procedure we use also yields a theoretical way to compute the classical
potential dominant monomials�

Theorem �� Assume that P has coe�cients in Texp�x�� Let Pi� Pj �� � be
given with i � j� Then there exists a unique transmonomial c 
 Texp� such that
m�P	c�i	 �ex m�P	c�j 	�

Proof The uniqueness of c trivially follows from proposition ���� Let us therefore
prove its existence� Let �c�	� be the trans�nite sequence of monomials� de�ned by

c
 � ��

c��� � c� exp
�
j�i�� �log�m�P	c� �j	�m�P	c� �i				� if m�P	c� �j	�m�P	c� �i	 ��x

e ��

c� � exp �stat lim
��

log c�	� for limit ordinals ��

We recall that � �f	 stands for the dominant term of f � We will show by trans�nite
induction that for all ��
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� If � � �� then log c� � log c��

�  q
 supp log c� m�P	c� �j	 �eq m�P	c� �i	�

This will imply in particular that the length of the sequence �c�	� cannot exceed the
cardinal number of Texp�x�� The last term of this sequence satis�es the requirement
of the theorem� The induction hypothesis is clearly satis�ed for � � �� Assume now
that for some � � �� the induction hypothesis is satis�ed for all smaller ��

Successor ordinals Assume that � � ��� and P	c��j�P	c� �i �
 xN� Let w denote
exp �

j�i �� �log�P	c��j�P	c��i			� Since P	c� � P	c� �	w� we have

m�P	c� �j	
m�P	c� �i	

�w w
j�im�P	c� �j	
m�P	c� �i	

�

by proposition ���� Hence�

m�P	c� �j	 �w m�P	c� �i	�

Furthermore� m�P	c� �j	 �eq m�P	c� �i	 for all q 
 supp log c�� since eq """ w� Hence�
both induction hypotheses are satis�ed at stage ��

Limit ordinals Assume now that � is a limit ordinal� Given q 
 supp log c��
there exists an � � �� with q 
 supp log c�� By the induction hypothesis� we have

m�P	c� �j	 �eq m�P	c� �i	�

By proposition 	�� and using that c��c� ��� q� we also have

m�P	c� 	 �eq m�P	c� 	�

Therefore� the second induction hypothesis is again satis�ed at stage �� The �rst
one is trivially satis�ed� �

����� Non classical potential dominant monomials

There are two types of non classical potential dominant monomials of f � those for
which the di
erential Newton polynomial is non homogeneous� and those for which
it is� In the �rst case� we obtain a characterization by applying theorem ���� In order
to characterize the non classical potential dominant monomials of f of the second
type� we look at the Riccati equation associated to the corresponding homogeneous
part of P �

More precisely� let c be a transmonomial� whose associated Newton polynomial
is homogeneous of degree i� Then we consider the equation
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RP�i� �f 	 �
X
jij	i

PiRi� �f	 � � !����$

in the logarithmic derivative �f of f � where

R�i����� �ir�� �f 	 � Ri�

 � �f	 � � �Rir

r � �f	�

with the notation from section 	��� We call !����$ the Riccati equation associated
to !���$ at degree i� We notice that the order and the total order of RP�i are both
strictly smaller than those of P � Now we have�

Proposition �	 Let c 
 Texp with c �� q be a monomial whose associated
Newton polynomial is homogeneous of degree i� Then c is a non classical potential
dominant monomial of f � if and only if the equation

RP�i���c�
��f	 � � �

��f �� �	 �����

has strictly positive purely exponential Newton degree�

Proof Assume �rst that c is a potential dominant monomial of f � Since mP�	c�c	 �
P	c��i�
���� �
��m�P�c�c

i � � for all c 
 C�� we must have m�P	c��i�
���� �
�	 �� m�P 	� Trans�
ferring this relation to the Riccati equation� we obtain

m�RP�i���c�
	 �� m�RP�i���c	� !���	$

Let j be such that m�RP�i���c�j	 � m�RP�i���c	� Unless RP�i���c�
 � � !in which case we
are clearly done$� there exists a unique transmonomial w 
 Texp such that

m�RP�i���c�j�	w	 � m�RP�i���c�
�	w	�

by theorem ���� The degree of the Newton polynomial associated to w relative
to !����$ is therefore strictly positive� Moreover� w �� �� by !���	$ and proposi�
tion ����

On the other hand� if c is not a potential dominant monomial of f � then we have
P	c��i�
���� �
��m�P � �� �� whence

m�RP�i���c�
	 � m�RP�i���c	�

Using proposition ���� it follows that

m�RP�i���c�	w�
	 � m�RP�i���c�	w	�

for all w �� � with w 
 Texp� Consequently� the purely exponential Newton degree
of !����$ is zero� �
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����� Re�nements

Now we know how to determine potential dominant terms� let us show how more
terms of potential solutions are obtained� A purely exponential re�nement !re�
lative to !���$$ is a change of variables together with an asymptotic constraint

f � �� �f � �f �� �q	� !����$

where �q �� � 
 Texp� Such a re�nement transforms !���$ into
P��� �f	 � � � �f �� �q	� !����$

We say that the re�nement !����$ is admissible� if the purely exponential Newton
degree of !����$ is strictly positive� By convention� !����$ is said to be admissible re�
lative to the equation � � ��f �� q	� Clearly� if !����$ admits a solution� then !����$
must be admissible� The following generalizes lemma ����

Lemma �� Let f � � � �f � �f �� �	 be a purely exponential re�nement relative
to ����� and let cc be the dominant term of �� Then the purely exponential Newton
degree of ����� is equal to the multiplicity �d of c as a root of ������

Proof Let i be an index with jjijj � �d� such that m�i�
P�c�c	 �� �� From !���$ it follows

that�

m�P	c����c�i	 � m�P	c	�

m�P	c����c�j 	 �� m�P	c	� for all j�

m�P	c����c�j 	 �� m�P	c	� for all j with jjjjj � �d�

To see that the purely exponential Newton degree of !����$ is bounded by �d� let
w �� c be a monomial in Texp� Then

m�P���	w�j 	 � m�P	c����c�	w�c�j 	

�w�c �m�c	jm�P	c����c�j 	

��w�c �m�c	
�dm�P	c����c�j 	

�� �m�c	
�dm�P	c����c� �d	

�w�c m�P	c����c�	w�c� �d	

� m�P���	w� �d	

for all j � �d�
On the other hand� for each j � �d� there exists a unique transmonomial wj 


Texp� such that
m�P	c����c�	wj�c�j	 � m�P	c����c�	wj�c� �d

	�
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Since m�P	c����c�j 	 �� m�P	c����c� �d	� it follows that wj �� c for each such j� Taking

j such that wj is maximal for �� � the degree of mP���wj is precisely �d� as in the
proof of lemma ���� �

Corollary I The purely exponential re�nement f � �� �f � �f �� �	 is admissible�
if and only if cc is a potential dominant term of f relative to �����

Proof Immediate consequence of part !a$� �

Corollary II For each j with jjjjj � �d� the purely exponential re�nement f �
�� �f � �f �� �	 is admissible relative to the equation P �j��f	 � � �f �� q	�

Proof Immediate consequence of the previous corollary� by observing that the
Newton polynomial associated to c� relative to the equation P �j��f	 � � �f �� q	 is
precisely m�j�

P�c� �

����� Upward shifting

Proposition �� The purely exponential Newton degree of ���� is bounded by
the purely exponential Newton degree of the equation P��f�	 � � �f� �� q�	�

Proof Let c 
 Texp be a monomial with c �� q� such that mP�c has degree d� Then
we claim that mP
�	c
erx has degree d as well� whence the proposition�

We �rst deduce from !����$ that

m�P	c�i�	 � m�P	c�i	�e�jix�

for each i� where ji is minimal such that there exists an � with j�j � i� jj�jj �
ji and m�P	c	 � m�P	c����	� Moreover� we have jj�jj � ji for each � such that
m�P	c�����	 � m�P	c�i�	� Applying !���$� we deduce that

m��P	c�i�		erx 	 � m�P	c	�e�ir�ji�x
� m��P	c�d�		erx	e��i�d�r�jd�ji�x
�� m��P	c�d�		erx	

for each i � d with m�P	c	 � m�P	c�i	� Since m�P	c�i�	 ��eex m�P	c�	 for all other
i� we deduce that

�P�		c
erx�i �� �P�		c
erx �d
for all i� �
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Proposition �� Let c 
 Texp� Then
m
alg
P
�c
 � m

alg
P�c� �����

Proof Decompose mP�c along orders� and let i be minimal� such that there exists
an � with mP�c���� �� � and jj�jj � i� By !����$� we have m�P	c�	 � m�P	c	�e�ix
and

mP
�c
 �
X

jj�jj�i

X
����jj� jj	i

C���mP�c��� �c
���� !���$

In the case when i � �� this relation clearly yields !����$� In the other case� we have
m
alg
P�c � �� Furthermore� we observe from !���$ that C
�j � � for all j � �� whence

C��� � � for all � � �� Consequently� malgP
�c
 � � as desired� �

Corollary The transmonomial c 
 Texp resp� cc 
 Texp� is a potential dom�
inant monomial or term of f relative to ����� if and only if c� resp� cc�� is a
potential dominant monomial resp� term� of f� relative to the equation P��f�	 �
� �f� �� q�	� Moreover� c resp� cc is classical if and only if c� resp� cc� is� �

����� The general case

Assume now that the coe�cients of P and q are in T� The results from the previous
section enable us to extend our terminology for the purely exponential case to the
general case� For instance� in view of proposition ���� the purely exponential Newton
degree of

P�l�f�l	 � � �f�l �� q�l	 !����$

is de�ned and remains constant for all su�ciently large l% this constant d is called
the Newton degree of !���$� Yet another example� given a monomial c 
 T�
its l�th iterated upward shifting c�l is either always or never a potential dominant
monomial of f�l relative to !����$ for su�cient large l� In the �rst case� we say that
c is a potential dominant monomial of f !relative to !���$$� In a similar fashion�
we extend the notions of potential dominant terms� re�nements� and so on� In this
more general terminology� lemma ��� and its corollaries generalize to�

Proposition �� Let f � � � �f � �f �� �	 be a re�nement relative to ����� and
let cc be the dominant term of �� Then
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a� The Newton degree �d of ����� is equal to the multiplicity of c as a root
of ������

b� The re�nement f � �� �f � �f �� �	 is admissible� if and only if cc is a potential
dominant term of f �

c� For each j with jjjjj � �d� the re�nement f � � � �f � �f �� �	 is admissible
relative to the equation P �j��f	 � � �f �� q	�

�


�� Quasi	linear equations

The equation !���$ is said to be quasi�linear� if its Newton degree is one� To emphas�
ize quasi�linearity� we will write ��f	 � P �f	 � P� in this section� Putting g � P��
!���$ becomes

�f � g �f �� q	� !����$

Here we use the notation ��� instead of �L� in order to emphasize that � is not a
linear� but merely a quasi�linear di
erential operator� We will show that there exists
a quasi�linear analogue ��� of the distinguished right inverse L�� from section 	�	�

In order to generalize� we have to cope with one additional di�culty� which did
not exist in the linear case� consider for example the quasi�linear equation

f � � e�xff �� � � � e�e
x

�f �� ex��	�

The distinguished dominant term of f is x� and after the re�nement f � x �
�f � �f �� x	� we obtain

�f � � xe�x �f �� � e��x �f �f �� � e�e
x

�

Now the distinguished dominant term of �f is x��e�e
x�x� which is not in Texp�x��

Therefore� repeated appearance of this phenomenon might in principle necessitate
the introduction of iterated logarithms of arbitrary strength� Nevertheless� we will
associate a new invariant to quasi�linear equations� the Newton regularity� This
invariant is bounded by the order of the quasi�linear equation� and strictly increases
each time the above phenomenon occurs�

����� Notations

It is convenient to use notations based on the linear case� we denote �lin for the
homogeneous part of degree one of �� and �rest � � � �lin� We denote �i �
�lin�i instead of ��i�
���� �
� for all i� where we notice that this notation invalidates the
notation from !���$� In case of additive conjugation� we remove the constant part�
i�e�

���f � ���� f	 � ���
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Hence !����$ becomes
���

�f � g � �� � �f �� �	�

after the re�nement f � �� �f � �f �� �	� Finally� it will be convenient to introduce
the abbreviations

��i�f	 � �
f � � � �� �if
�i�

and
��i�f	 � �i��f � � � �� �rf

�r��

for all � � i � r�

����� Dominant terms of distinguished solutions

Lemma �� Assume that � and g have coe�cients in Texp�x�� such that m��	 is
purely exponential and m��	 �ex mg� Let j be minimal such that m��	 � m��j	 and
let i be such that mg�m��	 � xi� Then �cgi��c�j�i � j	�	xi�j is a classical potential
dominant monomial for f relative to ������

Proof We proceed in a similar way as in proposition 	��� We �rst deduce
from !����$ that

���	k � e�jx�j��Ck�j � o��		� for k � j�

m��� � ��j	�	 �� e�jx�j��

It follows that

m�L	xi�j�	 � mg�� !����$

The above relations for the coe�cients of �� also imply that

�L	xi�j�	
 � �L�		e�i�j�x �

�

rX
k	


�L�	k�i� j	ke�i�j�x

�

�	 jX
k	


Ck�j�i� j	k � o��	


A �L�	jeix�
By proposition 	�� and !����$� we infer that the algebraic Newton polynomial N
associated to e�i�j�x and relative to the upward shifting of !����$ is given by

N��	 �
�i� j	�

i�
c�j� � cg�

Since this polynomial is not homogeneous� the potential dominant term
�cgi���c�j�i� j	�		xi�j of f corresponding to its unique solution is classical� �
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Proposition �� If g �� � then there exists a unique classical potential dominant
term ����g � c���gm���g for f relative to ������

Proof Modulo upward shifting� it su�ces to consider the case when g and the
coe�cients of � are in Texp� Then by theorem ���� there exists a unique monomial
c 
 Texp with m��	c	 � mg� and the existence of ����g follows by applying lemma ���
to �	c and g� The uniqueness of ����g results from the corollary of theorem ��� and
the fact that the Newton polynomial associated to m

�
��g is linear� �

Proposition �� Assume that � and g have coe�cients in Texp�x�� Let c de�
note the unique purely exponential monomial� such that m��	c	 �ex m�g	 see the�
orem ����� Then

a� m
�
��g 
 cxZlogNx�

b� If m��	c	 is purely exponential� then m
�
��g 
 cxN�

c� If m��	c	 and g are purely exponential� and m��	c	 � m��	c�
	� then m���g �
��

Proof Applying lemma ��� to �	c and g� we have !b$ and !c$� In order to prove !a$�
we �rst observe that m��	c�	�mg� � eix for some i 
 Z� Next m��	c�	eix	 � mg�
by proposition ���� since �	c� is purely exponential� Now we have !a$ by applying
lemma ��� to �	cxi� � �	c�	eix and g�� and shifting downwards� �

����� Newton regularity

Assume that g� the coe�cients of � and m���g are purely exponential� Then the
purely exponential Newton regularity of !����$ is de�ned to be the largest
number �� such that

m��	m
���g ��

	

m��	m
���g

	
���

m��	m
���g�rest

	

m��	m
���g

	
� !����$

We will show below that the Newton regularity of the upward shifting of !����$ is
equal to �� This allows us to de�ne theNewton regularity of !����$ in the general
case as being the purely exponential Newton regularity of a su�ciently large upward
shifting of !����$�

Proposition ��� Assume that g� the coe�cients of � and m
�
��g are purely expo�

nential� Then the purely exponential Newton regularities of ����� and the equation
���f�	 � g� �f� �� q�	 coincide�
Proof Modulo a multiplicative conjugation of � by m����g	 and a division by
m��	� it su�ces to consider the case when m����g	 � m��	 � �� If � denotes the
purely exponential Newton regularity of !����$� this yields m���	 ��� m��rest	�
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By proposition ���� we have m��rest�	�m��rest	� ��� ex and m�����	�m����	� ���
ex� since ���� � ����� From !����$� we also deduce that

��� � ���e��x�� � om��rest�	 ��� m��rest	��
Therefore� the purely exponential Newton regularity of ���f�	 � g� �f� �� q�	
equals �� since m����	��g�	 � m����g	� � �� �

Contrary to the Newton degree� the Newton regularity increases during re�ne�
ments�

Theorem �� Assume that the coe�cients of � and g are purely exponential� and
consider an admissible re�nement

���� �f 	 � g � �� � �f �� q	 �����

of ����� with � 
 Texp�x� and �� � �
�
��g� Let � resp� �� be the Newton regularities

of ������ and ������ Then �� � ��

Proof Modulo one upward shifting� we may assume without loss of generality
that � 
 Texp� As in the proof of the previous proposition� we may also assume
that m��	 � m��	 � �� Modulo one more upward shifting� we may �nally assume
that c � m�������g � ��		 
 Texp� By proposition ���!a$� we have w def

� m��rest	 �
m�����rest	�

Assume �rst that c ��� w� Then we have

����lin � �lin � ow��	�

by !���$� i�e� ����i � �i � ow��	 for all i� Consequently�

����	c�� � ����� � ow��	 � �� � ow��	�

by !���$� On the other hand�

m�����c�rest	 � m�����rest�c	 �w w�

by proposition ���� Therefore �� � ��
Assume now that c """ w� Let j be maximal� such that m�����j	 ��� c� Clearly�

j � �� By !���$ and proposition ���� we have

m�����	c�j	 �c m�����j	c �c c�

and
m�����	c	 �c m����	c � c�

Again by proposition ���� we also have

m�����	c�rest	 ��c m�����rest	c
��
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Consequently� �� � j � �� �

If the Newton regularity does not increase as the result of an admissible re�ne�
ment� then no new iterated logarithms are needed to compute the next potential
dominant term�

Theorem �	 With the notations from theorem ���� assume that �� � �� Then
�
�
��
���g���� 
 T

exp�x�� Moreover� if � 
 Texp and �� � � � �� then �
�
��
���g���� 
 T

exp�

Proof Modulo multiplicative conjugation of � by a purely exponential monomial�
we may assume without loss of generality that m��	 � mg !by theorem ���$� In
particular� � � xi for some i� by proposition ���!b$� Modulo division of � by m��	 we
may also assume that m��	 � �� By proposition ���!a$� m�������g���		 � cx� log� x
for some purely exponential monomial c� � 
 Zand � 
 N� The key of the proof
now lies in the following

Lemma �� m�����	c	 is purely exponential�

Proof We have w def

� m�����rest	 �ex m��rest	� by proposition ���!b$� Assume �rst
that c �� w� Since � � ��� � ow��	� we have

��� � ������ � ow��	 � ��� � ow��	�

by !���$� Using proposition ���� we therefore have

����	c � ����	c � ow��	�

Since ����	c �c c ��� w by proposition ���� it follows that m�����	c	 is purely ex�
ponential�

Assume now that c """ w� By proposition ���� we have

m�����	c�lin	 �c cm�����lin	 �c c

and
m�����	c�rest	 ��c c

�m�����rest	 ��c c
��

Since �� � � by assumption� we therefore must have m�����	c���	�c """ c� Us�
ing !���$� it follows that

m������chi	 � m�����	c����	c�� 	 �c m�����	c���	 """ c�

Using !���$ again� the other way around� we infer

����	c��� � �������	c � �������	c���
� �������	c � oc�c	�
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Let as usual �c denote the logarithmic derivative of c� We �rst consider the case
when �c ��� w� Then

������ � ��� � ow��	�

by !���$ and using the fact that ��i� �w � for all i� Consequently�

�������	c � ����	c � ow�c	�

by !���$ and the fact mentioned above� On the other hand�

����	c�� � c�� ""w c�

whence m�����	c	 ""w c� We conclude that m�����	c	 � m��������	c	 � m�����c	
is purely exponential� Let us �nally consider the case when �c """ w� Then !���$
yields

�������	c�i � �����c
���i�

for all i� In particular�

m��������c	 � m��������c�
	 � m������	cm��c	
� � m���	cm��c	

��

since ����� � �� � ow��	 and �� ��� w� We again conclude that m�����	c	 �
m��������	c	 is purely exponential� �

End of the proof of theorem �	 The lemma implies at once that � 
 N and
� � �� by proposition ���!b$� Moreover� if � 
 Texp and � � �� � �� then g � �f is
purely exponential� Furthermore� for all i � ��

m�����	cx��i�	
m�����	cx��	 """ m�����	cx��rest�	

m�����	cx��	 """ ex��

Here the �rst inequality results from the fact that �� � �% the second one follows
from

m�����	c�rest	
m�����	c	

""" ex

and

����	cx��rest �ex ����	c�rest�

����	cx� �ex ����	c�

It follows that
m�����	c�i	 ��ex m�����	c	�

for all i � �� by proposition ��� and !���$� Consequently� m�����	c	 � m�����	c�
	�
so that � � � by proposition ���!c$� �
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����� Existence proof of distinguished solutions

Theorem �� The quasi�linear equation ����� of order r with coe�cients in Cexp

admits at least one solution in Cexp if r � �� or in Cexp�x��r�� if r � ��

Proof Let �f�	� be the trans�nite sequence of transseries de�ned by�

f
 � ��

f��� � f� � �
�
��
�f�

�g��f�� if �f� �� g�

f� � stat lim
��

f� for limit ordinals ��

We will show by trans�nite induction that for all ��

� If � � �� then f� � f��

� For all �q 
 fqg  supp f�� the equation

��f� �
�f	 � g � �f� � �f �� �q	

has Newton degree one�

� Either f� 
 Texp� or f� 
 Texp�x��l for some l� and the equation

��f� � �f	 � g � �f �� q	

has Newton regularity � l � � for some � � � with f� 
 Texp�l�
The third hypothesis implies that f� 
 Texp�r�� for all � !whence f� is well�de�ned�
if � is a limit ordinal$� The �rst hypothesis implies that the sequence has a last
term� which is necessarily a solution to !����$� The induction hypothesis is trivially
satis�ed for � � �� Assume now that � � �� and the induction hypothesis is satis�ed
for all smaller ��

Successor ordinals Assume that � � �� � and �f� �� g� Since

��f�� �f	 � g � �f� � �f �� �q	 !���	$

has Newton degree one for each �q 
 supp f�� we have �
�
��
�f�

�g��f�� �� �q for all
�q 
 supp f�� Hence� the �rst induction hypothesis is satis�ed at stage ��

Since �
�
���g�f�� is an admissible dominant term for the equation !���	$� the

equation

��f����
��f	 � g � �f��� �

��f �� �
�
���g�f��	 !����$

has Newton degree one� Therefore� the second induction hypothesis is satis�ed at
stage �� because q �� �q �� �

�
��
�f�

�g��f�� for all �q 
 supp f��
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As to the third induction hypothesis� let us �rst consider the case when f� 

Texp� If � � �� then we are done by proposition ���!b$ and !c$� If the Newton
regularity � of ��f� is strictly positive� then we are again done by proposition ���!b$�
Otherwise� we conclude by applying theorem ��	 to the re�nement ��f� �

�f	 � g �
�f� � �f �� m�f�		 of !����$�

Assume now that f� �
 Texp� Choose l and � � �� such that f��l 
 Texp�x��
f��l 
 Texp and the Newton regularity � of

���f��l	� ��f�l	 � �g � �f�	�l � ��f�l �� q�l	
satis�es � � l � �� Let �� be the Newton regularity of

���f��l	� �f�l	 � �g � �f�	�l � �f�l �� �f� � f�	�l	�
If �� � l � �� then the third induction hypothesis is clearly satis�ed at stage �� by
proposition ���!a$� Otherwise� it is again� by theorem ��	�

Limit ordinals Assume that � is a limit ordinal and let �q 
 supp f�� Then there
exists an � � � with q 
 supp f�� and by the second induction hypothesis� the
equation !���	$ has Newton degree one� Since the dominant terms of f� � f� and
f��� � f� coincide� the equations !����$ and

��f� �
��f	 � g � �f� �

��f �� �
�
��
�f�

�g��f��	

are both admissible re�nements of !���	$� This implies the second induction hypo�
thesis at stage �� since q �� �

�
��
�f�

�g��f��� The �rst induction and third hypotheses
are trivially satis�ed� �

In what follows� ���g denotes the solution f to !����$ as constructed in the above
proof� and we call it the distinguished solution to !����$� Using upward shiftings�
the de�nition of � naturally extends to the case when g and the coe�cients of � are
arbitrary elements of T�

����� The �homogeneous� quasi�linear equation

In this section we prove the analogue of the fact that the dimension of the vector
space of solutions to a homogeneous linear di
erential equation is bounded by the
order of the equation�

Proposition ��� Let h� �� � � � �� hs �� � be transseries� such that

��h������hi��hi � ��

for all � � i � s� Then s � r�
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Proof Let �� � ��h������hs � Since �h� � � � �� hi � �� we have

����hi�� � � � � � hs	 � ��

for all � � i � s� In particular� mh� � � � � �mhs are potential dominant monomials
relative to the �homogeneous� quasi�linear equation

�� �f � � � �f �� q	�

By proposition ��	� it follows that the asymptotic Riccati equation

R������cmhi � ��f	 � � � ��f �� �	
has strictly positive purely exponential Newton degree for all � � i � s� But this
implies that s � r� since the dimension of the solution space of the linear di
erential
equation ��linf � � is bounded by r� �


�
 Resolution of algebraic di�erential equations

����� Privileged re�nements

In chapter �� we have used re�nements of the form f � �� �f with P �d�����	 � � to
make the Newton degree decrease at most every two steps in the Newton polygon
method !see lemma ���$� In this section� we will study a generalization of such
re�nements� which we qualify as being privileged� Intuitively speaking� privileged
re�nements can be thought of as the keystones of �asymptotic elimination� theory�

Let us �rst �x the total ordering�tot on �r��	�tuples of indices� which is uniquely
determined by the following two properties�

� If jjijj � jjjjj� then i �tot j�

� If jjijj � jjjjj� i
 � j
� � � � � ik�� � jk�� and ik � jk� then i �tot j�

Let f � �� �f � �f �� �q	 be a re�nement relative to !���$ with �q � m��	� Denote by d
resp� �d the Newton degrees of !���$ resp� !����$� The re�nement f � �� �f � �f �� �q	
is said to be privileged� if either one of the following conditions is satis�ed�

PR� � is a potential dominant term of f and �d � d�
PR� � ��	 is a potential dominant term of f and �d � d�

Moreover� �� � ��	 is the distinguished solution to the equation

P
�i�
������

�f	 � � � �f �� � ��		�

where i is maximal for �tot� jjijj � d� � and m�P �i�
�����	 � m�P�����	�
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Proposition ��� The length of a chain of privileged re�nements of type PR� is
bounded by �r � �	d�

Proof Let

f
 � �� � f� �f� �� q�	�
���

fn�� � �n � fn �fn �� qn	

be a chain of privileged re�nements of type PR� with f
 � f � For a �xed i with
jjijj � d � � and � � i�� � � � � id�� � r� let j� � � � � � jm be those indices for which i
coincides with the i in PR�� Let k � m� By the choice of �jk � we have

P
�i�
���������jk��

��jk	 � ��

If jk � n� which is in particular the case if k � m� then we claim that m��jk��	 is
the dominant monomial of a solution to the �homogeneous� quasi�linear equation

P
�i�
���������jk �h	 � � �h �� qjk�� 	�

Indeed� this follows by applying proposition ���!b$ to the jk�th re�nement relative
to the above equation� which is admissible by assumption� Our claim implies that
m� � � r by proposition ����� because �� �� � � � �� �n� Since there are �r� �	d��

possible choices for i� we conclude that n � �r � �	d� �

Corollary The length of any chain of privileged re�nements is bounded by
�r � �	d��� �

����� Theoretical resolution algorithm

In this section we describe a theoretical algorithm to determine all solutions to !���$�
The algorithm consists of �ve main parts�

� ade�solve� solves !���$�

� ade�mod�solve� solves !���$ modulo o��	�

� priviliged�refinements� computes a privileged re�nement of !���$�
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� pdm� computes a potential dominant monomials of f �

� Newton�degree� computes the Newton degree of !���$�

Here we say that a transseries f is a solution modulo o��	 to !���$� if

P�f � �f 	 � � � �f �� �	

has strictly positive purely exponential Newton degree� The determination of the
solutions modulo o��	 to an asymptotic a�d�e� is used as a subalgorithm in order to
�nd the non classical potential dominant monomials using proposition ��	�

The algorithms are non deterministic !with the exception of Newton�degree$� To
implement the non determinism� we use the automatic case separation terminology
from chapter � The main algorithm ade�solve has the property that each solution
to !���$ corresponds to exactly one branch in the computation tree�

Algorithm ade�solve

Input� An asymptotic algebraic di
erential equation !���$�
Output�A solution to !���$ !computed non deterministically� if a solution exists$�

Step �� If P� � �� then separate the following two cases�
a� Return ��
b� Proceed with step ��

Step �� Determine !non deterministically$ a privileged re�nement

f � �� �f � �f �� �	 !����$

to !���$ by priviliged�refinements�
Step �� Recursively solve !����$ by ade�solve�

Algorithm ade�mod�solve

Input� An asymptotic algebraic di
erential equation !���$�
Output�A solution modulo o��	 to !���$ !computed non deterministically� if a

solution exists$�

Step �� Compute the Newton degree d of the equation P �f	 � � �f �� �	 by
Newton�degree�
If d � �� then separate the following two cases�

a� Return ��
b� Proceed with step ��

Step �� Determine !non deterministically$ a privileged re�nement !����$ to !���$�
Impose the constraint � "" ��

Step �� Recursively solve !����$ modulo o��	 by ade�mod�solve�
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Algorithm priviliged�refinements

Input� An asymptotic algebraic di
erential equation !���$�
Output��� such that !����$ is a privileged re�nement of !���$% here � is computed

non deterministically� if such a � exists�

Step �� Compute !non deterministically$ a classical potential dominant monomial
c of f by pdm�
Choose !non deterministically$ a non zero solution c to the algebraic New�
ton polynomial associated to c�

Step �� Compute the Newton degree d of !���$ by Newton�degree�
Step �� If c is a solution of multiplicity � d to Pc� then return cc�

Step �� Otherwise� let i be maximal for �tot� with jjijj � d � � and m�P �i�
�cc	 �

m�P�cc	�
Compute the distinguished solution � to

P
�i�
�cc� �f	 � � � �f �� c	�

by theorem ��� and return cc � ��

����� Computation of potential dominant monomials

Before stating the algorithms to compute the potential dominant monomials of f
and the Newton degree of !���$� let us introduce some more terminology� Assume
that !���$ is purely exponential� By proposition ���� we have m�Pi	 �� m�P 	 �
m�Pi�	 �� m�P�	 for all i� More generally� if c is a purely exponential monomial�
then we have m�P	c�i	 �� m�P	c	 � m�P	c�i�	 �� m�P	c�	 for all i� It follows that
there exist unique indices i � j� such that for all su�ciently large l� we have

m�P	c�i�l	 � m�P	c�l	 � m�P	c�j�l	� !����$

and

m�P	c�k�l	 �� m�P	c�l	 !���$

for all k � i and k � j� We will call c an �i� j	�monomial !relative to !���$$ if
i � j and an i�monomial !relative to !���$$ if j � i� Modulo upward shifting� this
terminology extends to the case when c and P are arbitrary�

If c is an potential dominant i�monomial� then c is necessarily non classical�
However� if c is an potential dominant �i� j	�monomial� then c may be non classical�
for instance� � is a non classical potential dominant ��� 
	�monomial for f relative
to the equation f � � ff � � �� By theorem ���� there is at most one �i� j	�monomial
ci�j for �xed i � j� The following algorithm computes this monomial if it exists�
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Algorithm ij�monomial

Input� An asymptotic algebraic di
erential equation !���$ and i � j�
Output�The unique �i� j	�monomial relative to !���$� if it exists�

Step �� If Pi � � or Pj � � then return �failed��
Step �� Let l � � be minimal� such that the l�th upward shifting of !���$ is purely

exponential�
Step �� Compute the unique monomial c 
 Texp�l with m�P	c�i�l	 � m�P	c�j�l	

by theorem ����
Step �� Compute the unique monomial w 
 Texp�l�� with m�P	w�i�l��	 �

m�P	w�j�l��	 by theorem ����
Step �� If w �� c or the di
erential Newton polynomials mP
l�c
l and mP
l���c
l��

do not coincide� then set l �� l� � and go to step ��
Step 	� If c satis�es !����$ and !���$� then return c�

Otherwise� return �failed��

Lemma �	 The algorithm ij�monomial is correct and terminates�

Proof In order to prove the correctness of ij�monomial� we have to show that
if w � c�� mP
l�c
l � mP
l���c
l��

and c satis�es !����$ and !���$� then !����$ and
!���$ are also satis�ed for all larger values of l� Now from !���$ it follows that
for all i� m�P�l�i���c�l�i��	 is determined as a function of m�P�l�i�c�l�i	 only�
Consequently� m�P�l�i�c�l�i	 for all i� whence the result�

In order to prove the termination� we assume that the logarithmic depths of the
solutions to the Riccati equation RP�i are bounded by a �xed constant% this will be
proved in the next section� Now suppose that ij�monomial does not terminate�
Then the logarithmic derivatives of the successive values of c are all solutions to the
Riccati equation RP�i� By our assumption� it follows that c is constant from a certain
l on� Since m�P�l�c�l	 changes at each iteration� we observe from !���$ that the
total order of m�P�l�c�l	 strictly decreases at each iteration� But this impossible�

�

Given a monomial c� it is easy to check whether it is a potential dominant
monomial of f � we shift upwards until c and !���$ become purely exponential�
and check whether c �� q and the algebraic Newton polynomial associated to c
admits a non zero solution� Now we know how to compute the �i� j	�monomials
relative to !���$ and we know how to compute recursively the non classical potential
dominant i�monomials using the Riccati equation� This leads to the following�
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Algorithm pdm

Input� An asymptotic algebraic di
erential equation !���$�
Output�A potential dominant monomial of f relative to !���$ !computed non de�

terministically� if it exists$�

Step �� Separate two cases and respectively proceed with steps � and 	�
Step �� For each � � i � j � r separate a case and do the following�

a� Compute the �i� j	�monomial c relative to !���$ by ij�monomial�
Kill the current process if c does not exist�

b� If c is a potential dominant monomial of f � then return c�
Otherwise� kill the current process�

Step �� For each � � i � r� with Pi �� �� separate a case and do the following�
a� Solve the Riccati equation RP�i��	 � � modulo o��	 by ade�mod�solve

and set c �� exp�
R
�	�

b� If c is not a potential dominant monomial of f � then kill the current
process�

c� If c occurs as an �i�� j�	�monomial for some i� � j�� then kill the current
process�

d� Return c�

Assume that c is an �i� j	�monomial or a j monomial� and w is an �i�� j�	�
monomial or a i� monomial� If c �� w� then applying proposition ��� after a su��
ciently large number of upward shiftings� we get j � i�� This observation leads to
the following algorithm to compute the Newton degree of !���$�

Algorithm Newton�degree

Input� An asymptotic algebraic di
erential equation !���$�
Output�The Newton degree of !���$�
Step �� If q is an �i� j	�monomial relative to !���$ for some i � j�

then return j � ��
Step �� Return the unique i such that q is an i�monomial relative to !���$�

Here i is computed as follows�
a� Let l be minimal� such that the l�th upward shifting of !���$ is purely

exponential�
b� While the Newton polynomial mP
l�q
l is not homogeneous� set l �� l � ��
c� Let i be the degree of mP
l�q
l �

����� Correctness and termination proofs

We can now state and prove the main theorem of part A of the thesis�



���� RESOLUTION OF ALGEBRAIC DIFFERENTIAL EQUATIONS �	�

Theorem �� Let ���� be an asymptotic algebraic di�erential equation of degree
d and total order �� with coe�cients in T� C����x���� Then

a� The set of possible outcomes of the non deterministic theoretical algorithm
ade�solve is precisely the set of solutions to ���� in T�

b� The algorithm ade�solve terminates for all possible executions� and each solu�
tion to ���� in T corresponds to exactly one branch of the computation tree�

c� If the coe�cients of ���� are in Texp� then the logarithmic depth of each solu�
tion to ���� in T is bounded by �� � �	�����

����d�

Proof We have already shown the partial correctness of ade�solve and of its
subalgorithms in the previous sections� Therefore� it only remains to prove !b$
and !c$� We do this by induction over �� while proving simultaneously that the
logarithmic depths of the possible outcomes of ade�solve and ade�mod�solve are
bounded by �� � �	�����

����d� if the coe�cients of !���$ are in Texp� We notice that
if the coe�cients of !���$ are in Texp�l then one need add l to these bounds modulo
l upward shiftings of the equation� For � � �� the equation !���$ is algebraic� and
the statements !b$ and !c$ are trivially satis�ed� Assume therefore that � � �� As
usual� we denote by r the order of !���$�

By the induction hypothesis� all recursive invocations of ade�mod�solve in pdm

for the Riccati equation terminate� The assumption made in the termination proof
of ij�monomial in lemma ��	 is nothing but the induction hypothesis concerning the
bounds for the logarithmic depths of solutions� Finally� since a chain of privileged
re�nements is bounded by �r � �	d�� in view of proposition ����� we obtain the
termination of ade�solve and ade�mod�solve� This proves the �rst part of !b$�

Let us now examine more carefully the above argument� in order to obtain the
explicit bound from !c$� when the coe�cients of !���$ are inTexpWe have to examine
how many �additional upward shiftings� each step in the algorithm may necessitate�

By the induction hypothesis� each invocation of ade�mod�solve in pdm neces�
sitates at most ������

����� additional upward shiftings� since the degrees of the Ric�
cati equations RP�i are bounded by �� Furthermore� the computation of the �i� j	�
monomials necessitates at most � additional upward shiftings� since m�P�l�c�l	
needs to change at each iteration in ij�monomial� and this can happen at most
� times� Consequently� the computation of a potential dominant monomial of f
necessitates at most ������

����� � max��� ������
�����	 additional upward shiftings�

The computation of a distinguished solution in step 	 of privileged�refine�
ments necessitates at most r additional upward shiftings by theorem ���� Con�
sequently� the computation of a privileged re�nement necessitates at most r �
������

����� � �� � �	�����
����� additional upward shiftings� Finally� since the length

of a chain of privileged re�nements is bounded by �r � �	d��� the logarithmic
depth of any possible outcome of ade�solve or ade�mod�solve is bounded by
�r � �	d����� �	�����

����� � ��� �	�����
����d as desired�
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We �nally have to prove that each solution to !���$ in T corresponds to exactly
one branch of the computation tree� Actually� we claim that each possible outcome
of each of the subalgorithms correspond to exactly one branch of the computation
tree� The only subalgorithm for which this is non trivial is pdm� in which the possible
overlapping of branches is excluded by step �d� �

Remark �� Actually� part !a$ of the theorem can be strengthened as follows�
if T� � T is any strongly monotonic �eld of transseries over C in the sense of
chapter �� then ade�solve even produces all solutions to !���$ in T�� Indeed� this
follows immediately from our bounds for the logarithmic depths� In particular� no
new solutions occur if we enlarge Tby other strongly monotonic transseries�

Remark �� For convenience of the reader� we have rather tried to keep the
algorithms as simple as possible than to optimize the bound in !c$� Let us now sketch
how this bound can be improved� Instead of considering sequences of privileged
re�nements of type PR�� where the index i changes at each iteration� one can also
consider similar sequences of re�nements� but with the index i kept �xed� When
doing so� the bound from proposition ���� improves to r�� instead of �r� �	d and
the bound in the corollary to d�r � 
	 instead of �r � �	d��� Finally� the bound in
part !c$ of in the theorem improves to ��� 
	��d instead of ��� �	�����

����d�
In particular� for �xed total order� this improved bound is linear in d� This

coincides with the result of Strodt in the case when � � �� who proved in "Str ��#
that we may even take 
d for the bound in this case� On the other hand� we have
no evidence for the existence of linear bounds in � for the logarithmic depths of
solutions� which would in particular imply Shackell�s conjecture in "Sh ��#�
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Chapter 


Transvarieties

��� Introduction

The aim of this chapter is to present models for algebraic asymptotic calculus with
transseries in several variables and transseries which are not longer strongly mono�
tonic� Our approach is geometrical� we interpret transseries as elements of the
function space on some �transvariety�� Besides the ordered exp�log ring operations
and relations� we also have partially de�ned in�nitary summation operators on such
function spaces� The di�culty is of course how and when to de�ne these operators
and here we use the abstract nonsense arguments from appendix B� The idea to use
a pointwise de�nition of in�nite summation� an in�nite summation is de�ned if and
only if it is de�ned in each point� Here a point is nothing else but a morphism of
the function space into a �eld of transseries in the sense of chapter � or � for which
in�nite summation has already been de�ned�

It should be noted that this chapter should be seen as indicative for the de�
velopment of a future� more complete theory !see also section �����$� We restricted
ourselves to transvarieties whose function spaces do not have nilpotent elements and
we are mainly interested in transseries de�ned on open subsets of a�ne space� The
advantage of this choice is that theory remains more natural� but it is probable that
a more general approach will be necessary for some future applications�

Let us now come to a more detailed description of the contents of this chapter� In
section ��� we introduce strong rings� which are rings with partially de�ned in�nite
summation operators� which satisfy certain conditions�

For the introduction of grid�based transvarieties� we also introduce more spe�
cial� so called grid�based summation operators in section ������ These operators
adequately re0ect the �niteness properties of grid�based series� and we will establish
a generalization of proposition ���� In section ��	 we proceed with some examples
and basic properties of grid�based transvarieties� In particular� transvarieties are
given a natural topology� which generalizes the interval topology� It is next shown
in section ��� that the partial derivations can be de�ned for open subvarieties of

�		
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a�ne space�
In sections ��� we introduce Noetherian transseries as the multivariate generaliz�

ation of well�ordered transseries� Using a careful de�nition� we show that the results
from the previous sections can be generalized�

In section ������ we show that our algebraic geometry methods can also be ap�
plied to construct models for weakly oscillating transseries� i�e� transseries which are
built up from the usual transseries operation plus the trigonometric functions� The
idea is to see weakly oscillating transseries as multivariate transseries� in which the
variables have been substituted by oscillating components� Contrary to the strongly
monotonic case� the models for such transseries do not necessarily correspond to
the analytic models� but a correspondence can often be forced� Using the notion of
weakly oscillatory transseries� it is easy to introduce complex transseries by consid�
ering real and imaginary parts� This is done in section ����� and we prove a theorem
which shows how far real transseries can be prolongated in the complex transplane�

��� Strongly linear algebra

In this section� we generalize linear algebra objects� replacing the usual addition by
an in�nitary summation operator� Implicitly� we already used such in�nite summa�
tions in chapters � and �� but it convenient to make their properties more precise�
Two main problems are encountered here� First� in�nite summation operator can
only be partially de�ned� Secondly� it is not clear what the arity of such an operator
should be� The �rst problem has been settled in section B��� For the second problem
we can either take a summation operator

P
I for each index set I� or for all subsets

I of a �xed su�ciently large set� We choose for the �rst option and we remind the
discussion at the end of section B��� The pre�x strong will be used to designate
generalized linear algebra objects� We will now make this more precise�

Let A be a set with a zero element �� and for each index set I a partially de�ned
summation operator

P
I� We will also denote

P
�
P

I if the index set I can be
deduced from the context� Then A is said to be a strong Abelian group� if

P
I is

totally de�ned for all �nite I� and if for all I and �xi	i�I 
 AI we have

S�
P
��	i�I � �%

S�
P
�xi	i�I �

P
�x��i�	i�I � for any permutation  of I%

S�
P
�xi	i�I �

P
�
P
�xi	i�Ij	j�J � for any partition I �

�
j�J Ij�

Here we use our convention by which each of the above equalities only holds if at
least one of its sides is de�ned� We remark that A can be seen as an Abelian group
by taking x� � x�

def

�
P

i�f���gxi� for all x�� x� 
 A� From S�� S� and S� it also
follows that

P
�xi	i�I �

P
�x��i�	i�J � for any bijection � between two index sets I

and J �
Assume now that R is a strong Abelian group with an associative multiplication �

with unit �� Then R is said to be a strong ring if
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S	
P
��xi	i�I � �

P
�xi	i�I �

for all �xi	i�I 
 RI � � 
 R and index sets I� such that
P
�xi	i�I is de�ned� In

particular� R can be seen as a ring� As before� we will only consider commutative
rings� Let R be a strong ring and M a strong Abelian group� such that R operates
onM by multiplication� We say thatM is a strong R�module� if we have ���x	 �
���	x� �x � x� S	 and X

��ix	i�I �
X

��i	i�I
�
x� !���$

for all �� � 
 R� ��i	i�I 
 RI � x 
 M� �xi	i�I 
 M I and index sets I� A mapping
� �M � N between two strong R�modules M and N is said to be strongly linear
if

�
X

��ixi	i�I
�
�
X
��i��xi		i�I� !���$

for all ��i	i�I 
 RI � �xi	i�I 
M I and index sets I�
In a similar way many other linear algebra objects can be generalized� such as

vector spaces� algebras� multilinear mappings� derivations� and so on� For abstract
nonsense reasons !see chapter B$� the categories of strong Abelian groups� rings� etc�
have a lot of properties� For instance� tensor products� pullbacks� pushouts� direct
limits and inverse limits exist in the category of strong rings by theorem B���

Example �� Let T the �eld of grid�based transseries over C� Then
P
�xi	i�I is

de�ned for any grid�based family �xi	i�I 
 CI � Similarly� ifTis a �eld of well�ordered
transseries� then

P
�xi	i�I is de�ned for any Noetherian family �xi	i�I 
 CI�

Example �� If C is also a strong ring in the previous example� then we say
that a family �fi	i�I 
 TI is weakly grid�based� if i�Isupp fi is grid�based andP
�fi�c	i�I well de�ned for each transmonomial c� Weakly Noetherian families are

de�ned similarly� Now the previous example can be generalized using these new
de�nitions�

Example �� Strongly linear algebra can also be used in other mathematical
topics� such as measure theory� R is a strong ring� by de�ning

P
�xi	i�I for all

absolutely convergent families� A  �algebra B on a set E can canonically be extended
into a strong R�module MB� we consider the free strong R�module in B and then
quotient by relations of the formX

�Ui	i�I � qi�IUi

for enumerable families �Ui	i�I 
 BI � whose members are mutually disjoint� Finite
measures can then be interpreted as strongly linear mappings fromMB into R� It is
also possible to replace R by a �eld of transseries T� and we leave it as an exercise to
the reader to generalize the Lebesgue measure !one has to be careful here� relatively
few disjoint unions of intervals are measurable$�
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��� Grid	based transseries in several variables

����� De�nition of grid�based transvarieties

In this chapter we �x a totally ordered exp�log �eld of constants C and we denote
T� C���t���� In order to apply the abstract theory from the previous chapter� we
have select a suitable signature T and a category P of point types� For each n 
 N
and each family �ck����� �kn	k����� �kn�Nn in CN

n
� we de�ne a grid�based summation

symbol ��c of arity n� For in�nitesimal f�� � � � � fn in T� we de�ne
��c�f�� � � � � fn	 �

X
k����� �kn�N

ck����� �knf
k�
� � � � fknn � !���$

We let T be the signature consisting of these symbols ��c � the exp�log �eld operations
and the ordering relation �� We take obj�P	 � fTg�

In section B��� we have constructed the category VarP of varieties relative to
P� From now on such varieties are called grid�based transvarieties over C and
their category is denoted by GTVC� Then a grid�based transseries in several
variables is just a partially !but somewhere$ de�ned function on a transvariety�
A transseries f in x�� � � � � xn can be seen as an expression in x�� � � � � xn and the
function symbols from T � such that for all points P in a certain non empty subset of
Tn� the substitution f�P 	 of �x�� � � � � xn	 by P is well de�ned� The maximal subset
with this property can be seen as the domain of f �

The ordering on the function space F�V 	 of a transvariety V is also determined
pointwise� i�e� f � g if and only if f�P 	 � g�P 	 for all points P 
 V � More
generally� we have pointwise generalizations of the asymptotic relations �� � ��� �
etc� !for instance� f �� g �  P 
V f�P 	 �� g�P 	$� A consequence of the pointwise
characterization of functions and relations on a transvariety is that all Horn clauses
which are valid in T are valid in F�V 	 !see proposition B�	$� In particular� F�V 	
is an ordered exp�log ring� However� F�V 	 is not necessarily totally ordered nor a
�eld� Indeed� the axioms of a total ordering resp� a �eld are not all Horn clauses�

Example �	 The transseries f�x� y	 �
P

i�j�k i�j�k�x
�iy�je�kxy in x and y is

well de�ned� for positive x �� � and y �� �� Strictly speaking� f is given by f �
��c�x

��� y��� e�xy	� and c � �i�j�k�	�i�j�k��N��

Let us show that the function space of a transvariety V has the structure of a
strong ring� It will be convenient to extend the meaning of the grid�based summation
symbols in the following way�

��c�f�� � � � � fn� g�� � � � � gp	 �
pX

j	�

��cj �f�� � � � � fn	gj�

for all c 
 CNp	N
n
� in�nitesimal f�� � � � � fn 
 F�V 	 and arbitrary g�� � � � � gp 


F�V 	� Now let �hi	i�I be a family of elements in F�V 	� Assume that there exist
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f�� � � � � fn� g�� � � � � gp and a family �ic 	i�I 
 CNp	N
n
such that�

hi � ��ic �f�� � � � � fn� g�� � � � � gp	� for all i 
 I�
fi 
 Ij icj�k����� �kn g is �nite for each �j� k�� � � � � kn	 
 Np � Nn�

In this case� and only in this case we de�neX
�hi	i�I � ��c�f�� � � � � fn� g�� � � � � gn	� !��	$

where cj�k����� �kn �
P

i�I icj�k����� �kn � for all j� k�� � � � � kn� It is not hard to check thatP
I is well de�ned by this formula for each I� and that F�V 	 is given the structure

of a strong ring in this way�

Remark �� One might be tempted to introduce grid�based transvarieties by
taking the in�nite summation symbols

P
I in the signature T instead of the grid�

based summation symbols !see also example ���$� However� consider the examples

f�x	 � x� x��x� �	 � x��x� �	��x� 
	 � � � � �
g�x� y	 �

�

y � x�
�

�

y� � x�
�

�

y� � x�
� � � � �

Neither f nor g are grid�based transseries in our sense� but they would have been
in the alternative sense� Indeed� f�x	 would have been de�ned for all x such that
x�n �� � for some n 
 N� g�x� y	 would have been de�ned for all x �� � and y �� ��
such that yn �� xn�� for all n 
 N� In fact� our choice of T ensures that the �niteness
condition in the de�nition of grid�based sets is adequately generalized�

����� Transrings of grid�based type

In this section� we study a purely algebraic generalization of the concept of transvari�
eties� Our approach is based on the structure of a transring� which can be modelized
by using Horn clauses only� and in which is allowed to have nilpotent elements� The
category of transrings has a lot of structure because of the abstract nonsense results
from the previous chapter� However� we have not adopted this more general point
of view in the rest of this chapter for simplicity reasons and because transvarieties
have a strong geometrical appeal� Nevertheless� the theory of transvarieties will
probably be replaced by a more algebraic theory in the future� using the ideas from
this section and section B�����

In order to de�ne transrings� we start by examining the properties of the grid�
based summation operators on the function space of a given transvariety� The
following Horn�clause tells us when ��c is de�ned for a given c 
 CN

n
�

GS�

�	 �
��i�n

�
��C�

�

�� � fi � �


A� ��c�f�� � � � � fn	��
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In fact� we even have

GS��

�	 �
��i�n

�
��C�

�

�� � fi � �


A� ��c�f�� � � � � fn	��

Whenever c 
 CN
n
has �nite support� we also have

GS� ��c�f�� � � � � fn	 �
X

k����� �kn�N
ck����� �knf

k�
� � � � fknn �

This property ensures that the grid�based summation operators are compatible with
the ordinary ring structure of F�V 	�

The last important property of the grid�based summation operators is analogue
to S�� Let �ic 	i�I and �ic� 	i�I be term by term sumable families in CNp	N

n
and

CNp�	N
n�
respectively� Denote by c resp� c� their termwise sums� Then the following

Horn�clause is satis�ed�

GS�

��
i�I
��ic �f�� � � � � fn� g�� � � � � gp	 � ��ic� �f ��� � � � � f �n�� g��� � � � � g�p�	

�
�

��c�f�� � � � � fn� g�� � � � � gp	 � ��c��f ��� � � � � f �n� � g��� � � � � g�p�	�
An ordered exp�log ring over C with grid�based summation operators which satisfy
GS�� GS� and GS� is called a grid�based transring over C� Like in !��	$� grid�
based transrings can be given the structures of strong rings� We �nally remark
that for some future purposes it might be necessary to replace GS� by the stronger
condition GS��� but we have not yet investigated this issue in detail�

����� Asymptotic scales of grid�based type

Let V be a grid�based transvariety� In contrast to the one variable case� there is no
canonical way to write transseries in several variables as sums of coe�cients times
transmonomials� However� we will now show that certain subalgebras of F�V 	 can
be seen as algebras of grid�based series� Let S be a subset of F�V 	� We interpret S
as a generalized set of transmonomials� so that we partially order it by the opposite
strict ordering � of �� !remind warning ���$� We say that S is an asymptotic
scale of grid�based type� if it satis�es the following conditions�

AS� S is a multiplicative group with C�powers�
AS� For any non trivial linear combination f �

Pn
i	� ciwi with w�� � � � �wn 
 S�

there exists a point P 
 V with mP �f� � minfmP �w��� � � � �mP �wn�g�
Let S be an asymptotic scale� The subset Sc � fw 
 Sjw � �g of Archimedian
elements in S forms a subgroup of S with C�powers� Elements in C��Sc�� are poly�
nomials in Sc over C� Because of AS�� these elements are also Archimedian�

Proposition �� If S is an asymptotic scale of grid�based type� then C��S�� is
naturally embedded in F�V 	�
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Proof Let us �rst show that an element f �
P
w�S fww of C��S�� can naturally

be interpreted as an element of F�V 	� We have

suppS f � w
N
� � � �wNnF�

for certain in�nitesimalw�� � � � �wn 
 S and a certain �nite subset F �fw�
�� � � � �w�

pg
of S� Hence� we can write f �

P
k����� �kn�j cj�k����� �knw

k�
� � � �wkn

n w
�
j� for some family

c of constants� But this means that we can interpret f as the element of F�V 	�

f � ��c�w�� � � � �wn�w
�
�� � � � �w�

p	�

To prove that the natural mapping from C��S�� into F�V 	 is injective� we assume
that f �

P
w�S cww� with Noetherian support S� is in its kernel� Then the set F of

minimal elements of S � is �nite� Assume for contradiction that F �� ��� ByAS� there
exists a point P 
 V � such that mP �g� � minw�F mP �w� � c� where g �

P
w�F cww�

But P �
P
w�S�nF cww	 �� c whence mP �f� � c and P �f	 �� �� �

Example �� Take V � �A ��	
� � f�x� y	 
 A � jx �� � � y �� � � x � � � y � �g�

Let Cx resp� Cy denote the sets of �transmonomials in x resp� y�� Then CxCy is
an asymptotic scale� The following transseries is a sample element of C��CxCy���

f �
X
i�N

X
j�N

X
k�N

ij�k��

xiyjekxy
�

Example �� Let V � f�x� y	 
 A � j� �� � �� � � z �� �g� Then �CCz�� is an
asymptotic scale� For instance�

f �
X
k�N

X
l�N
��� 
k�� � � � � � lk�l	zke�l�

�z��

is an element of C���CCz�����

��� Examples and properties of transvarieties

The transline Let us show that grid�based transseries in several variables indeed
generalize transseries in one variable� To see this� we consider T as a transvariety�
A point � � T� T in V�T	 must send t to a positive in�nitely large transseries�
Inversely� right composition with a positive in�nitely large transseries determines a
point in V�T	� Hence� V�T	 is isomorphic to the set A �� � fx 
 A j� � x � x �� �g
of positive in�nitely large points on the transline�

Reparameterizations The fact that right compositions inTcorrespond to morph�
isms of V�T	 to V�T	 suggests to interpretmorphisms of transvarieties more generally
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as right compositions� Given a morphism � between two transvarieties V and W
and a function f 
 F�W 	� we thus have a function f � � in F�V 	� In particular�
for any positive in�nitely large transseries g 
 T and any point P � F�V 	� T of a
transvariety� we have a point P � g� We say that P � g is a reparameterization of
P and we denote P �� Q� Indeed� �� is an equivalence relation�

Construction of transvarieties We have shown in section B��� that many cat�
egorical constructions can be carried out in GTVC� For instance� we have the a�ne
n�space A n � whose point space corresponds to Tn� The direct product V �W � and
the direct sum V qW of two transvarieties V and W always exist� and correspond
to the pointwise direct product and sum !i�e� the forgetfull functor which associates
the underlying set of points to a variety preserves direct products and sums$� We
can also consider subvarieties of transvarieties� such as the circle S� � f�x� y	 

A � jx� � y� � �g� By proposition B�� the circle indeed is a subvariety of A � �

Asymptotic systems Other examples of subvarieties of A � are the closed ball
B

�
� f�x� y	 
 A � jx� � y� � �g and �A ��	� � f�x� y	 
 A �jx �� � � y �� � �

x � � � y � �g� In fact� using the exp�log �eld operations� the ordering� and
the asymptotic relations� one can construct very general asymptotic systems of
equations and relations� For instance� one can consider relations like x� � y� �� ex�
The subvariety of points in A � which satisfy this relations is shown in �gure ��� !we
recall that elements of A are considered as transseries in t$�

Remark �� Quotient transvarieties can not be constructed using the tools we have
developed so far� However� following the discussion in section B�� we can generalize
the concept of transvarieties� Doing this� we can for example de�ne projective
transvarieties by Pn � A n���� with

�x
� � � � � xn	 � �y
� � � � � yn	� �t ��� y
 � tx
 � � � � � yn � txn�

Also less conventional quotient transvarieties� such as the curve transvarieties
V��� � where �� is the reparameterization relation� An illustration of the plane
curve transvariety A ���� is given in �gure ���� In this case� �� is given by

�x� y	 �� �x�� y�	� �g
A �� x� � x � g � y� � y � g�

Other examples of quotient transvarieties are obtained by quotienting A by ��� or
�� �

Topologies on transvarieties A transvariety V can be given di
erent topologies�
In section B�� we de�ned the Zarisky topology on V � The interval topology on the
transline can also be generalized to transvarieties� it is the smallest topology which
makes all functions on the transvariety continuous� as well as all functions on open
sets !recursively$� when we give T the interval topology� This topology is called the
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x

y

t

et��

x �� � � y �� �

x �� � � y �� �

Figure ���� The set of points �x� y	 
 A �� satisfying x� � y� �� ex�

x

y

�

��
�� � ��t���� ��t	

�t��� � ��t	

�t� log t	

�
p
t� log t	

�t� t	�t� et�	

Figure ���� Some �points� in the plane curve transvariety�
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natural topology on a transvariety� We claim that any map V
�� W between

transvarieties is continuous for the natural topology� Indeed� for an open set of the
form ����I	 !where W

�� Tand I is an interval$� �� ��	���I	 is open by de�nition�
The general case follows by the fact that ��� preserves unions and intersections�

Dimension of a transvariety The Zarisky topology can be used to de�ne the
Zarisky dimension of a transvariety as the dimension of the associated topolo�
gical space !cf� "Har ��� p� �#$� Alternatively� we can de�ne the dimension of a
transvariety V to be the largest cardinal N � such that there exists a non empty open
subset of A N for the usual topology� which is isomorphic to an open subset of V �
Both de�nitions do not coincide� but it can be shown that the Zarisky dimension is
always superior or equal to the natural dimension�

��
 Di�erential geometry on transvarieties

����� The tangent and cotangent bundles

Let F�V 	 be the function space of a transvariety� By derivations on F�V 	 we
understand derivations on the strong exp�log ring F�V 	� More generally� let M be
a strong F�V 	�module� Then a strong derivation on M is a strongly linear mapping
F�V 	 � M � such that d�fg	 � f�dg	 � g�df	 and def � �df	ef � for all f� g 

F�V 	� By theorem B��� the category of strong F�V 	�modules M � together with a
derivation d � F�V 	 � M admits an initial object� which we denote by �F�V �� In
other words� �F�V � is a strong F�V 	�module together with a universal derivation
d � F�V 	 � �F�V �� which satis�es the universal property that for any other strong
derivation d� � F�V 	�M into a strong F�V 	�module� there exists a unique strongly
linear mapping u � �F�V � �M with d� � u�d� We say that �F�V � is the cotangent
bundle of V � and its dual ��F�V � the tangent bundle of V � Elements of the tangent
bundle can also be seen as strong derivations � � F�V 	� F�V 	� In this section we
will study the structure of the tangent bundle more closely and we start with a�ne
varieties�

����� Partial dierentiation on open domains of a�ne space

Let U be an open subset of a�ne X�space A X � for the natural topology� For each
f 
 F�U	 and x 
 X� we want to de�ne the partial derivative �xf of f w�r�t� x� We
proceed by structural induction� we set �xc � �� for c 
 C� �xx � � and �xy � ��
for y 
 Xnfxg� Next� �x�f � g	 � �xf � �xg� �x�fg	 � f�xg � �xfg� �x���f	 �
��xf�f�� �xef � �xfe

f and �x log f � �xf�f � Finally� �x
P

i�I fi �
P

i�I �xfi�
Strictly speaking� we rather de�ne

�x�
�
c�g�� � � � � gn	 �

nX
j	�

�xgj�
�
jc �g�� � � � � gn	
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in the last case� where jck����� �kn � �kj � �	ck����� �kj�������kn � for all k�� � � � � kn� j� In
order to prove that �x is well de�ned� we still need to verify that partial derivatives
of equivalent expressions !i�e� representing the same function$ are equivalent� We
do this by establishing a pointwise characterization for �x�

Let P � F�U	 � T be a point of U � We denote by Sx��P the point we obtain
by sending x to P �x	 � �� and leaving the other coordinates unchanged� Since U is
open� the points Sx��P are in U for j�j � � su�ciently small� We claim that

�Sx��P 	�f	 � P �f	 � P ��xf	��
�



P ���xf	�

� � � � � � !���$

for su�ciently small j�j � �� Indeed� this is easily proved by structural induction�
For illustration� we give the proof in the case when f � ��c�g�� � � � � gn	� By the
induction hypothesis� there exists an �
 � �� such that

�Sx��P 	�gi	 � P �gi	 � P ��xgi	��
�



P ���xgi	�

� � � � � �

for su�ciently small j�j � �
 and � � i � n� Repeatedly using the generalized
associativity property for strong rings� we deduce that !���$ holds for all j�j � �
�

The relation !���$ gives us an intrinsic characterization of �xf � Hence �xf is well
de�ned for all f 
 F�U	� In fact� the tangent bundle of U is generated by the partial
derivatives� in the sense that each strong derivation � of the exp�log ring F�U	 is of
the form � �

P
x�X ax�x� Here the sum is formal and does not necessarily have �nite

support� Indeed� each element of F�U	 is can be written as a �nite tree with leafs
in X and nodes in T � since the arities of all symbols in T are �nite� The derivative
of such an expression is uniquely determined by the images of the elements of X�
Consequently� �F�U� is isomorphic to the free strong F�U	�module over X�

����� Regular algebraic extensions

For non open subvarieties of a�ne space� the structure of �F�U� may become more
complicated� We do not think that the classical exactness properties for K1hler
di
erentials hold !see for example "Mat ��� Th ����� p� �����#$� This is due to
the pointwise nature of transvarieties% in the more algebraic theory of transrings�
these properties might actually hold� Nevertheless� we are often interested in trans�
varieties which are locally isomorphic to open a�ne sets with a potentially extended
function space� This is for example so for any non singular algebraic curve� Let us
investigate more closely the e
ect of function space extensions with respect to di
er�
ential calculus� Assume therefore that we are given a projection V � U of another
transvariety onto U � such that each point in U has precisely one preimage� We want
a su�cient condition for �F�V � to be isomorphic to the free strong F�V 	�module
over X�

Let Y � fy�� � � � � ypg � F�V 	� There exists a natural mapping � from V into
U�A Y � which maps each yi 
 F�U�A Y 	 to yi� Now assume that there exists an open
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subset W of U � A Y and functions f�� � � � � fp 
 F�W 	� such that � factors through
the common zero set Z of f�� � � � � fp� Assume also that the Jacobian of f�� � � � � fp
has maximal rank on Z . i�e� the vectors ���W�vfi	�P 		v�XqY with � � i � p are
linearly independent� for each P 
 Z� Since only a �nite number of variables fromX
occur in f�� � � � � fp we may assume without loss of generality that X � fx�� � � � � xng
is �nite�

For given �x�� � � � � xn	 
 U � there exists precisely one corresponding point in Z�
Hence the operators Sxi��i are still well de�ned on Z� Now we can formally expand

�Sx���� � � �Sxn��nP 	�y	 �
X

k����� �kn

�

k�� � � � kn�P ��
k�
x�
� � � �knxny	�k�� � � � �knn !���$

for all y 
 Y � The successive partial derivatives of y are formally computed by the
implicit function theorem� We observe that the right hand side of !���$ is actually
well de�ned for su�ciently small �i� Since y�� � � � � yp are determined uniquely as a
function of x�� � � � � xn this means that !���$ is a genuine expansion for su�ciently
small �i� Hence� the partial derivatives of the yj are well de�ned on F�Z	 and �F�Z�
is isomorphic to the free strong F�Z	�module over X�

More generally� if for each g 
 F�V 	 there exist y�� � � � � yn with the above prop�
erties and such that g 
 F�Z	� then the above discussion also shows that �F�V �

is isomorphic to the free strong F�V 	�module over X� In that case� we say that
F�V 	 is a regular algebraic extension of F�U	 and elements F�V 	 are said to
be regular algebraic over F�U	�

��� Noetherian transseries

����� De�nition of Noetherian transvarieties

If we are considering well�ordered transseries instead of grid�based transseries� we
do not have to take into account �niteness conditions� Consequently� the grid�based
summation symbols ��c are replaced by the in�nite summation symbols

P
I for all

index sets I� However� we can not content ourselves to take one of the �elds of
transseries as constructed in section ��� for T in this case� The reason is that
the partial derivations would not be well de�ned on open subsets of a�ne space�
Consider for instance the transseries

f �
�

t��� ��t	� � ��t �
�

t���� ��et	� � ��et � � � � �

where t is in�nitely large� and � in�nitely small� This transseries is de�ned for all
� �� �� with � 
 C�

� ���t����
The solution to this dilemma is to consider also �elds of transseries of the type

C�
����t�� � � � � tn��� with � ��  or � � � These are de�ned by induction�

C�
����t�� � � � � tn��� � C�

����t�� � � � � tn����������tn����
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The transseries f mentioned above is then unde�ned for � 
 C���u���� � C���u� t����
Hence� f is not de�ned on an open subset of C���u� t���� We also write f ���� g for
non zero transseries f and g� if expp �f � �g� for all p 
 N� Here �f � jf j if jf j "" ��
and �f � ��jf j otherwise� Thus� f is de�ned for all � �� �� except for � �� � ���� t�

So let P consist of those �elds of transseries C�
����t�� � � � � tn���� where � is a

stable limit ordinal� Objects of VarP are called Noetherian transvarieties of
�nite resp� in�nite logarithmic depth� Elements of their function spaces are called
Noetherian transseries� Alternatively� we can restrict the � from above to be
bounded by some �xed stable limit ordinal �� In that case we obtain transvarieties
of exponential depth � �� The category of transvarieties of �nite exponential and
logarithmic depths will be denoted by NTVC�

Most of the theory from the previous sections can easily be adapted to the context
of Noetherian transvarieties� We now give some more details� We start by showing
how the transline can be given the interval topology� thus permitting the de�nition
of the natural topology on Noetherian transvarieties� Observe �rst that the elements
of P can all be embedded in the inductive limit C�

����t�� � � � � t���� of

C � C�
����t����� C�

����t�� t����� � � �

Here � is taken to be the limit meta�ordinal of all small ordinals !for instance$�
Then the intervals of this inductive limit induce a topology on the transline� We
also remark that the transvarieties associated to the C�

����t�� � � � � tn��� are given up
to isomorphism by

V�C�
����t�� � � � � tn���	 �� f�x�� � � � � xn	 
 A n jx� ���� � � � ���� xng�

The intrinsic de�nition of �x by !���$ also remains valid� let P � F�V 	 � T be
a point in U and let � 
 T�

� be such that Sx��P 
 U for all j�j � �� In particular�
Sx��P 
 U � for all � � � ���� T�

� !and in particular ��u 
 T�����u���$� It is easily
veri�ed by structural induction that !���$ holds for � � � ���� T�

� � For illustration�
let us do this in the case when f �

P
�fi	i�I� The set S � C�C forms an asymptotic

scale� where C is the set of transmonomials in T� By the structural induction
hypothesis� we have �Sx��P 	�fi	 
 C��S�� for each i� Since

P
�Sx��P 	�fi	i�I is well

de�ned� the number of elements w 
 S in the support of �Sx��P 	�fi	 w�r�t� S is
�nite� In particular� the number of indices in support of P ��jxfi	 is �nite for each
j 
 N� It follows that PN P ��jxfi	i�N is well de�ned for all j 
 N� The relation !���$
holds by strong linearity�

It is also true that �F�U� is isomorphic to the free strong F�U	�module in V �
The key point here is that transseries which are de�ned on an open subset of a�ne
space only depend on a �nite number of variables� Indeed� a relation like !���$ still
holds if we simultaneously change all elements in X� x �� x� �x� If f depended on
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an in�nite number of variables� then we would obtain a contradiction by selecting a
suitable family ��x	x�X !exercise$�

Remark �� One has to be a bit careful with the de�nition of Noetherian trans�
varieties� Consider for instance the category P� � fC�

����t�� � � � � t����g of point types�
At the �rst sight� the categories VarP and VarP� coincide� However� consider

V � f�x�� x�� � � � 	 
 TNP� jx� ���� x� ���� � � �g�
Then V is a nonempty variety relative to P�� although V has not a single P�point�
In fact� the subcategories of VarP and VarP� only coincide for those varieties whose
function spaces are �nitely generated� Here a partial T �algebra F is said to be
�nitely generated� if F � IX for some �nite set X�

����� Asymptotic scales of Noetherian type

It is also possible to generalize asymptotic scales to the context of Noetherian trans�
series in several variables� we say that a subset S of the function space F�V 	 of
some Noetherian transvariety is an asymptotic scale of Noetherian type� if it
satis�es AS�� AS� and

AS� For each point P 
 V and each well�ordered subset T of S� the setS
f�T supp f�P 	 is well�ordered�

Proposition �� If S is an asymptotic scale of Noetherian type� then C��S�� is
naturally embedded in F�V 	�
Proof Assume for contradiction that not all elements of C��S�� naturally induce
elements in F�V 	� and let f � Pw�S cww be a sum with Noetherian ordered support
T !w�r�t� �� $ which is not de�ned in F�V 	� Then there is a point P 
 V � such thatS
w�T suppw�P 	 is not Noetherian� Let w��w�� � � � be a sequence of elements in T �

such that there exists a bad sequence c��c�� � � � � with ci 
 supp wi�P 	� for each
i� Since supp f is Noetherian� we may assume without loss of generality !modulo
extracting a subsequence using proposition A��!d$$� that the sequence w��w�� � � �
is increasing� Hence

S
i supp wi�P 	 is well�ordered by AS�� which contradicts the

existence of the bad sequence c��c�� � � � � Finally� the mapping from C��S�� into F�V 	
is injective for the same reason as in the proof of proposition ���� �

Example �� Take V � A �� � f�x� y	 
 A � jx �� � � y �� �g� Let Cx resp� Cy

denote the sets of �transmonomials in x resp� y�� Then CxCy is an asymptotic
scale and

f �
�

e
�
�

xy
�

�

x�elog
� y
�

�

x�elog
� y
� � � �

is a transseries in C��CxCy���
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��� Weakly oscillating and complex transseries

A major limitation of the theory we have developed so far is that we only consider
strongly monotonic asymptotic behaviour� In general� we also want to consider tri�
gonometric !and sometimes even fractal$ functions� In this section we show that
the trigonometric functions and their inverses can be incorporated in a generalized
theory of so called weakly oscillatory transseries� The construction heavily relies on
the algebraic geometry methods we have introduced� Considering real and imagin�
ary parts� we will also show how this theory can be applied to construct complex
transseries�

Unfortunately� the semantics of the usual asymptotic relations on R and the
asymptotic relations that will be introduced below do not necessarily coincide� A
typical example is the asymptotic relation

�

��x� 
	
�� 
� cosx� cos ex� !���$

for � �� x� Classically� this relation can easily be deduced from the expansion e �
� � � � �

�
� �

�
� � � � � In our most primitive model for asymptotic calculus with

trigonometric functions� this relation does not hold� Intuitively speaking� this is due
to the possible existence of non standard reals x for which both cosx and cos ex
are very close to �� Nevertheless� we will show that many relations like !���$ can
be forced� We also remark that the above example is rather pathological� in the
sense that it heavily relies on the number theoretical properties of e� We refer to
chapter �	 for a further discussion of these issues�

����� Weakly oscillating transseries

In this section� we assume that C is a totally ordered elementary function �eld� This
means that C is a totally ordered exp�log �eld� on which we have the additional
functions sin and arctan� which satisfy the following conditions for all x� y 
 C�

EF� sin�x � � sinx�
EF� sin�x� y	 � sinx cos y � sin y cosx�
EF� tan arctan x � x�
EF	 arctan is strictly increasing and imarctan ��� 	�
� 	�
��

Here 	 � �arctan �� cosx � sin�x � 	�
	 and tanx � sinx� cosx� In a similar
fashion� one de�nes !ordered$ elementary function rings to be !ordered$ exp�
log rings with totally de�ned functions sin and arctan� which satisfy the conditions
EF�� EF� and EF� !and EF	$�

It is not hard to deduce the classical trigonometric relations from the axiomsEF�
until EF	� The condition EF� might actually be super0uous� but we have not yet
checked this !if C � R� then EF� follows by continuity$� The inverse trigonometric
functions are de�ned by arcsinx � arctanx�

p
�� x� and arccosx � 


� �arcsinx for
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�� � x � �� Here
p
x � e�logx��� for x � �� Finally� a derivation on an elementary

function ring R is a derivation � on R� considered as an exp�log ring� which satis�es
� tan f � �f��� � f�	 and � sin f � �f cos f for all f �

For the de�nition of weakly oscillatory transseries� we need to add sin and arctan
to the signature T � Now arctan is totally de�ned on any �eld T of grid�based or
well�ordered transseries� by using the Taylor expansions of arctan either at points
in C or at ��C� It can be checked that all theory of the previous sections remains
valid� if we replace T by T farctang and from now on we assume that we have done
this� To incorporate the sine function� two di
erent constructions can be used� The
�rst one uses abstract nonsense� we repeatedly insert all sines of elements in the
function space of a given transvariety V � The sine of a bounded function is given
by its Taylor series� The other sines are inserted freely under the constraints EF�
until EF	� The transvariety �V we �nally obtain is called the free weakly oscillatory
completion of V � The second construction gives us more insight in the structure of
�V and this is the one we now give in more detail�
Let V � V
 be a transvariety and F
 its function space� Since Q � C� we can

see F
 as a vector space over Q� The bounded elements of F
 form a sub�vector
space F

�

� Using Zorn�s lemma� we can select a basis B
 for some supplement of F

�

�

Now consider the extension F
hS
jR
i of F
 with the symbols in S
 subject to the
relations in R
� where

S
 � fcos�f�n	jf 
 B
 � n 
 N�g  fsin�f�n	jf 
 B
 � n 
 N�g�
R
 � fcos��f�n	 � sin��f�n	 � �jf 
 B
 � n 
 N�g 

fcos f � �n�cos�f�n		jf 
 B
 � n 
 N�g�
Here the generating function ��t� u	 �

P
n�
 �n�t	un of the polynomials �n is given

by ��t� u	 � �� � ut	��� � 
tu � u�	� On F
�

� the sine and the cosine are naturally

de�ned by their Taylor series expansions� Using the relations EF� and EF�� we
can therefore extend the mappings sin� cos � B
�N� � F
hS
jR
i to F
�

Now let V� be the transvariety associated to C � F
hS
jR
i� Identifying varieties
with their point spaces� the natural morphism V� � V
 is surjective� to any point
in V
 we associate a point in V� by sending the symbols cos�f�n	 to one and the
symbols sin�f�n	 to zero� Dually� this means that the mapping F�V
	 � F�V�	 is
injective� Repeating the above construction !with B
 � B� � � � � $� we can consider
the direct limit

�F � lim� F�V
	� F�V�	� F�V�	� � � �
The corresponding transvariety �V � C � �F is the� free weakly oscillatory com�

pletion of V � Points of �V correspond to sequences �F�Vn	 Pn� T	n�N of morphisms�
such that Pj extends Pi whenever i � j� A transseries in f 
 �F is said to be a

�In fact it is easy to check the independence of the construction of �V on the successive choices
of the supplements and the Q�bases� exercise�
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weakly oscillatory transseries� Its weakly oscillatory depth is the smallest
integer n 
 N� such that f 
 F�Vn	� By construction� �F is an ordered elementary
function ring�

As we already mentioned in the introduction to this section� the semantics of
the usual asymptotic relations on R and the asymptotic relations that are veri�ed
by the free weakly oscillatory completion of a transvariety over the reals do not
coincide� For instance� consider the free weakly oscillatory completion of gA �� � where
A �� � fx 
 A jx � � � x �� �g� There exists a point of gA �� � which sends x to t 
 T
!recall that t �� �$ and both sinx and sin ex to �� Consequently� !���$ is not veri�ed
by gA �� �

Nevertheless� in the construction of gA �� � we may replace V� by the subvariety
of V�� for which !���$ is valid !see proposition B��$� the natural projection of this
subvariety onto A �� is still surjective� More generally� at each step of the construc�
tion� we can replace Vi by any subvariety of Vi� as long as the natural projections
Vi�� � Vi remain surjective� Doing this� we say that the resulting �V is a weakly
oscillatory completion of V � Now !���$ is an example of a relation which can
be forced in such a completion� Actually� many natural relations can be forced
simultaneously� although this point needs further investigation�

Now assume that we have selected a category �P� whose objects are weakly oscil�
lating completions of objects in P� We consider the objects of �P as partial �Tfsing	�
algebras� Varieties relative to �P are de�ned to be weakly oscillating transvariet�
ies !relative to �P$ For instance� �P can be taken to be the category of all free weakly
oscillating completions of objects of P� Again� it is possible to de�ne a natural topo�
logy on the weakly oscillating transline �A � we take a basis of open sets of the form
B�P� �	 with P 
 �T� P��A 	 and � � � 
 T� Here C � �T
 obj��P	 is a completion
of C � T
 obj�P	 and B�P� �	 consists of all points Q 
 fT�� such that there exist
a commutative diagram

F��A 	 �T

fT� fT��

P

�

Q �

�

where ��� 
 hom��P� �P	 and such that j��P �x		 � ��Q�x		j � �� Of course� x
denotes the coordinate function in F��A 	� As before� the topology on �T induces
a natural topology on all weakly oscillating transvarieties� It can also be checked
that the partial derivatives can again be de�ned on the function spaces of open
subvarieties of weakly oscillating a�ne space� Here we need a precaution in the case
of Noetherian transvarieties� for each C � �T
 �P there should exist a prolongation
C � �T���u��� 
 �P�
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����� Complex transseries

Let C � �T be a weakly oscillating completion of a point C � T in P� Then
C � Ci � C� has the natural structure of a strong exp�log �eld and �T� �Ti � �T�

has the natural structure of a strong exp�log ring over C � Ci� Indeed� all laws on
C � Ci resp� �T� �Ti are de�ned in analogy with their de�nitions for the complex
numbers� For instance� ef�gi � �cos g	ef � �sin g	ef i� By convention� we make log
univariate by de�ning log�f � gi	 � log f � arctan�g�f	i only for f � ��

Assume now that we have selected a category �P like above and let C denote the
category whose objects are of the form C � iC � �T� �Ti� with C � �T 
 obj��P	�
Then a complex transvariety !relative to �P$ is a variety relative to C� The
complex transplane A C can be given a natural topology in a similar way as the weakly
oscillating transline� Again� this allows us to de�ne the complex partial derivations
on the function spaces of open subvarieties of complex a�ne space� It also allows us
to generalize transmanifolds to the complex case� The following theorem indicates
how far real grid�based transseries extend into complex transseries�

Theorem �� Let f 
 Calog
r ���x��� be an alogarithmic grid�based transseries of

exponential depth r� Then there exists a normal basis fb�� � � � �bng for f � such that
C��b�� � � � �bn�� � F�U	 with

U �

���������
fz 
 A Cj#z �� �g� if r � ��
fz 
 A Cj#z �� � � $z �� #zg� if r � ��
fz 
 A Cj#z �� � � $z �� exp��r���#z	�g

for some suitable � � �� if r � ��

In particular� f is de�ned on U �

Proof By the structure theorem� there exists a normal basis B � fb�� � � � �bng for
f � Following the construction in the proof� we may assume without loss of generality
that the elements of B are all in Calog

r ���x��� and that b� � x� If r � �� then we
take � such that logr�� bi�x	 �� x���� for all i and some � � �� We claim that
log bi�z	 � log bi�#z	 for all i� From this it follows that for g of the form b

��
� � � � b�nn

we have g�x	 �� � � log f�x	 �� � � log f�z	 �� � � jf�z	j �� �� In other words�
the ordering on the monomials in b�� � � � �bn is preserved in the extension from the
real to the complex case� Hence� the claim implies the theorem�

If r � �� then our claim trivially holds� In the case r � � it follows from the fact
that log z� � � log�#z	�� arctan�$z�#z	 � log�#z	�� for all � 
 C� If r � �� then
we expand gi � log� bi�z	 for all i�

gi�z	 � gi�#z	 � g�i�#z	i$z �
�



g��i �#z	�$z	� � � � �

The choice of � ensures the validity of this expansion and the fact that gi�z	 �
gi�#z	 �� � for each i� Consequently� log bi�z	 � egi�z� � log bi�#z	 for each i� �
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Corollary Let f 
 Calog
r ��� logl x��� with l � �� Then the previous theorem still

holds if we take

U �

�����
fz 
 A Cj#z �� �g� if r � ��
fz 
 A Cj#z �� � � $�logl z	 �� exp��r���#�logl z		�g

for some suitable � � �� if r � �� �

Remark �	 Similar types of theorems were previously proved in the context of
Hardy �elds !see "Gokh ��a# and "Gokh ��b#$� Although our theorem does not give
any information about convergence� its scope is far more general� and its proof more
natural�

����� Extensions

Although the introduction of weakly oscillating resp� complex transseries as in the
previous section permits us to solve an increasing number of functional equations�
there are still many equations which can not be treated by the theory from sec�
tions ����� resp� ������ A typical example is

f ��x	 � esinx�

The point here is that a solution to this equation is available in the form of a Fourier
expansion� and such a Fourier expansion involves an in�nite number of sines with
di
erent arguments�

In the case when a di
erential ring of periodic functions � from C into C is
given� such that each � 
 � admits a Fourier expansion

� �
X
k�Z

�ke
ikx�

the de�nition of weakly oscillating transseries can be generalized in a natural way
in order to include the functions in �� Indeed it su�ces to extend the signature T
with � and to mimic the construction from section ������
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Part B

Automatic asymptotics





Chapter �

Asymptotic expansions of exp�log

functions

��� Introduction

An exp�log function is a function built up from x and the rational numbers Q by
the �eld operations� exponentiation and logarithm� These functions were introduced
by Hardy !see "Har ��#$� and he showed that their germs at in�nity form a totally
ordered �eld� But how to decide whether a given exp�log function is asymptotically
superior to another one in a neighbourhood of in�nity* More generally� is it pos�
sible to compute an asymptotic expansion of a given exp�log function in a natural
asymptotic scale*

The �rst attempt to solve these problems was made by Geddes and Gonnet !see
"GeGo #$� Shackell is the �rst to give an algorithm in "Sh ��# for computing the
limit of an exp�log function at in�nity� under the assumption that an oracle is given
to decide whether an exp�log function vanishes in a neighbourhood of in�nity� His
technique is based on so called nested expansions� by which one can �nd the order
of growth of exp�log functions at in�nity� but which do not allow to derive com�
plete asymptotic expansions� This drawback is removed in "Sh ��#� where Shackell
gives a complete and natural asymptotic expansion algorithm� A weaker version of
this algorithm� which only computes limits of exp�log functions was discovered inde�
pendently in "GoGr ��#� and is currently incorporated in MAPLE V��� The author
generalized this limit computation algorithm and obtained variants of Shackell�s al�
gorithm in "VdH �	a# and "VdH �	b#� In particular� "VdH �	b# contains a compact
version of Shackell�s algorithm� This algorithm has been further improved in "RSSV
��#�

However� several related problems were overlooked up till now� First� can we
reduce the problem of deciding whether an exp�log function is zero at in�nity to the
corresponding problem for exp�log constants* Although several algorithms exist for
deciding whether a given exp�log function f is locally zero in the neighbourhood of

���
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a point of analyticity !see "Ris ��#� "DL �#� "Sh �#� "P�l ��#$� no one considered the
problem of deciding whether the germ of f at in�nity is zero� The second problem
concerns the improvement of the dramatic complexity of Shackell�s algorithm� In�
deed� we will see that the complexity is worse than any iterated exponential� even
for simple examples and if we assume that all computations with constants are done
in unit time� Moreover� for the generic version of the expansion algorithm !see
section ��$� termination of the basic algorithm is not guaranteed any longer�

These two problems are dealt with in this chapter� our approach being based on
"VdH ��a#� In section ��� we recall the basic expansion algorithm from "Sh ��#� with
the improvements from "VdH �	b# and "RSSV ��#�

In section ��� we show that the germ at in�nity of an exp�log function can be
represented by a Laurent series in other� but simpler� germs of exp�log functions at
in�nity� Such representations are called Cartesian representations and they allow
to detect e�ciently cancelations of large numbers of terms� thus speeding up the
algorithm from section ���� We also show that Cartesian representations can be
used to decide whether a germ of an exp�log function is zero� modulo an oracle for
determining the sign of a given exp�log constant�

Modulo Schanuel�s conjecture !see the introduction$� Richardson gave an al�
gorithm to decide whether an exp�log constant is zero� His algorithm has the prop�
erty that whenever it produces an answer� then this answer is correct� Moreover� if
we can prove that the algorithm does not terminate on a given input� then we can
construct a counterexample to Schanuel�s conjecture from this input� In principle�
Richardson�s algorithm also yields a method to compute the sign of an exp�log con�
stant� it su�ces to perform a 0oating point evaluation at a su�cient precision� In
practice� this method is intractable and a more e�cient algorithm for sign compu�
tations was proposed in "VdH ��a#�

For convenience of the reader� we have tried to formalize the expansion algorithm
in a language which is as comprehensive as possible� In particular� in sections ���
and ��� we recall the necessary concepts from chapter � in a simpli�ed and e
ective
context� Hence� these sections can be read independently from part A � although it
is easily veri�ed that all reintroduced concepts are indeed special instances of the
theory from chapter �� In chapter �� we will reinterpret the algorithm in the richer
context of transseries from chapter �� and discuss some variants of the expansion
algorithm�

��� The basic algorithm

Let T denote the �eld of germs at in�nity of exp�log functions and C the sub�eld
of exp�log constants� Elements of T can be represented by exp�log expressions .
i�e� �nite trees whose internal nodes are labeled by ���� �� �� exp or log� and whose
leafs are labeled by x or rational numbers� The set of exp�log expressions which
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can be evaluated in a neighbourhood of in�nity is denoted by Texpr� We have
a natural projection f �� f from Texpr onto T� Until section ��	� we make the
assumption that we have an oracle which decides whether a given exp�log expression
in Texpr is zero in a neighbourhood of in�nity� In this section we recall the classical
asymptotic expansion algorithm for exp�log functions at in�nity from "Sh ��#� using
the presentation from "VdH �	b#�

����� Grid�based series

Let us �rst recall some basic concepts� An e
ective asymptotic basis is an ordered
�nite set fb�� � � � �bng of positive in�nitesimal exp�log expressions in Texpr� such that
log bi � o�log bi��	 for � � i � n��� For instance� the setB � flog�� x� x��� e�x�g is
an e
ective asymptotic basis� An e
ective asymptotic basis B generates an e
ective
asymptotic scale� namely the set SB of all products b��

� � � �b�nn of powers of the
bi� with the �i in C� Elements of SB are also called monomials�

Given an e
ective asymptotic basis B� let Gexpr
B denote the set of expressions

which are built up from C� SB����� �� � and the operations � �� exp � resp� � ��
log��� �	 for in�nitesimal �� We observe that each exp�log expression f 
 Gexpr

B has
a series expansion of the form

f �
X

������� ��n��Cn
f������ ��nb

�n
� � � �b�nn � !���$

Alternatively� we can expand f as a series in bn with coe�cients in G
expr
fb����� �bn��g�

These coe�cients can recursively be expanded in bn��� � � � �b��

f �
X
�n�C

f�nb
�n
n

���

f�n���� ��� �
X
���C

f�n���� ���b
��
� �

The exp�log expressions of the form f�n���� ��i are called iterated coe�cients of f �
In particular� the iterated coe�cients of the form f�n���� ��� are exp�log constants�

The above expansions of f have an important property !see chapter �$� the
support of f as a series in bn !resp� b�� � � � �bn$ is included in a set of the form
��N� � � ���pN� � . we say that f is a grid�based series� Here the �i and � are
constants in C !resp� vectors in Cn$� From this property� it follows that the support
of f is well�ordered� If f is non zero� then the �rst term of its expansion is called
the dominant term of f � The corresponding monomial in SB and its coe�cient
are called the dominant monomial and dominant coe�cient of f respectively�

Another important property of the expansion of f in bn and the expansions of its
iterated coe�cients is that they can be computed automatically� By this we mean
that for each integer i� we can compute the �rst i terms of the expansion of f and



�� CHAPTER � ASYMPTOTIC EXPANSIONS OF EXP
LOG FUNCTIONS

so can we for its iterated coe�cients� In particular� we can compute the sign of f �
test whether f is in�nitesimal� etc�

For the computation of the expansions of f in bn� we use the usual Taylor series
formulas� In the case of division ��f � we compute the �rst term f	b

	
n of f and then

use the formula ��f � ���f		b
�	
n ����� � �		� where � � �f�f	b

	
n	 � �� The only

problemwhen applying these formulas is that we have to avoid inde�nite cancelation�
note that inde�nite cancelation only occurs if after having computed the �rst i terms
of the expansion� f is actually equal to the sum of these terms� But this can be
tested using the oracle� and we stop the expansion in this case�

����� Automatic expansions of exp�log expressions

The asymptotic expansion algorithm takes an exp�log expression f 
 Texpr on input�
computes a suitable e
ective asymptotic basis B and rewrites f into an element
of Gexpr

B � The main idea of the algorithm lies in the idea to impose some suitable
conditions on B� we say that a linearly ordered set B � fb�� � � � �bng is an e
ective
normal basis if
NB� B is an e
ective asymptotic basis�

NB� b� � log
��
l x for some l 
 N� where logl x def

� log
l times� � � log x�

NB� log bi 
 Gexpr
fb� ���� �bi�g for all i � �� where log log b

��
i � log bi��

Such a basis is constructed gradually during the algorithm . i�e� B is a global
variable in which we insert new elements during the execution of the algorithm�
while maintaining the property that B is an e
ective normal basis� We also say that
B is a dynamic e
ective normal basis� We initialize B with B �� fx��g� Let
us now explicitly give the algorithm� using a PASCAL�like notation�

Algorithm expand�f	�
Input� An exp�log expression f 
 Texpr�
Output�A grid�based series � in Gexpr

B with � � f �

Case f 
 Q� return f

Case f � x� return �x��	��

Case f � g%h� %
f���� �� �g�
if % � � and h � � then error �division by zero�
return expand�g	%expand�h	

Case f � log g�
g �� expand�g	
& Denote B � fb� � log��l x�b�� � � � �bng�
if g � � then error �invalid logarithm�
& Rewrite g � cb��

� � � � b�nn �� � �	� with in�nitesimal � in Gexpr
B �

if �� �� � then B �� B  flog��l�� xg
return log c� �� log b� � � � � � �n log bn � log�� � �	
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Case f � eg�
g �� expand�g	
& Denote B � fb�� � � � �bng�
if g � O��	 then return eceg�c� where c �� g


�
n times��� �


if ���i�n g � log bi then
� �� limg� log bi
return b�i expand�e

g�� logbi	
& Let i� be such that log jgj � log bi��
g� �� g


�
n�i� times��� �


g� �� g � g�

B �� B  fe�jg�jg
return �e�jg

�j	�signg
�
eg

�

Let us comment the algorithm� The �rst three cases do not need explanation�
In the case f � log g� the fact that B is an e
ective normal basis is used at the
end� �� log b� � � � � � �n log bn is indeed an expression in G

expr
B � The expansion

of the exponential of a bounded series g is done by a straightforward Taylor series
expansion� If g is unbounded� then we test whether g is asymptotic to the logarithm
of an element in B . i�e� we test whether � �� lim g� log bi is a non zero �nite
number for some i� If this is so� then f � b�i e

g�� logbi and eg�� logbi is expanded
recursively� We remark that no in�nite loops can arise from this� because successive
values of g in such a loop would be asymptotic to the logarithms of smaller and
smaller elements of B� while B remains unchanged� Finally� if g is not asymptotic
to the logarithm of an element in B� then B has to be extended with an element of
the order of growth of f � The decomposition g � g� � g� is computed in order to
ensure that B remains an e
ective normal basis�

����� A detailed example

Let us exemplify our algorithm on the exp�log expression

f � log log�xexe
x

� �	 � expexp�log log x� �
x
	

from "RSSV ��#� Initially� the e
ective normal basis B � fb�� � � � �bng is fx��g� We
start with the innermost subexpression ex of the �rst part of f � The argument x of
the exponential is not asymptotic to any log bi� with i � �� Hence e�x is inserted
at the end of B and ex is rewritten as b��� � Next� for the expansion of exe

x
� the

argument xex � b��� b
��
� is compared to �x � log b� � �b��� � We deduce that

�x � o�xex	� whence e�xe
x
is inserted at the end of B�

At this stage� B � fx��� e�x� e�xexg� The next expression we consider is
log�xexe

x
� �	� where xexe

x
� � is represented as b��� b

��
� � �� The exponent of
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b� is not zero� therefore log
�� x is inserted at the beginning of B� We now have

B � flog�� x� x��� e�x� e�xexg and

log�xexe
x

� �	 � b��� b
��
� � b��� � log�� � b�b�	�

The next logarithm is treated similarly� the normal basis need not be extended and
we rewrite

log log�xexe
x

� �	 � b��� � b��� � log�� � b�b��b
��
� � log�� � b�b�	���

We now consider the second part of f � log x is obviously rewritten as b��� �
Taking its logarithm� we insert log log x at the beginning of B� This yields B �
flog�� log x� log�� x� x��� e�x� e�xexg� The argument of the innermost exponential is
log log x � x�� � b��� � b�� which tends to in�nity� This is found to be asymptotic
to the logarithm of b� and we rewrite

exp�log log x� �
x
	 � b��� eb��

where the argument of the new exponential tends to zero� Now b��� eb� is asymptotic
to log b�� whence the next exponential exp exp�log log x� x��	 is rewritten as

exp exp�log log x� �
x
	 � b��� exp�b��� expb� � b��� ��

The argument of the outermost exponential of the right hand side tends to zero� so
that no further rewriting is necessary�

At this stage� we have constructed an e
ective normal basis

B � flog�� log x� log�� x� x��� e�x� e�xexg�

with respect to which we can expand

f � b��� � b��� � log�� � b�b��b
��
� � log�� � b�b�	��� b��� exp�b��� expb� � b��� ��

and its subexpressions as grid�based series in Gexpr
B � For instance� we now detail

the computation of an equivalent of f � The �rst step consists in computing the
dominant term with respect to b�� We illustrate the algorithm on the expansion of
the subexpression b��� � log�� � b�b�	�

First� the argument b�b� of the special function log�� � z	 expands to itself and
the dominant term of the logarithm is b�b�� Next� b��� is seen to be the dominant
term of the sum� The rest of the computation of the dominant term of f w�r�t� b�
is straightforward and yields

f
 � b
��
� � b��� � log�� � b��� b�b�	� b��� exp�b��� expb� � b��� ��
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We then proceed with the computation of the dominant term of this expression
w�r�t� b�� A similar computation leads to

f
�
 � b
��
� � b��� � b��� exp�b��� expb� � b��� ��

Next� we compute the dominant term of this expression w�r�t� b�� The compu�
tation of the dominant term of the argument g of the outermost exponential leads
to the cancelation b��� � b��� � �� which is recognized by the oracle� whereas the
function g itself is not zero� By computing the next term of its expansion� we obtain
the dominant term b

��
� b� of g� The dominant term of b��� eg is b��� � whence a new

cancelation b��� �b��� � � occurs in the computation of the expansion of f
�
� Com�
puting the next term of the expansion leads to another cancelation b��� � b��� � ��
One more term is necessary before arriving at the conclusion that the dominant
term of f
�
 w�r�t� b� is

f
�
�� � ��
��b

��
� � b��� 	b��

Computing the dominant monomial of this expression w�r�t� b� yields the desired
equivalent for f �

f � ��


b��� b� � � log

� x


x
�

In particular� we see that f is in�nitesimal and ultimately negative�

��� Cartesian representations

In practice it is not always e�cient to perform the expansions of elements in GB by
applying the classical formulas for Taylor series expansions in a direct way� Consider
for example the expression

f�x	 �
�

�� x��
� �

�� x��
� x�N �

or� alternatively�

f�x	 �
�

� � x��
� �

� � x�� � x�N
�

where N is very large !say N � ���

���
$ and x tends to in�nity� Determining the �rst

term of this series using a straightforward expansion would need a time proportional
to N � The point here is that� in order to detect the cancelation �����x��	������
x��	 � �� we need to represent f as a Laurent series in two variables� namely x��

and x�N � This is possible by the fact that f is a grid�based series in x��� In this
section we show that any exp�log expression f can be represented in such a way and
how to exploit this in order to improve the algorithm expand from section ������
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����� Cartesian representations

A Laurent series u in several variables z�� � � � � zk is a series in z�� � � � � zk whose
support is included in �N � p�	� � � � � �N � pk	 for certain p�� � � � � pk 
 Z� We say
that u is in�nitesimal if its support is included in Nkn��� � � � � �	� The ��th coe�cient
of u in zi is denoted by �z�i �u� We abbreviate �z

��
i�
� � � � �z�jij �u by �z��

i�
� � � z�jij �u� We

notice that z�� � � � � zk should be interpreted as variables which tend to zero��
Let B be an e
ective asymptotic basis and let Z � fz�� � � � � zkg be a �nite set

of in�nitesimal monomials in SB� For convenience� we order Z by z� �B � � � �B zk�
We denote by LexprL the set of expressions built up from C� z�� z

��
� � � � � � zk and z��k by

���� � and the operations � �� e�� � �� log��� �	 and � �� ����� �	 for in�nitesimal
�� Given such a Laurent series u 
 LexprZ � its expansion

u �
�X

�	pi

��z�i �u	 z
�
i

in any of the zi can be computed automatically� Moreover� the coe�cients �z�i �u
of such an expansion are also expressions in LexprZ � so that they can recursively be
expanded . we say that u is an automatic Laurent series� In what follows� we
will only consider automatic Laurent series which are in LexprZ for some Z�

Remark �� We notice that all classical e�cient expansion algorithms for formal
Laurent series in LexprZ can be used� such as Karatsuba�s algorithm for multiplication
"Kn �# and Brent and Kung�s algorithms for composition "BK ��#� "BK �#� We also
remark that we systematically store all coe�cients of all expansions we compute� in
order to perform these computations only once !i�e� we use a MAPLE�like remember
option$�

We denote by u the germ at in�nity of the exp�log function represented by a
Laurent series u in LexprZ � We call u a Cartesian representation of u� Let an
expression f 
 G

expr
B be given� The aim of the rest of this section is to compute a

Cartesian representation u 
 LexprZ of f for some suitable subset Z of SB� Further�
more� we will show how to compute the expansion of f from the knowledge of u
only� Clearly� this will enable us to replace all computations with elements in Gexpr

B

by computations with Cartesian representations in expand�

�The fact that x tends to in�nity and z�� � � � � zk to zero might confuse the reader� This ap�
parently illogical choice stems from the potentially di�erent asymptotic behaviours of an exp�log
function f�x�� if x tends to zero from below or from above�
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Warning �� One should carefully distinguish Cartesian representation from the
germs at in�nity they represent� For instance� if B � fx��� e�xg� z� � x�� and
z� � z�x� then z��� z� is in�nitesimal� while z��� z� is not� In order to avoid confusion�
we therefore scrupulously distinguish u from u by means of the upper bar� Moreover�
we will use the pre�x �C�� to emphasize that we are referring to properties of
Cartesian representations� For instance� in�nitesimal Cartesian representations will
be called C�in�nitesimal�

����� Restrictions of Cartesian representations

Let Z � fz�� � � � � zkg and let SZ � fz��
� � � � z�kk j��� � � � � �k 
 Zg be the set of

monomials in z�� � � � � zk� We have a natural partial ordering on SZ�

z��
� � � � z�kk �Z z��� � � � z�kk � �� � �� � � � � � �k � �k�

Let u be a Laurent series in z�� � � � � zk and let C be a subset of SZ� We denote by

�ujC� � X
z
��
� ���z�kk �C

��z��
� � � � z�kk �u	 z��

� � � � z�kk

the restriction of u w�r�t� C� For singletons C � fcg we also write �ujc� � �ujfcg��
We �nally de�ne �C	 � fwj�c 
 C c �Z wg to be the �nal segment generated
by C� Here we recall that a �nal segment of SZ is a subset F � SZ such that
c 
 F � c � w� w 
 F for all c�w 
 SZ�

Proposition �� Let u be a Laurent series in LexprZ � There exists an algorithm to
compute the restriction �uj�C	� of u w�r�t� any �nal segment �C	 for �nite C�

Proof Let C� denote the subset of C of monomials whose exponents in zk are
inferior or equal to � and let � be the smallest integer with C � C�� Let W�

denote the set of monomials w in z�� � � � � zk��� such that wz�k is in C�� for some
� � �� Now expand u up to order � in zk� say u � upkz

pk
k � � � � � u���z���k � �u�

Then we have

�ujC� �
���X
i	pk

�ujj�W�	� z
�
k � ��uj�z�kW�	��

The right hand side of this equation is evaluated by expanding each of the terms in
zk��� � � � � z� using the same method� �
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z�

z�

Figure ���� Dominant monomials for u � �
z����z��z�� � z��� � � � z� � 
z� � z��� z��

����� Intermediary dominant monomials

Let u 
 L
expr
Z be a Cartesian representation� A set of intermediary dominant

monomials of u is a �nite subset G of SZ� such that u � �uj�G	�� and such that the
dominant monomial of f is equal to the minimal monomial in G� Most of the time�
but not always� G is unique and we say that G is the set of intermediary dominant
monomials�

In �gure ���� we have represented the dominant monomials of u � z��� ��� z� �
z�	�� � z��� � � � z� � 
z� � z��� z�% these are by de�nition the minimal elements
in the support of u w�r�t� �Z � If z� �� z�� then fz��� z��� z�� z

�
�g is also the set

of intermediary dominant monomials of u� If z� � z�� then fz��� z��� z
�
�� z�z�� z

�
�g

is the set of intermediary dominant monomials of u� because of the cancelation
z��� z�� � z� � ��

In order to compute intermediary dominant monomials� we �rst need to introduce
some more orderings� First� we have a total ordering �B on SB� which is analogous
to �Z on SZ �

b
��
� � � � b�nn �B b

��
� � � �b�nn � b

��
� � � � b�nn � O�b��

� � � � b�nn 	�

Via the natural !not necessarily injective$ mapping � � SZ � SB� the ordering �B

induces a quasi�ordering �B on SZ� c �B w� ��c	 �B ��w	 for all c�w 
 SZ� The
reader should not confuse this quasi�ordering with �Z� nor with the usual asymptotic
ordering on germs of exp�log functions !which is actually opposite to �B on SZ$�
Now consider the following algorithm�
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Algorithm idm�u	�
Input� A Cartesian representation u 
 LexprZ with u �� ��
Output�A set of intermediary dominant monomials for u�

& Let zpii be the dominant monomial of u in zi� for � � i � k�
G �� fzp�� � � � zpkk g
while true

M �� fc 
 Gj w
G c �B wg
if
P
c�M uc �� � then return G

& Denote GnM � fc�� � � � �cqg� with c� �B � � � �B cq�
if ��� i�q u� �uj�ci� � � � �cq	� � �

then G �� fci� � � � �cqg !with i chosen minimal$
else G �� �GnM	 Mfz�� � � � � zkg

& Eliminate non minimal elements from G�

Remark �� We recall the existence of an oracle to decide whether a given exp�log
expression in Texpr is zero in a neighbourhood of in�nity� Hence� the test ��� i�
q u� �uj�ci� � � � �cq	� � � is indeed e
ective� by proposition ����

Proposition �� The algorithm idm is correct and terminates�

Proof Let G�� G�� � � � be the successive values of G at the beginning of the main
loop� By induction� we observe that u � �uj�Gj	� for all j� This proves the correct�
ness of idm� Suppose that the algorithm does not terminate� Let F �

T
j���Gj	�

We have u � uF � By Dickson�s lemma� F is �nitely generated� say by �� There are
only a �nite number of monomials c �Z zp�� � � � zpkk with c �Z w for some w 
 ��
For su�ciently large j� none of these monomials belongs to Gj� We have � � Gj�
since � � �Gj	� There do not exist c 
 Gjn� and w 
 �� with w �B c� indeed�
such a c would belong to Gj� for all j� � j� although c �
 F � ��	� We deduce that
� � fci� � � � �cqg at the j�th iteration of the main loop for some q� But this means
that Gj�� � � and � �� �Gj��	� This contradiction proves the termination of idm�

�

Remark �� We observe that the dominant term �f of f is given by �f �
P
c�M ucc

at the end of the algorithm� More terms of the expansion of f can be obtained by
rerunning the algorithm recursively on u� �f �

����� On the computation of Cartesian representations

Lemma �� There exists an algorithm� which given a Cartesian representation
u 
 LexprZ of an in�nitesimal germ u at in�nity computes Z � � fz��� � � � � z�k�g and a
C�in�nitesimal Cartesian representation u� 
 LexprZ� for u�
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Proof We �rst compute a set of intermediary dominant monomials G �
fc�� � � � �cmg for u� If all monomials in G are strictly superior to �� then we can
take Z � � Z and u� � �uj��	�� More generally� we can write u � v� � � � �� vm� with
vi � �uj�c�� � � � �ci	���uj�c�� � � � �ci��	�� for � � i � m� Putting vi � cihi� each hi be�
longs to LexprZ and its support is included in Nk� Now u� � c�h��� � ��cmhm 
 LexprZ� �
with Z � � fz�� � � � � zk�c�� � � � �cmg satis�es the requirements of the lemma� �

Remark �	 Actually� we can take k� � k� as will easily follow from lemma ���
below�

Example �� Assume that u� is the Laurent series from �gure ���� We can
take c� � z��� z���c� � z� and c� � z��� Then we get v� � z��� z������� � z�		�
v� � z���� � z�	��� � z�		 and v� � z������� � z� � z�		� We observe that u is
in�nitesimal if z��� z�� is� In that case� an expression like e

u can be expanded in z�� z�
and z��� z��� by using the identity e

u � exp�v� � v� � v�	�

Theorem �� Let B be an e�ective normal basis� Then there exists an algorithm
which given an expression f in Gexpr

B computes a �nite set Z of in�nitesimals in SB�
and a Cartesian representation u 
 LexprZ for f �

Proof Constants are by de�nition Cartesian representations of themselves� If
f 
 SBnf�g� then either f 
 Lexprffg or f 
 Lexprf��fg� Now assume that u� and u��

are Laurent series in LexprZ� and LexprZ�� respectively� with Z � � fz��� � � � � z�k�g and Z �� �
fz��� � � � � � z��k��g� Then u��u��� u��u�� and u�u�� are Cartesian representations for u��u���
u�� u�� resp� u�u�� in LexprZ��Z��� If u� is in�nitesimal� then we may assume without loss
of generality that u� is C�in�nitesimal by lemma ���� Hence� we have straightforward
Cartesian representations for ���� � u�	� log�� � u�	 and expu� in LexprZ� � �

����� Asymptotic expansions via Cartesian representations

Having computed a Cartesian representation u for f by theorem ���� we would like
to take advantage of u to compute the asymptotic expansion of f �

Lemma �� There exists an algorithm� which given a Laurent series u in LexprZ

with u �� � computes Z � � fz��� � � � � z�k�g and u� 
 LexprZ� with u� � u� such that u� has
only one dominant monomial�

Proof Let fc�� � � � �cmg be a set of intermediary dominant monomials for u� Let
c � uc� � � � � � ucm and � � �u � uc�c� � � � � � ucmcm	�c�� By lemma ��� we can
compute a C�in�nitesimal Cartesian representation �� 
 L

expr
Z� for �� where Z � �

fz��� � � � � z�k�g� Now we take u� � �c� ��	c�� �



�	� AN ASYMPTOTIC ZERO TEST FOR EXP
LOG FUNCTIONS ���

Modulo this lemma� we may assume without loss of generality� that u has a
unique dominant monomial� The following proposition gives us the �rst term of the
expansion of f w�r�t� bn�

Proposition �� Let f 
 G
expr
B and let u 
 L

expr
Z be a Cartesian representation

of f with a unique dominant monomial z	�� � � � z	kk and Z � SB� Let z�� � � � � zl those
elements among z�� � � � � zk which depend on bn� say zi � z�ib

�i
n for � � i � l� with z�i

free from bn and �i � �� Then the dominant exponent of f w�r�t� bn equals

�f � ���� � � � � � �l�l

and
��z	�� � � � z	ll �u	z��	� � � � z�l	l

is a Cartesian representation for �b
	f
n �f � �

Clearly� this proposition enables us to extract the �rst term of the expansion of
f w�r�t� bn� More terms can be obtained by subtracting the �rst term from f and
iterating the process� Similarly� we can iterate the process on the coe�cients of this
expansion in order to obtain the iterated coe�cients of f � In particular� this yields
an algorithm to compute the iterated coe�cients g


�
n�i� times��� �


of g involved in the

exponential case f � eg in expand�

��� An asymptotic zero test for exp	log functions

In this section we no longer assume that we have an oracle for deciding whether an
exp�log function is zero in a neighbourhood of in�nity� Instead� we assume that we
dispose of an oracle which can decide whether an exp�log constant is zero� Such an
oracle is in fact an algorithm under the assumption that Schanuel�s conjecture holds
!see the introduction$� Now a zero test for Laurent series in LexprZ � which depends
on the oracle� is given in "P�l ��# !see also appendix D$�

Lemma �� Let B be an e�ective normal basis and let z�� � � � � zk�� be in�
�nitesimals in SB� Assume that zk�� � z��

� � � � z�kk with ��� � � � � �k 
 Z� There
is an algorithm which computes z��� � � � � z�k 
 SB and a matrix M � ��i�j	 with
i 
 f�� � � � � k � �g� j 
 f�� � � � � kg and coe�cients in N� such that

zi � z��
�i�� � � � z�k�i�k

for all � � i � k � ��

Proof Let us describe a recursive method to compute such z�j and �i�j� Since one
of the �i must be strictly positive� we may assume without loss of generality that
�k � � by permuting variables� Now z��

� � � � z�k��

k�� is either in�nitesimal� equal to ��
or in�nitely large�
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In the �rst case� we recursively compute z��� � � � � z�k�� 
 SB and �i�j 
 N for
i 
 f�� � � � � kg and j 
 f�� � � � � kg� such that

zi � z��
�i�� � � � z�k���i�k��

for all � � i � k � � and

z��
� � � � z�k��

k�� � z��
�k�� � � � z�k���k�k�� �

Now we can take z�k � zk and

M �

�BBBBBBB	

���� � � � ���k�� �
���

���
���

�k���� � � � �k���k�� �
� � � � � �
�k�� � � � �k�k�� �


CCCCCCCA �

The second case is trivial� since zk�� � zk�
In the last case� we recursively compute z��� � � � � z�k�� 
 SB and �i�j 
 N for

i 
 f�� � � � � kg and j 
 f�� � � � � kg� such that

zi � z��
�k�i�� � � � z�k���k�i�k��

for all � � i � k � � and

z��
� � � � z�k��

k�� � z��
��k�k�� � � � z�k����k�k�k�� �

Now take z�k � zkz
�
�
�� � � � z�k���k�� and

M �

�BBBBBBB	

�n���� � � � �n���k�� �
���

���
���

�n�k���� � � � �n�k���k�� �
�k�� � � � �k�k�� �
� � � � � �n


CCCCCCCA
�

�

The following is an easy consequence of the lemma�

Lemma �	 Let B be an e�ective normal basis and let z�� � � � � zk�� be in�nites�
imals in SB� Assume that z��

� � � � z�kk � �� for ��� � � � � �k 
 Znot all zero� There
is an algorithm which computes z��� � � � � z�k�� 
 SB and a matrix M � ��i�j	 with
i 
 f�� � � � � kg� j 
 f�� � � � � k � �g and coe�cients in N� such that

zi � z��
�i�� � � � z�k���i�k��

for all � � i � k� �
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Theorem �� Assuming Schanuel
s conjecture� there exists an algorithm which
given an exp�log expression f 
 Texpr�
a� computes an e�ective normal basis B for f �
b� computes an asymptotic expansion for f w�r�t� B at any order�
c� determines the sign of f �
d� determines whether f is in�nitesimal�

Proof In view of what precedes� we only have to show how to decide whether
u � � for a given u 
 L

expr
Z � with the notations from the previous section� To do

this� we slightly modify idm�

Algorithm zero�test�u	�
Input� A Cartesian representation u 
 LexprZ for some Z�
Output�Result of the test u � ��

if u � � then return true
& Let zpii be the dominant monomial of u in zi� for � � i � k�
G �� fzp�� � � � zpkk g
while true

M �� fc 
 Gj w
G c �B wg
if jM j � � then return zero�test�simplify�u�M		
if
P
c�M uc �� � then return false

& Denote GnM � fc�� � � � �cqg� with c� �B � � � �B cq�
if ��� i�q u� �uj�ci� � � � �cq	� � � then G �� fci� � � � �cqg
else G �� �GnM	 Mfz�� � � � � zkg
& Eliminate non minimal elements from G�

Let us comment this algorithm� All zero tests we perform are zero tests for
Laurent series� If the cardinal jM j ofM never exceeds �� then the usual termination
proof of idm remains valid and we are done� In the other case� the function simplify
is invoked� which undertakes the following action�
Step �� Determine a non trivial relation of the form z��

� � � � z�kk � � in SB� with
��� � � � � �k 
Z�

Step �� Apply lemma ��	 to �nd in�nitesimals z��� � � � � z�k�� 
 SB and positive
integers �i�j with zi � z��

�i�� � � � z�k���i�k�� for each i�
Step �� Return u after having replaced each zi by z��

�i�� � � � z�k���i�k���
The recursive call of zero�test terminates� since Z � � fz��� � � � � z�k��g has one ele�
ment less than Z� �

Remark �� A heuristic zero test for Laurent series u in LexprZ often su�ces for
practical purposes� we perform a 0oating point evaluation of u in a random point
�
�� � � � � 
k	 with reasonably small 
i� Instead of rewriting u in the above algorithm�
whenever we �nd a dependency zi�� � � � zikk � �� we use these dependencies to impose
a posteriori additional conditions on the 
i�
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Chapter �

Automatic case separation

�� Introduction

This chapter constitutes both the informal description of a general method !auto�
matic case separation$ that will be used throughout the rest of part B of this thesis�
and two applications of this method to the parameterized exp�log expansion prob�
lem and linear programming� The main application of the automatic case separation
strategy is to solve problems involving parameters� For instance� consider the asymp�
totical problem of expanding ee

�x
� if � � �� then ee

�x
� � � e�x � e��x�
 � � � � � If

� � �� then ee
�x
forms its own expansions� The same situation is encountered when

solving di
erential equations� due to the presence of initial conditions�
In section �� we give an informal description of the strategy of automatic case

separation� This technique is the analogue of constraint logical programming�
although the resolution techniques used here are di
erent from the classical ones�

In section ��� we give an expansion algorithm for parameterized exp�log func�
tions� using automatic case separation� In the example mentioned above� the cases
� � �� � � � and � � � are distinguished automatically while computing the ex�
pansion of ee

�x
� Next� the expansions in these di
erent cases are found in the usual

way� by interpreting the parameters as constants�
In section �	� we brie0y review a variant of the simplex method in linear pro�

gramming� based on automatic case separation� Next� we extend the usual con�
straint checkers for linear equalities and inequalities with the possibility to impose
asymptotic linear constraints�

Let us �nally notice that automatic case separation is historically referred to as
dynamic evaluation� but we think that our nomenclature is more suggestive� The
�rst appearance of this technique in computer algebra goes back to "DDD �#� Until
now� it has mainly be used for computations in parameterized algebraic number
�elds !see also "GoDi �	#$� But actually� it underlies many algorithms in computer
algebra� such as the Boulier�Seidenberg�Ritt algorithm !see "Seid ��#� "Boul �	#�
"BLOP ��#� "VdH ��c#$� many asymptotic expansion algorithms� interval analysis�

��
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etc� In particular� we will make extensive use of it in the following chapters�

�� Automatic case separation

����� The strategy

Let us be given an arbitrary program P which takes p arguments ��� � � � � �p of
types T�� � � � � Tp on input and produces an output of type T �� We are interested
in determining all possible outcomes of the program� More precisely� we see the
arguments ��� � � � � �p as formal parameters and we want to determine the outcome
of the algorithm in a symbolic way as a function of these parameters� Of course�
di
erent cases need to be distinguished in general� by a generic output of P
relative to a subdivision

T� � � � � � Tp � R� q � � � q Rr !��$

of T� � � � � � Tp into regions R�� � � � � Rr� we mean a list

P����� � � � � �p	� � � � � Pr���� � � � � �p	

of symbolic formulas� such that each Pi���� � � � � �p	 is the output of the algorithm
in the case ���� � � � � �p	 
 Ri� We say that Pi���� � � � � �p	 is the generic output of P
relative to the region Ri�

Example �� Let P be the program which takes on input an exp�log constant �
and returns the result of the expansion algorithm from section ��� applied on ee

�x
�

Then a generic output of P is�����
exp���� exp������x��	��		� if � � ��
e� if � � ��
exp�exp���x��	��		� if � � ��

In this case� P���	� P���	 and P���	 are exp�log expressions in x and �� such that
we obtain the result of P applied to a particular exp�log constant c by replacing �
by c in the appropriate Pi�

Let us make the notion of symbolic formula more precise� We assume that the
program P is built up from a certain number of elementary functions f�� f�� � � �
and relations ��� ��� � � � by the usual constructs of some imperative programming
language� In the generic version P gen of P � the types of all variables� arguments
to subprograms� etc� which depend directly or indirectly on ��� � � � � �p are replaced
by the symbolic type G of expressions in ��� � � � � �p� f�� f�� � � � � The only other
di
erence between P gen and P is that we have to respecify the elementary functions
and relations�
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Now fi applied on arguments e�� � � � � ej of type G simply yields fi�e�� � � � � ej	�
Each test which depends on the value of �i�e�� � � � � ej	 for some e�� � � � � ej of type G
leads to the separate consideration of the cases �i�e�� � � � � ej	 and '��e�� � � � � ej	� It
is convenient to adopt a parallel computation model for this purpose� both cases
induce two distinct processes in which the relations �i�e�� � � � � ej	 and '�i�e�� � � � � ej	
are respectively imposed as constraints� This is done by introducing a global vari�
able which contains the successive constraints we impose� Of course� we need to
know whether there exist actual substitutions for the �i which verify a given set
of constraints� A program which can check this is called a constraint checker�
Assuming that we dispose of a constraint checker� all processes in which the set of
the constraints admits no solutions are eliminated�

Example �� In the case of expansions of parameterized exp�log expressions� the
elementary functions are the exp�log �eld operations and for each constant c the
zero�ary function yielding c� The elementary relations are � and �� The constraint
checker should be able to decide whether a given system of exp�log equalities and
inequalities admits a solution�

The parallel computation process can be represented by a binary tree� which
is called the computation tree� the outgoing edges of each internal node of this
tree are labeled by �i�e�� � � � � ej	 and '�i�e�� � � � � ej	 for some i� e�� � � � � ej� Each
leaf l of the tree are labeled by the generic output of the algorithm relative to the
region determined by the constraints on the path from the root to l� By K2nigs
lemma on trees "K2n ��#� the computation tree is �nite if and only if their are no
in�nite branches� This means that the generic program P gen terminates� if each of
its parallel processes terminates� Usually� this is due to a Noetherian property for
the regions which are determined by the successive constraints�

����� Examples

In this section we give a list of classical and new examples where the technique of
automatic case separation can be applied� and brie0y discuss these examples� Of
course� our list is not exhaustive and merely included to give the reader an impression
of the scope of the technique of automatic case separation�

Linear constraints The problem of checking a �nite system of linear equalities
and inequalities in �nite dimension for consistency is an important problem in math�
ematics� with many applications to economics� the theory of linear programming
and linear optimization has known a big development since the �fties� We will
discuss this theory in more detail in section �	� where we also extend the classical
theory in order to deal with linear asymptotic constraints� which turn out to be
important in chapter ���
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Algebraic constraints The problem of determining the consistency of a �nite
system of polynomial equalities and inequations over an e
ective algebraically closed
�eld in �nite dimension can either be solved by Groebner basis techniques or the
Ritt�Wu�s algorithm !see "Wu �#$� In particular� the Ritt�Wu algorithm can be
seen as an application of the automatic case separation strategy to the classical
g�c�d� algorithm�

Although the complexities of algorithms in this area are always very bad� several
interesting problems can nevertheless be treated� Notably� the technique of auto�
matic case separation has nice applications in classical geometry� because di
erent
geometrical con�gurations can be distinguished automatically� We refer to "GoDi
�	# for more details�

Real algebraic constraints The problem of determining the consistency of a
�nite system of polynomial equalities and inequalities over an e
ective real algebra�
ically closed �eld in �nite dimension is an even more di�cult problem� Nevertheless�
algorithms exist for this !see for instance "Col ��#$�

Real exp�log constraints A crucial problem in the �eld of automatic asymptotics
in higher dimensions is to determine the consistency of a �nite system of real exp�log
equalities and inequalities in a �nite number of variables over Q� We refer to the
conclusion of this thesis for a discussion of this problem�

Arithmetic constraints A well�known theorem of computability theory is that
there exists no algorithm to determine the consistency of a �nite system of poly�
nomial equalities and inequalities in a �nite number of variables over the integers
!see "Mat ��#$� This clearly marks a limit to the capability of constraint check�
ers� However� there are algorithms to determine the consistency of special types of
Diophantine equations� such as linear equations over Z�

Algebraic di
erential constraints In "Seid ��# and "Boul �	# !see also "BLOP ��#
and "VdH ��c#$� it is shown that there exist constraint checkers for certain systems
of partial algebraic di
erential equations and inequations� The Boulier�Seidenberg�
Ritt algorithm can actually be seen as an application of the theory of case separation
to Ritt�s reduction theory� In "VdH ��c#� we have generalized this algorithm to more
general mixed di
erential�di
erence equations�

Constraints in free algebras The elementary theory of logical programming
can be interpreted as constraint checking in free algebras of a certain signature� Of
course� many extensions exist in the literature and real logic programming languages
such as PROLOG are far from theory� Currently� much research is done in the area of
constraint logical programming languages and we hope that computer algebra
will soon bene�t from this research� See "Gal �# for more information about this
area�
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����� Remarks

Many remarks can be made about the strategy of automatic case separation� In this
section we list the principal ones�

Initial constraints By default� the set of constraints is empty at initialization%
taking another initial value� we can impose additional constraints on the parameters�

Error treatment The strategy favorites a very 0exible error treatment� we can
localize regions where errors occur and eliminate the corresponding processes� or
return error messages� etc�

Partial constraint checking A very important feature of the strategy of auto�
matic case separation is that we do not necessarily need a complete constraint
checker� in cases where it is very expensive or impossible to check the consist�
ency of the constraints� we can temporarily or permanently allow inconsistent sets
of constraints� Indeed� even the virtual answer on a potentially empty region might
interest the user� Moreover� inconsistent results can often be refuted by the user on
the base of physical or other considerations� Generic outputs� for which the underly�
ing partition does not contains empty regions are called consistent% non consistent
generic outputs are called virtual�

Another advantage of partial constraint checkers is that it often increases the
e�ciency of the strategy� Indeed� whenever the constraint checker is written in a
recursive style� constraint checking itself may lead to the separation of many cases�
This is one of the reasons for which we will make extensive use of partial constraint
checking in part B of this thesis� Moreover� we remark that the consistency of
constraints can always be checked a posteriori� if we also have a complete constraint
checker�

Let us �nally notice that algorithms which are based on partial constraint check�
ers necessitate termination proofs which depend on the nature of these constraint
checkers� Indeed� termination also has to be guaranteed on empty but not eliminated
regions�

Parallel computation model Let us comment the parallel computational model
we use� To our knowledge� no computer algebra systems support parallel constructs
yet� Nevertheless� parallelism can be simulated� by replacing all variables by lists
in which each item corresponds to a set of constraints plus the corresponding value
of the variable� Such lists are called generic variables� Another way to simulate
parallelism is to rerun the program several times� by choosing each time another
branch of the computation tree� This strategy has the advantage that no code
has to be rewritten% the price to be paid is that the same computations are often
performed several times�

The most elegant and e�cient way to implement automatic case separation is to
use the second strategy mentioned above� but by remembering the information which
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is common to all processes� However� this necessitates the extension of conventional
programming languages such as C with parallel data types and control structures�
At present such extensions are only in an experimental stage�

�� Expansions of parameterized exp	log functions

Let K be a totally ordered exp�log �eld and � a set of formal parameters and
C a subset of K� An exp�log expression f over C in � is an expression built
up from C�� by ���� �� �� exp and log� The domain of f is the subset domf
of K�� consisting of those substitutions � � � � K� such that ��f	 is naturally
de�ned� A system of exp�log equalities and inequalities is a pair � � ��e��i	
of �nite sets of exp�log expressions over C in �� The domain of � is de�ned by
dom� �

T
f��e��i domf � We say that a substitution �� K in dom� is a solution

to �� if ��f	 � �� for each f 
 �e� and ��f	 � �� for each f 
 �i�
Assume now that C is an e
ective ordered �eld of constants and a subset of K�

Let �C be the smallest subset of K� such that any system of exp�log equalities over C
in some �nite � which admits a solution in K� admits a solution in �C�� We call �C
the exp�log closure of C in K and we observe that �C is an exp�log �eld� If C � �C�
then we say that C is exp�log closed�

����� The algorithm

In this section we present two generic expansion algorithms for exp�log functions over
C depending on a �nite number of parameters in K� In practice� we usually have
K � R� and C � Q or C � �Q� For the �rst algorithm� no additional hypothesis need
to be made� but the constraint checker being only a partial one� the algorithm may
yield virtual generic expansions� For the second algorithm� we make the hypothesis
that C is an e
ective totally ordered exp�log closed constant �eld% i�e� we
have an algorithm or oracle which can check the consistency of any given system of
exp�log equalities and inequalities over C in any �nite set of parameters �� In this
case� the computed generic expansions are always consistent�

Theorem �� �Parameterized expansion theorem� weak form� Let � �
f��� � � � � �pg be a �nite set of parameters� There exists an algorithm which takes an
exp�log expression in x� ��� � � � � �p over C on input and computes

a� A partition C� � R� q � � � qRr of C�� which we denote by P �
b� A generic e�ective normal basis B relative to P �
c� An algorithm which computes the generic asymptotic expansion of f w�r�t� B

relative to P at any order�

Each possibly empty region Ri is represented as the solution set to a system �i of
exp�log equalities and inequalities�
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Proof We apply the strategy of automatic case separation to the expansion al�
gorithm expand from chapter �� incorporating the optimizations from sections ���
and ��	� We �rst remark that modulo the introduction of a �nite number of new
parameters� a �nite number of elements in the exp�log �eld E may be introduced in
the algorithm� For instance� if C � Q and K � R� then e can be represented by
�p��� where �p�� satis�es the constraint � � e� � �� Representing elements in E in
this way� all computations on constants are done in the ring C���� � � � � �q�� where
q � p may increase during the algorithm� In particular� the constraints we impose
on constants are only checked for their algebraic consistency� for instance by using
cylindrical decompositions !see "Col ��#$�

Let us verify that all parallel processes terminate� The only loops in the expan�
sion algorithm come from the recursive application of expand in the exponential case
and the main loops in idm and zero�test� For a similar reason as in the previous
chapter� no in�nite loops can arise from expand�

Assume that the main loop in idm or zero�test does not terminate on a given
input� Now u is a Laurent series with coe�cients in C���� � � � � �q� in these algorithms�
since q can not increase during such a loop� Let c�� c�� � � � denote the successive
values of �c�Muc during the loop� Since C���� � � � � �q� is Noetherian� the chain of
ideals �c�	� �c�� c�	� � � � is stationary� In particular� ci � � can be deduced from the
constraints� for su�ciently large i� and the usual termination argument is used to
obtain a contradiction� �

Remark �� We notice that the zero test from section ��	 can indeed be ap�
plied� in section D�	�� !see remark D��$� we have given a zero test for parameterized
Laurent series� We remark that some new but �nite branching may occur during
the execution of such a generic zero test�

Theorem �� �Parameterized expansion theorem� strong form� Let � �
f��� � � � � �pg be a �nite set of parameters� Assume that we have an oracle which
decides whether a given system of exp�log equalities and inequalities over C in any
�nite set of parameters admits a solution� Then there exists an algorithm which
takes an exp�log expression in x� ��� � � � � �p over C on input and computes

a� A partition C� � R� q � � � q Rr of C�� which we denote by P �
b� A generic e�ective normal basis B relative to P �
c� An algorithm which computes the generic asymptotic expansion of f w�r�t� B

relative to P at any order�

Each non empty region Ri is represented as the solution set to a system �i of exp�log
equalities and inequalities�

Proof The present theorem is a trivial corollary of the previous one� since the
oracle can be used to check the regions for non emptiness� �
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����� An example

Let us consider the expansion of the exp�log function

f�x	 � e��x�e
�x � e��x�

depending on one formal parameter �� The expansions of ��x and �x are straight�
forward� For the expansion of e�x� one needs to compute the sign of �x and thus of
�� This leads to a branching into three processes� corresponding to the cases � � ��
� � � and � � �� The �rst case leads to the expansion

f � b� � b�b� �
�



b��b� � � � �� �



b�� �

�



b�b

�
� � � � � �

with e
ective normal basis B � fb� � x���b� � e�xg� The second case leads to the
expansion

f � �e� �	 � �e� �	b� � e� �


b�� � � � � �

where B � fb� � x��g� Finally� the case � � � leads to the expansion

f � b� � b�b� �
�



b��b� � � � � � � � b� � � � � �

with B � fb� � x���b� � e��x�b� � e�e
�xg�

�� Linear constraint checkers

In this section we give algorithms for determining the consistency for systems of
linear inequalities� equations� and asymptotic inequalities� In terms of asymptotics�
this means that we can check the consistency of systems of relations involving������
��������� and �� in certain monomial groups�

The topic of �nding the maxima of linear functionals on convex sets determined
by linear inequalities is known as linear programming� In particular� the con�
sistency of systems of linear inequalities can be determined in this way� The most
frequently used method in linear programming is the simplex method� Roughly
speaking� this method proceeds by following a path on the edges of the simplicial
solution set of a system of linear inequalities� However� the simplex method has an
exponential worst case complexity� This has lead to the introduction of the ellipsoid
method in "Kat ��#� which is a polynomial time algorithm� Unfortunately� the com�
plexity involves a large constant factor� which makes the Katchian�s algorithm little
useful in practice� More recently� this drawback has been removed by Karmakar !see
"Kar 	#$� whose algorithm is currently the fastest�

In sections �	�� and �	�� we respectively study systems of strict linear inequal�
ities and mixed systems of linear inequalities and equalities� The consistency of such
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systems is determined by computing the simplicial set of solutions� We give a geo�
metrical approach� which is basically equivalent to the simplex method� However�
the fact that we actually compute the simplicial solutions sets implies that we can
quickly check whether a given linear equation or inequality is or can be veri�ed
on such sets� This is useful� if these tests are performed with a rate which is very
superior to rate of imposition of new constraints�

In sections �	�� and �	�	 we reduce the problems of determining the consistency
of certain systems of asymptotic linear constraints to the problem of determining the
consistency of systems of linear inequalities and equalities� Hence� the algorithms
from sections �	�� and �	�� can be applied� as well as the ellipsoid method� and
Karmakar�s optimization�

����� Linear inequalities

Let X be a totally ordered non zero vector space over an e
ective totally ordered
�eld K� Let z�� � � � � zk be a �nite number of positive parameters in X� In this
section� we give an algorithm to check whether a �nite system of constraints of the
form

a�z� � � � � akzk � � !��$

is consistent !where a�� � � � � ak 
 K$� In particular� if X is a monomial group with
K�powers� this yields a method to check whether a �nite system of constraints of
the form

za�� � � � zakk �� � !��$

is consistent !where z�� � � � � zk �� �$� Inequalities of the form !��$ are also called
expo�linear inequalities�

Since the zi are assumed to be positive� and since constraints of the form !��$
are homogeneous� we may assume without loss of generality that X � K and impose
the additional constraint

z� � � � �� zk � �� !�	$

The set of solutions to !�	$ and a �nite number of linear inequalities like !��$ is a
bounded convex subset of Kk� Our algorithm is based on the representation of such
convex sets C by their sets of vertices VC � edges EC and hypersurfaces HC � For each
edge e 
 EC � we store its two endpoints e��C� e��C 
 VC � For each vertex v 
 VC � we
store its coordinates and the set Hv�C of hypersurfaces to which it belongs� Each
hypersurface is characterized by a linear constraint of the form

a�z� � � � �� akzk � ��

By convention� we represent the empty set by V� � E� � H� � ���
In absence of constraints� C is the simplex with k vertices ��� �� � � � � �	� � � � �

��� � � � � �� �	 which are pairwise connected by edges� C has k hypersurfaces� which
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are characterized by the equations z� � �� � � � � zk � �� Each point ���
i�� times� � �

� �� �� �� � � � � �	 belongs to all hypersurfaces� except the one which is determined by
zi � ��

Assume now that we have the representation of the convex solution set C of a
given system of constraints� Imposing the additional constraint !��$� we wish to
compute the corresponding convex solution set C �� To do this� we �rst label each
vertex �v�� � � � � vk	 
 VC by the sign of a�v� � � � � � akvk� Let us denote by V �� V 


and V � the sets of vertices which are labeled by �� �� resp� �� If V � � ��� then we
have C � � ��� If V � � ��� then we have C � � C�

In the remaining case� we determine all edges whose endpoints are labeled by
opposite signs and we compute the intersections of these edges with the hypersurface
Hnew determined by a�z� � � � � � akzk � �� Let I be the set of these intersections�
We have VC� � I q V 
 q V �� HC� is given by Hnew and those hypersurfaces H in
HC � with H 
 Hv�C for some v 
 V �� We have Hv�C� � Hv�C for v 
 V �� We have
Hv�C� � fHg  �He��C �C � He��C �C	 for each v 
 I which lies on the edge e 
 EC�
Finally� we have Hv�C� � �fHg  Hv�C	 � HC� � All edges in EC between vertices
with non negative labels are conserved in EC� � Each edge e 
 EC� on which lies a
vertex v in I� is replaced by the edge from v to the endpoint of e with a positive
label� Finally� two vertices v and w in V 
q I are connected by an edge in EC� if and
only if the intersection of all hyperplanes in Hv�C� �Hv�C forms a line !linear algebra
methods are used to check this$� This completes the algorithm and we have proved�

Theorem �� Let K be an e�ective totally ordered constant �eld and X a totally
ordered vector space over K� Then there exists a constraint checker for systems of
constraints of the form ����� �

Remark �� Given a convex set C represented in the above way� the maximum
of a � v � a�v� � � � �� akvk� for v 
 VC and given a�� � � � � ak 
 K can be determined
as follows� we �rst randomly choose a vertex v 
 VC � Next� we follow those edges
which increase a � v� until we have reached the maximum� This algorithm can be
speeded up by choosing v among an appropriate number of random vertices in such
a way that a � v is maximal�
Remark �� Let C� and C� be arbitrary bounded convex sets� which are repres�
ented in the above way� Then the method can be generalized in order to compute
the intersection of C� and C�% in this case� V �� V 
 and V � are the sets of vertices
of VC� which are inside� on the boundary of� resp� outside C��

����� Linear equalities

In this section� we consider systems of constraints of the type !��$ or

a�z� � � � � � akzk � �� !��$
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The latter constraints take the form

za�� � � � zakk � � !��$

ifX is a totally ordered monomial group with K�powers� Equalities of the form !��$
are also called expo�linear equalities�

The solution set of !�	$ and a system of constraints of the form !��$ or !��$ is an
open bounded convex subset C of some subvector space of Kk� This subvector space
is said to be the underlying vector space of C� We represent C as before� except
that we work in the underlying vector space WC of C instead of the hyperplane
z� � � � � � zk � �� This means that the hypersurfaces of C are represented as
intersections of WC with hyperplanes H �� W determined by equations like !��$�

Assume now that we are given such a convex set C with underlying vector space
WC� The algorithm from the previous section to compute the intersection of C with
the half space determined by !��$� remains valid modulo a minor change� we �rst
have to check by linear algebra that WC is not contained in Hnew� in which case C �

is empty�
If we want to compute the intersection C � of C with the hyperplane Hnew de�

termined by !��$� we proceed in a similar way� if Hnew contains WC � then C � � C�
If V � or V � then so is C �� with similar notations as before� In the remaining case�
we compute the intersection WC� of WC and Hnew by linear algebra� Finally� VC� �
EC� and HC� are computed as in the previous section� but we only conserve those
vertices and edges which lay in Hnew and those hypersurfaces on which lies at least
one vertex in V � and one vertex in V �� Summarizing� we have

Theorem �	 Let K be an e�ective totally ordered constant �eld and X a totally
ordered vector space over K� Then there exists a constraint checker for systems of
constraints of the form ���� or ����� �

An immediate corollary of this theorem is that there exists a constraint checker
for systems of constraints of the form !��$� !��$ or

a�z� � � � � � akzk � �� !��$

Indeed� it su�ces to split up each constraint !��$ in the constraints !��$
and !��$� by using the automatic case separation strategy�

Alternatively� one can describe the solution sets C to such systems of equations
in the above way� with this di
erence that we associate a 0ag to each hypersurface
in HC which indicates whether C � HC is empty or not� It is not hard to modify
our algorithms in order to compute with such representations of solution sets�

Let us �nally notice that if X is an totally ordered monomial group� then the
constraint !��$ takes the form

za�� � � � zakk �� ��
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����� Asymptotic linear inequalities

The totally ordered K�vector space X is said to be complete� if for each x� y 
 K
with x � y there exists a � 
 K� with x � �y� In this section� we assume that X is
a complete in�nite dimensional vector space� Under this assumption� we will show
how the constraint checker from the previous section can be extended in order to
handle constraints of the form

ja�z� � � � �� akzkj � K�
� jb�z� � � � �� bkzkj� !�$

If X is a totally ordered monomial group with K�powers� then such constraints take
the form

za�� � � � zakk ��� zb�� � � � zbkk �
We notice that in order to impose a constraint

ja�z� � � � �� akzkj � K�
� jb�z� � � � �� bkzkj�

it su�ces to consider the case in which�
a�z� � � � �� akzk � ��
b�z� � � � �� bkzk � ��

!��$

modulo the imposition of some additional linear constraints like !��$ or !��$ and
some case separation�

Theorem �� Let K be an e�ective totally ordered �eld and X a complete in�nite
dimensional totally ordered K�vector space� Then there exists a constraint checker
for systems of constraints of the form ����� ����� ���� or �����

Proof The idea of the proof is to work in the e
ective totally ordered K�algebra
K��	 instead of K� where � is a positive in�nitesimal� Then we replace each constraint
of the form

a�z� � � � �� akzk � K�
� �b�z� � � � �� bkzk	 !���$

under the assumption !��$ by

a�
� � � � �� ak
k � ��b�
� � � � � � bk
k	� !���$

We have to show that a system � of constraints of the form !��$� !��$ or !���$
admits a solution in Xk if and only if the corresponding system �� of constraints of
the form !��$� !��$ admits a solution in K��	k� This will prove the theorem in view
of theorem �	�

Lemma �� Each �nite dimensional K�subvector space Y of X admits a basis of
positive pairwise comparable elements for ���

Proof We use induction over the dimension of Y � If dimY � � then there is
nothing to prove� Assume that dimY � � and let Y � be a hyperplane in Y � By the
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induction hypothesis� we can �nd a basis of Y � of positive elements b� �� � � � �� bn�
Let x be an arbitrary positive element in Y nY �� As long as x is asymptotic to one
of the bi� we replace it by jx� �bij� where x � �bi !the existence of such a � 
 K�
is guaranteed by the completeness of X$� This process yields a positive element x
which is not asymptotic to any of the bi after at most n steps� and fb�� � � � �bn� xg
yields the desired basis for Y � �

Remark �	 We notice that the lemma is a weaker analogue of the structure
theorem for transseries from page ���

End of the proof of the theorem Let �z�� � � � � zk	 be a solution to �� By the
lemma� there exists a basis b� �� � � � �� bn of positive elements for the vector space
Y spanned by z�� � � � � zk� Let E be the vector space spanned by �� � � � � ���n��� and
consider the linear transformation which sends each bi to ���n�i�� This transform�
ation actually determines an isomorphism � of ordered K�vector spaces� Moreover�
we have x �� y � x � �y for positive elements x� y in E� Hence ���z�	� � � � � ��zk		
is a solution to ���

Inversely� let �
�� � � � � 
k	 be a solution to ��� By the lemma� there exists a basis
b� �� � � � �� bn of positive elements for the vector space V spanned by 
�� � � � � 
n�
Since the 
i are Laurent series in �� we may assume without loss of generality that
bn � �� by multiplying the 
i by a suitable power of �� Let p be such that b� � �p�
Let E be the vector space spanned by �� �� � � � � �p�

The truncation of power series at order p determines mapping � from V into E�
We claim that this mapping is an embedding of ordered K�vector spaces� It su�ces
to check that strictly positive elements in V are mapped to strictly positive elements
in E� Moreover� given x � � in V � we can write x � �bi for some � � � and i� Now
bi � ��j for some � � � and j � p� Therefore� x � ���j and ��x	 � ��

By lemma �� and the fact that X has in�nite dimension� there exist elements
�
 �� � � � �� �p in X� Now there exists a natural isomorphism � between the
ordered K�vector spaces E and K�
 � � � � � K�p� which sends each �i to �i� Then
�����
�		� � � � � ����
k			 is a solution to ��� �

����� Asymptotic linear equalities

In this section� we still assume that X is a complete in�nite dimensional vector
space� We will consider asymptotic linear constraints of the form�

�M 
K�
� ja�z� � � � �� akzkj �M jb�z� � � � � � bkzkj �

�N 
K�
� jb�z� � � � �� bkzkj � N ja�z� � � � �� akzkj� !���$

resp�

�M 
K�
� ja�z� � � � �� akzkj �M jb�z� � � � �� bkzkj� !���$
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If X is a totally ordered monomial group with K�powers� then such constraints take
the form

za�� � � � zakk �� zb�� � � � zbkk
resp�

za�� � � � zakk ��� zb�� � � � zbkk �
Clearly� it su�ces to consider constraints of the form !���$ and without loss of
generality we may assume !��$ modulo the imposition of some additional linear
constraints and some case separation�

Theorem �� Let K be an e�ective totally ordered �eld and X a complete in�nite
dimensional totally ordered K�vector space� Then there exists a constraint checker
for systems of constraints of the form ����� ����� ����� ����� ����� or ������

Proof Let K�	 be a totally ordered �eld� where  is positive and in�nitely large
over K� Let X � be any complete in�nite dimensional totally ordered vector space
over K�	� Given a system � of constraints of the form !��$� !��$� !�$ or !���$�
let �� be the system of constraints of the form !��$� !��$ or !�$� which is obtained
by replacing constraints of the form

�M 
K�
� a�z� � � � �� akzk � M�b�z� � � � �� bkzk	� !��	$

under the assumption !��$ by

a�
� � � � �� ak
k � �b�
� � � � �� bk
k	� !���$

Let us show that � admits a solution inXk if and only if �� admits a solution inX �k�
This will prove the theorem in view of theorem �� and the introductory remarks�

Let �z�� � � � � zk	 be a solution to �� By lemma ��� we construct a basis b� �� � � �
�� bn for the K�vector space V generated by z�� � � � � zk� Let V � be a subvector space
of X � of dimension n� Again by lemma ��� we construct a basis b�� �� � � � �� b�n
for V �� Now let � be the K�linear mapping from V to V � which sends each bi to b�i�
Then ���z�	� � � � � ��zk		 is a solution to ���

Inversely� let �
�� � � � � 
k	 be a solution to �� and construct a basis b�� �� � � � ��b�n
for the K�vector space V � generated by 
�� � � � � 
k� Let V be a subvector space of X
of dimension n� with basis b� �� � � � �� bn� Let �M be the partial mapping which
maps elements f�b�� � � � � � fkb

�
k in V

� to elements f��M	b� � � � � � fk�M	bk in V �
We claim that for su�ciently large M � ��M�
�	� � � � � �M�
k		 is well de�ned and a
solution to ��

Consider a constraint of the form !���$ in ��� We can write a�
�� � � �� ak
k �
f�b

�
� � � � � � fpb

�
p for certain f�� � � � � fp 
 K��	 and fp � �� Similarly� we can write

b�
� � � � � � bq
q � g�b
�
� � � � � � gqb

�
q� with gq � � and q � p� Since fq � � � �	gq

!with fq � � if q � p$� we have fq�M	 � �M � �	gq�M	 and � � gq�M	 for all
su�ciently large M � Hence� taking zi � �M�
i	 for each i� the constraint !��	$ of
� is satis�ed for su�ciently large M � A similar argument applies to constraints of
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the form !��$� !��$ resp� !���$� This proves our claim� because �� contains only
�nitely many constraints� �
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Chapter 

Basics for automatic asymptotics

��� Introduction

In chapter � we have given an expansion algorithm for germs of exp�log functions at
in�nity� Actually� we have limited ourselves to such germs for pedagogical reasons�
and we have opted to represent them by exp�log expressions� However� as we will
show in this chapter� most of the methods apply in a far more general context� Our
approach is based on the theory of grid�based transseries from chapter ��

In section ���� we introduce some very general terminology� Section ����� con�
cerns the concept of �e
ective algebraic structures�� which provides a useful ap�
proach to computer algebra� In sections ����� and ������ we give general de�nitions
of automatic power series and automatic Laurent series� In section ����	 we in�
troduce the concept of automatic transseries and prove an e
ective version of the
structure theorem from chapter �� Let us also notice that the above concepts will
be re�ned further in chapter ���

In section ���� we generalize the concept of Cartesian representations and some
of the corresponding algorithms from chapter ��

In section ������ we generalize the asymptotic expansion algorithm from chapter �
to a far more general class of functions� using the concepts introduced in section ����
and the algorithms from section ���� We also give an alternative canonical expansion
algorithm�

In section ������ we introduce the concept of local communities� a theoretical
and e
ective tool for computations with implicitly de�ned series� An application is
given in section ������ where we show how certain asymptotic implicit equations can
be solved automatically�

Finally� section ��� deals with Newton polytopes . a classical concept� which
will be needed in chapters �� and ���

��
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��� A formalism for e�ective asymptotic algebra

����� Eective algebraic structures

An e
ective algebraic structure is an algebraic structure� represented by some
data type� together with algorithms for performing a certain number of operations
and�or constructions e
ectively� The data type is not necessarily required to repres�
ent the elements of the algebraic structure in a one�to�one manner� although we do
require the algorithms to be compatible for this representation� For instance� ele�
ments of T are non uniquely represented by exp�log expressions in Texpr in chapter ��
The exp�log �eld operations �� ������ �� �� exp� log can clearly be performed by al�
gorithm and we do have compatibility� for example� the exponentials of two expres�
sions which represent the same germ in T also represent the same germ� Moreover�
assuming Schanuel�s conjecture� we have shown how to test whether a given exp�log
expression in Texpr represents the zero germ at in�nity% we say that T is an e
ective
exp�log �eld�

Remark �� In general� the exact meaning of computable can be made easily be
made precise� for example in the language of Turing machines� Sometimes� a more
general notion of computability is needed� For instance� in section ��� we have shown
that T is an e
ective exp�log �eld� if C is an e
ective �eld of constants� This relative
notion of computability is usually formalized using oracles !which we actually used
already$�

In particular� for theoretical purposes it is sometimes useful to assume that all
algebraic structures are e
ective� Algorithms for these structures are then called
theoretical algorithms� Although they can not be executed in practice� their
correctness proofs may yield interesting theoretical results� For the same reason�
de�nitions made in an e
ective context do also make sense in a theoretical context�

We notice that for many mathematical structures the de�nitions of their e
ective
counterparts are clear� Most importantly� for a given signature � !see section B��$�
we de�ne an e
ective ��structure to be a ��structure� with algorithms for all
functions and relations in � and for the equality test� In particular� this de�nition
covers the notions of e
ective groups� e
ective rings� e
ective exp�log �elds� and so
on� More generally� any axiom imposed on the algebraic structure should be satis�ed
in a suitable e
ective way� For instance� an e
ective algebraically closed �eld is an
e
ective �eld K� which is algebraically closed� and such that we have an algorithm
which computes the solution set to any polynomial equation over K�

Example �� Adopting the e
ective algebraic spirit of thinking we get theorems
like� if K is an e
ective �eld� then we can compute its e
ective algebraic closure �K�
Indeed� this is a classical exercise which we leave to the reader� We notice the precise
statement of this theorem� we do not only announce that the algebraic closure is
e
ective� but there exists an algorithm which computes �K as a function of K�
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����� Automatic power series

Special care needs to be paid to e
ective algebraic structures whose elements are of
an in�nite nature% since such elements can not be stored as a whole into a machine�
they are represented by programs which extract suitable �nite information about
them� For instance� an in�nite power series can not be stored completely into a
machine� but we may have algorithms for extracting the �rst n elements of it for
any n� Actually� we use a double representation for series� we both compute with
series as elements of an abstract e
ective series algebra and with their truncations
up till a �nite order� This strategy is classically called lazy evaluation�

Univariate power series Assume that we are given an e
ective constant �eld C
and an e
ective C�algebra R of power series over C in z� which contains z� A subset
A of R is said to be automatic� if there exists an algorithm which takes u 
 A

and � 
 N on input� and which computes �z��u� A power series u in R is said to
be automatic� if u is an element of an automatic subset A of R� Consequently�
automatic power series can automatically be expanded up till any order and in
particular� we can compute their valuations�

Multivariate power series More generally� assume that we have an e
ective C�
algebra R of power series in z�� � � � � zk� which contains z�� � � � � zk� A subset A of R
is said to be automatic� if there exists an algorithm which takes u 
 A� � � i � k
and �i 
 Zon input and which computes �z�ii �u% moreover� we require �z�ii �u to be
in A� If A is an automatic subset of R� then so is the subalgebra of R which is
e
ectively generated by A� A power series u in R is said to be automatic� if u is
an element of an automatic subset of R� Such series can automatically be expanded
in each zi up to any order�

Proposition �� If A is an automatic subset of R� then so is the subalgebra of
R which is e�ectively generated by A�

Proof We �rst detail that elements of the e
ective subalgebra of R are represented
by trees whose inner nodes are labeled by ��� and � and whose leaves are labeled
by elements in A or C� Such trees represent series in R� which can be expanded
automatically w�r�t� each zi� by using the usual rules for the expansions of sums
di
erences and products� The global zero�test for such series is given by the zero�
test in R� �

Power series in in�nitely many variables For some purposes it is convenient to
allow k to be in�nite� In that case� R is an e
ective C�subalgebra of the direct limit
C��z�� z�� � � � �� of C�C��z����C��z�� z���� � � � � which contains z�� z�� � � � � Series in R only
depend on a �nite number of variables� although this number is not bounded a priori�
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If Z � fzi�� � � � � zijg is a �nite set of variables� then we denote by RZ � Rzi� ���� �zij
the subalgebra of R of power series in Z�

E
ective Cartesian algebras For the purpose of Cartesian representations� it
is convenient to introduce the concept of Cartesian algebras of power series over C�
These are subalgebras R of C��z�� z�� � � � ��� which are stable under substitutions which
send a �nite number of zi to power products z

�i��
� � � � � z�i�kiki

� with �i��� � � � � �i�ki 
 N�
while leaving the others invariant�

If these substitutions are e
ective� and R is e
ective and automatic� then we say
that R is an e
ective Cartesian algebra of power series over C� In particular�
RZ is unique up to isomorphism� if Z is a �nite subset of fz�� z�� � � �g of �xed the
cardinality� since R is stable under �nite permutations of variables� Therefore� we
may extend the notation RZ to the case when Z is any �nite set of formal variables�

����� Automatic Laurent series�

Automatic Laurent series Let L be an e
ective C�algebra of Laurent series in
z�� � � � � zk� which contains z�� z��� � � � � � zk and z��k � A subset A of L is said to be
automatic� there exists algorithms which take u 
 A� � � i � k and �i 
 Zon
input and compute the valuation of u in zi and its �i�th coe�cient% moreover� we
require �z�ii �u to be in A� A Laurent series u in L is said to be automatic� if u is
an element of an automatic subset of L� We can compute the valuations of such a
series u in each zi� as well as its expansion up to any order�

E
ective Cartesian algebras As in the previous section� we may allow k to be
in�nite in the above de�nition� Then e
ective Cartesian algebras of Laurent series
over C are de�ned in a similar manner as in the previous section�

From power series to Laurent series Assume that R is an e
ective C�algebra
of power series in z�� � � � � zk� which contains z�� � � � � zk� Then we can naturally
associate an e
ective C�algebra L of Laurent series in z�� � � � � zk to R by

L � fzp�� � � � zpkk ujp�� � � � � pk 
Z� u 
 Rg�

Laurent series in L are redundantly represented as pairs �zp�� � � � zpkk � u	� whence we
always have a priori bounds for their valuations in z�� � � � � zk� Therefore� if R is
automatic� then so is L� Allowing k to be in�nite� we deduce that e
ective Cartesian
algebras of power series naturally induce e
ective Cartesian algebras of Laurent
series�
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From Laurent series to power series Assume that L is an e
ective C�algebra
of Laurent series in z�� � � � � zk� which contains z�� z��� � � � � � zk� z��k � Then we can
naturally associate the e
ective C�algebra R � L � C��z�� � � � � zk�� of power series to
L� which contains z�� � � � � zk� We notice that if L is automatic� then so is R� and we
have an algorithm for testing whether a series u 
 L belongs to R�

Remark �� Let R be an e
ective algebra of power series� L the natural e
ective
algebra of Laurent series associated to R� and R the natural e
ective algebra of
power series associated to L� In general� we have R � R� but not R � R� This is
because ziu 
 R does not necessarily imply u 
 R for u 
 C��z�� � � � � zk��� On the
other hand� we do have L � L� when starting with an e
ective algebra L of Laurent
series instead�

����� Automatic transseries

Automatic transseries Let C be any e
ective totally ordered exp�log �eld of
constants and T� C��x�� the �eld of grid�based transseries in x over C� as de�ned in
chapter �� Let T be an e
ective totally ordered exp�log sub�eld of T� which contains
x and C� A subset A of T is said to be automatic� if there exists an algorithm which
takes f 
 A on input and which returns a �nite labeled tree T with the following
properties�

AT� Each node of T is labeled by a couple �g� P 	� where g 
 A and P is an
algorithm�

AT� The root is labeled by a couple of the form �f� P 	�
AT� The label of each leaf has the form �� expl x� P 	� where P is a �dummy�

algorithm�
AT	 For each interior node labeled by �g� P 	� whose successor nodes are labeled

by ���� Q�	� � � � � ��k� Qk	� the transseries g is an automatic Laurent series
in e��� � � � � e�k and P an expansion algorithm for g��

The tree T is called an automatic expansion tree for f � A transseries in T is
said to be automatic� if it is an element of some automatic subset of T�

�Here we understand that the underlying automatic set of Laurent series for this expansion
algorithm is a suitable set of Laurent series in C��e�� � � � � � e�k�� �A�
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E
ective normal bases and the structure theorem An asymptotic expansion
tree relative to a normal basis B � T !as de�ned on page ��$ is an asymptotic
expansion tree T � whose labels except the root�s one have the form �� log b� P 	� with
� 
 C and b 
 B� An e
ective normal basis is a normal basis B � fb�� � � � �big�
such that we have an asymptotic expansion tree for each bi with i � � relative to
fb�� � � � �bi�g� where log bi �� bi���

Theorem �� �E
ective structure theorem� Let A be an automatic subset of
T and B
 � T an e�ective normal basis� Then there exists an algorithm which takes
f 
 A on input and which computes an e�ective normal overbasis B � T of B
 and
an automatic expansion tree for f relative to B�

Proof We only give a sketch of the proof� which is analogous to the proof of
the theoretical structure theorem on page ��� Given f 
 A� we �rst compute an
automatic expansion tree T of f � If T is a leaf� whence f � exp��l� x� then we
compare l with the level l
 of B
� and either insert log��l x� � � � � log��l��� into B
� in
which case we are done� or replace f by elogf and recursively apply the algorithm�

If T is not a leaf� then let ���� Q�	� � � � � ��k� Qk	 denote the labels of the successors
of the root� We recursively compute an e
ective normal overbasis B� � T of B
 and
automatic expansion trees for ��� � � � � �k relative to B�� Now we compute the normal
basis B as in the proof of the theoretical structure theorem� using the algorithm add�
In our case� B is an e
ective normal basis and the image of f by the embedding of
C��e��� � � � � e�q�� into C��b�� � � � �bn�� is computed by using the formulas from the
end of section ��	��� �

The following corollary of the structure theorem is proved by mimicking the
algorithm expand from chapter �� As the result will not be used in what follows�
the details of the proof are left as an exercise to the reader�

Corollary If A is an automatic subset of T� then so is the exp�log sub�eld of T
which is e�ectively generated by A� �

Automatic multivariate transseries Automatic multivariate transseries can
be de�ned in a similar way as above� by labeling the leaves by pairs �� expl xi� P 	
in AT�� for some xi in a �nite set X � fx�� � � � � xpg� For more details about
multivariate transseries from the e
ective point of view� we refer to chapter ���

�We remark that this de�nition implies that we have automatic Cartesian representations for
the logbi with i � �� Although this property could not be derived directly from the de�nition on
page ���� it resulted indirectly from theorem 	��� because of the restriction to exp�log functions�
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��� Cartesian representations

Let C��X�� be the ring of grid�based series over an e
ective �eld C in an e
ective
quasi�ordered monomial group X� Let z�� � � � � zk be formal variables� which rep�
resent in�nitesimal monomials z�� � � � � zk in X� Then we have a natural mapping
C��z�� � � � � zk�� � C��X���u �� u by proposition ��� and remark ���� We say that a
Laurent series u 
 C��z�� � � � � zk�� is a Cartesian representation for u� In this sec�
tion� we will generalize the algorithms from section ��� for Cartesian representations
which belong to an e
ective Cartesian algebra L of Laurent series�

����� Intermediary dominant monomials

Let u 
 LZ be a Cartesian representation of a series in C��X�� and let m�� � � � �md be
the dominant monomials of u� A set of intermediary dominant monomials of
u is a �nite set G of monomials in SZ with u � �uj�G	�� such that each of the mi is
represented by one of the elements in G and such that each element in G represents
a monomial in �m�� � � � �md	� If u � � then such a set is necessarily empty�

In this section we will present a generalization of the algorithm idm which in�
corporates an asymptotic zero�test at the same time� As in section ��	� this implies
the need for an algorithm simplify in order to eliminate redundant elements in
Z� If X is an e
ective totally ordered monomial group with Q�powers� such an al�
gorithm is obtained by a straightforward generalization of the algorithm simplify

from section ��	� In the other case� we assume that X is generated by a �nite num�
ber of monomials� on which asymptotic constraints of the forms !��$ and !��$ may
be imposed� Then the algorithm simplify from section ��	 again generalizes� the
cases when c � z��

� � � � z�k��

k�� are in�nitesimal� Archimedian� resp� in�nitely large in
lemma ��� are now distinguished using automatic case separation� by imposing the
constraints c �� ��c � � resp� c �� ��

Whenever a redundant element in Z is eliminated by simplify� the Cartesian
representation of u needs to be rewritten as an element in Lz������ �z�k� � where the z

�
j

represent newmonomials in X and the zi are positive integer power products of the z�i�
Sets like Z and Z � are called Cartesian coordinates� changes of coordinates of the
above type Cartesian changes of coordinates� and Z � is said to be wider than
Z� We notice that the rewriting of u can be done automatically� by the properties
of e
ective Cartesian algebras�

As before� we will denote by �Z the componentwise ordering on SZ � zZ� � � � zZk �
Restrictions of Cartesian representations in LZ are computed in a similar fashion
as in proposition ���� We will also denote by �X the quasi�ordering on SZ induced
by �X� where we warn the reader not to confuse these di
erent quasi�orderings and
that the quasi�ordering �X on X is opposite to the asymptotic ordering ��� We
can now specify the generalization of idm% its termination and correctness proofs are
analogous to those of idm from page ��� and zero�test from page ����



���� CARTESIAN REPRESENTATIONS ���

Algorithm idm�u	�
Input� A Cartesian representation u 
 Lz����� �zk for a series u 
 C��X���
Output�A set of intermediary dominant monomials for u�

& Let zpii be the dominant monomial of u in zi� for � � i � k�
G �� fzp�� � � � zpkk g
while true

if u � � then return ��
M �� fc 
 Gj w
G c ��X wg
if M contains w �� c with w � c then return idm�simplify�u�M		
if
P
c�M uc �� � then return G

if there exists a �nal segment C of GnM for �X with u� �uj�C	� � �
then choose C maximal with this property� and set G �� C�
else G �� �GnM	 Mfz�� � � � � zkg

& Eliminate non minimal elements from G�

����� In�nitesimalization and regularization

Let u be a Cartesian representation of an in�nitesimal series in C��X��� Although
u is not necessarily C�in�nitesimal itself� it is always possible to compute another
Cartesian representation u� of u which is C�in�nitesimal� The replacement of u by
such a u� is called in�nitesimalization of u�

Proposition �� There exists an algorithm� which given a Cartesian representa�
tion u 
 Lz����� �zk of an in�nitesimal series u computes a C�in�nitesimal Cartesian
representation u� 
 Lz������ �z�k� for u� with k� � k�

Proof The algorithm is analogous to the algorithm from the proof of lemma ����
Here we apply simplify each time a new Cartesian coordinate is introduced� in
order to force k� � k� �

Let u be a Cartesian representation of a regular series in C��X��� Again� u is
not necessarily C�regular� although it is possible to compute a C�regular Cartesian
representation u� for u� Replacement of u by u� is called regularization of u�

More generally� a Cartesian representation u 
 C��z�� � � � � zk�� for u is said to be
faithful� if the natural mapping zZ� � � � zZk � X induces a bijection between the set
of dominant monomials of the Laurent series u and the set of dominant monomials
of u� The following proposition generalizes and improves lemma ����
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Proposition �� There exists an algorithm� which given a Cartesian repres�
entation u 
 Lz� ���� �zk for a series u computes a faithful Cartesian representation
u� 
 Lz������ �z�k� in u� where k� � k�

Proof We �rst compute a set of intermediary dominant monomials G � fc�� � � � �
cmg for u by idm� We notice that there do not exist ci �� cj in G such that ci � cj
is a dominant monomial of u� because this would have been detected in

if jM j � � then return idm�simplify�u�M		�

Now as long as G contains monomials ci �Z cj� we do the following� we introduce
the new Cartesian coordinate 
 � cj�ci and rewrite

u ��
�uj�cj	�ci


cj
� �u� �ujcj�	�

In these new coordinates� u admits G �� fc�� � � � �cj���cj��� � � � �cmg as set of
intermediary dominant monomials� We �nally eliminate one of the new coordinates�
using simplify and the multiplicative relation 
ci � cj�

After a �nite number of steps� our procedure yields the desired faithful Cartesian
representation for u� �

����� A variant of idm

The algorithm idm from section ����� has the property that the Cartesian coordinates
may be simpli�ed during the execution� However� for the purposes of chapters ��
and �� where additional assumptions are made on the Cartesian coordinates� such
simpli�cations may be undesirable� In this section� we show how an admissible set
of dominant monomials w�r�t� the original coordinates can be found� if such a set is
known w�r�t� wider coordinates�

Lattice subalgorithms Before stating the algorithm� we �rst need a preliminary�
Let Z and Z � be sets of Cartesian coordinates� such that Z � is wider than Z� Then
we have a natural mapping � � SZ � SZ�� which is neither injective nor surjective in
general� Interpreting � as a linear mapping from Zk into Zk

�
via natural isomorph�

isms� we recall that there exists algorithms to compute generators for the kernel of
� and to compute a preimage of any element in the image of �� For instance� the
LLL�algorithm can be used for this !see "LLL �#$�
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Algorithm idm�u	�
Input� A Cartesian representation u 
 Lz����� �zk for a series u 
 C��X���
Output�A set of intermediary dominant monomials for u w�r�t� the Cartesian

coordinates z�� � � � � zk�
G �� ��
& Let � � z���N

� � � � z�k�Nk be a superset of suppu�
repeat

& Let H be a set of intermediary dominant monomials for u� �uj�G	� w�r�t� a
wider set of Cartesian coordinates z��� � � � � z�k��

& Compute ����H	 � �� where � is the natural mapping from SZ into SZ��
G �� G  �����H	 � �	�

until H � ��
return G

Proposition �	 The above algorithm idm is correct and terminates�

Proof Let G�� G�� � � � resp� H��H�� � � � denote the successive values of G resp� H
during the execution� Since �G�	 � �G�	 � � � � forms a strictly increasing sequence
of �nal segments of �� idm terminates by Dickson�s lemma�

At the end of the algorithm� we have �uj�G	� � u� since H � ��� Furthermore�
since Hi is chosen to be a set of intermediary dominant monomials for u� �uj�Gi��	�
for all i� we have

u �� u� �uj�G�	� �� u� �uj�G�	� �� � � � �
This implies in turn that the maximal elements in each Gi for �� were already in
G�� Since there exists an element c 
 H� with c � u !if u �� �$� there exists also
such an element c� 
 G�� Therefore� G is an admissible set of dominant monomials�

�

��� Extraction of coe�cients

Let X be an e
ective quasi�ordered asymptotic scale� which admits a basis B� and
let L be an e
ective Cartesian algebra of Laurent series� Given a Cartesian repres�
entation u 
 LZ of an element u 
 C��X�� and b in B� a natural question is how
to compute the asymptotic expansion of u in b� Modulo the insertion of new ele�
ments into Z� we may assume without loss of generality that for all z 
 Z we have
z � zfreeb�z � for some zfree 
 ZZfree from b� If �z � � for all z 
 Z� then the �rst
terms of the asymptotic expansion of u can be computed by a natural generalization
of proposition ��� !see section ��	��$� The other case is far more intricate and we do
not know of a general algorithm to compute the expansion of u in b�
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To see where the di�culties lie� consider the following example� let B � fb��b�g
and Z � fz�� z�g � fb��b��b�g� where b� �� b��� Let u be a Cartesian repres�
entation in z�� z�� First of all� we observe that the expansion of u w�r�t� b� is
not grid�based in general� although the coe�cients are grid�based� For instance� if
u � ���� � z� � z�	� then

u �
X
i�Z��

b�i�
�� b�b

i
� �

X
i�N

�

�� b�b
i
��

A second� more serious problem is that we need to compute the diagonal

�ujfz�� z�� j� 
Zg��
in order to get a Cartesian representation for �b
��u� Unfortunately� �the largest
class�� as far as we know� in which diagonals of the above kind can be computed
automatically� is the class of holonomic functions !see "Lip �#� for instance$� In
particular� there is no reason for a Cartesian algebra like Lexpr from chapter � to be
stable under taking diagonals�

Fortunately� the exact computation of coe�cients of the form �b��u is not needed
for the applications we have in mind� Instead� we will only need suitable approx�
imations of them� which we call pseudo�coe�cients� Before introducing these in
section ��	�	� we �rst show how to test whether u is equal to its restriction w�r�t�
a generalized diagonal !see section ��	��$ and whether u depends on b !see ��	��$�
Actually� we will even consider the extraction of pseudo�coe�cients w�r�t� several
variables in B�

����� The �easy� case

Assume that for all z 
 Z we can write z � z�b�� where z� 
 Z is free from b and
� � �� Then idm� proposition ��� and the following straightforward generalization
of proposition ��� can be used to compute the dominant term of the expansion of u
in b !whence the �rst n terms for any n 
 N$�
Proposition �� Let u be a Cartesian representation in LZ of a series f in
C��X��� where X admits a basis B� Assume that u has a unique dominant monomial
z	�� � � � z	kk � Let b 
 B be such that zi does not depend on b for l � i � k and

zi � zfreei b�i for � � i � l� with zfreei free from b and �i � �� Then the dominant
exponent of f w�r�t� b equals

�f � ���� � � � �� �l�l

and
��z	�� � � � z	ll �u	 �zfree� 		� � � � �zfreel 		l

is a Cartesian representation for �b	f �f � �

�The notation f is used in order to refer to a natural Cartesian reprentation� of a transseries
�or series f�� In the present case� we have b� � z� and b��b� � z� by de�nition�
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����� Diagonal tests

Let u�z�� z�	 be a Laurent series in two variables in an e
ective Cartesian algebra L�
Then u � �uj�z�z�	Z�� if and only if u�z�z�� z�z�	 � u�z��� z

�
�	� In particular� we have

an algorithm to test this� by the properties of e
ective Cartesian algebras� More
generally� let Z � fz�� � � � � zkg and let � be a generalized diagonal of ZZ� i�e� �
is a subgroup of ZZ� which is generated by the intersection of a subspace of ZQwith
ZN� We will show how to decide whether u � �uj�� for u 
 Lz����� �zk � This problem
is essentially a problem of �discrete ordered linear algebra��

Proposition �� Let A and M be k � l resp� k � k matrices with entries in N
resp� N�� Assume that l � k and the rank of B � MA is l� Then there exists an
invertible matrix U with entries in Q��� such that B � UA�

Proof By classical linear algebra� there exists an invertible matrix V with coe��
cients in Q� such that B � V A� Now consider the matrix U� � �V ���� �	M � We
have B � U�A for all � 
 Q� V being invertible the polynomial detU� in � is non
zero� Hence� detU� �� � for all � �� � su�ciently close to zero� Since the entries of
M are in N�� the matrix U� has coe�cients in Q�� for � su�ciently small� Hence�
U � U� ful�lls our hypothesis for some su�ciently small �� �

Proposition �� Let A be an k � l matrix of rank l � k with entries in N� Then
there exist matrices M and U with entries in N�� and respective ranks l and k� such
that MA � UA and MA has rank l�

Proof Let M� be an arbitrary matrix of rank l and with entries in N�� such that
M�A has rank l� By the previous proposition� there exists an invertible matrix U�

with entries in Q��� such that U�A � M�A� Let p 
 N� be the greatest common
divisor of the denominators of the entries in U�� Then A � pA� and U � pU�

obviously ful�ll the requirements� �

Clearly� the above proofs actually provide an algorithm to construct M and U �
Let us now come back to our initial problem� and let ��� � � � � �l 
 ZN be expo�linearly
independent generators for the group �Q with Q�powers� Each �i corresponds to a
column of a k � l matrix A with entries in N� by decomposing �i w�r�t� Z� Now let
M and U be as in proposition ���� Then u � �uj��� if and only if M ! u � U ! u�
where the matrix action ! is de�ned as follows�

M ! u �
X
V�Zk

uV����� �Vkz
M���V
� � � � zMk��V

k �

Remark �� To checkM!u � U !u in a reasonably e�cient way� it is important to
choose M and U � such that their entries are as small as possible in proposition ����
We have not yet undertaken a detailed study of this issue�
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����� Dependency on basis elements

Let B� be a subset of B� We now present an algorithm to test whether the class
u of a Cartesian representation u 
 LZ depends on B�� That is� we test whether
u � �

Q
b�B� b


�u�

Algorithm depends�u�B�	�
Input� A Cartesian representation u 
 Lz����� �zk for a series u 
 C��X���

An subset B� of the basis B for X�
Output�The result of the test whether u depends on B��

� �� ��
while true

if u � � then return true
G �� idm�u	
if c depends on B� for some c 
 G then return false
� �� �  G
& Choose c minimal in G for �X�
if �ujcIN� � �ujc�IN��Q	� for some initial segment I of G for �X then

& Choose I maximal with this property� and set u �� u� �ujcIN��

Remark �	 We notice that the problem of computing generators for IN��Q is
an easy application of the LLL�algorithm�

Remark �� We assume that redundant elements in Z are eliminated during the
successive applications of idm� whenever possible�

Proposition �� The algorithm depends is correct and terminates�

Proof The correctness of the algorithm is clear� since the part of u which depends
on B� does not change throughout the algorithm� Assume that depends does not
terminate on some input� The dimension of �Q being bounded� �Q and �N are
constant after a su�ciently large number of iterations� Similarly�Z remains constant
after a su�ciently large number of iterations�

By Dickson�s lemma� the sequence of successive choices for c admits an increasing
subsequence for �Z� say c��c�� � � � � Without loss of generality� we may assume that
�Qand Z are constant from the choice of c� on� Let I be the smallest initial segment
of Z for �X� such that there exists an n� for which cn�cn��� � � � are all contained
in cnIN� We claim that for each i 
 N� there exists an m � n with cm 
 cn�Q I	i�
Indeed� otherwise there would exist a z 
 I� such that the exponent of cm in z
remains bounded by i for all m � n� whence this exponent tends to a �nite limit�
But this would imply that cn� �cn���� � � � are all contained in cn��I �fzg	N for some
n� � n� which contradicts the minimality hypothesis on I�

Let v � �ujcnIN� � �ujcn�IN��Q	�� just after the choice of cn� Let m �
cnz

��
� � � � z�kk be a dominant monomial for v� Such a monomial exists� since v �� ��
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and depends on B�� Let � � max���� � � � � �k	� By our claim� there exists an m � n
with cm 
 cn�

Q
I	���� Since u remains unaltered except for terms which do not

depend on B�� and since m �� m� the term umm of u must have canceled out against
another term in the call of idm which precedes the choice of cm� But this contradicts
the constancy assumption on Z� �

����� Pseudo�coe�cients

Let B� be a subset of B and let q �
Q
b�B� b�b be a monomial in SB�� In this

section we will show how to compute the pseudo�coe�cient hqif of f in q� where
f resp� q are represented by u resp� c� The idea behind pseudo�coe�cients is the
following� if f�q is a series which is free from B� � B� then hqif should coincide
with �q�f � Otherwise� they should coincide at least up till terms � � with � "" m for
each dominant monomial m of f�q� �q�f � Intuitively speaking� a pseudo�coe�cient
is just su�ciently close to the real coe�cient to make the algorithms which use
them work� Pseudo�coe�cients are computed by slightly modifying the algorithm
depends from the previous section�

Algorithm pseudo�coefficient�u�q	�
Input� A Cartesian representation u 
 Lz����� �zk for a series f 
 C��X���

A monomial q in SB�� where B� � B�
Output�A Cartesian representation for hqif �
u �� u�q
u
 �� u
� �� ��
while true

if u � � then return u
 � u
G �� idm�u	
if c depends on B� for all c 
 G then return u
 � u
� �� � G
& Choose c minimal in G for �X� such that c does not depend on B��
if �ujcIN� � �ujc�IN��Q	� for some initial segment I of Z for �X then

& Choose I maximal with this property� and set u �� u� �ujcIN��
Remark �� In principle� we may have to introduce some new Cartesian coordin�
ates in order to compute the Cartesian representation q� However� in practice such
a Cartesian representation is often known already� in which case we may use this
one instead�

The termination of this algorithm is proved in a similar way as the termination of
depends� Although pseudo�coe�cients are not de�ned canonically by the algorithm
pseudo�coefficient� they always do satisfy the following property�
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Proposition �� For any possible outcome of pseudo�coefficient� each dom�
inant monomial of f�q � hqif depends on B�� �

��
 Automatic expansion of L	�nite transseries

Let L be an e
ective Cartesian algebra of Laurent series over an e
ective ordered
exp�log �eld C� We say that L is an e
ective exp�log Cartesian algebra�
if L is e
ectively stable for left composition of in�nitesimal Laurent series with
���� � z	� log�� � z	 and ez� Let T be the smallest sub�eld of C���x���� containing
x� which is stable under left composition of in�nitesimal transseries with Laurent
series in L� Transseries in T are called L��nite� They are represented by L�exp�log
expressions� which are expressions built up from x by the exp�log �eld operations
and left compositions with elements in L� We notice that L contains in particular
the constants in C� In this section� we will show that T is an automatic e
ective
exp�log �eld�

����� The basic expansion algorithm

The following expansion algorithm is a straightforward generalization of expand
from chapter �� As before� B � fb�� � � � �bng is a dynamic e
ective normal basis�
which is initialized by B �� fx��g�
Algorithm expand�f	�
Input� An L�exp�log expression f in T�
Output�A Cartesian representation f for f �

Case f � x� Return �x��	���

Case f � u�g�� � � � � gi	 
 Lg����� �gi�
Step �� Compute Cartesian representations g�� � � � � gi for g�� � � � � gi by expand�

Check whether g�� � � � � gi are in�nitesimal�
In�nitesimalize g�� � � � � gi�

Step �� Return u�g�� � � � � gi	�
Case f � g��g�� � 
 f���� �� �g�
Step �� Compute Cartesian representations g�� g� for g� and g� by expand�

If � � �� then check whether g� �� � and regularize g��
Step �� Return g��g��

Case f � log g�
Step �� Compute a Cartesian representation g for g by expand�

Compute the dominant monomial of g via idm�
Regularize g�
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FINITE TRANSSERIES ���

Step �� Compute � and ��� � � � � �n 
 C with � �� � and g � cgb
��
� � � � b�nn �� � �	�

If �� �� �� then insert log�� b��� into B�
Step �� Return log cg � ��log b� � � � �� �nlog bn � log�� � �	�

Case f � exp g�
Step �� Compute a Cartesian representation g for g by expand�
Step �� If g is bounded� then do the following�

a� Compute cg � g

�
n times��� �


and � � g � c�

b� In�nitesimalize ��
c� Return ece��

Step �� If there exists an � � i � n with g � log bi� then do the following�
a� Compute the limit � of g� log bi�
b� Return b�i expand�e

g�� logbi	�
Step �� In the remaining case� do the following�

a� Compute i� with log jgj � log bi��
b� Decompose g � g� � g�� with g� � g


�
n�i� times��� �


�

c� Insert e�jg
�j into B�

d� Return �e�jg
�j	�signg

�
eg

�
�

Theorem �� Let L be an e�ective exp�log Cartesian algebra of Laurent series�
Then the exp�log �eld T of L��nite transseries in x is e�ective and automatic� �

Example �� The above theorem seriously enlarges the class of functions for which
we can compute automatic asymptotic expansions� For instance� modulo Schanuel�s
conjecture� we may include the power series of the trigonometric functions at zero
into L� Then the expansion algorithm may be applied to expressions like

ex
	 sin sin�x���e�x� � �

sin sin e�x�

and many others� When we allow heuristic zero�tests for Laurent series� then we
may also include the Laurent series

log ��x	 � x log x� �



log x�

�



log�
		 �

�X
i	�

B�i


i�
i� �	x�i��

in log�� x and x�� into Llog�� x�x��� Hence� we can automatically expand expressions
like

��x� ����x		 � ��x	
log x

�

In a similar fashion� many other expressions involving special functions can be ex�
panded automatically�
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����� A canonical expansion algorithm

In section ��� we have introduced the concept of canonical bases� If instead of
computing decompositions g � g��g�� we compute decompositions g � g
�gc�g�

in step 	b of the exponential case of expand� then the normal basis B actually
remains a canonical basis� Such decompositions are computed using the formula

g
 �
X
�n


�b�nn �g �
X

�n��


�b
nb
�n��
n�� �g � � � �� X

��


�b
n � � � b
�b��
� �g�

Expansions of exp�log expressions with respect to canonical bases are interesting
because they do not depend on the order in which the expansions of the subex�
pressions are computed� However� we do not recommend the use of canonical bases
for practical purposes for two reasons� �rst� the complexity of algorithms based on
canonical may be dramatic� as shows the following example�

f�x	 � exp
xN

�� x��
� eex

N�����x � ex��ex
N�����x � � � � �

where N is a very large integer� Indeed� in this example the computation of xN �
� � ��x takes a time proportional to N � A second reason not to use canonical bases is
that they essentially depend on the choice of x as �coordinate function�� Therefore�
canonical bases admit no natural generalization to higher dimensions�

Nevertheless� canonical bases are interesting for certain theoretical purposes� be�
cause the above algorithm shows that the purely unbounded part f
 of a transseries
f 
 T is actually in T� If we take for L the smallest Cartesian algebra of Laurent
series over C� such that its subset of in�nitesimal elements is stable under left com�
position with exp z� �� log��� z	 and in�nitesimal real algebraic power series� then
we have in particular�

Proposition ��� If f is an L�transseries� then so are f
� f �� f
�
and f�� �

��� Computations with implicit functions

����� Local communities

A local community of power series over C is a Cartesian algebra R of power series
over C� which satis�es the following additional conditions�

LC� z� 
 Rz� �
LC� R is stable under the partial derivation �z� �
LC� For each in�nitesimal P 
 Rz����� �zk�� with �z



� � � � z
kz�k���P �� � we have a

homomorphism Rz����� �zk��

�P� Rz����� �zk � which corresponds to the implicit
de�nition of zk�� 
 C��z�� � � � � zk�� by P � ��
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The condition LC� means that local communities are stable under the resolution of
regular systems of functional equations� In particular� R is stable under composition
and functional inversion� whence local communities are the natural local structures
in which all classical operations are de�ned�

Proposition ��� Let R be a local community of power series over C� Then

a� R is stable under composition�
b� R is stable under regular functional inversion�
c� R is stable under extraction of coe�cients�

Proof Let u 
 Rv� ���� �vl� where v�� � � � � vl are in�nitesimal power series v�� � � � � vl
in Rz����� �zk � Applying k times LC� to the equations v� � v�� � � � � vl � vl we ob�
tain a natural homomorphism of Rv����� �vl�z����� �zk into Rz����� �zk � which sends u to the
composition of u with �v�� � � � � vl	� This proves !a$�

Next� let v�� � � � � vk represent in�nitesimal power series v�� � � � � vk 
 Rz����� �zk �
If the linear parts of v�� � � � � vk determine an isomorphism of Ck� then applying k
times LC� to the equations v��v�� � � � � vk�vk� we obtain a natural homomorphism
of Lv����� �vk�z����� �zk into Lv� ���� �vk � Left composition of this homomorphism with the
natural inclusion Lz����� �zk � Lv� ���� �vk�z����� �zk yields a natural isomorphism between
Lz����� �zk and Lv����� �vk � This proves !b$�

Finally� let u 
 Lz����� �zk be given� Since �z


��u is precisely the substitution of z�

by � in u� we have �z
��u 
 Lz����� �zk by !a$� More generally� for each i � �� we have

�zi��u �
�

i�
�z
��

�
�iu

�zi�

�
�

whence �zi��u 
 Lz����� �zk for each i� This proves !c$� �

A Cartesian algebra L of Laurent series over C is said to be a local community�
if its associated Cartesian algebra of power series is� By what has been said in
section ������ we can naturally associate local communities of power series to local
communities of Laurent series and vice versa� However� we usually start with a local
community of Laurent series because of remark ����

Example �� The intersection of an arbitrary family of local communities is a
local community� In particular� there exists a smallest local community over C� This
local community contains all algebraic power series�

Example �	 Let C��z�� z�� � � � ��conv denote the set of power series u�z�� � � � � zk	
which converge in an open neighbourhood of ��� � � � � �	� and let C��z�� z�� � � � ��conv
denote the natural C�algebra of Laurent series associated to C��z�� z�� � � � ��conv� By
the implicit function theorem� C��z�� z�� � � � ��conv and C��z�� z�� � � � ��conv are local
communities�
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Example �� The subalgebras of all regular D�algebraic power series resp� Laurent
series of C��z�� z�� � � � �� resp� C��z�� z�� � � � �� are local communities !see section D����$�
More generally� the regular D�algebraic closure of a local community is also a local
community�

����� Eective local communities

Let C be an e
ective �eld of constants of characteristic zero� An e
ective local
community over C� is an e
ective Cartesian algebra over C� which satis�es LC��
LC� and LC� e
ectively� I�e� the partial derivations are e
ective� as well as the
natural mappings "P from LC�� Moreover� these mappings "P can be computed as
a function of P � The following proposition is the e
ective counterpart of proposi�
tion �����

Proposition ��� Let R be an e�ective local community of power series over C�
Then

a� R is e�ectively stable under composition�
b� R is e�ectively stable under regular functional inversion�
c� R is automatic� �

Let C be an e
ective totally ordered exp�log �eld of constants� The above pro�
position implies that R is an e
ective exp�log Cartesian algebra� as soon as C is a
totally ordered exp�log �eld with log�� � z	� ez 
 Rz� In this case we say that R is
an e
ective exp�log local community�

Example �� In section D���� we have shown that the regular D�algebraic series
over C form an e
ective local community� In fact� local communities of this type are
su�ciently general for the applications to asymptotic expansion algorithms which
will be considered in this thesis� However� there is no need to restrict our attention
to this particular type of local communities�

Example �� There exists a smallest local community R of power series over
C� which contains exp z� and log�� � z�	� Since exp z� and log�� � z�	 are regular
D�algebraic� R is e
ective� This local community will be su�ciently rich for the
applications in chapter ��� We notice that the series in R are convergent� if C is a
sub�eld of C �

����� Automatic expansions of implicit functions

In section ���� we have described the Newton polygon method from a theoretical
point of view� In this section� we show how this method can be made e
ective in
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the setting of local communities� Although the results of this section will not be
applied in what follows� the section can be seen as an introduction to section ���	���

Let C be an e
ective �eld of constants of characteristic zero� such that the solu�
tions in C to any polynomial equation over C can be computed by algorithm� Let
X be an e
ective totally ordered monomial group with Q�powers� Let L be a local
community of Laurent series� and R the associated local community of power series�
Our aim is to compute the solutions to asymptotic equations in C��X�� of the form

P
 � P�f � P�f
� � � � � � � �f �� q 
 X	� !���$

where there exists an i 
 N� with Pi "" Pjq
i�j for all j 
 N� To do this� we assume

that the series P
�P�f� � � � is given by a Cartesian representation u 
 Rz� ���� �zk�f�q�
for some �nite set Z � fz�� � � � � zkg of in�nitesimals in X� We also assume that
q 
 SZ�

Remark �� If P �f	 � P
�P�f� � � � is a polynomial� then we obtain all solutions
to !���$ by taking q small enough� Equations of the form P	f

	�P	��f
	��� � � � � �

with � 
Zcan be reduced to !���$ by multiplication with f�	�
Theorem �� There exists an algorithm� which given P and q satisfying the
above assumptions computes the set of all solutions to ���� in C��X���

Proof We have to show how to make the di
erent steps of polynomial�solve in
section ��� e
ective� taking into account the extension from section ��	�

Let us �rst show how to compute an a priori bound d
 for the Newton degree
of !���$� we substitute f by f�c in !���$� thus reducing the general case to the case
when c � �� Next we apply the algorithm idm to �nd the dominant monomial of
P when considered as a series in C��f ����X��� Then d
 is just the valuation of the
corresponding dominant coe�cient as a series in f �

Let us now show how to perform steps � and �� if we have an a priori bound
d
 for the Newton degree of !���$� we start by computing mP� � � � � �mPd� � using idm�
Then the potential dominant monomials c � q relative to !���$ are necessarily of
the form c � j�i

q
mPi�mPj with � � i � j � d
� To decide whether such a c is

indeed an potential dominant monomial� it su�ces to check that mPlc
l �� mPic

i for
all � � l � d
� In particular� this yields an algorithm to compute d� The Newton
polynomials associated to the potential dominant monomials can be computed by the
hypothesis on C� Hence� we have an algorithm to compute the potential dominant
terms of f �

The only non trivial thing which remains to be shown is how to compute the
unique solution to P �d�����	 � � in step �� Clearly� it su�ces to show this for
d � �� We �rst reduce the problem to the case when q � �� u� � �f��u � � and
u 
 Rz����� �zk�f � This is done by substituting f by f�c in !���$� dividing u by u� and
regularizing u as a Laurent series in C��f ����X��� Now the e
ective counterpart of
LC� yields the unique in�nitesimal solution to !���$ in Rz����� �zk � �
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Remark �� The substitution of f by �� �f in step � of polynomial�solve may
be unnecessarily expensive from a complexity point of view� Consider for instance
the example �

f � �

� � x��

��
� e�x

�
f � e�x �x��	�

Application of the above algorithm leads to the re�nement

f �
�

�� x��
�
ex

�



� �f� � �f �� �	�

However� the re�nement

f �
�

� � x��
� �f� � �f �� �	

would clearly avoid in�nite loops as well and leads to simpler formulas� The reason
is that we did not exploit the information that x�� ��� e�x ��� e�x

�
�

Let us now sketch an alternative approach� based on the observation that we can
often e�ciently check whether P ��	 � �� for instance� a heuristic test is usually
su�cient� In the case when P is a polynomial� we can check whether P ��	 � ��
by considering the g�c�d� of P� �P��f� � � � � �d��P��fd��� As in the example above�
we will replace the substitution of f by � � �f by a less expensive substitution if
P ��	 �� �� We denote ui � �f i�u for each i� We assume that q � � and that we have
ordered z� �X � � � �X zk�

Let c � z��
� � � � z�kk and let z��� � � � z�kk be the dominant monomial of P
� Without

loss of generality� we may assume that ui has been regularized� and that its dominant
monomial is z���i��

� � � � z�k�i�kk for � � i � d� otherwise� we eliminate one of the zi
using simplify� Now consider the Newton polynomial in zk�

�z�kk �u
 � ��z
�k��k
k �u�	f� � � � � � ��z�k�d�kk �ud	f

d
� �

If this polynomial has a root f� of multiplicity d� then we substitute f by f�z
�k
k � �f �

Otherwise� we consider the Newton polynomial in zk and zk���

�z
�k��

k�� z
�k
k �u
 � ��z

�k����k��

k�� �z�k��kk �u�	f� � � � � � ��z�k��d�k��

k�� �z�k�d�kk �ud	f
d
� �

We repeat this procedure until such a Newton polynomial admits a root of mul�
tiplicity d� Of course� this is ultimately the case� since the Newton polynomial in
z�� � � � � zk is nothing but the usual Newton polynomial�

��� Newton polytopes

Let C and K be e
ective totally ordered �elds and X be an e
ective monomial group
with K�powers� We assume that X is admissible� i�e� given z�� � � � � zk 
 X� we can
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compute a �nite system of expo�linear constraints � on zK� � � � zKk � which determines
precisely the quasi�ordering induced by X�

Let f be a non zero series in C��X�� and M its set of dominant monomials� The
convex envelopeC !when considering X as a vector space over K$ of the �nal segment
generated by M is called the Newton polytope associated to f � The intersection
N � C �M is said to be the combinatorial Newton polytope associated to f �
If H is a hyperplane with H � C �� �� and such that C is contained in a halfspace
with border H� then H � C is said to be a facet of the Newton polytope C and
H �N a facet of the combinatorial Newton polytope�

Proposition ��� Let L be an e�ective Cartesian algebra of Laurent series over
C� There exists an algorithm� which given a Cartesian representation u 
 Lz����� �zk
for a series f in C��X�� computes the combinatorial Newton polytope associated to f �

Proof Compute a set G of intermediary dominant monomials for u� Now assume
that the ordering on X induces on zK� � � � zKk an ordering which is determined by a
set of constraints � as above� Let F be a subset of G and c 
 F � such that c is a
dominant monomial of u� Let �� be the set of constraints c � w for w 
 Fnfcg
and c �� w for w 
 GnF � Then a subset F represents a facet of the combinatorial
Newton polytope associated to u if and only if ��� is consistent� The consistency
of �  �� is checked using theorem �	� �

Remark �� Let Y be a totally ordered monomial groups with K�powers� Let
X � C��Y�� be a morphism of multiplicative ordered groups� Such a morphism
extends by linearity into a mapping C��X��

�� C��Y��� Then the set F of those c in
M which minimize m��c� is a facet of N � Usually� m��f� � mc for all c 
 F � this is
called the regular case� The case when m��f� � mc for all c 
 F is called the singular
case� See section ���� for more details�

In the case when we want to solve systems of equations f� � � � � � fn � �
with f�� � � � � fn 
 C��X��� we need to consider the Newton polytopes associated to
f�� � � � � fn simultaneously� Then the analogue of a facet of the Newton polytope in
the case n � � is a compatible set of facets of these Newton polytopes� Let us now
make this concept more precise�

Let C�� � � � � Cn resp� N�� � � � � Nn be the Newton polytopes resp� combinatorial
Newton polytopes associated to f�� � � � � fn� Let B�� � � � � Bn be facets of C�� � � � � Cn

respectively� Considering X as an ordered K�vector space� there exist by de�nition
linear functionals ��� � � � � �n � X � K� and numbers c�� � � � � cn 
 K such that
Ci � ���i ��ci���	 and Bi � Ci � ���i �ci	 for all i� If we can choose �� � � � � �
�n� then we say that the facets B�� � � � � Bn are compatible� In this case� the
corresponding facets F� � B� �N�� � � � � Fn � Bn �Nn of the combinatorial Newton
polytopes N�� � � � � Nn are said to be compatible as well� In the e
ective context from
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above� compatible facets of the combinatorial Newton polytopes can be computed
by checking the consistency of systems �  ���  � � �  ��n� with obvious notations�

Remark ��� Let � be as in the previous remark and let M�� � � � �Mn be the
respective sets of dominant monomials of f�� � � � � fn� Let Fi be the set of those c in
Mi which minimize m��c� for each i� Then F�� � � � � Fn are compatible�



Chapter ��

Multivariate series

���� Introduction

Note For convenience� we exceptionally use the letters x � y � etc� to denote positive
in�nitesimal parameters in this and the following chapter� In order to avoid confu�
sion with the usual convention� we distinguish between x and x by using a di
erent
font�

Let K be a �eld of characteristic zero� Let C be a totally ordered real algebra�
ically closed �eld with K�powers� Let G be a non trivial totally ordered monomial
group with K�powers� Let X � fx�� � � � � xpg be a �nite set of strictly positive in�n�
itesimal parameters in C��G����� the set of positive in�nitesimal grid�based series in
G� We recall that a series f 
 C��SX�� is regular� if f admits a unique dominant
monomial !see page 	�$� Regular series are important because they are the only
ones which are invertible in C��SX�� by proposition ���� whence the only ones which
can be composed on the left with other univariate series�

Although series f are not regular in general� they may be regular on certain
regions R of �C��G����	

k� For instance� f � x�� � x�� is not regular� but on the
region R � f�x�� x�	 
 �C��G����	�jx�� �� x��g� f is a regular series in C��SX��� Here
SX � xZ� � � � xZp carries the natural� ordering determined by the asymptotic relation
�� on R�

Unfortunately� given an arbitrary series f on a region R� it is not always possible
to split up R in a �nite number of regions� each on which f is regular� in general�
a sequence of changes of coordinates� or re�nements� needs to be made� whose
inverses are determined by Puiseux series� For instance� in the case of f � x�� � x�� �
f is regular on the regions R � f�x�� x�	 
 �C��G����	�jx�� �� x��g and R � f�x�� x�	 

�C��G����	

�jx�� �� x��g� but some additional action needs to be undertaken on the
region R � f�x�� x�	 
 �C��G����	�jx�� � x��g�

�In terms of section ���� this means that �R is de�ned by x
��
� � � � x

�p
p �R x

��
� � � �x

�p
p � i�

x�
�� � � �xp

�p �� x�
�� � � � xp

�p for all �x�� � � � � xp� � R� Here we remind warning ����

���
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In this chapter� we give an algorithm� which automatically performs the neces�
sary re�nements in order to compute the generic dominant monomial of f � In other
words� we are able to decompose R in a �nite number of regions� each on which
f has a well determined asymptotic magnitude� In section ����� we introduce co�
ordinate systems and re�nements from a theoretical point of view� In section �����
we consider the e
ective counterpart of section ����� In section ���	 we describe
a generic generalization of the Newton polygon process� Finally� the algorithm to
compute generic dominant monomials is given in section �����

Our algorithm has several applications� it provides a uniform way to compute
with multivariate series� but it can also be used to solve systems of asymptotic equa�
tions� The algorithm can �nally be used to desingularize singularities determined
by multivariate series� although this topic will not be studied here�

� � �

Let us discuss the relation between the results in this chapter and the classical
desingularization problem in algebraic geometry� Geometrically speaking� the main
di
erence between our approach and the more classical napproach is that we do not
search for a global non singular projective variety which parameterizes the original
singular variety� instead� we cut the singular variety into pieces� such that each piece
is non singular� Moreover� the resulting pieces can be described and parameterized
e
ectively� However� the di
erent pieces are not determined uniquely !the way
we cut in particular depends on an elimination order on the variables$� and our
algorithms do not provide information about how the pieces glue together�

In other words� we consider a somewhat easier problem in a less general setting�
Nevertheless� our way of describing singularities also has an important advantage�
instead of embedding the variety in a higher dimensional one� the dimensions of
the pieces are all bounded by the dimension of the original variety� Moreover� our
parameterization is more natural in some respects� because each piece is described
in a fairly easy manner� while the description of the non singular projective variety
may involve several complicated relations�

It is also in order to compare our results to what is known when the Laurent
series we consider are polynomials� In that case� Mora�s tangent cone algorithm
applies !see "Mora �#� resp� "MPT ��#$� and this algorithm can be used !see "AMR
�#$ to compute standard bases in the sense of Hironaka !see "Hir �	#$� In particular�
the desingularization process from algebraic geometry can be carried out e
ectively�

From the complexity point of view� one might expect that the more general types
of orderings� which are used in the tangent cone algorithm are more e�cient� for a
similar reason that Groebner basis computations are usually more e�cient than the
computation of Ritt�Wu bases� Whether this analogy holds is not clear at present�
our main technical ingredient is a generalization of the Newton polygon method�
which has no counterpart in the Ritt�Wu method� Furthermore� since our algorithm
has not been implemented� no practical evidence is available yet�
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���� Terminology

Linguistic convention The following convention will be useful in what follows�
the set X is called a set of variables� Whenever the values of the xi are restricted
to belong to a region R� then X is called a set of coordinates !for R$� Hence
coordinates are really determined by pairs �X�R	� although we will often abusively
write X instead of �X�R	�

Abstract de�nition of the function space F�R	 We now describe a function
space consisting of formal expressions build up from X� the �eld operations and tak�
ing power series in other in�nitesimal expressions� Hidden in�nitesimal parameters�
which are needed to describe singularities are directly available as expressions in this
function space�

Denote by F�R�C��G��	 the set of mappings from R into C��G��� This set is
an ordered ring� on which we de�ne the asymptotic relations �� � �� ��� ��� and
�� componentwise� for instance� f �� g if and only if f �P 	 �� g�P 	 for all P 
 R�
There exists a natural mapping �X of X into F�R�C��G��	� which maps xi to the
projection mapping

� �x�� � � � � �xp	 
 R �� �xi�

Now let f�� � � � � fp be positive in�nitesimal elements in F�R�C��G��	 and let us give
Sf����� �fp the natural ordering determined by ��� Then we have a natural mapping
�f����� �fp from C��Sf����� �fp�� into F�R�C��G��	� which mapsX

������ ��n
c������ ��nf

��
� � � � f �np 
 C��Sf����� �fp��

to the mapping
P 
 R �� X

������ ��n
c������ ��nf��P 	

�� � � � fp�P 	�n�

We de�ne F�R	 to be the smallest subring of F�R�C��G��	� which contains the image
of �X � and such that im�f����� �fp is contained in F�R	� for all f�� � � � � fp in F�R	�� �
ff 
 F�R	jf �� � � f � �g� In particular� we have a natural mapping �R of C��SX��
into F�R	� where SX � xZ� � � � xZp carries the natural ordering determined by �� on
R !notice that we should actually write SR

X instead of SX$� Whenever convenient�
we !abusively$ identify elements with their images through natural mappings�

Changes of coordinates LetX � � fx ��� � � � � x �k�g be a second set of strictly positive
in�nitesimal variables� Let � be a mapping of X � into F�R	��� Such a mapping
induces a region R� of �C��G����	

k� by

R� � f���x ��	� �x�� � � � � �xp	� � � � � ��x �k�	� �x�� � � � � �xp		j� �x�� � � � � �xp	 
 Rg�
Then � naturally extends into a mapping from C��SX ��� into F�R	� and from now
on we assume that we have done this� Moreover� there exists a natural mapping ��
such that � � �� � �R �



��	 CHAPTER ��� MULTIVARIATE SERIES

If �� is an isomorphism and if there exists a morphism� � � C��SX�� � C��SX ����
with �R � � � �� then we say that � is a change of variables relative to R or a
change of coordinates� Assuming that � is such� we have the following commut�
ative diagram�

C��SX ��� F�R�	

F�R	C��SX��

�R

�
���

�R

We notice that � preserves regular series� We also remark that coordinate changes
can be composed� if �� � C��SX ����� F�R�	 is a second change of coordinates� then
�� � �� is also a change of coordinates� as illustrates the following diagram�

C��SX ���� F�R����	

C��SX ��� F�R�	

C��SX�� F�R	

�R��

��
�����

�R

�
���

�R

A restriction of the coordinate system �X�R	 is a coordinate system �X�R�	
with R� � R� Such a restriction induces a natural morphism F�R	 �� F�R�	� More
generally� a re�nement is a change of coordinates � � C��SX ��� � F�R�	 with
R� � R% the coordinate system �X �� R�

�	 is said to re�ne �X�R	� Again� re�nements
can be composed� if �� � C��SX ����� F�R��	 is a second re�nement� then ���� is also
a re�nement� where � is the natural isomorphism between F�R��	 and F�R��

������R�
	�

This situation is illustrated by the following diagram�

C��SX ���� F�R��
��	

C��SX ��� F�R�
�	 F�R��	

C��SX�� F�R	 F�R�	 F�R��
������R�

	

�R��
�

�� ��
���

�R�


� �
�� �

�R

Let f be a Laurent series in C��SX��� A desingularization of f relative to a
region R� � R is a re�nement � � C��SX ��� � F�R�	� such that �R� is injective

�By morphism we mean here a morphism of strong C�algebras� I�e� � is a C�algebra homo�
morphism which preserves in�nite summation�
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and ��f 	 is a regular series in C��SX ���� Here � is a mapping as mentioned above�
which is actually uniquely determined by the requirement that � be a desingular�
ization� It can be checked that the composition of a desingularization of f with
another desingularization !in the sense of composition of re�nements$ yields again
a desingularization of f �

Example ��� Let f � x�� � x�� � If we have x�� �� x�� or x�� �� x�� � then we say
that we are in the regular case and �R yields a trivial desingularization of f � In
particular� we can expand

�

f
� � �

x��
� x��

x��
� x��

x��
� � � �

on the region where x�� �� x�� and

�

f
�
�

x��
�

x��
x��
�

x��
x��
� � � �

on the region where x�� �� x�� � If x
�
� � x�� � we either have f � x�� or f �� x�� � In the

�rst case� the critical case� we can write x� � x
���
� ����	 with � �� � and � � � �� ��

We then distinguish the three cases � � �� � � � and � � �� for which the following
re�nements respectively desingularize f ������

x� � x ��
�� x� � x ��

���� x ��	 �x
�
� �� �	�

x� � x ��
�� x� � x ��

���� x ��	 �x
�
� �� �	�

x� � x ��
�� x� � �x ��

��

They respectively lead to the following expansions of ��f �

�

f
�

�����������
�

������x ���
�

���x ��
�������x ���

� � � � �
�

������x ���
� ���x ��

�������x ���
� � � � �

�
������x ���

�

Finally� let us consider the singular case x�� � x�� and f �� x�� � Writing x�� � x�� �
x�� �� with � �� �� we have either � � �� � � � or � � �� These three cases respectively
lead to the desingularizations�����

x� � x ��
�� x� � x ��

��� � x ��	 �x
�
� �� �	�

x� � x ��
�� x� � x ��

���� x ��	 �x
�
� �� �	�

x� � x ��
�� x� � x ��

��

of f and to the following expansions of ��f �

�

f
�

�������
� �

�x ��
�x ��
� �

�x ��
� � � � � �

� �
�x ��

�x ��
� �

�x ��
� � � � � �

Error�
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���� E�ective re�nements

In this section� we describe how the concept of coordinate systems and re�nements
can be made e
ective� thereby establishing the framework for the algorithms in the
next sections�

������ Eective assumptions

In the rest of this chapter� we make the following e
ective assumptions�

A�K is an e
ective �eld of characteristic zero�
A�C is an e
ective totally ordered constant �eld with K�powers�
A��C � C���� ��� � � � 	 is the e
ective parameterized constant �eld over C�
A�L is an e
ective local community of Laurent series over �C�

Let us detail condition E�� any element in �C is a rational fraction in a �nite number
of parameters over C� In our algorithms� we allow the dynamic imposition of polyno�
mial constraints on these parameters !either equations� inequations or inequalities$�
The consistency of such systems can be checked by classical algorithms from e
ective
real algebraic geometry !see for instance "Col ��#$� In practice� only a �nite number
of parameters ��� � � � � �i are used at each instant� and new parameters �i��� �i��� � � �
are introduced whenever necessary�

������ The coordinates

Coordinates The coordinates are determined by couples �X��	� where

� X � fx�� � � � � xpg is a set of formal variables�

� � is a set of asymptotic constraints which determines a region R�

As was the normal basis B in the expansion algorithm� our coordinate system is
determined dynamically� This means that X and � are global variables� which may
change during the execution due to re�nements� We always work with respect to
the current coordinate system� which is determined by the last re�nement�

The set of variables X We assume the existence of an elimination ordering

x� �
elim � � � �elim xp

on the variables� Intuitively speaking� this means that x� will be eliminated before
x�� when necessary�
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The set of constraints � The set � is a consistent set of constraints of one of
the following forms� �

x��
� � � � x�pp �� ��

x��
� � � � x�pp � �� !����$

where ��� � � � � �p 
Z� In section �	��� we have shown how the consistency of � can
be checked by algorithm��

Initialization At initialization� � contains the constraints xi �� � for all � � i � k�
and optionally some additional constraints�

������ Cartesian representations

Dependency on coordinates Let u be a Cartesian representation in z�� � � � � zk
of a series f in �C��SX��� We say that u depends on the coordinate xi� if zj depends
on xi for one of the underlying Cartesian coordinates� Here we notice that this not
imply u to depend on xi� consider for example the Cartesian representation z�z� of
y � with z� � xy��� z� � y �

Intermediary dominant monomials For the computation of intermediary dom�
inant monomials� we use the algorithm idm from section ������ We recall that no
changes of the Cartesian coordinates may result from the application of this version
of idm�

������ Eective re�nements

Re�nements In our algorithms� we only consider re�nements of the form

R� xq � c�v � x �q	 �x
�
q �� �	%

R� xq � c�v � x �q	 �x
�
q �� �	%

R� xq � cv�

Here c is a C�in�nitesimalmonomial and v � � a C�regular Cartesian representation�
which do not depend on x�� � � � � xq��� Notice that we have eliminated xq in the last
case� so that xq�� � x �q� � � � � xp � x �p���

Automatic updating of Cartesian representations Assume that we perform
a sequence of re�nements of the above forms� Then the old coordinates can al�
ways be expressed e
ectively in the new ones and vice versa on the current region�
Re�nements resp� desingularizations with this property are called e
ective� By
proposition ����� we can rewrite any series in the old coordinates as a series in the
new coordinates�

To perform these rewritings automatically when necessary� each Cartesian rep�
resentation in memory contains a �eld� specifying its Cartesian coordinates� Each

�Indeed� it su�ces to consider the xi as parameters in G! this is equivalent from an asymptotic
point of view� since any series in C��G���� is asymptotic to its dominant monomial�
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time we attempt to access a Cartesian representation whose coordinates are not the
current ones� then we perform the necessary rewritings� We call this strategy the
automatic updating strategy�

Automatic updating of Cartesian monomials Letw be a Cartesian monomial�
Then after a re�nement of one of the form R�� R� or R�� or a sequence of such
re�nements� it is straightforward to compute the dominant monomial m of w w�r�t�
the new coordinates� Indeed� in the case of one re�nement it su�ces to replace xq
by c in w� Using the automatic updating strategy� we assume that automatically
replace w by m whenever necessary�

Notice that we made a small abuse of language� the automatic updating of a
Cartesian monomial as a monomial and as a Cartesian representation do not coincide
in general� Nevertheless� �Cartesian monomial� and �Cartesian representation� should
rather be considered as data types� thereby eliminating the risk of confusion�

Automatic updating of � We �nally use the automatic updating strategy in
order to update the constraints in �� each time we perform a re�nement� we replace
each monomial occurring in � by its dominant monomial�

������ Imposition of constraints

The default way of imposing a constraint of the form !����$� is to insert it into ��
However� in case of constraints of the form

x��
� � � � x�pp � ��

the dominant monomial of x��
� � � � x�pp w�r�t� the new coordinates is not necessarily

equal to �� although is equivalent to �� For this reason� we sometimes need the
following alternative algorithm to impose such constraints�

Algorithm constraint�c � �	�
Input� A monomial c in SX �
Action� Restricts and cuts the current region into parts� such that the dominant

monomial of c is � on each of these parts�

Step �� Let c � x�qq � � � x�pp � with �q �� � !if l � k� then we have nothing to do$�
If �q � � then set �j �� ��j for all j � q�
Let w be a Cartesian monomial with w � �q

p
xq���q�� � � � xp�p�

In�nitesimalize w�
Step �� Introduce a new parameter � � � in �C�

Separate three cases and respectively re�ne������
xq � w��� x �q	 �x

�
q �� �	�

xq � w��� x �q	 �x
�
q �� �	�

xq � �w�
!���	$
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���� The generic Newton polygon method

The main piece of the algorithm to compute generic dominant monomials� is a suit�
able generalization of the Newton polygon method� The idea is to consider a series
in x�� � � � � xp as a series in x� with generic coe�cients� The main di�culty is that
these coe�cients are not regular in general� and we need to compute their generic
dominant monomials recursively� modulo re�nements� Such recursive computations
lead to applications of the Newton polygon method on series in xq� � � � � xp� with
q � ��

The above discussion motivates the following de�nition� let f be a series in
x�� � � � � xp and let q be a monomial in x�� � � � � xq�� for some q � �� We say that
the coe�cient �q�f is Newton prepared� if �q�f is a power series in xq and the
dominant monomials of �q�f as a series in xq� � � � � xp are of the form w�xq�c	� for
�xed c and w in xq��� � � � � xp� The corresponding Newton polynomial of �q�f is
de�ned by

P ��	 �
X
��N
�qw�zl�c	

��f ���

The degree of P is called the Newton degree of �q�f �

������ The algorithm

For concrete computations� we �rst need an analogue of Newton prepared series for
Cartesian representations� This introduces a technical di�culty� since no Cartesian
representation for �q�f is available in general !see section ��	$� To overcome this
di�culty� we use pseudo�coe�cients and we restrict ourselves to the case when f

admits a dominant monomial in qSxq ���� �xp�
More precisely� let u be a Cartesian representation of f in z�� � � � � zk� We say that

xq is an ordinary variable in u� if u is a power series in zl� for some l with zl � xq�
and such that zi does not depend on xq for i � l� Let F be a set of intermediary set
of dominant monomials of u� We denote

Fq � fm 
 F jm 
 qSxq ���� �xpg�
Finally� let M the subset of F of monomials which represent a dominant monomial
of f �

We say that u is Newton prepared relative to q and F � if xq is ordinary in u�
M � Fq �� �� and the elements in M � Fq are of the form m � w�zl�c	� for �xed c
and w with c 
 Sxq������ �xp and w 
 qSxq�� ���� �xp� In this case� the coe�cient �q�f is
clearly Newton prepared as well� and its Newton polynomial is given by

P ��	 �
X

w�zl�c���M�Fq
uw�zl�c���

��

We can now state the algorithm which performs one step of the Newton polygon
method�
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Algorithm Newton�step�u�q� F 	�
Input� A Newton prepared Cartesian representation u 
 Lz� ���� �zk relative to a

monomial q 
 Sx����� �xq�� and a set F of intermediary dominant monomials
for u�

Action� The algorithm re�nes xq � c�v�x �q	 �x
�
q �� �	 or eliminates xq � cv� where

cv is a �rst approximation to a solution of uq � � in xq� and v � ��
Step �� Adopting the notations from above� test whether the Newton polynomial

P admits a root of multiplicity degP � If so� then proceed with step ��
Step �� Introduce the formal parameter � � � in �C�

Impose the constraint P ��	 � ��
In�nitesimalize c�
Separate three cases and respectively re�ne������

xq � c��� x �q	 �x
�
q �� �	�

xq � c��� x �q	 �x
�
q �� �	�

xq � �c�
!����$

Return�

Step �� Compute w �� pseudo�coefficient

�
�degP��u

�zdegP��l

�q

�
�

Divide w by �z�l �w�
Regularize and in�nitesimalize �zl
�w and w � �zl
�w�
Compute the unique C�in�nitesimal solution cv to the equation w � � in
zl by LC�� where v � ��
Regularize v�

Step �� Impose the constraint c � � on the dominant coe�cient c of v�
Separate three cases and respectively re�ne������

xq � c�v � x �q	 �x
�
q �� �	�

xq � c�v � x �q	 �x
�
q �� �	�

xq � cv�
!����$

������ Termination lemmas

Let �X �� R�	 and �X�R	 be coordinate systems� such that �X �� R�	 re�nes �X�R	�
We say that X � q�re�nes X� x �� � x�� � � � � x �q�� � xq�� and xq � g � hx �q �x

�
q �� �	�

where g "" h are regular in�nitesimal series in xq��� � � � � xp�
For termination purposes� we now need to �nd suitable analogues for lemma ���

and lemma ��� from section ���� These analogues will establish that in a sequence of
q�re�nements� resulting from repeated applications of Newton�step� the successive
Newton degrees in xq decrease by one at most every two steps� Truly� it happens that
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this phenomenon is independent of the �rst q � � exponents in the corresponding
dominant monomials�

Lemma ��� Let f be a series in x�� � � � � xq and assume that X � is a coordinate
system which q�re�nes X via xq � g � hx �q �x

�
q �� �	� Assume that

�� x��
� � � � x�pp and x ��

��� � � � x �p��
�
k� are dominant monomials of f w�r�t� X resp� X ��

�� �x��
� � � � x�q��

q�� �f is Newton prepared� of Newton degree �q�

Then ��q � �q�

Proof We prove the lemma in the case when xq � g � hx �q% the case xq � g � hx �q is

treated similarly� Denote q � x��
� � � � x�q��

q�� and q� � x ��
��� � � � x �q���

�
q��� Let P be the

Newton polynomial associated to m�g	 and relative to �q�f � �� and let � denote
the multiplicity of cg as a root of P � We have

�qx �q
�
�f �

X
��



� � �
�

�
��qx���q �f 	 g�h� �

by expanding xq � g � hx �q and

�qx �q
�
�f � m���qx�qq �f 	 g

�q��	h�� �
��P

�����	 � o��		�

by splitting the dominant part from the rest� Since g � xq on R�� we obtain

�qx �q
�
�f � ��qx�qq �f 	 x�q��q h� � !����$

More generally� we have on R�

�q�x �q
��q�f �

X
��



��q � �

�

�
��q�x

��q��
q �f 	 g�h�

�
q �

Since �qx�qq �f is regular� we also have

��qx�qq �f 	qx
�q
q � x��

� � � � x�pp �

Since x��
� � � � x�pp is a dominant monomial of f � we therefore obtain

��q�x
��q��
q �f 	q�x

��q��
q �� ��qx�qq �f 	qx

�q
q �

for all � � �� Hence�

��q�x �q
��q �f 	q�x �q

��q �� ��qx�qq �f 	qx
�q���q
q x �q

��qh�
�
q

� ��qx �q
��f 	qx �q

�

hx �q
xq

���q��
�

�� ��q�x �q
��q �f 	q�x �q

��q

hx �q
xq

���q��
�

!���$
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using !����$ and the fact that x ��
��� � � � x �p�

�
p is a dominant monomial of f � We conclude

that ��q � � � �q� since hx �q �� xq� �

Let us now establish a generalization of lemma ���� which says that if one step
of the Newton polygon method does not su�ce to decrease the Newton degree� then
two steps do� We start by the ideal case� in which we know how to extract the
coe�cient �q�f of f �

Lemma ��� With the notations and assumptions from lemma ����� let X �� be a
coordinate system which q�re�nes X �� Assume that

�� ��q � �q and g is the unique solution to the equation in xq�

hx��
� � � � x�q��

q�� i�
�q��g

�x
�q��
q

� ��

�� x ���
���� � � � x ��p���

��
k�� is a dominant monomial of f w�r�t� X ���

�� �x ��
��� � � � x �q���

�
q���f is Newton prepared�

Then ���q � �q�

Proof It su�ces to consider the case when xq � g � hx �q and x �q � g � � h�x ��q % the
other three cases are treated similarly� Assume that ���q � �q for contradiction and
let

l �
��q��g

�x
�q��
q

�

We �rst treat the �ideal case�� when hqil � �q�l � In this case� we have �qx �q�q���f � ��
It follows that on R���

�qx ��q
�q���f � ��qx �q�q �f 	 g �h��q��� !����$

Since x ��
��� � � � x �p�

�
p is a dominant monomial of f and ��q � � � �q� !���$ becomes

��q�x �q
�q �f 	q�x �q

�q � ��qx�qq �f 	qx
�
q
�qh�q

� ��qx �q
�q �f 	qx �q

�q �
!�����$

Similarly !and with obvious notations$� we have

��q��x ��q
�q �f 	q��x ��q

�q � ��q�x �q
�q �f 	q�x ��q

�qh��q

� ��q�x ��q
�q �f 	q�x ��q

�q �
!�����$

for the second q�re�nement� Putting things together� we obtain

��q��x ��q
�q �f 	q��x ��q

�q � ��q�x �q
�q �f 	q�x ��q

�qh��q !by !�����$$
� ��qx �q

�q �f 	qx ��q
�qh��q !by !�����$$

� ��qx ��q
�q���f 	qx ��q

�q��  x ��q h�

g �

�
!by !����$$

�� ��qx ��q
�q���f 	qx ��q

�q��
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This yields the desired contradiction�
Let us now consider the other case� when hqil �� �q�l � Let � �xq g denote the

substitution of xq by g� Since �hqil	 �xq g � �� we have

l �xq g � �q�l�q � hqil		 �xq g �

By proposition ���� each dominant monomial of l�q � hqil depends on x�� � � � � xq��
or xq��� Since

�x �q
�q���f � �l �xq g	h�q��

� ��l�q � hqil	 �xq g	qh�q���

we infer�

Each dominant monomial of q���x �q
�q���f depends on x�� � � � � xq�� or xq��� !�����$

Now expand

�x ��q
�q���f � ��x �q

�q���f � ��q � �	��x �q�q �f 	 g � � Rest	h��q���
Since m��qx �q

�q �f 	qx �q
�q is a dominant monomial of f on R� by !�����$� each dominant

monomial of �x �q
�q �f is bounded by ��qx �q

�q �f 	q for ��� and Rest �� ��qx �q�q �f 	qg ��
We claim that any dominant monomial m of �x ��q

�q���f satis�es

m "" ��qx �q�q �f 	qg �h��q���

This follows from !�����$� if each dominant monomial of �x �q
�q���f is bounded by

��qx �q
�q �f 	qg � for ��� and is trivial in the other case� From our claim we deduce in

a similar way as before that

��q��x ��q
�q �f 	q��x ��q

�q �� mx ��q
�q���

But this contradicts the fact that x ���
���� � � � x ��p �

��
p is a dominant monomial of f on R���

�

���
 Computation of generic dominant monomials

������ The algorithm dom�mon

In this section� we present the algorithm dom�mon� which computes generic domin�
ant monomials of a series f � whose variables are in�nitesimal parameters in some
non trivial totally ordered algebra of grid�based series with K�powers� Hence� the
algorithm splits up the region on which f in a �nite number of regions� each on which
f is regular� and on which the corresponding dominant monomial of f is computed�
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Algorithm dom�mon�u	�
Input� A Cartesian representation u 
 Lz����� �zk of a series f in x�� � � � � xp�
Output�The generic dominant monomial of f �

By convention� we return � for regions on which f � ��

Step �� Repeat the following until m �� �Recommence��
a� Compute a setM of intermediary dominant monomials of u on R by idm�
b� If M � �� then return ��
c� Separate a case for each facet F �M � and do the following�

Select an arbitrary c 
 F �
Impose the constraint w �� c for each w 
MnF �
Impose the constraint w � c for each w 
 Fnfcg�
Set m �� dom�sub�u� �� F 	�

Step �� Return m�

Let us shortly explain the algorithm� we repeatedly re�ne the coordinates until f
is regular� To compute the re�nements� we select a combinatorial Newton polytope�
whose vertices are maximal for �� among the dominant monomials� and then apply
a subalgorithm dom�sub� This subalgorithm either directly returns the dominant
monomial of f � or� in the case when more re�nements are necessary� it returns the
symbolic value �Recommence��

Subalgorithm dom�sub�u�q� F 	�
Input� A Cartesian representation u 
 Lz����� �zk of a series f in x�� � � � � xp�

A monomial q in Sx����� �xq�� �
A set of monomials F � such that Fq �� ���

Output�Either the dominant monomial m of �q�f or �Recommence��
In the �rst case� Fq � fm�qg at the end of the algorithm�

Step �� If xq is ordinary in u� then separate the non singular from the singular
case and respectively proceed with step � or step 	�

Step �� If c�w depends on xq for some c�w 
 Fq� then �x c 
 Fq� execute
constraint�w � c	 for all w 
 Fqnfcg and return �Recommence��
Otherwise� let x�q be the unique monomial such that Fqx�q �� ��
and return dom�sub�u�qx�q � F 	x

�
q !or �Recommence�� if dom�sub returns

�Recommence�$�
Step �� Let c be an arbitrary element in Fq�

Execute constraint�w � c	 for all w 
 Fqnfcg�
Let m be the unique element of Fq and impose the constraint �m�u �� ��
Return m�
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Step �� For each � such that Fqx�q �� ��� execute dom�sub�u�qx�q � F 	�
Let n be the number of times that dom�sub does not return �Recommence��
If n � �� then return �Recommence��
If n � �� then kill the current process�
Otherwise� choose c�c� 
 Fq� with c � qx�q w and c� � qx�

�
q w

�� such that

�� �� �� Next� execute constraint�w������w������w������ � �	 for each
c�� 
 Fq� with c � qx�

��
q w���

Step �� Execute Newton�step�u�q� F 	 and return �Recommence��

Let us again detail the computations� Steps � and � reduce the general case to
the case when xq is ordinary in u� Then we distinguish the non singular case from
the singular one� the non singular case is when the monomials in the selected
combinatorial Newton polytope are equivalent to f in the re�ned coordinates% this
case corresponds to step � in the algorithm and directly yields the desired dominant
monomial of f � The remaining� singular case corresponds to steps 	 and � in the
algorithm and is essentially treated by the algorithm Newton�step described in the
previous section� Step 	 serves to Newton prepare u�

������ Termination proof of dom�mon

In this section we prove the termination of dom�mon% the correctness is easily veri�ed
step by step� by checking the speci�cation of each subalgorithm�

Theorem ��� Let X � fx�� � � � � xpg a coordinate system� whose underlying
region is determined by a �nite set of constraints of the form x��

� � � � x�pp �� �� Then
there exists an algorithm which takes a Laurent series u 
 Lx����� �xp on input and
computes a generic dominant monomial of it via a suitable re�nement�

Proof Assume that dom�mon does not terminate on some input u� Let q be minimal
such that xq is re�ned in�nitely often� Replacing u by its value after a large number
of iterations of step � of dom�mon� we may assume without loss of generality that
x�� � � � � xq�� are constant during the execution� Moreover� modulo one re�nement of
xq in step � of dom�sub� we may also assume that zl � xq is ordinary in u throughout
the execution�

Lemma ��� Ultimately� all re�nements of xq exclusively occur in Newton�step�

Proof We �rst observe that only the subalgorithm dom�sub may lead to re�ne�
ments during the execution of dom�mon� since idm does not a
ect the system of
Cartesian coordinates� Now each call of dom�sub� for which the present q and the
q in the algorithm correspond� falls into the singular case� otherwise� either one of
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the coordinates x�� � � � � xq�� would change or the algorithm would terminate� By
what has been said above this lemma� xq does not change in step � of dom�sub
either� Consequently� during the execution of the algorithm� xq can only be re�ned
in Newton�step� �

By lemma ����� we may assume without loss of generality� that all re�nements
of xq occur in Newton�step� By lemma ���� and lemma ����� an in�nite sequence
of such re�nements does not exist� �

���� Comments and extensions

Case separations In practice� it is necessary to limit as much as possible the
number of case separations� In particular� instead of splitting up into three processes
in !���	$�!����$ and !����$� the sign determinations can be postponed until we need
them� only in order to compute negative powers of monomials� we should check
them for being zero� and only in order to compute fractional powers� we should
check them for positivity� In example ���� this leads to the distinction of only �
cases instead of �

Algebraically closed constant �elds For convenience� we have limited ourselves
to the case of a real algebraically closed constant �eld� Actually� the algorithms can
be adapted to the case when C is an algebraically closed �eld� in this case� x�� � � � � xp
are not required to be positive� but we assume the existence of canonical i�th roots
in C for all i�

Solving implicit equations The algorithm can also be used to solve the equation
f � � in x�� Indeed� it su�ces to choose the branches of the computation tree in
which x� is eliminated from the equation f � �� It is also possible to solve a system
of equations f�� � � � � fn � � in x�� � � � � xn� by successively eliminating x� from f� � ��
x� from f� � �� etc� However� our algorithm can be optimized in order to eliminate
x�� � � � � xn simultaneously in this latter case� This is interesting because it strongly
reduces the number of cases to be separated during the execution�

The idea behind simultaneous elimination of variables is to replace dom�mon

by a routine which simultaneously computes the generic dominant monomials of
u�� � � � � un� In the main loop� we now consider tuples �F�� � � � � Fn	 of compatible
facets of the combinatorial Newton polytopes associated to u�� � � � � un� The subal�
gorithm dom�sub is applied to each �ui� �� Fi	 in the same way as before�

Normalization of � The presence of constraints of the form x��
� � � � x�pp � � is

quite uncommon� since the resulting scales SX are only quasi�ordered� We say that
� is a normal system of constraints� if it contains only constraints of the form
x��
� � � � x�pp �� �� An arbitrary system � of constraints of the form !����$ can be
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normalized by executing constraint�x��
� � � � x�pp � �	 for each x��

� � � � x�pp � � in ��
starting with those constraints which depend on x�� next those on x�� and so on�

It can be shown that dom�mon followed by the above normalization of � actually
computes a generic desingularization of f � Since this fact will not be needed in what
follows� we will not prove it here�
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Chapter ��

Multivariate transseries

���� Introduction

In this chapter� we generalize the generic expansion algorithm from chapter �� to an
expansion algorithm for multivariate transseries� The hard core of the algorithm is
the same as in the previous section� and consists of the algorithms dom�mon� dom�sub
and idm� However� to handle exponentials� many additional problems arise� We will
now give a brief overview of our approach to handle these�

The theoretical framework In section ���� we de�ne multivariate transseries�
Such transseries were already introduced in chapter �� but we will recall a more
restricted setting which is su�cient for our applications� Consequently� all what
follows can be read independently from chapter �� although the general theory may
provide better insight� We also de�ne re�nements and desingularizations of trans�
series� without searching for maximal generality�

The e
ective framework In section ����� we describe the e
ective framework
which we use in this chapter� We introduce normal bases� as being the lexicograph�
ical multivariate counterpart of the previously de�ned normal bases� let x�� � � � � xp be
the coordinates� Then a normal basis B is a disjoint reunionB � B�q� � �qBp� where
each Bq is the set of basis elements which depend on xq� but not on x�� � � � � xq���
Each Bq corresponds to a normal basis in the old sense�

Normal basis can be well�quasi�ordered� by ordering �rst on the number of ele�
ments in B�� then the number of elements in B�� etc� This quasi�ordering underlies
most of the termination proofs in this chapter� The main di�culty we will encounter
is to avoid as much as possible the insertion of new logarithms into B� Neverthe�
less� in view of the above quasi�ordering� the elimination of a single element in Bq

compensates the insertion of any number of logarithms and�or exponentials into
Bq�� q � � � qBp�

In section ������� we de�ne admissible Cartesian representations as being Carte�
sian representations so that of the classes of its underlying coordinates are ultra�

��
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regular� Roughly speaking� this means that the comparability classes of the co�
ordinates are well determined� For technical reasons� we will exclusively work with
admissible Cartesian representations in this chapter�

In section ���� we also add two new types of re�nements to the ones we considered
in chapter ��� upward shiftings xq � exp�� x �q

�� and split�o
s xq � cx
�
q
�� �x �q ��� xq	�

We �nally introduce the concept of exponential rewritings� which is the analogue of
re�nements for exponential basis elements in B�

The main algorithms The sections ���	� ����� ���� and ���� are highly interde�
pendent� although we have tried to keep them as understandable as possible when
read linearly�

In section ���	� we give the expansion algorithm for multivariate transseries%
actually� the algorithm can easily be derived from the one on page ��� when con�
sistently applying the automatic case separation strategy�

Since we require all Cartesian representations to be admissible� the in�nitesim�
alization and regularization algorithms from chapter � can not be used� without
showing how new Cartesian coordinates can be introduced while preserving ad�
missibility� In section ����� we present the algorithm ultra�regularize for this
purpose�

Section ���� is devoted to the analogue of the algorithm constraint from sec�
tion ������� for the imposition of asymptotic constraints of the form c � �� The
treatment is far more complicated than the one from chapter ��� because we need
to avoid as much as possible the insertion of logarithms into the normal basis�

Finally� in section ���� we give the overall termination proof of our algorithms�
the algorithms Newton�step� dom�mon and dom�sub being identical to those from
chapter �� !with some obvious changes$�

Complements The last two sections are complements�
Our algorithms are based on automatic case separation using a partial constraint

checker� In section ���� we provide a complete constraint checker� modulo an oracle
to decide the consistency of �nite exp�log systems over the constants�

Finally� in section ���� we give an application of the main theorem of this section
to classical analysis� We show that the �eld of convergent transseries is a Hardy
�eld which is stable under the resolution of consistent zero�dimensional systems of
exp�log equations� In particular� this �eld is stable under functional composition
and inversion� As an application� the functional inverse of log x log� x admits a
convergent transseries expansion !see also section ����	$�

���� Multivariate transseries and normal sets

Let us �x a totally ordered exp�log constant �eld C and a �nite set of transseries
parameters X � fx�� � � � � xpg� We denote T� C���t���� Let R be a region of Tp�
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Abstract de�nition of the function space F�R	 Let F�R�T	 be the set of
mappings R � T�P �� f �P 	� Then F�R�T	 has the componentwise structure of
an ordered partial exp�log ring� the logarithm log f of f 
 F�R�T	 is de�ned if
and only if log f �P 	 is de�ned for all P 
 R� As in section ����� the asymptotic
relations �������������� are naturally de�ned on F�R�T	� We also have a natural
mapping �X of X into F�R�T	� and if f�� � � � � fn are positive in�nitesimal elements in
F�R�T	 then we have a natural mapping �f����� �fn of C��Sf����� �fn�� into F�R�T	� where
Sf����� �fn � f C� � � � f Cn � We de�ne F�R	 to be the smallest partial exp�log subring of
F�R�C��X��	� which contains the image of �X � and such that im�f����� �fp is contained
in F�R	� for all f�� � � � � fp in F�R	� We also say that F�R	 is generated by im�X �
Whenever convenient� we abusively identify elements with their images through
natural mappings�

Normal sets In order to generalize re�nements� we need to generalize normal
bases� However� for technical reasons� it is more convenient to work with a slightly
weaker concept at this point� namely the concept of normal sets� Let B be a �nite
set of positive in�nitesimal elements in F�R	� which contains X � fx�� � � � � xpg� We
say that B is a normal set relative to R and some total elimination ordering �elim

on B� if the following conditions are satis�ed�

NS� X � B�
NS� The logarithm of each element b 
 BnX is a regular transseries in

C��Selimb��� where

Selimb � f�b��	c� � � � �b�k	ck jb��� � � � �b�k � b � c�� � � � � ck 
 Cg

is given the natural�ordering determined by ���
Usually� B satis�es some additional conditions% see for instance the next section�
If B is a normal set� then we denote by SB � BC the multiplicative group with
C�powers generated by B�

Re�nements Assume that B is a normal set relative to R and let � be a mapping
of a set X � � fx ��� � � � � x �p�g into F�R	� Then � naturally determines a region of
�T�

�	
p��

R� � f���x ��	� �x�� � � � � �xp	� � � � � ��x �p�	� �x�� � � � � �xp		j� �x�� � � � � �xp	 
 Rg�
Given a normal set B � relative to R�� � can naturally be extended into a mapping
from C��SB��� into F�R	 and from now on we assume that we have done this�

Moreover� there exists a natural mapping F�R�	
��� F�R	 with � � �� � �R� If �� is

bijective and there exists a morphism� � � C��SB��� C��SB��� with �R � � ��� then
�In view of section ���� this ordering is the opposite ordering induced by ��� Here we remind

warning ����
�By morphism we mean here a morphism of strong exp�log C�algebras� I�e� � preserves the

exp�log C�algebra structure as well as in�nite summation�
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we say that � is a change of coordinates� Re�nements and desingularizations are
de�ned in a similar way as in section ���� and they have similar properties as before�

���� The e�ective framework

������ Basic assumptions

In the rest of this chapter� we make the following e
ective assumptions�

A�C is an e
ective totally ordered constant �eld� contained in some totally ordered
exp�log �eld�

A��C is the e
ective parameterized exp�log constant �eld over C�
A�L is an e
ective exp�log local community of Laurent series over �C�

Let us detail condition A�� any element in �C is an exp�log expression in a �nite
number of parameters over C� As in section ����� we allow the dynamic imposition
of polynomial constraints on these parameters !either equations� inequations or in�
equalities$� However� we only check the real algebraic consistency of such systems�
although we will sometimes assume the existence of an oracle to check the exp�log
consistency�

We will denote by L the �C�algebra of Laurent series associated to C� Furthermore�
T denotes the set of parameterized transseries over L% i�e� T is the smallest set of
expressions� which contains a countable set of transseries parameters� which is stable
under the exp�log �eld operations� and which contains Lg����� �gi for any g�� � � � � gi 
 T�
In particular� T contains the set of all exp�log expressions in the countable set of
parameters� Notice also that expressions in T may very well be de�ned nowhere
!example� log x� log��x	$% nevertheless� we will be able to detect this modulo an
oracle for checking the exp�log consistency of exp�log systems over C�

������ The coordinates

Coordinates From an e
ective point of view� the coordinates are determined by
triples �X��� B	� where

� X � fx�� � � � � xpg is a set of formal variables�

� � is a system of asymptotic constraints on X� which determines a region R�

� B � fb�� � � � �bng is a normal basis of positive in�nitesimal multivariate trans�
series on R�

In all our algorithms� X� B and � are all global variables�
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The set of variables X As in chapter ��� we assume the existence of an elimin�
ation ordering on X�

x� �
elim � � � �elim xp�

Moreover�X is required to be a subset of the countable set of transseries parameters
mentioned in section �������

The normal basis B At this point� it su�ces to assume that B is a normal set
relative to a suitable elimination ordering which extends the elimination ordering
on X� Actually� we assume that B is an e
ective normal basis� but this assumption
will only be detailed in the next section�

Roughly speaking� if Bq denotes the set of elements in B which depend on xq�
but not on x�� � � � � xq��� then we require that Bq is a normal basis of level � for each
q� As a consequence� we have a natural extension of the elimination ordering on X�
if for each q we write

Bq � fbq��� � � � �bq�nqg�
with xq � bq�� ��� � � � ��� bq�nq � then we order the elements in B by

b��n� �
elim � � � �elim b��� �

elim � � � �elim bp�np �
elim � � � �elim bp���

This will precisely be the elimination ordering we mentioned above�

The set � of asymptotic constraints Each of the constraints in � has one of
the following forms� �����������

b
��
� � � �b�nn �� ��
b��
� � � �b�nn � ��
b
��
� � � �b�nn ��� b

��
� � � �b�nn �

b
��
� � � �b�nn ��� b

��
� � � �b�nn �

!����$

with ��� � � � � �n� ��� � � � � �n 
 �C� Modulo case separations� we notice that we can
also insert constraints of the forms b��

� � � �b�nn �� � and b��
� � � � b�nn �� � into ��

Partial constraint checking of � We only check the constraints !����$ in �
for their expo�linear consistency by �	�	�� Consequently� the asymptotic relations
�� � ��� � etc� do not necessarily coincide with the usual asymptotic relations de�
termined by R� Indeed� expo�linear consistency of � does not imply overall consist�
ency� although a complete constraint checker will be given in section ����

Constraint saturation To reduce the number of case separations� we will always
saturate the set � in the following way� for each b 
 BnX� we assume that log b

�We notice that it su�ces to consider the bi as transmonomial parameters in order to apply
������ This is equivalent from an asymptotic point of view� since any transseries in Tis asymptotic
to its dominant monomial�
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is regular� and we impose the constraint m�log b	 ��� b� Furthermore� whenever we
have m�log b	 �� m�log b�	 for b�b� 
 BnX� then we impose the constraint b ��� b�

and vice versa� Similarly� whenever we have m�log b	 �� m�log b�	 for b�b� 
 BnX�
then we impose the constraint b ��� b� and vice versa�

Initialization The triple �X��� B	 determined by � � fx� �� �� � � � � xp �� �g
and B � fx�� � � � � xpg satisfy our hypothesis� These are the coordinates we use
to initialize our algorithms% additional constraints may be imposed by the user
afterwards�

������ Eective representations

Asymptotic scales Let
SB � B

�C�

In the remainder of this chapter� we will only consider asymptotic expansions w�r�t�
SB� i�e� we work with transseries in �C��SB��� We abusively call SB an asymptotic
scale� Indeed� SB is not an asymptotic scale in the sense of chapter � in general� a
counterexample is given by B � fx � e�y���yx��

� y � e�y��g� where x ��� y �

Admissible Cartesian representations A monomial c 
 SB is said to be ultra�
regular� if it has the form

c � b�w�

where b 
 B� � � �� w 
 SB� ��� b and

SB� ��� b � fb 
 Bjb ��� zg�C�

By convention� � is said to be ultra�regular too� An ultra�regular transseries
is a regular transseries whose dominant monomial is ultra�regular� Ultra�regular
monomials and transseries are interesting� because their comparability classes are
well determined�

A Cartesian representation u 
 LZ is said to be admissible� if each Cartesian
coordinate in Z represents an ultra�regular monomial� From now on we will assume
without further mention that all Cartesian representations are admissible�

Example ��� Let X � fx � yg� The Cartesian coordinate z with z � y�x is
admissible� if and only if x ��� y �

Dependence on coordinates Let f be a transseries represented by an admissible
Cartesian representation f 
 Lz����� �zk � We will now de�ne when f depends on a
coordinate x in X�

Each zi has the form zi � b
�i��
� � � � b�i�nn � We say that zi depends on bj in B� if

�i�j �� �� Let Bz����� �zk be the union of these elements bj in B� when i ranges over
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�� � � � � k� Then we say that f depends on x 
 X� if x 
 Bz����� �zk � or if there exists
an bj 
 Bz� ���� �zknX such that bj recursively depends on x � Here bj is !abusively�
see the warning below$ said to depend on x if the natural Cartesian representation
log b of log b does�

Warning ��� It may happen that f depends on a certain coordinate� while f

does not� For instance� taking X � fx � yg� the transseries f � y may very well be
represented by f � y � �e�x	� � �e�x	�� which depends on x � For a similar reason�
a basis element b in B may depend on x in the above syntactical sense� while the
transseries b does not depend on x in the usual sense�

Normal bases For each � � q � p��� let B�q denote the set of those b in B which
do not depend on x�� � � � � xq��� We also abbreviate Bq � B�qnB�q��� B�q � B�q���
etc� We say that B is an e
ective normal basis� if for each � � q � p�

NB� Bq � fbq��� � � � �bq�nqg is linearly ordered w�r�t� ����
NB� bq�� � xq�
NB� Each b � bq�i 
 Bq with i � � has the form b � eu� where u � log b is a

C�regular Cartesian representation and u 
 �C��S�� with

S � fb 
 B�qjb 
 B�q � b ��� m�log b	g�C�

We notice that the above hypotheses indeed imply that B is a normal set relative to
the elimination ordering mentioned in the previous section� From now on� we will
always assume that B is an e
ective normal basis�

������ Re�nements and exponential rewritings

In this chapter� we will exclusively consider e
ective re�nements of one of the fol�
lowing forms�

R� xq � exp�� x �q%
R� xq � cx �q �x

�
q ��� c	%

R� xq � cx �q �x
�
q ��� c	%

R	 xq � c�u� x �q	 �x
�
q �� �	%

R� xq � c�u� x �q	 �x
�
q �� �	%

R� xq � cu�

Here c is a C�in�nitesimal C�regular Cartesian monomial such that c is ultra�regular�
and u a C�regular Cartesian representation of a transseries with u � �� Moreover�
neither u nor c depend on x�� � � � � xq�

Re�nements of the form R� are called upward shiftings and need to be used
with care� because they insert new elements into B� Re�nements of the forms R�
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and R� are called split�o
s� Re�nements of the forms R	� R� and R� are called
ordinary re�nements�

Re�nements and constraints in � Whenever we perform a re�nement of one
of the above types� we rewrite all constraints in � w�r�t� the new coordinates� This
process is straightforward� for instance� in the ordinary case� each occurrence of xq
is replaced by c�

Automatic updating of Cartesian representations As in chapter ��� we will
always automatically update Cartesian representations when necessary� to make
them available w�r�t� the current coordinates� The rewritings involved in this process
are straightforward� because xq admits a C�regular Cartesian representation w�r�t�
the new coordinates for any re�nement of the above types� while the other elements
in B remain unchanged� Furthermore� admissibility is preserved� since c is required
to be ultra�regular� We also notice that C�regularity and C�in�nitesimality are
preserved under these rewritings�

Updating of monomials in SB In our algorithms� monomials c in SB are not
updated automatically� and we explicitly say that we �update c�� if c has to be
replaced by its dominant monomial w�r�t� the current coordinates�

� � �

Besides rewriting coordinates in X� we sometimes also need to rewrite elements
in BnX� an exponential rewriting of b 
 Bqnfxqg is a rewriting of the form�

b � c b�� u !����$

Here cb�� 
 SB�
�q
nfxqg is ultra�regular� � 
 f��� �� �g and u is a C�regular Cartesian

representation free from x�� � � � � xq�� with u � �� Moreover� at least one of the
following two conditions holds�

E� c does not depend on xq�
E� u does not depend on basis elements in Bq which are strictly larger than

m�log b	 for ����
As a result of the exponential rewriting� b is removed from B� but b� ��� bij is a
new element in B�� if � �� ��
Exponential rewritings and constraints in � Whenever we perform an ex�
ponential rewriting� all constraints in � are modi�ed accordingly� by replacing each
occurrence of b by cb���

Exponential rewritings and Cartesian representations The process of auto�
matic updating of Cartesian representations after exponential rewritings is straight�
forward� This is again due to the fact that b admits a C�regular C�in�nitesimal
Cartesian representation w�r�t� the new coordinates� Furthermore� C�regularity and
C�in�nitesimality are preserved under exponential rewritings�
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������ Renormalization of B

In general� the basis B need not remain normal� when we perform an ordinary
re�nement% therefore� some additional action need be undertaken each time we do�

Example ��� Let B � fx � e�x��
� yg and assume that we perform the re�nement

x � y�� � x �	� with x � ��� y � Then B � fx �� e�y������x ��� yg after the re�nement�
Although B is no longer normal� B can be renormalized by means of the exponential
rewriting

e�y������x �� � e�y��
e�y��x �����x ���

More generally� the renormalization process relies on the algorithm exponen�

tiate� which will only be speci�ed in the next section� This algorithm is invoked in
order to recompute some of the exponential basis elements in Bq� after a re�nement
of xq�

Algorithm renormalize�
Action� Renormalizes B after an ordinary re�nement�

Step �� Let bq�� ��� � � � ��� bq�nq be the elements of Bq before the re�nement�
In case of a re�nement of type R�� let i � nq and go to step ��
Separate nq cases and respectively impose the constraints������

x �q ��� m�log bq��	 �i � �	�
m�log bq�i	 ��� x �q ��� m�log bq�i��	 �
 � i � nq � �	�
m�log bq�nq	 ��� x �q �i � nq	�

Step �� Recompute exp�log bq��	� � � � � exp�log bq�i	 by exponentiate%
This yields expressions of the form !����$ for bq��� � � � �bq�i satisfying E��
and we perform the corresponding exponential rewritings�

Proposition ��� The algorithm renormalize is correct� Moreover� the the
size of Bq does not increase� as a result of the renormalization� and the exponential
elements in Bq remain unaltered�

Proof In case of re�nements of type R�� the algorithm is obviously correct� As�
sume therefore that the re�nement has type R	 or R��

If i � �� then the fact that x �q ��� bq�i ensures g� to be free from x �q in the
decomposition g � g� � g� involved in the re�exponentiation of each log bq�� with

 � j � i !see the next section$� Hence� the resulting expressions for bq��� � � � �bq�i
indeed have the desired form and their dominant monomials in the new coordinates
are free from xq�

On the other hand� if i � nq� the fact that x �q ��� log bq�i�� ensures that
fx �q�bq�i��� � � � �bq�nqg is again a normal basis after the re�nement� �

�By convention� we understand that the size of Bq strictly decreases if xq is eliminated from X�
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In principle� renormalization of B might also be necessary after exponential
rewritings� However� exponential rewritings of type E� are only performed in
renormalize in this chapter� whence no additional renormalization is needed in
this case� Furthermore� we claim that renormalization is never necessary after ex�
ponential rewritings of type E�� Indeed� the only exponential basis elements �b in
Bq� such that log �b depends on b are strictly larger than b for ���� Since u does not
depend on elements in Bq which are larger than log b� it follows that no exponential
rewritings are necessary for �b�

���� The expansion algorithm

In this section we present an algorithm to compute asymptotic expansions of mul�
tivariate transseries in T� The algorithm relies on a certain number of subalgorithms
which will be speci�ed in the next sections�

Algorithm expand�f 	�
Input� An L�exp�log expression f in T�
Output�A generic Cartesian representation f 
 LZ for f �

Case when f � xq is a new transseries parameter�
Separate �ve cases� respectively re�ne���������������

xq � x �q
�� �x �q �� �	�

xq � �x �q
�� �x �q �� �	�

xq � �q � x �q �x
�
q �� �	�

xq � �q � x �q �x
�
q �� �	�

xq � �q�

and return xq� In the last three cases� �q denotes a new parameter in �C�

Case f � u�g�� � � � � gi	 
 Lg����� �gi�
Step �� Compute Cartesian representations g�� � � � � gi for g�� � � � � gi by expand�

Compute their respective dominant monomials m�� � � � �mi by dom�mon�
Regularize g�� � � � � gi�

Step �� Impose the constraints m� �� �� � � � �mi �� ��
In�nitesimalize g�� � � � � gi�

Step �� Return u�g�� � � � � gi	�
Case f � g� ! g�� ! 
 f���� �� �g�
Step �� Compute Cartesian representations g�� g� for g� and g� by expand�
Step �� If ! � �� then compute the dominant monomial m of g� by dom�mon� kill

the current process if m � �� and regularize g��
Step �� Return g� ! g��
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Case f � log g �
Step �� Compute a Cartesian representation g for g by expand�

Compute the dominant monomial of g by dom�mon�
Regularize g �

Step �� Compute � and ��� � � � � �n 
 �C with g � cgb
��
� � � �b�nn �� � �	�

For each i with �i �� �� perform the upward shifting xi � exp�� x �i
���

Step �� Return log cg � ��log b� � � � �� �nlog bn � log�� � �	�

Case f � exp g �
Step �� Compute a Cartesian representation g for g by expand�

Compute the dominant monomial m�g	 of g by dom�mon�
Separate two cases� and respectively proceed with steps � and ��

Step �� Separate two cases and respectively proceed with a and b
a� Impose the constraint m�g	 �� ��

Regularize and in�nitesimalize g and return expg �
b� Execute constraint�m�g	 � �	�

Regularize g �
Let c � g


���� �
�
Return exp c exp�g � c	�

Step �� Impose the constraint m�g	 �� ��
Let q be minimal such that g depends on xq�
Let xq � bq�� ��� � � � ��� bq�nq be the elements in Bq�
Separate two cases and respectively proceed with steps 	 and ��

Step �� For each 
 � i � nq separate a case and impose the constraint m�g	 �
m�log bq�i	�
Compute the limit � � limg� log bq�i�
Return b�q�iexpand�e

g�� logbq�i	�
Step �� Separate two cases and respectively impose the constraints

�
m�g	 ��� xq�
m�g	 """ xq�

Separate nq � � cases and respectively impose the constraints

�����
m�g	 �� m�log bq��	�
m�log bq�i	 �� m�g	 �� m�log bq�i��	 �
 � i � nq	�
m�log bq�nq 	 �� m�g	�

!����$

Step 	� Let bi�� � � � �bij be those elements b in B� with b ��� m�g	�
Decompose g � g� � g�� with g� � �b
i� � � �b
ij �g �
If g� depends on xq� then insert b � e�j signg�jg�

into B�
Return expand�eg

�
	expand�eg

�
	�
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Remark ��� In step � of the exponential case� the decomposition g � g��g� is
computed by repeated applications of proposition ���� where we start by extracting
the coe�cients of the basis�elements which are maximal for ���� Notice that we may
indeed apply proposition ���� since all Cartesian coordinates are admissible�

Let us brie0y explain the di
erent cases of the algorithm� which is fairly similar
to the algorithm on page ����

The case when f is a new transseries parameter xq is reduced to the case when
xq is positive and in�nitesimal� by a separation into �ve cases�

In step � of the exponential case� we make sure by means of case separations
that m�g	 and xq are comparable for ��� and we determine the place in B where eg

�

might need be inserted� In step �� g� either depends on xq� in which case insertion
takes place� or g� does not depend on xq� in which case the part g� of g which
depends on xq is bounded so that we �split it o
��

Obviously� the exponential case algorithm can also be applied to transseries g for
which we already have a Cartesian representation g� by skipping the very �rst line
of step �� This algorithm� called exponentiate� has the following obvious property�

Proposition ��� Exponentials computed by exponentiate are always ultra�
regular� �

���
 Ultra	regularization

Since not all Cartesian monomials are admissible� we can not merely introduce
new in�nitesimal Cartesian coordinates in the in�nitesimalization and regularization
algorithms from section ������ For this purpose� we will show in this section how to
make an arbitrary monomial c in SB ultra�regular modulo a sequence of re�nements�

������ The subalgorithm rewrite

If the basis elements in B are linearly ordered w�r�t� ���� then all in�nitesimal
monomials in SB are represented by Cartesian coordinates� Therefore� a major
ingredient of the ultra�regularization process is a partial linearization of B by means
of the following algorithm�
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Algorithm rewrite�b�w	�
Input� A basis element b 
 Bq and an in�nitesimal ultra�regular monomial

�w �� b	 
 SB�qnfxqg�
Action� b is either rewritten in terms of w and smaller basis elements for ���� or

eliminated� from Bq�

Case b � xq� Separate three cases� and respectively re�ne

�
xq � w�x �q �x

�
q ��� w	�

xq � w�x �q
�� �x �q ��� w	�

or use constraint in order to impose the constraint

xq � w��

where � � � is a new parameter in �C�

Case b 
 Bqnfxqg�
Step �� Execute constraint�m�log b	 � m�logw		�
Step �� Compute the limit � of log b� logw�

Compute the exponential of � � log b � �logw	�� by exponentiate�
If b has not been eliminated from Bq�
then perform the exponential rewriting b � w�e� of type E��

We notice that in the last step of the case b 
 Bqnfxqg� b may indeed have been
eliminated from Bq� Indeed� the preceding steps may lead to re�nements of xq� If� as
a result of these� b is eliminated from Bq� then the exponential rewriting b � w�e�

becomes either invalid or super0uous�
We also notice that by the fact that w does not depend on the basis element xq�

the computation of � does not necessitate the insertion of new logarithms into Bq�
Let us exemplify the use of rewrite in the ultra�regularization process�

Example ��� Let B � fx � e�y�����x�� y � e�y��g with x ��� y � Assume that we
want to ultra�regularize e�y�����x��e�y��

� Since e�y�����x��e�y��
we �rst re�express

e�y�����x� in terms of e�y��
times smaller terms for ���� using rewrite�

e�y�����x� � e�y��

e�y��x �

After this exponential rewriting� e�y�����x��e�y��
� e�y��x is ultra�regular�

�By convention� we say that b has been eliminated from Bq � if xq is eliminated from X�
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������ The algorithm ultra�regularize

In general� the following algorithm is both used in order to in�nitesimalize a Carte�
sian monomial and to ultra�regularize the transmonomial it represents�

Algorithm ultra�regularize�c	�
Input� An in�nitesimal monomial c in SB�
Action� After the execution� the dominant monomial of c w�r�t� the current co�

ordinates is ultra�regular�

Step �� Let M be the set of maximal basis elements occurring in c�
Select a non empty subset S �M � using 
jM j � � case separations�
Impose the constraint b ��� b� for all b 
MnS and b� 
 S�
If S contains only one element� then return c�

Step �� Let q be minimal such that Bq � S �� ���
Let b be the unique element in Bq � S�
Let � be the exponent of b in c�
Let Q be the set of basis elements in B�qnfbg which occur in c�
Decompose c � qb�w� with q 
 Sq and w 
 SQ�

Step �� Separate three cases� and respectively proceed with a�b or c�
a� Impose the constraint w �� � and execute ultra�regularize�w	�
b� Execute constraint�w � �	 and return�
c� Impose the constraint w �� � and execute ultra�regularize�w��	�

Step �� If b has been eliminated� from Bq� then update c and return to step ��
Update w� separate two cases and respectively proceed with a or b�

a� Impose the constraint w ��� b and return�
b� Impose the constraint w �� b�

Step �� Let � be the exponent of xq in w and set w �� w�x�q �
Execute rewrite�b�w	�
Update c and re�execute ultra�regularize�c	�

Proposition ��� The algorithm ultra�regularize is correct and terminates�

Proof The correctness of the algorithm is obvious� Before proving its termination�
let us �rst introduce the following invariant� let c be an element in SB�q � and let
bq�i be maximal for ��� while occurring in c� If c does not depend on xq� then we
de�ne ��c	 � i� Otherwise� we de�ne ��c	 � i� �

� �
Assume for contradiction that the recursive invocations of ultra�regularize

!or the jumps to step � in step 	$ provoke an in�nite loop� Let q�� q�� � � � be the
successive values of q in these recursive invocations� Let q be minimal� such that
q � qi for in�nitely many i� Without loss of generality� we may assume that qi � q
for all i� We now restrict our attention to calls of ultra�regularize for which
qi � q� Assume that all such calls for which ��c	 � d terminate� This is clearly so
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for d � �� Now consider a call of ultra�regularize� for which ��c	 � d� We will
prove that this call terminates� In particular� this yields the desired contradiction�
by induction�

First� the recursive invocations of ultra�regularize in step � always terminate�
since ��w	 � ��c	� Similarly� if we return to step � in step 	� then we have termin�
ation by the fact that the new c does not depend on xq any more� Now consider
the monomial c just before a recursive invocation of ultra�regularize in step �b�
Decompose c � c�c�� where c� 
 SB�q and c� 
 SB�q� We will show that c� is
either ultra�regular� or ��c�	 � d% the termination of ultra�regularize is clear
in both cases� We will denote by �x q resp� �x q the respective values of xq before
and after the execution of rewrite� Assume �rst that b � �x q� Then c� � �x�q w�
whence after the execution of rewrite we have

m�c�	 � m�w
���� �x �q 	 �� 
 f��� �� �g	�

where � is as in rewrite� Since w is ultra�regular and �x q ��� w� we conclude that
c� is ultra�regular�

Assume now that b �� �x q� If b is eliminated in rewrite� then the dominant
monomial of c does not depend on xq� after the execution of rewrite� and we are
done� Otherwise� we have

c� � b
� �x�q w � �x�q w

����e�

after the execution and with the notations of rewrite� Since e� ��� w and
�x�q ��� w� we are done in particular� if ���� �� �� Assume therefore that ���� � ��
By proposition ����� e� is ultra�regular� Hence� if � � � or �x q ��� e�� then we are
done� Furthermore� if � �� � and xq has undergone an ordinary re�nement� then the
exponent of �x q in m�c�	 vanishes� and we are done again�

The only case which remains be treated is when xq has only undergone split�o
s
and �x q �� e�� We claim that these split�o
s did not occur during the computation of
the dominant monomial !see section ����$ of � in exponentiate� unless an element of
Bq� ��� b is eliminated from Bq� Assume �rst that we never execute constraint�q �
�	 in dom�sub� for a monomial q which depends on xq� Since xq is the largest variable
occurring in �� xq is not re�ned at all in this case� In the other case� the imposition
of the constraint either leads to an ordinary re�nement of xq or the elimination of
an element in Bq !see section ����$� which is necessarily in Bq� ��� b� since � only
depends on elements in Bq� which are in Bq� ��� b�

Now if we eliminated an element in Bq� ��� q� then we clearly have ��c	 � d in
the recursive call of ultra�regularize� Assume therefore that no split�o
s occur
during the computation of the dominant monomial of �� Then xq � �x q� when we
compute the decomposition � � g� � g� in exponentiate� It follows that the
principal part g� does not depend on xq� since � � log xq ��� xq� Consequently�
��c	 � d � �

� in the recursive call of ultra�regularize� �
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���� Imposition of constraints

In this section� we describe the analogue of the algorithm constraint from sec�
tion ������ in the present context� Any monomial c � b��

� � � � b�nn in SB can canon�
ically be decomposed as follows�

c � x�q c
expocfree� !���$

where q is maximal such that c does not depend on x�� � � � � xq��� � 
 �C� cexpo 

SBqnfxqg and c

free 
 SB�q � We say that c is a q�monomial� Now three cases are
distinguished�

�� The ground case cexpo � ��
�� The exponential case � � ��cexpo �� ��
�� The mixed ground�exponential � �� ��cexpo �� ��
We will respectively qualify c as a ground� exponential and mixed monomial
in these cases� In sections ������� ������ and ������ we consider the imposition of
the constraint c � � for these three cases�

������ The ground case

The algorithm in the ground case is analogous to the algorithm from section �����
and needs no further explanation�

Algorithm constraint�c � �	� !ground case$
Input� A ground q�monomial c in SB�
Action� Restricts and cuts the current region into parts� such that the dominant

monomial of c is � on each of these parts�

Step �� If � � �� then set � �� �� and cfree � �cfree	���
Impose the constraint cfree �� ��
Ultra�regularize �cfree	���� and update cfree�

Step �� Let � be a new parameter in �C�
Impose the constraint � � ��
Separate three cases and respectively re�ne������

xq � �cfree	������ � x �q	 �x
�
q �� �	�

xq � �cfree	������ � x �q	 �x
�
q �� �	�

xq � ��cfree	�����

������ The exponential case

If we are not in the ground case� the constraint c � � may be imposed by computing
the dominant monomial m of log c and imposing the constraint m �� �� If � � �� we
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hereby bene�t from the fact that a Cartesian representation for log cexpo is already
beforehand� therefore log�� x��q needs not be inserted into B� On the other hand�
the computation of log cfree may necessitate the insertion of new logarithms into B�
which are free from xq� To compensate these insertions� the relation c � � is used
to eliminate at least one element from Bq�

Algorithm constraint�c � �	� !exponential case$
Input� An exponential q�monomial c in SB�
Action� Restricts and cuts the current region into parts� such that the dominant

monomial of c is � on each of these parts�

Step �� Let b 
 Bq be maximal for ���� while occurring in cexpo�
Let � be the power of b in cexpo�
Ultra�regularize �cfree	���� and update cfree�

Step �� Let � � log cexpo � log cfree�
Compute the dominant monomial m of � by dom�mon�
Regularize � and separate the following two cases�

a� Impose the constraint m �� � and in�nitesimalize ��
b� Execute constraint�m � �	�

Step �� If b has not been eliminated� from Bq�
then perform the exponential rewriting of type E�

b � ��cexpo�b�	cfree	����e����

Step �� Otherwise� update c and impose the constraint c � ��

Proposition ��	 The above algorithm constraint is correct and terminates�
Moreover� at each invocation� jBqj strictly decreases�� while Bq remains unchanged�

Proof In step �� we reduce the general case to the case when �cfree	���� is ultra�
regular !this is needed in step �� in order to guarantee that the rewriting of b
is indeed an exponential rewriting$� Step � is equivalent to the imposition of the
desired constraint� In step �� we check whether the coordinate xq has been eliminated
from b as a result of step �� If not� we perform an exponential rewriting to eliminate
b from Bq� Otherwise� constraint must be re�applied to the dominant monomial
of c in the current coordinates� which is free from xq� �

������ The mixed ground�exponential case

In general� � �� � and cexpo �� � Consider for example the constraint
xe�x�� � y � !�����$

withX � fx � yg� In order to avoid the insertion of log�� x�� into B� we �rst compute
a monomialw� asymptotic to x � but independent of x � This is achieved by exploiting
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the fact that !�����$ implies ex
�� �� y � whence x�� � log y��� Consequently� !�����$

transforms into
e�x�� � y log y���

and we have reduced the present case to the exponential case�
For more general monomials c� the idea of the algorithm is to compute a decom�

position
c � x�q e

f eg �

where f is an ultra�regular transseries whose dominant monomial depends on xq�
and g is a transseries which is free from xq� If f is bounded� then have reduced our
problem to the ground case� Otherwise� since f """ xq� we must have f � g � Then�
by induction� the recursive imposition of the constraint f � g either leads to the
elimination of a basis element in Bq or an ordinary re�nement of xq !in which case
we have the desired equivalent w for xq$�

However� we have to cope with one additional di�culty� how to compute the
part of a transseries which does not depend on xq* By what has said in section ��	�
we do not have a general algorithm to do this� For this reason� we will specify
an algorithm dep�dom�mon in section ����� which given a Cartesian representation
u� simultaneously computes a decomposition u � � � �� where � is free from xq�
and a generic dominant monomial m of � which depends on xq� Furthermore� this
algorithm aborts whenever an ordinary re�nement for xq occurs� Anyway� we also
obtain the desired equivalent w for xq in this case�

Algorithm constraint�c � �	� !mixed ground�exponential case$
Input� A mixed q�monomial c in SB�
Action� Restricts and cuts the current region into parts� such that the dominant

monomial of c is � on each of these parts�

Step �� u �� log cexpo � log cfree�
i �� xq�
Let �����m	 �� dep�dom�mon�u	�

Step �� If the dominant monomial of i w�r�t� the current coordinates is free
from xq� then update c� execute constraint�c � �	� and return�

Step �� Separate the following two cases�
a� Impose the constraint m �� ��
b� Impose the constraint m �� ��

Execute constraint�x�q exponentiate��	 � �	
Re�execute step ��

Step �� Ultra�regularize m�
Re�execute step ��
Let q 
 SB�q be such that i � qx��q �
Set � �� � � log q�

Step �� Compute the dominant monomial m� of � by dom�mon�
Update m and execute constraint�m��m � �	�
Update c and execute constraint�c � �	�
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Proposition ��� The above algorithm constraint is correct and terminates�
Moreover� at each invocation� jBqj strictly decreases�� while Bq remains unchanged�

Proof The correctness and termination of the algorithm are clear� if we return
in step �� if c does not depend on xq any more after the updating� then all basis
elements in Bq which were present in the original c must have been eliminated�
Otherwise� c is an exponential q�monomial after the updating� and we are done by
proposition ���	�

In step 	� we indeed have i � qx��q � for some q 
 SB�q � since all re�nements
of xq must have been split�o
s� Furthermore� the dominant monomial of m w�r�t�
the current coordinates depends on xq and is ultra�regular� Now we must have

xq
��e�e� � �� !�����$

just before the imposition of the constraints in step �� Since the dominant monomial
of � is ultra�regular� and depends on xq� we have xq ��� � and xq ��� e�� Con�
sequently� !�����$ admits no solutions if � �� �� Therefore� it is legitimate to impose
the constraint m��m � � in step � !and we have termination by the fact that m��m
only depends on elements in Bq which are strictly smaller for ��� than the largest
element in Bq occurring in cexpo$� Now the imposition of this constraint either pro�
vokes an ordinary re�nement of xq� or the elimination of an element in Bq� In the
�rst case� the recursive application of the constraint c � � falls into the exponential
case� In the second case� the termination follows from �niteness of Bq� �

���� Computation of generic dominant monomials

The implementation of the algorithms dom�mon� dom�sub and Newton�step is the
same as in chapter �� with the obvious changes�

� We compute with Cartesian representations of multivariate transseries instead
of multivariate Laurent series�

� The monomial q 
 Sx� ���� �xq�� in Newton�step and dom�sub is now a monomial
in SB�qnfxqg�

� At the very beginning of Newton step� we ultra�regularize and update c�

� In step � of dom�mon� we �rst test whether there exists a monomial i 
 SBqnfxqg
such that each monomial in Fq is in Fqi� If so� then q is replaced by qi�
Otherwise� we proceed with step ��

� We use the algorithms from the previous sections for the imposition of con�
straints and computations with Cartesian representations�
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Modulo these changes� we again have�

Theorem ��� The algorithm dom�mon and its subalgorithms are correct and
terminate�

Proof The correctness� of dom�mon and its subalgorithms are clear from the com�
ments made in the text� Assume that dom�mon does not terminate on a given input�
Without loss of generality� we may assume that p and all basis elements in Bq

remain �xed during the computations� while Bq is altered in�nitely many times�
Furthermore� by proposition ���	 and proposition ����� among all calls of

constraint�c � �	� there are only a �nite number such that c depends on an
element in Bqnfxqg� Hence� using proposition ����� we may also assume that the
elements in Bqnfxqg remain unaltered throughout the execution�

The remainder of the proof is analogous to the proof of theorem ����� after one
call of constraint�c � �	� such that c depends on xq� the variable xq becomes and
remains ordinary in the Cartesian representation u� After this� all re�nements of
xq are ordinary� and they exclusively occur in Newton�step� We �nally obtain a
contradiction by the analogues of lemma ���� and lemma ����� �

In section ������� we assumed the existence of a variant dep�dom�mon of the
algorithm to compute generic dominant monomials� Let us now state this algorithm�

Algorithm dep�dom�mon�u	�
Input� A Cartesian representation u 
 LZ of a transseries f in x�� � � � � xq�
Output�Whenever xq is re�ned� the algorithm aborts and returns ��� �� �	�

Otherwise� the algorithm returns �����m	� where u � �� � of u� with �
free from xq� and m is a generic dominant monomial of ��
By convention� we return m � � on regions where � � ��

Step �� Let � �� u and � �� ��
Step �� Repeat the following until m �� �Recommence��

a� Compute � �� pseudo�coefficient���b
q�� � � �b
q�nq 	�
Set � �� �� � and � �� � � ��

b� Compute a setM of intermediary dominant monomials of � on R by idm�
c� If M � �� then return ����� �	�
d� Separate a case for each facet F �M � and do the following�

Select an arbitrary c 
 F �
Impose the constraint w �� c for each w 
MnF �
Impose the constraint w � c for each w 
 Fnfcg�
Set m �� dom�sub��� �� F 	�

Step �� Return �����m	�

Theorem ��� The algorithm dep�dom�mon is correct and terminates�
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Proof By proposition ���� the class of each of element in a facet F in step �d de�
pends on xq� Consequently� whenever we perform a re�nement during the execution�
each dominant monomial of � is also a dominant monomial of f � �b
q�� � � �b
q�nq �f �
The remainder of the termination proof is now analogous to the termination proof
of dom�mon� by applying the analogues of lemma ���� and lemma ���� to f �
�b
q�� � � �b
q�nq �f instead of f � �

Putting all pieces together� we have proved�

Theorem ��� �Main theorem� weak form� Under the assumptions A�� A�
and A�� there exists an algorithm which takes an L�exp�log expression in x�� � � � � xp
over C on input and which computes

a� A partition Tp � R� q � � � q Rr of Tp� which we denote by P �
b� A generic e�ective normal basis B relative to P �
c� An algorithm which computes the generic asymptotic expansion of f w�r�t� B

relative to P at any order�

The regions R�� � � � � Rr may be empty� �

��� Constraint checking

In this section� we assume the existence of an oracle to test the exp�log consistency
of systems of constraints imposed on �C� Under this assumption� we will design a
complete constraint checker for the asymptotic constraints in �� This in particu�
lar reduces the asymptotic expansion problem of multivariate exp�log functions to
the correspondent constant problem� More precisely� we will prove the following
theorem�

Theorem ��	 �Main theorem� strong form� Assume A�� A�� A�� and that
the exp�log consistency of �nite systems of exp�log constraints on C can be checked
by algorithm� Then there exists an algorithm which takes an L�exp�log expression in
x�� � � � � xp over C on input and which computes

a� A partition Tp � R� q � � � q Rr of Tp� which we denote by P �
b� A generic e�ective normal basis B relative to P �
c� An algorithm which computes the generic asymptotic expansion of f w�r�t� B

relative to P at any order�

Each region Ri is non empty and represented as the solution set to a system �i of
exp�log equalities� inequalities and asymptotic relations�

Proof An asymptotic constraint of the form !����$ is said to be a q�constraint if
it depends on xq� but not on x�� � � � � xq��� A normal constraint is a constraint of
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one of the following forms� �������������������

xq �� c�
xq �� c�
xq ��� c�
xq ��� c�
xq ��� c�
xq """ c�

where c 
 S�q� We say that � is normal� if all its constraints can be deduced from
a subset �norm of normal constraints% i�e� each  
 � is an expo�linear consequence
of the saturation of �norm !see section ������$�

In section ������ we shall show how � can be normalized� In section ������
we show that if � is normal� then � is consistent if and only if it is expo�linearly
consistent� This will clearly enable us to check the consistency of general systems
�� �

������ Normalization of systems of asymptotic constraints

We introduce the following elimination ordering on constraints of the form !����$� we
write  �elim  � whenever the highest monomial !for �elim on monomials$ occurring
in  is strictly smaller than the highest monomial occurring in  �� Then we have
the following normalization algorithm for ��

Algorithm normalize��	�
Input� A set of constraints � of the form !����$�
Action� The algorithm normalizes ��

Step �� While � is not normal� let  be a maximal non normal constraint in � for
�elim� and do the following�

a� If  has the form c � �� then execute constraint�c � �	�
b� If  has the form c �� �� then execute step ��
c� If  has the form c ��� c� resp� c ��� c�� then execute step ��

Step �� Ultra�regularize c�
Let b 
 B be the maximal element for ��� occurring in c�
Let � be the power of b in c and impose the constraint � � ��

Step �� Ultra�regularize c and w�
Replace c by a basis element b with c �� b�
Replace c� by a basis element b� with c� �� b��
If the constraint c ��� c� resp� c ��� c� is not normal� then impose the
constraint m�log c	 �� m�log c�	 resp� m�log c	 �� m�log c�	�

Proposition ��� Then above algorithm normalize is correct and terminates�
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Proof The correctness of the algorithm is obvious� In order to prove its termina�
tion� we �rst observe that during the treatment of a q�constraint  !in steps �a� �b�
�c� � and �$� the number jBqj does not increase� Moreover� after the treatment�  
can be deduced from constraints in � which are strictly smaller than  for �elim�
These two properties clearly imply the termination of normalize� �

������ Consistency of normal systems of constraints

Theorem ��� Let � be a normal system of constraints� which is expo�linearly
consistent� Then R �� ���

Proof We prove the theorem by induction over p� For p � �� the theorem obviously
holds� Assume now that the system �� of all constraints in � which do not depend
on x� is consistent� Then the region R� associated to �� is non empty� whence there
exists a point P � � � �x�� � � � � �xp	 in R��

Let �norm � � be the subset of � of normal constraints� so that the constraints
in � are expo�linear consequences of the saturation of �norm� The comparability
class constraints in �normn�� are each of one of the following forms����������

x� ��� c�
x� ��� c�
c ��� x��
c ��� x��

where c does not depend on x�� Among the c occurring in such constraints� let
cmax resp� cmin be the ones for which c�P �	 is maximal resp� minimal for ���� By
convention� we may have cmax � ���T resp� cmax � ���C�

The remaining constraints in �normn�� are of one of the following forms��
x� �� w�
w �� x��

where w does not depend on x�� Among the w occurring in such constraints� let
wmax resp� wmin be the ones for which w�P �	 is maximal resp� minimal for ��� By
convention� we may have wmax ��T resp� wmax � ���T�

Since � is expo�linearly consistent� we must have

cmin�P �	 ��� wmin�P �	 �� wmax�P �	 ��� cmax�P �	�

Hence� there exists a �x� 
 Twith wmin �� �x� �� wmax� Then � �x�� � � � � �xp	 is a point
in R� as desired� �
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���� Applications

A Hardy �eld is a �eld of germs of functions at in�nity� which is stable under
derivation� Hardy �elds are the classical analytical analogues for �elds of transseries�
The analogues of many stability theorems for transseries also hold for Hardy �elds
and there is an extensive literature on this subject !see "Bour ��#� "Rob ��#� "Ros
�a#� "Ros �b#� "Ros �#$� In this section� we give an example of how theorem ���	
can be used to transfer such theorems directly from the transseries setting to the
Hardy �eld setting�

Let Tconv be the �eld of convergent transseries� i�e� the �eld of C��z�� z�� � � � ���
�nite transseries� Clearly� Tconv is stable under di
erentiation� since C��z�� z�� � � � ��
is stable under the partial derivations� We also notice that transseries in Tconv

naturally converge in a neighbourhood of in�nity� whence we may consider them as
germs of functions at in�nity�

Theorem ��� Tconv is a Hardy �eld which is stable under composition� inversion
and resolution of consistent zero�dimensional exp�log systems of equations�

Proof We may consider C��z�� z�� � � � �� as a theoretical e
ective exp�log local com�
munity of Laurent series� Therefore� the main theorems of this chapter apply if we
take L � �C��z�� z�� � � � ���

Now let f and g be two convergent transseries in Tconv� where g is positive
and in�nitely large� Expressing z as a function of x � by applying theorem ���	 to
eliminate of y and z from the equations z � g�y	 and y � f �x	 yields the composition
of f by g�

Similarly� the functional inverse of g is obtained by expressing y as a function of
x after elimination of y from the equation f �y	 � x �

More generally� if a system of transseries equations in T admits a �nite number
of solutions� then the solution set can theoretically be computed by theorem ���	�
whence all solutions must be convergent� �

Remark ��� Actually� more direct algorithms can be given for the computation
of functional compositions and inverses !see "VdH �	c#$� based on the formula�s from
sections ����� and ������ However� it is quite cumbersome to verify the preservation
of convergence in a direct manner�

Although we have restricted ourselves here to convergent transseries� similar
transfer theorems hold whenever we identify suitable exp�log local communities� For
instance� if one is able to generalize the concept of multisummable Laurent series
to several dimensions� and to prove that the set of such series forms an exp�log
local community L� then the analogue of the above theorem would hold for L��nite
transseries in several variables� If one is also able to generalize Braaksma�s theorem
!see "Br ��#$� then this analogue of theorem ���� would encapsulate virtually all
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known stability theorems for Hardy �elds !for germs with a natural origin d
apr�s
 calle$�

However� the above project can probably only be carried after some suitable
modi�cations� in the next chapter� we shall see that the current de�nition of e
ective
local communities is not general enough for the systematic treatment of di
erential
equations� Nevertheless� we shall indicate how to generalize this concept in order to
incorporate solutions to algebraic di
erential equations�
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Chapter ��

Algebraic di�erential equations

���� Introduction

This chapter establishes the e
ective counterpart of chapter �� We show how to
compute the generic solution to an asymptotic algebraic di
erential equation with
grid�based transseries coe�cients

P �f	 � � �f �� q	� !����$

under suitable e
ective hypothesis� Our algorithm has the particularity that we
automatically introduce the necessary parameters� which correspond to the integ�
ration constants� The chapter is divided into three main parts� in section ����� we
introduce a new sort of �lexicographically automatic Cartesian representations�� In
section ����� we show that the transseries solutions to the above equation are indeed
grid�based� In section ���	� we give the e
ective hypothesis and the algorithm�

In view of the undecidability results of Denef and Lipshitz !see "DL �#$ and Grig�
oriev and Singer !see "GS ��#$� the existence of our algorithm might seem surprising�
The fact that we can actually give an algorithm relies on two observations�

� The �eld of grid�based transseries is better behaved for the resolution of al�
gebraic di
erential equations than the �eld of grid�based power series�

� Since we search for generic solutions� we may decide ourselves how we want to
represent them�

Let us detail these issues�
In "GS ��#� Grigoriev and Singer consider the following system � of di
erential

equations in grid�based power series�������
y�x � �y�
�� � ��
z�yx� z��x� � y � x�

�Actually� Grigoriev and Singer work with well�ordered power series whose supports are included
in a �nitely generated subgroup of xR�

���
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They show that � admits a solution if and only if � � n�� for some n 
 N� Based on
�� they construct a system T� of algebraic di
erential equations for any Diophantine
equation �� such that the existence of solutions to T� is equivalent to the existence
of solutions to �� The latter problem is known to be undecidable !see "Matij ��#$�
whence so is the former� What saves us� is that � always admits a natural transseries
solution� although this transseries is not necessarily a grid�based series-

Another important issue is how to decide whether Q�f	 � �� where Q is another
di
erential polynomial and f is a well determined solution to !����$* To see why
this problem is di�cult� let

f �
Z
g

be the primitive of some transseries g� by taking � for the integration constant
!i�e� if B � fb�� � � � �bng denotes the normal basis w�r�t� which we expand g� then
�b
� � � � b
n�g � �% stated di
erently� f is the distinguished solution to f � � g$� Assume
that we want to test whether Q�f	 � �� Replacing the derivatives of f by g� this
question reduces to the case when Q is a polynomial�

Now the point is that although we can compute the roots of Q� we are not able
in general to test whether the constant parts of these roots vanish� In other words�
whenever we �nd a primitive �f of g among the roots� we can not test whether �f � f -
Nevertheless� we notice that this problem does not arise in the case when Q does not
depend on parameters� since in this case� we can compute the canonical expansions
of the roots of Q as shown in section ������ Unfortunately� this algorithm does not
work any more in presence of parameters�

What saves us in this case� is that in order to compute the generic solution to
f � � g� we may choose the integration constant ourselves� initially� we choose the
primitive f
 of g with integration constant � and represent the generic solution to
f � � g by f
 � �� Now if we need to test whether Q�f	 � �� somewhere later
during the computations� and if the polynomial Q admits a root f� with f �� � g�
then we replace the previous generic solution f
�� to f � � g by the generic solution
f� � �� In other words� the knowledge that there exists a primitive for g� which is
also a solution to an algebraic equation� enables us to represent the generic solution
in a simpler way than in the general case� However� this knowledge may become
available� only when we explicitly test whether one of the roots of some polynomial
has derivative g - This issue will be treated in detail in section ���	�	�

���� Cartesian representations reviewed

In this section� we introduce �lexicographically automatic� Laurent series and Carte�
sian representations� These are di
erent from the previously de�ned� �symmetrically
automatic� Laurent series in this respect that they can only be expanded automat�
ically w�r�t� a single variable� the coe�cients of this expansion being recursively
expandable in the same way� Nevertheless� we do know that the series in question is
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a Laurent series !and not merely a series in some ring like C��z�		 � � � ��zk		$� and we
demand explicit bounds for the valuations in each variable� Hence� we do conserve
some of the properties of the symmetrically automatic Laurent series� and this will
enable us to generalize the algorithm idm�

So why the need for lexicographically automatic Laurent series* Consider for
instance the primitive F of

f�x	 �
�

�� � x��	�� � e�x�	
�

Clearly� F admits an asymptotic expansion w�r�t� the normal basis
fx��� e�x�g� say F �x	 � u�z� 
	 � u�x��� e�x

�
	� We have

F � � �z�uz � 
z��
u� � �

�� � z�	�� � 
	
�

together with the initial condition

�z�uz�z� �	 � �

� � z�
�

The problem with this kind of equations is that although the expansion of u w�r�t� 

is easily derived� the same does not hold for the expansion w�r�t� z� Even though this
problem might still be feasible in this special case� we do not know of any general
method in order to obtain such expansions� For this reason� we will now consider
lexicographically automatic series�

������ Lexicographically automatic series

Lexicographically automatic power series Let C be an e
ective constant �eld
and R an e
ective C�algebra of series in C��z�� � � � � zk��� We say that a subset A
of R is lexicographically automatic� if there exists an algorithm� which takes
u 
 A and �l� � � � � �k 
 N �� � l � k	 on input� and which computes �z�ll � � � z�kk �u%
moreover� this coe�cient is required to be in A� As before� if A is a lexicographically
automatic subset of R� then so is the C�algebra which is e
ectively generated by A�
A series u 
 R is said to be lexicographically automatic� if it is contained in a
lexicographically automatic subset of R�

Lexicographically automatic Laurent series Let L now be an e
ective C�
algebra of Laurent series in z�� � � � � zk� which contains z�� z��� � � � � � zk� z��k � We say
that a subset A of L is lexicographically automatic� if

� There exists an algorithm� which takes u 
 A on input� and which computes
lower bounds ��� � � � � �k for the valuations of u in z�� � � � � zk respectively�
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� There exists an algorithm� which takes u 
 A and �l� � � � � �k 
 N �� � l �
k	 on input� and which computes �z�ll � � � z�kk �u% moreover� this coe�cient is
required to be in A�

Again� if A is a lexicographically automatic subset of L� then so is the C�algebra
which is e
ectively generated by A� A Laurent series u 
 L is said to be lexico�
graphically automatic� if it is contained in a lexicographically automatic subset
of L�

Lexicographically automatic transseries We de�ne lexicographically auto�
matic transseries in a similar way as symmetrically automatic transseries in sec�
tion ����	� by requiring g to be a lexicographically automatic Laurent series instead
of a symmetrically automatic Laurent series in AT	� It may be checked that the
e
ective stability theorems from section ����	 extend to the present context�

������ Lexicographical Cartesian representations

Let C be an e
ective �eld of constants and X an e
ective !quasi�ordered$ monomial
group� We assume that X is generated by a �nite number of monomials� on which
expo�linear constraints are imposed� Contrary to what we did in section ���� in
this chapter we will work with Cartesian representations of series in an e
ective C�
subalgebraS of C��X��� In other words� we do not assume the existence of a zero�test
for the Cartesian representations� but for the series they represent� In particular�
for the computation of intermediary dominant monomials� there is no need for an
analogue of the algorithm simplify�

A lexicographical Cartesian representation of a series f in S is a Laurent
series u in z�� � � � � zk� such that the Cartesian coordinates verify z� �X � � � �X zk�
Here we notice that we may always order the Cartesian coordinates in such a way�
by separating at most 
k cases� We say that u is a lexicographically automatic
Cartesian representation� if we have bounds p�� � � � � pk 
 Z for the valuations of u
in z�� � � � � zk� and an algorithm which given �l� � � � � �k 
 Z�� � l � k	 computes
�z�ll � � � z�kk �u� where we assume this series to be in S� By �formal nonsense�� it
follows that the coe�cients �z�ll � � � z�kk �u are lexicographically automatic Cartesian
representations as well�

In the remainder of this chapter� Cartesian representations are always understood
to be lexicographically automatic Cartesian representations�

������ Computation of intermediary dominant monomials

We now have the following algorithm to compute intermediary dominant monomials
in the context of lexicographically automatic Cartesian representations�
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Algorithm idm�u	�
Input� A Cartesian representation u 
 C��z�� � � � � zk�� of a series u 
 S�
Output�A set of intermediary dominant monomials for u�

if u � � then return ��
& Let zpii be the dominant monomial of u in zi� for � � i � k�
H �� f�g
while true

� �� pk
G �� ��
repeat

G �� G  idm��z�k �u	
� �� �� �

until G �� �� and c �X z
p�
� � � � zpk��k�� z�k for all c 
 G

G �� G  fzp�� � � � zpk��

k�� z
�
k g

if G is an intermediary set of dominant monomials of u then return GH
else

& Let c � z��
� � � � z�kk and c� � z

���
� � � � z��kk be in G� such that c � c� is

minimal for �X� �k � ��k� and where �
�
k is chosen minimal with these

properties�
u �� u� �c� � c	��z�kk �u	
H �� H  fc�c�gH

Proposition ��� The above algorithm idm is correct and terminates�

Proof The correctness of idm is immediate from the following two observations�
�rst� c and c� with the required properties indeed exist in the before last step� for
each c� chosen maximal in G for �X� the c�� � � � �ci 
 G with c� � � � � � ci � c�

satisfy �c��u� � � � � �ci�u � �� Secondly� at the end of the algorithm� GH is indeed
an intermediary set of dominant monomials for the original value of u% G is only an
intermediary set of monomials for the �nal value of u�

Let us prove by induction on k that idm terminates� This is clear for k � �� Let
k � � and assume that we have proved the assertion for all smaller k� No in�nite
loops can occur in the repeat�until loop� since we assumed that zi �X zk for all
i � k� Furthermore� the step u �� u� �c� � c	��z�kk �u	 can be executed only a �nite
number of times� since it has the e
ect of increasing the valuation of u in zk� while
u �� � remains invariant� �

Remark ��� Instead of returning GH at the end of the algorithm� we may �rst
eliminate its redundant elements� Notice also� that if we are allowed to change the
Cartesian representation u during the execution !while preserving u$� then the set
H has no use� and we may return G instead of GH�



�� CHAPTER ��� ALGEBRAIC DIFFERENTIAL EQUATIONS

Remark ��� As before� we also have algorithms for the in�nitesimalization and
regularization of Cartesian representations� based on idm�

���� Stability theorems

In chapter �� we gave a theoretical algorithm to solve asymptotic algebraic di
eren�
tial equations in the case of well�ordered transseries� In this section� we show that
if the coe�cients of such an equation were actually grid�based transseries� then so
are its solutions� Moreover� we describe some changes in the theoretical algorithm�
which will allow a purely e
ective treatment in the next section� Because of its tech�
nical character� this section may be skipped without much harm at a �rst reading�

In view of the theoretical algorithm to solve asymptotic algebraic di
erential
equations� it su�ces to show that the distinguished solutions of quasi�linear equa�
tions with grid�based coe�cients are also grid�based� In section ������� we give
several ways to compute distinguished solutions� In section ������� we prove that
the distinguished solutions of linear di
erential equations with grid�based coe�cients
are grid�based� In section ������� we treat the general case�

Since this section is purely theoretical� no e
ective assumptions need be made�
and C denotes the real closed exp�log �eld of constants we are working over�

������ Distinguished solutions w�r�t� normal bases

When dealing with grid�based transseries� it is convenient to compute w�r�t� normal
bases� especially for the e
ective purposes of the next section� The construction by
trans�nite induction of distinguished solutions to linear or quasi�linear di
erential
equations corresponds to the case when the normal basis is actually a canonical
basis� Indeed� if B is a canonical basis� then the elements of the asymptotic scale
SB generated by B are transmonomials� In general� distinguished solutions are
constructed in a similar way as in chapters 	 and �� but they depend on the choice
of B�

In this section� we brie0y explain the construction of distinguished solutions
w�r�t� general normal bases B � fb�� � � � �bng� We will also present an alternative�
lexicographical construction� this yields the expansion in bn� and� recursively� the
full expansion w�r�t� B� By analogy� distinguished solutions w�r�t� general normal
bases share all properties of the distinguished solutions as introduced in chapters 	
and �� In principle� distinguished solutions w�r�t� B are transseries in C���SB���� In
sections ������ and ������� we will show that they are actually grid�based�

Classical construction of distinguished solutions Before coming to the con�
struction of distinguished solutions� we �rst notice that� more generally� poten�
tial dominant monomials and terms of solutions to asymptotic algebraic di
erential
equations are easier to compute in the grid�based case than in the context from
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chapter �� This is because the trans�nite induction procedure in theorem ��� may
now be replaced by a �nite one� with the notations from chapter �� we �rst compute
the unique constant �n 
 C such that

m�P	b�nn �i	 �bn m�P	b�nn �j	�

next the unique constant �n�� 
 C such that
m�P	b�n��

n�� b
�n
n �i	 �bn m�P	b�n��

n�� b
�n
n �j	�

and so on for �n��� � � � � ��� In the linear case� this yields a �nite procedure to
compute mL��g in section 	��� In the quasi�linear case� this yields a �nite procedure
to compute m���g� which is in particular needed for the construction of �

��g�
Let us now come to the construction of distinguished solutions� which is analog�

ous to the one given in the proof of theorem ���� This time� g and the coe�cients of
� are in C���SB���� and we are looking for solutions in C�logr x����Sfx������ logr�� xg�B����
The main di
erences with respect to before are the following�

� The de�nition of stationary limits in C���SB��� is analogous to the transseries
case� except that we now write elements in C���SB��� as strong linear com�
binations of monomials in SB� instead of strong linear combinations of trans�
monomials�

� Using upward shiftings� we maintain the normal basis B of level � during
the �trans�nite computation�� each time when x�� need be inserted into B�
we perform an upward shifting� In view of the Newton regularity� this may
happen at most r � � times� Alternatively� we shift r � � times upwards
at the beginning of the computation� thereby guaranteeing a priori that the
distinguished solution will be expandable w�r�t� B�

Taking into account these two di
erences� we de�ne the trans�nite sequence �f�	
as before� and the last term of the sequence is the distinguished solution ���g to
�f � g�

Lexicographical construction of distinguished solutions Instead of comput�
ing the distinguished solution f term by term� one might also want to compute the
successive terms of f � when expanded in bn� the coe�cients of this expansion being
recursively expandable in a similar manner� To do so� we will construct a trans�nite
sequence �f��	 in a similar manner as before% but now f���� is obtained from f�� by
adding a term �� in C���b�� � � � �bn�����bCn instead of a term in CSB� Actually� this
sequence will be a subsequence of �f�	�

Before we show how to construct the sequence �f��	� let us �rst introduce some
more notations� For any f � we denote by ��f	 or �f the valuation of f in bn� We
will also consider expansions of quasi�linear operators � w�r�t� bn�

� �
X
i

X
�

�i��b
�
n �

X
�

��b�n��	b
�
n�
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and we denote by ���	 or �� the valuation of � in bn� The coe�cients �b�n�� of �
w�r�t� B are themselves operators with coe�cients in C���SBnfbng���� Moreover� the
operator �b	�n �� is quasi�linear�

Now we de�ne �f��	 by

f�
 � ��

f���� � f�� � ���

f�� � stat lim
��

f�� �if � is a limit ordinal	�

where

�� � c�b
	�
n �

c� � ��b
	���f����b

��
n

�

n ���f���	b��n 	
�� ��b

	g��f��
n ��g � �f��		�

�� � ������f���g � �f��		 � ��g � �f��	� ����f�� �lin	�

The fact that �b
	���f����b

��
n

�

n ���f���	b��n is a quasi�linear operator with coe�cients in
C���SBnfbng��� guarantees the existence of a distinguished right�inverse for it�

Proposition ���

a� The sequence �f��	 is a subsequence of �f�	�
b� The lexicographical and the classical constructions of distinguished solutions

are equivalent�

Proof It is straightforward to verify !a$ and !b$ follows directly from !a$� �

������ Distinguished solutions� the linear case

Let L � L
 � � � � � Lr�
r��xr be a linear di
erential operator with coe�cients in

C��b�� � � � �bn��� We study the action of L on C�x���b�� � � � �bn��� where we recall that
B is purely exponential of level �� The usual support suppL of L is de�ned to be
the union of the supports of its coe�cients L
� � � � � Lr� The operator support of
L is de�ned to be the smallest set supp�L� such that

suppLg � �supp�L	�supp g	�

for all g� The operator L is actually a grid�based linear operator� in the sense
that supp�L is grid�based� Indeed�

supp�L � suppL
  �suppL�	�supp����x	  � � �  �suppLr	�supp� ���x	r
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and
supp����x � fx��g  supp �b�  � � �  supp �bn�

where we recall that �f stands for the logarithmic derivative of f �
In this section� we will show that the distinguished right inverse L�� of L w�r�t�

B as de�ned in the previous section is also a grid�based linear operator� This implies
in particular that the distinguished solution to the equation L��f � g is grid�based�
for all g�

Lemma ��� Let

� �

�
c

m�L	c	

�����c 
 SB

�
�

� �
�
c�SB

suppL	c
m�L	c	

�

�� � xr�N��
�� � x�N xr�N��nf�g	�

Then

supp�L�� � ������

Proof We must show that for all g� the distinguished solution f to the equation
Lf � g satis�es supp f � �����supp g� Let the f� be as in the classical construction
of ���g in the previous section� We will prove by trans�nite induction over � that�

� supp �g � Lf�	 � ���supp g�

� supp f� � �����supp g�

This is clear for � � ��
Assume that � � ��� is a successor ordinal� Let wxj be the dominant monomial

of g � Lf�� where w is purely exponential� By the induction hypothesis� wxj 

���supp g� Let

cxi � mL���g�Lf�� � mL��m�

where c is purely exponential� Then we have

w � m�L	c	� !����$

Now f� � f� � ccxi for some constant c� Hence�

c � w
c

m�L	c	

 w�
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and cxi 
 wxj �� � �����supp g� This proves the second induction hypothesis� As to
the �rst� we have g � Lf� � g � Lf� � L�ccxi	� Now

L�ccxi	 � cL	cxi � cL	c�
xi � � � �� ci�L	c�i�

whence
suppL�ccxi	 � xi�NsuppL	c�

Using !����$� we get

suppL�ccxi	 � wxjxi�j�N
suppL	c
m�L	c	

Since i � j � r and L�ccxi	 � wxj � we conclude that supp L�ccxi	 � wxj�� �
���supp g� whence the �rst induction hypothesis�

If � is a limit ordinal� then the induction hypothesis are trivially satis�ed !in the
case of the �rst hypothesis� we use the linearity of L$� �

Lemma ��� The sets �� and �� from the previous lemma are grid�based�

Proof Each c 
 SB has the form c � b��
� � � � b�nn � whence we may consider c��L	c

as a linear di
erential operator with coe�cients in C���� � � � � �n���b�� � � � �bn��� whose
support is a grid�based set �� Indeed� the coe�cients of c��L	c are given by

�c��L	c	i �
rX
j	i

Ljc
�j�i��c�

and the quotients c�j�i��c may be rewritten as di
erential polynomials with constant
coe�cients in the logarithmic derivative �c of c�

Since the ring C���� � � � � �n� is Noetherian� it follows that m�c��L	c	 can only
take a �nite number of values� when varying ��� � � � � �n� For each semi�algebraic
subset of ���� � � � � �n	 on which m�c��L	c	 is constant� we also have a uniform
bound

suppL	c
m�L	c	

�
c��suppL	c
m�c��L	c	

� fw 
 �jw �� m�c��L	c	g
m�c��L	c	

�

for suppL	c�m�L	c	� Hence� the sets �� �� �� and �� are indeed grid�based� �

Combining both lemmas� we have proved�

Theorem ��� The distinguished linear right inverse L�� of L is grid�based� �
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������ Distinguished solutions� the quasi�linear case

We now turn to the case of a quasi�linear operator � of order r with coe�cients
in C��b�� � � � �bn��� Given g 
 C��b�� � � � �bn��� we study the distinguished solution
���g to the equation �f � g� as de�ned in section ��	�	� Modulo a suitable number
of upward shiftings� we may assume without loss of generality that B has level ��
and that ���g is expandable w�r�t� B�

Consider the lexicographical construction of ���g� The dominant term f�� of
���g w�r�t� bn is the distinguished solution to the equation

��b
	���b��n

�

n ��	b��n 	 c
 � ��b
	g��f��
n ��g � �f��		�

which is quasi�linear in general� The remaining coe�cients are solutions of the
equations

��b
	���f����b

��
n

�

n ���f���	b��n 	
�� c���b

	g��f��
n ��g � �f��		�

with � � �� We will now show that these equations are actually linear and not
merely quasi�linear� Moreover� there exists a linear di
erential operator L� such
that

c� � L��	b��n ��b
	g��f��
n ��g � �f��		�

for all � � ��

Lemma ���

a� �b
	��

�f����b
��
n

�
n ���f���	b��n is a linear di�erential operator for all � � ��

b� The linear di�erential operator

L � ��b
	���f����b

��
n

�

n ���f���	b��n 		b���n
�����

is independent of �� for � � ��

Proof For � � �� we have

����f���	MB
��
n
	 � ����f���	MB

��
n �lin	�

Since �� � �
� it follows by !���$ that

����f���	MB
��
n
	 � ����f���	MB

��
n �lin	 � ����f���	MB

��
n �rest	�

This proves !a$�
For � � �� we have f�� � f�� �� bn� whence

��f���	b��n � ��f�� �	b
��
n
� obn�b

	��
�f�

�
��b��n

�

n 	�
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by !���$� Hence�

��f���	b��n � ��f�� �	b��n � obn�b
	���f����b

��
n

�

n 	�

by !���$� Hence�

��b
	���f����b

��
n

�
n ���f���	b��n 		b���n

� ��b
	��

�f�
�
��b��n

�

n ���f�� �	b
��
n
		b���n

�

for all � � �� because of !a$� This proves !b$� �

From both lemmas and theorem ����� we now deduce the following�

Lemma ��	 The distinguished solution to �f � g is grid�based�

Proof We prove the theorem by induction over n� For n � �� we have nothing to
prove� Assume therefore that n � �� By the induction hypothesis� f�� is grid�based�
Modulo the replacement of g by g � �f�� � we may assume without loss of generality
that !���	$ holds for all �� Let

� � L �R�

� � suppcb�  � � �  supp cbn�
and de�ne

� � �supp�L��	�supp g	�

� �
�
i

�supp�L��	�suppRi	�
jij���jjijj�

Let us show by trans�nite induction that

supp f� � ���

for all �� This is clear for � � � and for limit ordinals ��
Assume that � � � � � is a successor ordinal� We claim that supp �g � Lf�� �

R�f��		 � supp g  suppR�f��	� Indeed� by the construction of f�� � all terms of Lf��
cancel out against terms of g �R�f�� 	� It follows that

supp f�� � supp f��  supp � �L���g � Lf�� �R�f�� 			

� supp f��  �supp�L��	�supp g  suppR�f��		

� ��� 
��

i

�supp�L��	�suppRi	�supp �f��	
�i�	

�

� ���
��

i

�supp�L��	�suppRi	�
jij���jjijj

�
� ����
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This completes the proof of the theorem� �

In view of this lemma and the theoretical resolutions algorithm� we have proved
the main theorem of this section�

Theorem ��� Any transseries solution to an algebraic di�erential equation with
grid�based transseries coe�cients is itself grid�based� �

���� E�ective asymptotic resolution of a�d�e��s

In this section� we show how to compute the generic solution to the asymptotic algeb�
raic di
erential equation !����$ under suitable e
ective hypothesis� For this purpose�
we use the theoretical algorithm from section ���� with the following changes�

� The distinguished solutions are now computed w�r�t� a dynamic normal basis
B� as explained in section ������ and below�

� Instead of computing with distinguished solutions� we will sometimes compute
with semi�distinguished solutions !see section ���	�	$�

Of course� we also have to �x an e
ective context and to show how to render the
theoretical algorithm e
ective in this context� This is the object of section ���	���
The sections ���	��� ���	�� and ���	�	 deal with e
ective extensions of the e
ective
�eld of transseries coe�cients we compute in�

������ Basics for the eective treatment

Basic assumptions In the rest of this chapter� we make the following e
ective
hypotheses�

A�C is an e
ective totally ordered constant �eld�
A�T is an e
ective di
erential �eld of transseries over C�

In what follows� we allow ourselves to enlarge T with real parameters� logarithms�
!certain� see below$ exponentials and distinguished solutions of quasi�linear equa�
tions� In the next sections� we will give e
ective zero�tests� in such extensions �elds�

As in previous chapters� we allow the imposition of constraints on the real para�
meters by which we extend T� Contrary to before� we allow the imposition of any

�Actually� we will not really give a full zero�test in the case of extensions by distinguished
solutions� Nevertheless� we will present an approach which is equivalent to giving such a zero�test
for the purposes we have in mind�
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�rst order formula� using constants in C� the exp�log �eld operations and the or�
dering operation� The regions de�ned by such constraints do not coincide with the
regions de�ned by the exp�log systems considered in chapters � and ��% see "VdD 	#
and !���	$� When necessary� we assume the existence of an oracle to check the con�
sistency of systems of such constraints� As usual� such an oracle is used to eliminate
empty regions� but it su�ces to check for real algebraic consistency in order to guar�
antee termination� This can for instance be done using cylindrical decomposition
!see "Col ��#$�

The normal basis B In the remainder of this chapter� we will always work
w�r�t� the e
ective dynamic normal basis B � fb�� � � � �bng of level �� Initially� the
coe�cients of !����$ can be e
ectively expanded w�r�t� B� after having them made
purely exponential by means of upward shiftings !i�e� the coe�cients of P admit
automatic Cartesian representations relative to T� where the Cartesian coordinates
are in SB$� On the other hand� we will always assume that the elements in T can
all be expanded w�r�t� B�

Automatic upward shiftings In order to keep the normal basis purely expo�
nential of level �� we use upward shiftings and the automatic updating strategy�
we introduce a global level l� which is increased each time an upward shifting is
necessary� To each transseries f !resp� di
erential polynomial with transseries coef�
�cients� etc�$ we consider during the computations� we also associate a level� If this
level is di
erent from the global level l� when we access the transseries� then the
necessary upward shiftings of f are made� This may lead to the insertion of new
!inverses of$ logarithms into B and the extension of T with new logarithms�

Insertion of new exponentials into B It may happen that a monomial c is a
potential dominant monomial w�r�t� a normal overbasis of B� but not w�r�t� B itself�
We need be able to detect this situation� and insert the necessary elements into B
when it occurs� Now in order to �nd the potential dominant �i� j	�monomials of
f !see section �����$� it su�ces to perform at most one additional upward shifting�
whence no new exponentials need be inserted into B�

In the case of potential dominant i�monomials� we �rst solve the corresponding
Riccati equation at degree i� If � is a solution modulo o��	� then we compute e�

by the usual exponentiation algorithm� The dominant monomial of e� is now a
potential dominant i�monomial� Here we notice that both the computations of �
and e� may provoke the insertion of new elements into B� We also notice that the
�eld T is extended by each new exponential which is inserted into B% the exponential
of �the in�nitesimal part� of � is not needed for further computations�

Cartesian representations of distinguished solutions The lexicographical
construction in section ������ shows in principle how to compute the expansion of
the distinguished solution to quasi�linear equation �f � g term by term� However�
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since we represent all our transseries by Cartesian representations� we also need a
Cartesian representation for the distinguished solution� We will now explain how to
compute such a Cartesian representation�

We start by regularizing all coe�cients of the quasi�linear operator� and extract
their dominant coe�cients w�r�t� bn� This allows us to compute !recursively$ the
�rst term � of the expansion of f w�r�t� bn� We then reduce the general case to the
case when !���	$ holds for all �� by replacing g with g��� and searching a solution
to �f � g�

Next� we compute a set Z � fz�� � � � � zkg of Cartesian coordinates with z� �� � � �
�� zk� w�r�t� which f can be expanded� using the e
ective bounds for supp f given
in sections ������ and ������� We take this set Z su�ciently large� so that it contains
all Cartesian coordinates of the coe�cients of �� We now let zl �� � � � �� zk be those
Cartesian coordinates in Z which depend on bn� The expansion of the Cartesian
representation of f w�r�t� Z is now computed lexicographically� by expanding �rst
in zk� then in zk�� and so on� To do this� we proceed in a similar manner as in the
lexicographical construction of distinguished solutions� where the elements of Z now
play the roles of the normal basis elements�

We must �nally show that we indeed compute a Cartesian representation of the
distinguished solution in this way� Let L be the linear operator from lemma �����
By proposition 	��� the distinguished solution is unique with the property that
supp f � fmh� � � � � �mhsg � ��� where h� �� � � � �� hs form a basis for the solutions
space of the homogeneous equation Lh � �� But the transseries represented by the
Cartesian representation computed by the above construction clearly satis�es this
property�

������ Eective extensions of T by logarithms and exponen�

tials

In the previous section� we have seen that we sometimes need to extend T by log�
arithms or exponentials during the computation of privileged re�nements� We have
also observed that we only need to extend T by !inverses of$ logarithms and expo�
nentials b� which are also inserted into B�

Let B be the normal basis before we insert b� We recall that we assumed that
all elements in T can be expanded w�r�t� B� We claim that a polynomial R�b	 in
b with coe�cients in T vanishes� if and only if R � �� Indeed� from our hypothesis
on T it follows that the supports of the di
erent terms of R are pairwise disjoint�
Consequently� we have a straightforward zero�test in T�b	� We also notice that the
elements in T�B	 can again be expanded w�r�t� B fbg� Hence� we may recursively
extend T by new logarithms and exponentials�
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������ Recall of some results from dierential algebra

In this section P denotes an arbitrary di
erential polynomial� and not necessarily
the P from !����$�

Let f be a solution to an algebraic di
erential equation P �f	 � �� Assume that Q
is another di
erential polynomial and suppose that we want to test whether Q�f	 �
�� Often this question can be answered by using only algebraic considerations� By
analogy with classical algebra� this is done by computing some kind of greatest
common divisor of P and Q� If this greatest common divisor is a scalar� then we
know that Q�f	 �� �� If the greatest common divisor is P � then we know that
Q�f	 � �� In the remaining case� we need more information to decide� but we still
gained something� Namely� a simpler equation then P �f	 � � must be satis�ed by
f � in order Q�f	 � � to hold true�

Actually� there is no straightforward analogue of the g�c�d� of two polynomials in
the di
erential setting� However� something like the above still holds in this case� To
show this� we will use Ritt reduction !see "Ritt ��#� or "Kap ��#$� and an algorithm
which resembles a lot the Boulier�Seidenberg�Ritt algorithm for testing whether a
di
erential polynomial belongs to a given perfect ideal !see "Boul �	#� "BLOP ��#�
"VdH ��c#$�

We will say that a di
erential polynomial P �f	 is simpler than another di
er�
ential polynomial Q�f	� if the order of P is strictly inferior to the order of Q� or the
orders r of P and Q coincide and the degree of P in f �r� is strictly inferior of the
degree of Q in f �r�% we write P � Q� Let P �f	 be a non zero di
erential polynomial
of order r� and write P � Pd�f �r�	d � � � �P
 as a polynomial in f �r�� The initial of
P is de�ned by IP � Pd and the separant of P by SP � �P��f �r�� The di
erential
polynomial HP � IPSP is always simpler then P �

If Q is another di
erential polynomial� and the the coe�cients of P and Q live in
an e
ective di
erential �eld� then Ritt gave an algorithm to compute i 
 N� a linear
combination �P of P�P �� P ��� � � � and a di
erential polynomial R which is simpler
then P � such that

H i
PQ � �P �R�

In particular� f is a simultaneous solution to P and Q� if and only if HP �f	 �� � and
P �f	 � R�f	 � �� or HP �f	 � P �f	 � Q�f	 � R�f	 � ��

More generally� we may consider pairs ��� T 	� where � � fP�� � � � � Psg is a non
empty set of non zero di
erential polynomials� and T a single di
erential polynomial�
Such a pair corresponds to the system P��f	 � � � � � Ps�f	 � � and T �f	 �� � of
di
erential equations and inequations� We say that ��� T 	 is elementary� if � is a
singleton� We say that a system ��� T 	 is simpler than a system ���� T �	� if ��� T 	
is elementary� or there exists a P 
 �� which is simpler than all elements in ���

Let ��� T 	 be a non elementary system and write � � fP�Q�� � � � � Qsg� where
P is simplest among the elements in �� Now compute �i��i and Ri as above� such
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that
HPQi � �iP �Ri�

for each � � i � s� Let �� � fRijRi �� �g� Then the systems ���  fPg� THP 	 and
���  fHP g �� T 	 are both simpler than ��� T 	� their solutions spaces are disjoint�
and f is a solution to ��� T 	� if and only if f is a solution to one of the these systems�

In general� a system ��� T 	 is said to be equivalent to a list L of systems whose
solution spaces are mutually disjoint� if f is a solution to ��� T 	 if and only if f
is a solution to one of the systems in L� Then the above generalization of Ritt�
reduction yields a procedure� which given a system ��� T 	 with j�j � 
 computes an
equivalent list of simpler systems� Repeating this procedure on each of the systems
in the obtained list� we eventually obtain an equivalent list of elementary systems�
Indeed� there exists no in�nite chain of simpler and simpler systems� We have
proved�

Theorem ��� There exists an algorithm� which given a system ��� T 	 computes
an equivalent list of elementary systems� �

In what follows� we will apply this theorem in the case when ��� T 	 � �fP�Qg� �	�
In this case� we obtain an equivalent list of elementary systems� which describes the
set of common solutions to P and Q�

������ Eective extensions of T by distinguished solutions

Assume that we want to adjoin the distinguished solution f to a quasi�linear equation
P �f	 � � �f �� q	� to T� where P has coe�cients in T� We have to design an
algorithm in order to test whether Q�f	 � � for arbitrary di
erential polynomials Q
with coe�cients in T� If �
 denotes the set of parameters in T� we may formulate the
problem in a di
erent way� determine the region R of C�� on which Q�f	 � �� We
will assume by induction that we know how to solve this problem for all distinguished
solutions of simpler di
erential polynomials than P � We know how to treat the base
step of this induction� namely the case of linear equations�

The �rst step of our algorithm consists of computing an equivalent list of sim�
pler elementary systems �fA�g� T�	� � � � � �fAlg� Tl	 for the system �fP�Qg� �	� by the
algorithm from the previous section� Then the region R can be written as a disjoint
union

R � R� q � � � q Rl�

where Ri is the region on which Ai�f	 � � and Ti�f	 �� � for all i�
�For the purposes of this section� the notation P �f� � � �f �� q� is more convenient than

�f � g�
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The simple case Let us �rst consider the case when !for all possible values of
the parameters in �
$ the distinguished solution is the unique solution to the quasi�
linear equation P �f	 � � �f �� q	� In this case� whenever for some i� �f is a solution
to the asymptotic di
erential equation

Ai� �f	 � � � �f �� �	 !����$

with the extra condition

Ti� �f	 �� �� !����$

then we must have �f � f � On the other hand� we must have Ai�f	 � � �f �� �	
with Ti�f	 �� � for some i� if f is a solution to Q�f	 � �� Hence� we have reduced our
problem to determining whether for a �xed index i� there exists a solution to !����$
with the extra condition !����$�

By the induction hypothesis� we can solve the equation !����$�� Again by the
induction hypothesis� we can determine the common solutions to !����$ and Ti� �f 	 �
�� More precisely� each generic solution �f to !����$ leads to the introduction of a
new set of parameters ��� For each such solution� we then obtain the region S of
C��q�� on which Ti� �f	 vanishes� Then C��q��nS is the region on which Ti� �f	 does
not vanish� The projections of these regions on C�� !when taking into account all
generic solutions to !����$$ yield the desired region on which there exists a solution
to !����$ under the condition !����$� It is in order to carry out these projections�
that we need an oracle for determining the consistency of �rst order formulas in the
theory of exp�log �elds� and not merely the consistency of exp�log systems in the
sense of chapter ���

The general case In general� f is not the unique solution to P �f	 � � �f �� q	�
so we can not guarantee that a given solution to !����$ and !����$ is the same one
as f � Although a test whether this is the case can be designed in most of the cases
encountered in practice !by using the properties of the supports of distinguished
solutions$� we were not able to design a fully general test�

Nevertheless� we will now present two �dirty tricks�� which provide the last piece
of our algorithm to solve algebraic di
erential equations� Actually� our trick consists
of working with dynamically determined semi�distinguished solutions instead of
distinguished solutions� By default� the semi�distinguished solution to a quasi�linear
equation P �f	 � � �f �� q	 is the distinguished solution� However� when we �nd
a posteriori a solution to P �f	 � � �f �� q	� which is also a solution to a simpler
algebraic di
erential equation� then we will use this solution instead as the semi�
distinguished solution�

Coming back to our original problem� such replacements a posteriori of dis�
tinguished solutions by semi�distinguished solutions in privileged re�nements occur

�We notice that it su�ces to solve this equation w�r�t� the current normal basis B! i�e� any
solutions which necessitate the insertion of new exponentials are discarded�
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precisely then� when we can not decide whether a solution to !����$ under the con�
dition !����$ is the distinguished solution to P �f	 � � �f �� q	� More precisely� this
situation amounts to the separation of l�� cases� on the complement of the region
R� the result to the test is negative and no additional action is undertaken� On each
region Ri� we compute a solution �f to !����$ under the condition !����$� Next� all
computations which depend on f are done over� where f is substituted by �f �

Termination is guaranteed by the fact that at each replacement of a distinguished
solution by a semi�distinguished solution� the semi�distinguished solution satis�es
simpler and simpler algebraic di
erential equations�

Remark ��� We quali�ed our trick as �dirty�� because we may have to do over
part of the computations� This amounts to quite complicated and unconventional
control structures� To handle this problem� we propose the following approach� based
on a variant of the automatic case separation strategy� at each time we introduce
a distinguished solution� we separate a usual case� and a virtual case� Whenever
the distinguished solution need be replaced by another solution� we kill the current
process� and activate a virtual process in which we work with the new solution
instead of the distinguished solution�

Remark ��	 We notice that distinguished solutions are needed at two places� in
privileged re�nements� and recursively during the computation of the expansion of
a distinguished solution� In particular� the replacement of an iterated coe�cient c
of a distinguished solution f to some quasi�linear equation P �f	 � � �f �� q	 by an
iterated coe�cient �c which is no longer a distinguished solution to some equation�
yields a new solution �f to P �f	 � � �f �� q	� which is only semi�distinguished- In
particular� suitable new Cartesian coordinates for �f are computed in this case�

���
 Conclusion

Putting together the results from this chapter� we have proved

Theorem ��	 Let C be an e�ective exp�log �eld� Then there exists an algorithm
which takes on input

a� An e�ective di�erential �eld T of transseries over C�
b� An e�ective normal basis B � T�
c� An asymptotic algebraic di�erential equation ������ whose coe�cients can

e�ectively be expanded w�r�t� B�

and which computes

a� A �nite family ��i��i	��i�l of pairs of �nite sets of real parameters and �rst
order systems of exp�log constraints�

b� For each � � i � l� an expansion algorithm for a virtual generic transseries
solution fi to ������ parameterized by �i� where the parameters satisfy �i�
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such that f�� � � � � fl yield all solutions to ����� in a non redundant way�
Modulo an oracle to determine the consistency of �rst order systems of exp�log

constraints� we may eliminate those indices i� for which �i has no solutions� In this
case� the fi are generic solutions and not merely virtual generic solutions to ������

�

Remark ��� Although the algorithm is �nite� the actual expansion of the trans�
series solutions to !����$ may involve a potentially unbounded number of case sep�
arations� For instance� consider the di
erential equation

f � �
x�

�� x��
�

where � is a real parameter and x � �� The computed generic solution to this
equation is

f �
Z

x�

� � x��
� ��

where the integration constant is zero� However� expansion of this solution up to
the �rst n 
 N� terms yields the following result�

� � �� � f � �� �
���x

��� � � � � � �
��n��x

��n�� �O�x��n��	�

� � �� � f � �� log x� x�� � � � � � �
n��x

�n�� �O�x�n��	�

�� � � � � � f � �
���x

��� � �� � � � � �
��n��x

��n�� �O�x��n��	�

� � � � f � x� log x� �� x�� � � � � � �
n��x

�n�� �O�x�n��	�
���

� � n� � � f � �
n��x

n�� � � � �� x� log x� ��O�x��	�

� � n� � � f � �
���x

��� � � � �� �
��n��x

��n�� �O�x��n��	�

Here we assumed that � �� �% a similar list is returned for the other case�
Remark ��� If we want to compute the �rst n terms of the expansion of a generic
solution to the di
erential equation� the computations may induce substitutions of
auxiliary distinguished solutions by semi�distinguished solutions� Such substitutions
may actually alter the expansions which have already been computed- Nevertheless�
if we allow terms in the expansion to be zero� then no zero�tests are needed during
the expansion� and this problem does not occur� Furthermore� if all parameters
are substituted by constants� then we are able to perform all necessary zero�tests
e
ectively� by computing canonical expansions !see section �����$�

Remark ��� The generic solutions to algebraic di
erential equations may be
used themselves to extend T� Hence� we may recursively solve algebraic di
erential
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equations whose coe�cients are solutions to other algebraic equations� However�
it should be noted that such computations may alter the representations of the
coe�cients of the equation�

Remark ��� Since arbitrary D�algebraic� systems of ordinary algebraic dif�
ferential equations may be reduced to equivalent lists of elementary systems !see
section ���	��$ by a straightforward generalization of the reduction algorithm� our
results may in principle be used to solve such systems� However� from the e�ciency
point of view� a simultaneous resolution algorithm for systems of asymptotic al�
gebraic di
erential equations would be preferable� We have not studied this issue
in detail� but we think that our methods generalize to this case without to many
di�culties�
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Chapter ��

Oscillatory asymptotic behaviour

���� Introduction

In the previous chapters of part B of this thesis� we have been concerned with auto�
matic asymptotic expansions of �strongly monotonic� transseries� In this chapter�
we make a �rst step towards the automatic treatment of functions involving oscil�
latory behaviour� We notice that Grigoriev obtained some very interesting related
results in "Gri �	# and "Gri ��#� although his point of view is di
erent yet comple�
mentary to ours� The results of section �	��� �	�� and �	�	 should soon appear in
"VdH )#�

The structure of this chapter is as follows� in section �	��� we recall a classical
density theorem for linear curves on the n�dimensional torus !see for example "Kok
��# or "KN �	#$� In section �	��� this theorem is generalized to more general classes
of curves on the torus�

In section �	�	� we are given an algebraic function � de�ned on ���� ��q� and
exp�log functions at in�nity F��x	� � � � � Fq�x	 in x� We show how to compute

lim sup
x�

��sin�F��x		� � � � � sin�Fq�x			�

In section �	�	� we will assume the existence of an oracle for checking theQ�linear de�
pendence of exp�log constants� Actually� Richardson�s algorithm !see "Rich ��#$ can
easily be adapted to yield an algorithm for doing this modulo Schanuel�s conjecture�

Section �	�� contains extensions of the obtained results� For simplicity� we have
based our exposition in section �	�	 on the case of exp�log functions� In view of the
algorithms from the previous chapter� the reader will notice that the results can be
easily extended to more general classes of transseries� This issue will be discussed
in section �	����� In section �	����� we sketch an approach for computing complete
asymptotic expansions of so called sin�exp�log functions of trigonometric depth one
!sines may not be nested$� We �nally discuss further extensions of our results to the
resolution of di
erential equations� in section �	�����

�	



�	��� A DENSITY THEOREM ON THE N 
DIMENSIONAL TORUS ��

���� A density theorem on the n	dimensional torus

Let ��� � � � � �n be Q�linearly independent numbers� we will use vector notation� and
denote the vector ���� � � � � �n	 by �� In this section� we prove that the image of
x �� �x� from R into the n�dimensional torus T n � Rn�Zn is dense� Notice that we
use the same notation for �x and its class modulo Zn� Moreover� we show that the
3density3 of the image is uniform is a sense that will be made precise� The following
theorem is classical�

Theorem �	� �Kronecker� Let ��� � � � � �n be Q�linearly independent real num�
bers� Let e�� � � � � en be the canonical base of Rn� Then ��e�Z� � � ���nenZ�R�e��
� � �� en	 is dense in Rn�

Proof Let G � ��e�Z� � � � � �nenZ� u � e� � � � � � en� and let A be the closure
of G�Ru� By the classi�cation theorem of closed abelian subgroups of Rn� we can
decompose A � V �D� where V is a subvector space of Rn and where D is a discrete
subgroup of Rn� with V � vectD � f�g !here we recall that vectD stands for the
vector space spanned by D$� Then we have projections 	 � G� G�V and 	� � G�
D� with Id � 	 � 	�� Now let fv�� � � � � vdg � G be an R�base of G and complete
this base into an R�base fv�� � � � � vng � G of Rn� Then 	�vd��	� � � � � 	�vn	 form an
R�base of V � Since Ru � V � u is an R�linear combination of ��vd��	� � � � � ��vn	�
This can be written in matrix form

�MX � U�

where � is the diagonal matrix with entries ��� � � � � �n� M an integer matrix� X
some column matrix� and U the column matrix with ��entries� If d were strictly
superior to �� then we would obtain a Q�linear relation between the �i� by doing
row operations on M � This completes the proof� �

Now let X be a measurable subset of T n� and let I be some interval of R� De�
noting the Lebesgue measure by �� we de�ne

��I�X	 �
��fx 
 Ij�x 
 Xg	

��I	
� !�	��$

Let us also denote by d the Euclidean distance on T n� Let Sd� resp� Sd de�
note the shift operator on R� resp� Rn or T n� Sd�x	 � x � d and Sd�x	 �
S�d����� �dn��x�� � � � � xn	 � �x��d�� � � � � xn�dn	 � x�d� The following are immediate
consequences of the de�nition of ��

Proposition �	� We have

a� ��I�X	 �
P

i�N��I�Xi	� if X �
�
i�NXi�

b� j��I�X	� ��SdI�X	j � jdj���I	� for all d�
c� ��I�X	 � ��S�dI� S�dX	� for all d� �
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It will be convenient to adopt some conventions for intervals I � �a� b� !resp�
I � �a� b�� I ��a� b� or I ��a� b�$ whose lengths b� a tend to in�nity� we say that a
property P holds uniformly in I� if the property holds uniformly in a�

�l
 a l � l
 P ��a� a� l�	�

We say that P holds for all I su�ciently close to in�nity� if P holds for all su�ciently
large a�

The next theorem is also classical� but for convenience of the reader we present
a proof� since similar techniques will be used in the next section�

Theorem �	� �Bohr� Sierpi�ski� Weyl� Let ��� � � � � �n be Q�linearly inde�
pendent real numbers and let � be given by ������ Let

X � �a�� b��� � � � � �an� bn�� T n

be an n�dimensional block� with � � ai � bi � � for all i�� Then

lim
	�I��

��I�X	 � ��X	�

uniformly in I�

Proof The theorem trivially holds� if ai � � and bi � �� for all but one � �
i � n� Hence� it su�ces to prove the theorem� when the ai and the bi are rational
numbers� Indeed� let a��� b

�
�� � � � � a�n� b�n be rational numbers with ja�� � a�j � jb�� �

b�j � � � � � ja�n � anj � jb�n � bnj � �� and denote X � � �a��� b
�
��� � � � � �a�n� b�n�� Then

j��I�X �	� ��I�X	j � 
� for ��I	 su�ciently large� uniformly in I�
Because of proposition �	��!b$� it therefore su�ces to prove the theorem for �xed

p � �p�� � � � � pn	 
 �N�	n and for all

X � Xk �

�
k�
p�
�
k� � �

p�

�
� � � � �

�
kn
pn
�
kn � �

pn

�
�

with � � k� � p�� � � � � � � kn � pn� We remark that ��� ��n�
�
kXk� so thatP

k ��I�Xk	 � ��
Now let � � �� For each k� we can �nd xk� with d��xk�k	 � ��n� by the�

orem �	��� Consequently� we have ��S��xkXk ! X�	 � �� where A ! B denotes
the symmetric di
erence of A and B� Hence� ��Xl ! S��xl�xk�Xk	 � 
�� for each l
with l� � p�� � � � � ln � pn� Using proposition �	��� we can now estimate

j��I�Xl	� ��I�Xk	j � j��I� S��xl�xk�	� ��I�Xk	j�
��Xl ! S��xl�xk�Xk	

� j��Sxk�xlI�Xk	� ��I�Xk	j� 
�
�

jxk � xlj
��I	

� 
��
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Taking ��I	 � jxk � xlj��� for any k and l� we get�������I�Xk	� �

p� � � � pn

����� � �

p� � � � pn
X
k

j��I�Xk	� ��I�Xl	j � ���

Hence j��I�Xk	 � ��Xk	j � ��� for su�ciently large ��I	� uniformly in I� This
completes our proof� �

Remark �	� The theorem does not longer hold� if we replace X by an arbitrary
measurable subset of the torus� Nevertheless� it can be shown that it does hold for
any measurable X� whose boundary is a �nite union of di
erentiable hypersurfaces�

���� A more general density theorem

In this section we will obtain a more general uniform density theorem on the torus�
when the application x �� �x from section �	�� is replaced by a non linear mapping�
which satis�es suitable regularity conditions� Before coming to this generalization�
we will need some de�nitions and lemmas� We say that a function f de�ned in
a neighbourhood of in�nity is steadily dominated by x� if f has a continuous
second derivative� f tends to in�nity� f � decreases strictly towards zero� and f ���f �

tends to zero� We remark that such functions f admit functional inverses f inv in a
neighbourhood of in�nity�

More generally� we say that if f and g are functions in a neighbourhood of in�nity�
such that g is invertible� then f is steadily dominated by g� if f � ginv is steadily
dominated by x� In this case� we write f ��s g� It is easily veri�ed that if f ��s x
and g ��s x� then f � g ��s x� so that ��s is transitive� We also remark that if
f ��s g and if h is a function� which has a continuous second derivative and tends
to in�nity� then f � h ��s g � h� We �nally have the following property of steady
domination�

Lemma �	� Let h be steadily dominated by x and let l � � and � � � be given�
Then for all su�ciently large x we have jh��x � d	 � h��x	j � �h��x	� for all d with
jdj � l�

Proof Let x
 be such that jh���x	�h��x	j � �h��x	� for all x � x
 � l� We have
jh��x�d	�h��x	j � jdh����	j � �h���	� for some � between x and x�d� If d is positive�
then h���	 � h��x	� and we are done� In the other case� we have jh��x�d	�h��x	j �
�h��x	� �jh��x� d	 � h��x	j� whence jh��x� d	� h��x	j � ������ �		h��x	� �

Now let X be a measurable subset of R� For each interval I� we de�ne�

��I�X	 �
��I �X	

��I	
�
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We say that X admits an asymptotic density ��X	 if

lim
	�I��

��I�X	 � ��X	�

uniformly in I� for I su�ciently close to in�nity�

Lemma �	� Let X be a measurable subset of R and let h be steadily dominated
by x� If ��X	 exists� then so does ��h�X		 and we have ��h�X		 � ��X	�

Proof Let � � �� Let l 
 R be such that j��I�X	 � �j � �� whenever ��I	 � l�
Taking I � ��� ��� we subdivide hinv�I	 in q � b�hinv��	�hinv��		�lc parts of equal
length l� � l

��hinv��	� hinv��		�� �a�� b��q � � � q �aq� bq��
with bi � ai�� for � � i � q� Then we have

��� �	
qX
i	�

Z bi

ai
h��bi	dx �

qX
i	�

Z bi

ai
�X�x	h

��bi	dx �

��hinv�X	 � I	 �
qX
i	�

Z bi

ai
�X�x	h

��ai	dx � ��� �	
qX
i	�

Z bi

ai
h��ai	dx�

By lemma �	��� for all su�ciently large x� we have jh��x� d	 � h��x	j � �h��x	� for
all d with jdj � l�� Hence������

qX
i	�

Z bi

ai
h��x	dx�

qX
i	�

Z bi

ai
h��bi	dx

����� �
qX
i	�

Z bi

ai
jh��x	� h��bi	jdx �

�
qX
i	�

Z bi

ai
h��x	dx � ���I	�

and we have a similar estimation� when replacing bi by ai� Consequently�

�� � �	�� � �	��I	 � ��h�X	 � I	 � ��� �	�� � �	��I	�

This completes our proof� �

Let f� ��s � � � ��s fp be continuous functions de�ned in a neighbourhood of in�
�nity� which strictly increase towards in�nity� Let �i�j � � !� � j � ni$ be such
that �i��� � � � � �i�ni are Q�linearly independent for each i� Now consider the curve

g�x	 � �f������x	� � � � � f�����n�x	� � � � � fp��p��x	� � � � � fp��p�npx		
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on T n !n � n�� � � �� np$� which is de�ned for su�ciently large x� By analogy with
the preceding section� we de�ne

�f�g�I�X	 �
��fx 
 Ijg�f inv� �x		 
 Xg	

��I	
� !�	��$

for intervals I su�ciently close to in�nity� and measurable subsets X of T n�

Theorem �	� Let f�� � � � � fp� g and �f�g be given as above and let

X � �a�� b��� � � � � �an� bn�� T n

be an n�dimensional block� Then

lim
	�I��

�f�g�I�X	 � ��X	�

uniformly� for intervals su�ciently close to in�nity�

Proof We proceed by induction over p� If p � �� we have nothing to prove�
Otherwise� we decompose X � X� � �X � with X� � T n� and �X � T �n� where
�n � n� � � � � � np� We denote by g��x	 resp� �g�x	 the projections of g�x	 on T n�

resp� T �n� when considering T n as the product of T n� and T �n� Without loss of
generality� we may assume that f� � x�

Given a subset A of R or T n and its frontier �A� we denote for any � � �

��A � fx 
 Ajd�x� �A	 � �g�

Let � � �� If g��x	 
 ��X�� then g��x � d	 
 X� for all d with jdj � l� where
l � max�������� � � � � �����n�	�� Hence� for I su�ciently close to in�nity�

I � ginv� ���X�	 � �I � �lg
inv
� �X�		��� l� l� � I � ginv� �X�	�

Therefore� theorem �	�� implies that for I su�ciently close to in�nity�������I � ginv� �X�		

��I	
� ��X�	

����� � � !�	��$

and !using that ����X� ! X�	 � 
n�$��������I � �lg
inv
� �X�		��� l� l�	

��I	
� ��I � ginv� �X�		

��I	

����� � �
n� � �	�� !�	�	$

Now �I � �lg
inv
� �X�		��� l� l� is a �nite union of intervals� say

I � �lg
inv
� �X�	��� l� l�� I
 q � � � q Iq���

where I�� � � � � Iq have length at least 
l� and where I
 and Iq�� have length at most

l�
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By the induction hypothesis� we have

lim
	�J��

��J � f���ginv� �X			

��J	
� �� �X	�

uniformly� for J su�ciently close to in�nity� Using lemma �	��� this gives us

lim
	�f��J���

��J � �ginv� �X		
��J	

� �� �X	�

uniformly� for J su�ciently close to in�nity� In particular� we have�������J � �ginv� �X		��J	
� �� �X	

����� � ��

for all J su�ciently close to in�nity� with ��J	 � l� Thus� choosing I su�ciently
close to in�nity� we have �������Ii � �ginv� �X		��Ii	

� �� �X	

����� � ��

for all � � i � q�
Taking ��I	 � 
l��� and using !�	��$ and !�	�	$� this gives us

j�f�g�I�X	� ��X	j �
�������
�q��
i	
 Ii � �ginv� �X		

��I	
� ��X	

����� ��������I � ginv�X		

��I	
� ��

�q��
i	
 Ii � �ginv� �X		

��I	

�����
�

������
q��X
i	


��Ii � �ginv� �X		� �� �X	��Ii	

��I	

�������������� �X	��
�q��
i	
 Ii	

��I	
� ��X	

����� � �
n� � �	�
�

qX
i	�

��Ii	�

��I	
� ��n� � 	� � ��n� � �	��

This completes the proof� �

���� On the automatic computation of limsups

In this section we show how theorem �	�� can be applied to compute limsups !or
liminfs$ of certain bounded functions� involving trigonometric functions� The idea
is based on the following consequence of theorem �	���
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Theorem �		 Let � �� f� �� � � � �� fp be exp�log functions at in�nity� Let
�i�j � � � � j � ni� be such that �i��� � � � � �i�ni are Q�linearly independent for each
i� Denote U � fx � p�� y 
 C jx� � y� � �g and n � n� � � � � � np� Let � be a
continuous function from Un into R and let

��x	 � ��e
p�� ����f��x�� � � � � e

p�� �p�npfp�x�	�

Then
lim sup
x�

��x	 � sup
x�Un

��x	�

Proof We �rst notice that we will be able to apply theorem �	�� on our input data�
by a well known theorem� which goes back to Hardy !see "Har ��#$� the germs at
in�nity of f�� � � � � fp lie in a common Hardy �eld� Consequently� f� ��s � � � ��s fp�
and f�� � � � � fp are strictly increasing in a suitable neighbourhood of in�nity�

The mapping � is de�ned in a neighbourhood V of in�nity� and can be factored
V

�� R� V
��� T n ��� R� with

���x	 �

�
����f��x	


	
� � � � � �p�npfp�x	


	

�

and
���x�� � � � � xn	 � ��e�


p�� x�� � � � � e�

p�� xn	�

where �� and �� are both continuous� Since T n is compact� there exists a point
x in which �� attains its maximum� Let � � �� There exists a neighbourhood
V of x� such that j���y	 � ���x	j � �� for any y in V � By theorem �	��� there
exist x� with ���x	 
 V as close to in�nity as we wish� For such x� we have
j��x	� supx�Un ��x	j � �� �

We now turn to the computation of this limit�

Theorem �	� Let F�� � � � � Fq be exp�log functions at in�nity� Let � � U q � R a
real algebraic function� where we consider U q as a real algebraic variety� Assume that
we have an oracle to test the Q�linear dependence of exp�log constants� Then there
exists an algorithm to compute the limsup of ��x	 � ��e

p�� F��x�� � � � � e
p�� Fq�x�	�

Proof Using the identity e�x � ��ex� we may always assume without loss of
generality� that the Fi are all positive� Now the algorithm consists of the following
steps�

Step � Compute a common e
ective normal basis for F�� � � � � Fp� using the al�
gorithm from section ���� Order the Fi w�r�t� �� % that is� Fi � Fj or Fi �� Fj�
whenever i � j�
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Step � Simultaneously modify the Fi and the algebraic function � in the e
p�� Fi �

until we either have Fi �� Fj� or Fi � �Fj� for some �� whenever i � j� As long as
this is not the case� we take j maximal� such that the above does not hold� and do
the following�

First compute the limit � of Fi�Fj� Next insert F �
i �� Fi � �Fj and F �

j �� �Fj
into the set of Fi and remove Fi� The new expression for � is obtained by replacing
each e

p�� Fi by e
p�� F �i e

p�� F �j �

Step � Compute exp�log functions f� �� � � � �� fp� and constants �i�j !� � j � ni$�
such that each Fl can be written as Fl � �i�jfi� for some i and j� Replacing e

p�� Fi

by its limit for each bounded Fi� we reduce the general case to the case when � �� f��

Step 	 This step consists in making the �i�j Q�linearly independent for each �xed i�
Whenever there exists a non trivial Q�linear relation between the �i�j !for �xed i$�
we may assume without loss of generality that this relation is given by

ani�i�ni � a��i�� � � � �� ani���i�ni���

for a�� � � � � ani in Zand ani � �� As long as we can �nd such a relation� we do the
following�

For all j � ni� replace �i�j by ��i�j �� �i�j�ani and e
p�� �i�jfi by �e

p�� ��i�jfi	ani in

the expression for �� Next� replace e
p�� �i�nifi by �e

p�� ��i��fi	a� � � � �e
p�� ��i�ni��fi	ani��

in the expression for ��

Step � By theorem �	�	� the limsup of � is the maximum of � on Un� where
n � n� � � � � � np� To compute this maximum� we determine the set of zeros
of the gradient of � on Un� Then � is constant on each connected component
and the maximum of these constant values yields maxUn �� To compute the zero
set of the gradient of � and its connected components� one may for instance use
cylindrical decomposition !see "Col ��#$� Of course� other algorithms from e
ective
real algebraic geometry can be used instead�

The correctness of our algorithm is clear� The termination of the loop in step
� follows from the fact that the new F �

i is asymptotically smaller then Fj� so that
either the ��class of Fj strictly decreases� or the number of i with Fi � Fj� but not
Fi � �Fj for some �� The number of ��classes which can be attained is bounded
by the initial value of q� �

Corollary Let F�� � � � � Fq be exp�log functions at in�nity and � be an algebraic
function in q variables� de�ned on ���� ��q� Assume that we have an oracle to test
the Q�linear dependence of exp�log constants� Then there exists an algorithm to
compute the limsup of ��x	 � ��sin�F��x		� � � � � sin�Fq�x			� �
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��
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��x	
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�
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Figure �	��� Plot of the function � from example �	���

Example �	� Consider the function

��x	 �

 sin x� � sin�x���x� �		
� � sin ex� � sin�ex� � �	 �

The �rst step consists in expanding x� � x�� x���x� �	 � x� � x� � � � � ex� � ex�

and ex� � � � ex� � �� All these functions have the same ��class� but they are not
all homothetic� Therefore� some rewriting needs to be done� First� x���x � �	 �
x� � x���x� �	� and we rewrite

e
p�� x���x��� � e

p�� x�e
p�� x���x����

which corresponds to the rewriting

sin
x�

x� � � sinx
� cos

x�

x� � � sin
x�

x� � cosx
��

if we consider real and imaginary parts� Similarly� we rewrite

e
p�� �ex���� � e

p�� ex�e
p���

which corresponds to the rewriting

sin�ex� � �	 � sin ex� cos � � sin� cos ex��

In step 	� no Q�linear relations are found� so that we have to determine the maximal
value of

��a� �a� b��b� c� �c	 �

a� a�c� c�a

� � b� b cos � � �b sin � !�	��$

on U�� Here we have abbreviated a � sinx�� �a � cosx�� b � sin ex���b � cos ex�� c �
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sin�x���x � �		� �c � cos�x���x � �		 !hence U� is the set of points with a� � �a� �
b���b� � c���c� � �$� The maximum of � is attained for a � �� �a � �� b � ���
��b �p
��
� c � �� �c � ��� We deduce that

lim sup
x�

��x	 �
�

 � cos � �p
� sin �

� l�

Similarly� exploiting the symmetry of !�	��$� we have

lim inf
x� ��x	 �

��
 � cos ��p

� sin �
� �l�

���
 Extensions

We have shown how to compute limsups of certain functions involving trigonometric
functions� exponentiation and logarithm� Actually� the techniques we have used are
far more general than theorem �	�� might suggest� Let us now discuss the possible
extensions of our theorem�

������ More general classes

More general F�� � � � � Fq In theorem �	��� the crucial property of the functions
F�� � � � � Fq is that they are strongly monotonic and that we have an asymptotic
expansion algorithm for them� Consequently� functions more general than exp�log
functions can be taken instead� especially classes of !germs of$ functions� which can
be represented by transseries for which the asymptotic expansion algorithms from
the previous chapters apply� Now convergent transseries naturally represent germs
of functions at in�nity� More generally� resummation techniques are needed in order
to associate germs of functions at in�nity to transseries�

Resummation theories So what natural axioms should a resummation theory
actually satisfy* We propose to de�ne a real resummation theory as being a
mapping � from a di
erential sub�eld K of the �eld of transseries to the ring of
germs of real functions at in�nity� which satis�es the following properties�

RT� K contains all convergent transseries and ��f	 is de�ned in the natural way
for such transseries f �

RT� � preserves the �eld operations�
RT� � preserves di
erentiation�
RT� � preserves the ordering�
RT	 � preserves in�nitesimals�
RT� � preserves composition !when de�ned$�

The image of a resummation theory � is a Hardy �eld� Via �� the results of this
chapter generalize to the case when F�� � � � � Fq are in an automatic sub�eld of K�
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There do exist non trivial resummation theories� For instance� one may extend
the di
erential �eld of convergent transseries with the Gamma function� Similarly�
we may use the classical closure properties of Hardy �elds in order to construct
non trivial resummation theories� However� no resummation theories with very
general closure properties !stability for resolution of algebraic di
erential equations
and composition$ are known at the moment� Indeed� this is a very important open
question� and especially the preservation of realness is very hard to achieve !see
"Ec ��# and "Men ��# for an approch to this problem$�

More general functions � We may also take � in a more general class than
the class of algebraic functions de�ned on U q or ���� ��q� The interesting property
of the class of algebraic functions is that there exists a cylindrical decomposition
algorithm for it� In particular� modulo suitable oracles� one may consider the class
of solutions to real exp�log systems in several variables !see also the conclusion$�

If one drops the e
ectiveness condition� one may also consider the class C of
all real analytic functions de�ned on U q� We claim that there exists a cylindrical
decomposition theorem for C� To show this� we have to prove that the zero�set of
any �nite system of functions in C can be decomposed in a �nite set of connected
real analytic subvarieties� Now the theory from chapter �� implies that such decom�
positions exist locally� by taking the set of all convergent power series for the local
community� By the compactness of the zero�set� we need only a �nite number of
such local pieces in order to recover the entire zero�set�

From the e
ective point of view� it is attractive to restrict ones attention to
an e
ective di
erential ring R of e
ective real analytic functions on U q� E
ective
real numbers are numbers which can be approximated automatically to any desired
precision by rationals� E
ective real analytic functions are e
ective real functions
f � such that for any e
ective point x
 in the domain of f � we can compute f�x
	� a
small disk around x
 on which f is analytic and bounds for f on any closed subdisk�
In this context� it is not hard to show that there exists an algorithm to compute the
maximum of a real analytic function � on the torus U q� On the other hand� exact
zero�tests for constants in R are usually very hard to design� if they exist at all� We
also refer to appendix C for computations with e
ective reals and complex numbers�

������ Complete expansions

The approach In principle� our techniques can also be used to compute automatic
asymptotic expansions of sin�exp�log functions � at in�nity of trigonometric depth
one !i�e� without nested sines$� This is done as follows� let sin f�� � � � � sin fp be
the sines occurring in �� Using the rewriting algorithm from section �	�	� we �rst
reduce the general case to the case in which the fi are Q�linearly independent� and
homothetic whenever equivalent for �� Next� we consider g� � sin f�� � � � � gp � sin fp
as formal transseries parameters� which satisfy the constraints �� � sin fi � � for
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all i� At this point we can apply the generic expansion algorithm for multivariate
transseries from chapter ���

Simplifying a bit !see the �nal remarks at the end of this section$� the result
is a list of regions� determined by asymptotic constraints on the gi� together with
a generic expansion algorithm on each region� Of course� some regions may not
correspond to actual asymptotic behaviours of �� Besides checking the constraints
for exp�log consistency� which can be done modulo the oracle used in chapter ���
we need check whether the constraints !and the extra constraints induced by the
�nal re�nements$ can actually be realized when we know that the formal parameters
were originally sines of exp�log functions� This issue has still to be studied in detail�
Let us brie0y discuss some aspects of this problem�

Diophantine problems In its full generality the problemmay lead to very di�cult
number theoretical phenomena� as the following example illustrates�


� sinx� sin ex ��
�

��x � 
	
�

This asymptotic inequality follows from the number theoretical properties of e� But
what about the positive in�nitesimal exp�log functions f for which


 � sinx� sin ax � f�x	!�	��$

for all su�ciently large x� where a is an arbitrary exp�log constant* Clearly� this
is a problem of Diophantine approximation which is very hard to solve in general�
if solvable at all !see "Lang ��# for a nice survey on Diophantine approximation$�
Yet� it is one of the simplest situations which can arise� since in general� we want to
study far more general systems of constraints�

Nevertheless� we notice that !�	��$ has been chosen in a very special way� 
 is
precisely the lim sup of sinx � sin ax% we say that !�	��$ is �degenerate�� If 
 is
replaced by any other real number� then the problem becomes �non degenerate�
and trivial� Therefore� our example is quite pathological� Furthermore� we notice
that a is usually not an arbitrary real number� but say an algebraic number� or a
parameter� In the �rst case� the theory of Diophantine approximation may give us
some information� which we are able to exploit e
ectively� using the theory from
chapter ��� In the second case� one can keep f �xed� and study the measure of the
set of a for which !�	��$ holds !by analogy with Kolmogorov�Arnold�Moser theory$�
which is again a simpler problem�

A pragmatic attitude Finally� let us explain why from a numerical point of
view� it is not really necessary to decide whether complicated asymptotic systems
involving trigonometric functions are consistent� Indeed� assume for instance that
during the computation of the expansion of a sin�exp�log function � of trigonometric
depth one� we need determine the asymptotic sign of g�x	 � 
� sinx� sin ax�f�x	
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for some reason !with a and f as in !�	��$$� Then this asymptotic sign does not
really matter for numerical applications� if we want to evaluate ��x
	 for a large
value of x
� then we just compute the sign of g in x
� If this sign is positive resp�
negative� then we compute ��x
	 using the asymptotic estimate obtained for it under
the assumption that g�x	 is asymptotically positive resp� negative� Clearly� the fact
that the generic asymptotic expansion algorithm from section �� returns always a
�nite list of regions is very important for this mechanism to work in general�

On the other hand� certain questions which are� logically speaking� decidable�
are completely undecidable from the practical point of view� A good example is to
determine the sign of

c � sin���

����

�

which is needed in order to compute the asymptotic expansion of

expexp�sin ���

����

x	

at in�nity�

Final remarks We have �cheated� a bit in the application of our generic expansion
algorithm from chapter ��� Indeed� the algorithm may introduce some real para�
meters and impose exp�log constraints on them� In particular� when introducing a
sine gi � sin fi �� � as a formal parameter� we re�ne

gi � �� � �� �� �	

or
gi � ��

However� we do not wish to interpret gi as the sum of a real parameter plus an
in�nitesimal expression� since sin fi�x	 does not necessarily tend to a constant as x
tends to in�nity in the region which interests us�

Let us brie0y discuss an approach to handle this problem� which we intend to
develop in a future paper� Instead of introducing real parameters in the generic
expansion algorithm� an alternative approach would be to divide the set of transser�
ies parameters in two subsets� the in�nitesimal and bounded parameters� Here the
status of a parameter may be changed dynamically� while maintaining the elimina�
tion ordering� From the constraint point of view� the bounded parameters behave
in a similar way as the real parameters before� However� if the limit behaviour of a
bounded parameter xi can be expressed as a function of other bounded parameters
xj with j � i� then we separate three cases� as we would have done in the usual
algorithm�

Example �	� Assume that we want to expand

� �
�

sinx� sin ex �
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Initially� sinx �elim sin ex correspond to bounded parameters� In order to invert
sinx� sin ex we have to separate the cases

sinx� sin ex "" �

and
sinx� sin ex �� ��

In the �rst case� � is bounded� and we are done�� In the second case� we have
expressed the limit behaviour of sinx as a function of the limit behaviour of sin ex�
and we separate three cases������

sinx � sin ex � � �� �� �	�
sinx � sin ex � � �� �� �	�
sinx � sin ex�

The last case is eliminated� since sinx � sin ex should be invertible� In the �rst
two cases� the bounded parameter sinx is rewritten in terms of an in�nitesimal
parameter � !change of status$� The constraints sinx � sin ex � � �� �� �	 resp�
sinx � sin ex � � �� �� �	 induced by these re�nements are both consistent�

������ Dierential equations

In section 	��� we have given a theoretical algorithm to determine all solutions to
linear di
erential equations with transseries coe�cients� even those solutions which
involve oscillatory behaviour� The method becomes really e
ective� if the transseries
live in an e
ective �eld of transseries� which satis�es the hypothesis from chapter ���
Indeed� we use similar algorithms as in the previous chapter�

More generally� one may consider transseries whose transmonomials are strongly
monotonic� but the coe�cients are analytic functions in a �nite number of exponen�
tials eiF� � � � � � eiFp of purely imaginary strongly monotonic transseries� Of course�
the analytic functions are restricted to belong to some e
ective class� as discussed
before� In this context� we have already some results about the computation of
distinghuished solutions to linear and quasi�linear equations� but these results still
require a full development�

���� References

�Col 	�
 G�E� Collins� Quanti�er elimination for real closed �elds by cylindrical algebraic
decomposition� Proc� ��nd conf� on automata theory and formal languages� Springer

lect� notes in comp� sc� �� �p� ��
����	�

�Ec ��
 J� �calle� Introduction aux fonctions analysables et preuve constructive de la con�
jecture de Dulac� Hermann� collection� Actualit�s math�matiques�

�From the constraint point of view� sinx� sin ex �� � is handled as an inequality sinx �� sin ex

between real parameters�



�	��� REFERENCES ���

�GoGr ��
 G�H� Gonnet� D� Gruntz� Limit computation in computer algebra� Technical

report ���� ETH� Z�rich�

�Gri ��
 D� Grigoriev� Deviation theorems for solutions to di�erential equations and ap�

plications to lower bounds on parallel complexity of sigmoids� Theoretical Comp� Sc�
�����	 �p� �����	�

�Gri ��
 D� Grigoriev� Deviation theorems for solutions of linear ordinary di�erential equa�

tions and applications to parallel complexity of sigmoids� St�Petersburg Math� Jorn�

���	 �p� ������	�

�Har ��
 G�H� Hardy� Properties of logarithmico�exponential functions� Proceedings of the
London mathematical society ���� �p �
���	�

�HW ��
 G�H� Hardy� E�M� Wright� An introduction to the theory of numbers �chapter
XXIII	� Oxford science publications�

�KN 	�
 L� Kuipers� H� Niederreiter� Uniform distribution sequences� Wiley �New York��

�Kok ��
 J�F� Koksma� Diophantische Approximationen� Ergebnisse der Mathematik� Band

IV� Heft 
� Springer� Berlin�

�Kr ����
 Kronecker� Werke iii�i�� Berliner Sitzungsberichte �p� 
�����	�

�Lang 	�
 S� Lang� Transcendental numbers and Diophantine approximation� Bulletin of the

A�M�S� ����	 �p� �������	�

�Men ��
 F� Menous� Les bonnes moyennes uniformisantes et leurs applications � la resom�
mation r�elle� PhD� thesis� Univ� d�Orsay� France�

�Rich ��
 D� Richardson� A simpli�ed method for recognizing zero among elementary con�

stants� Proc� ISSAC ��� �p� ��
����	�

�RSSV ��
 D� Richardson� B� Salvy� J� Shackell� J� van der Hoeven� Asymptotic

expansions of exp�log functions� Accepted for ISSAC ���� E�T�H� Z�rich� july �
����
Switzerland�

�Sal ��
 B� Salvy� Asymptotique automatique et fonctions g�n�ratrices� PhD� thesis� Ecole
Polytechnique� France�

�VdH ��a
 J� van der Hoeven� Generic asymptotic expansions� Local proc� of the Rhine

workshop on computer algebra� ed� A� Carri�re� L�R� Oudin� Saint�Louis� April ����

France �p� ����������	� submitted to AAECC�

�VdH �
 J� van der Hoeven� On the automatic computation of limsups� Available at

http���www�win�tue�nl�win�mega���papers� To appear in a special issue of the
Journal of Pure and Applied Algebra �eds� A�M� Cohen� M�F� Roy	� Elsevier�





Appendices





Appendix A

Noetherian orderings

A�� Introduction

It should not be surprising that in a general theory of asymptotic expansions the
usual theory of orderings plays an important role� In fact� it turns out that asymp�
totics is closely related to the subject of Noetherian orderings� Because of its
richness� we decided to devote this appendix to it� One of its origins clearly comes
from commutative algebra� as developed by Noether and others in the twenties and
thirties� In section �� we translate the basic properties concerning Noetherian rings
in the language of orderings% in fact� we mainly recall this very classical material to
make the reader familiar with our nomenclature�

The study of Noetherian orderings for their own right would not have been
justi�ed without the appearance of a certain number of non trivial theorems in the
�fties and the sixties� most importantly Higman�s theorem !see "Hig ��#$� Various
motivations led to these theorems� a conjecture of V'zsonyi and a question from
Erd4s !see "Er 	�#$� order theoretic reasons !see "Krus ��#� "NaWi ��#$� etc� It is
interesting to notice� that Higman�s original motivation was the same as ours� the
construction of algebras of generalized power series� The idea is to �x a ring� a
partially ordered monomial group� and to consider those series� whose supports are
Noetherian !that is� the induced ordering is Noetherian$� We shall prove Higman�s
theorem and some of its generalizations in section ��

The interest of theorems like Higman�s theorem is that they permit us to prove
the existence of solutions to certain types of equations over generalized power series
and transseries� and in many cases to explicitly �nd a solution� The idea is that
these theorems permit us to construct Noetherian orderings from others by means
of elementary constructions� In terms of asymptotics� this allows us to con�rm
that the supports of candidate solutions are indeed Noetherian� However� for sev�
eral reasons the classical theorems are insu�cient to handle very general functional
equations� Therefore� we introduce in section 	 the concept of Noetherian operators�
which will allow us to generalize some classical theorems about Noetherian order�

���
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ings� In section �� we will show that these theorems are in fact e
ective� in a sense
which will be made precise�

Let us �nally notice that some other interesting constructions can be performed
on Noetherian orderings� First� a Noetherian ordering determines a topology� whose
closed sets are the �nal segments� Then it is interesting to study the Boolean
algebras or  �algebras generated by this topology� The elements of this boolean
algebra are called constructible sets !by analogy with algebraic geometry$� Often it
is possible to de�ne a natural measure on the  �algebra on a Noetherian ordering�
and often the measures of constructible sets can be computed e
ectively� This
gives an �nal justi�cation of the use of Noetherian orderings for doing asymptotics�
although the degree of generality obtained here hides some other problems� which
are discussed more fully in part B of this thesis� For more details� we refer to "VdH
�	a#�

A�� De�nitions and basic properties

Let E be a set� We recall that an ordering on E is a re0exive transitive and
antisymmetric relation on E� One also de�nes strict orderings on E to be anti�
re0exive transitive and antisymmetric relations on E� Of course� a strict ordering
naturally determines an ordering and vice versa� If an ordering � is given on E� we
!abusively$ say that E is an ordered set� and that � is the underlying ordering�
Two elements x� y of E are said to be comparable� if either x � y or y � x� The
ordering is total� if any two elements are comparable !to emphasize that an ordering
is not total� we will sometimes say that it is partial$� A subset of E is said to be
a chain� if it is totally ordered by the induced ordering� A subset of E is said to
be an antichain� if no two of its elements are comparable� The ordering is said
to be well founded� if there is no in�nite strictly decreasing sequence of elements
in E� Equivalently we say that the descending chain condition holds� Dually�
we say that the ascending chain condition holds� if there is not in�nite strictly
increasing sequence of elements in E� The ordering is said to be Noetherian� if it
is well founded� and if there are no in�nite antichains� Finally� a total well founded
ordering is called a well�ordering� A well�ordering is in particular Noetherian�

Remark A� Many other names appear in the literature for the concept of No�
etherian orderings� It is also possible to de�ne Noetherian quasi�orderings� in which
case the name well�quasi�ordering is used most commonly instead� Here a quasi�
ordering on a set E is a re0exive transitive relation and the de�nitions of well�
foundedness and antichain are the same� Given a quasi�ordering �� one can de�ne
an equivalence relation � by x � y � x � y � y � x� Then �dividing out� �
with respect to �� one obtains an ordering� This ordering is Noetherian� if � is a
well�quasi�ordering�
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We will need some more de�nitions� Let � still be an ordering on E� A �nal
segment for � is a subset F of E� such that x 
 F � x � y � y 
 F � We denote
by �A	 � fy 
 Ej�x
A x � yg the �nal segment generated by A � E� Dually�
we say that I is an initial segment for �� if y 
 I � x � y � x 
 I� We will also
refer to �nal segments as closed sets and to initial segments as open sets� Indeed�
it is not hard to verify that the open sets form a topology on E% they are even stable
under in�nite intersections� We have the following classical equivalent conditions
for an ordering to be Noetherian�

Proposition A� Let � be an ordering on E� Then the following are equivalent�

a� The ordering � is Noetherian�
b� Any �nal segment of E is �nitely generated�
c� The ascending chain condition w�r�t� inclusion holds for �nal segments of E�
d� One can extract an increasing sequence from any sequence x�� x�� � � � 
 E�
e� Any extension of E into a total ordering yields a well�ordering�

Proof Let F be a �nal segment of E and G � F the subset of minimal ele�
ments of F � G is an antichain� whence �nite� Moreover� G generates F � since �
is well�founded� Inversely� if x�� x�� � � � is an in�nite antichain or an in�nite strictly
decreasing sequence� the �nal segment generated by fx�� x�� � � � g is not �nitely gen�
erated� This proves !a$ � !b$�

Now let F� � F� � � � � be an ascending chain of �nal segments� If the �nal
segment F �

S
n Fn is �nitely generated� say by G� then we must have G � Fn�

for some n� This shows that !b$ � !c$� Inversely� let G be the set of minimal
elements of a �nal segment F � If x�� x�� � � � are pairwise distinct elements of G� then
�x�	 � �x�� x�	 � � � � forms an in�nite strictly ascending chain of �nal segments�

Now consider a sequence x�� x�� � � � of elements in E� and assume that � is
Noetherian� We extract an increasing sequence xi�� xi�� � � � from it by the following
procedure� Let Fn be the �nal segment generated by the xk� with k � in and xk � xin
!F
 � E by convention$ and assume by induction that the subsequence of x�� x�� � � �
of those xj which are in Fn is in�nite� Since Fn is �nitely generated by !b$� we can
select a generator xin��� with in�� � in and such that the subsequence of x�� x�� � � �
of those xj which are in Fn�� is in�nite� On the other hand� it is clear that it is
not possible to extract an increasing sequence from an in�nite strictly decreasing
sequence or from a sequence� whose image forms an in�nite antichain�

Let us �nally prove !a$�!e$� An ordering containing an in�nite antichain or an
in�nite strictly decreasing sequence can always be extended as to contain a copy of
�N� by a straightforward application of Zorn�s lemma� Inversely� any extension of
a Noetherian ordering is Noetherian� �

In order to state some applications of proposition A��� we need some more de�n�
itions� Let E and F be ordered sets� Then we de�ne the natural ordering on the
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disjoint union E q F of E and F � by taking the induced ordering on each of the
summands� and by taking E and F mutually incomparable� Similarly� we de�ne the
product ordering on E � F by �x� y	 �E	F �x�� y�	� x �E x� � y �F y��

An increasing mapping � between from E into F is a mapping such that x �E

y � ��x	 �F ��y	� We remark that if this is the case� then ��S	 is a �nal segment
of E for any �nal segment S of F � Now assume that � is an equivalence relation on
E� We say that � is compatible with �E� if x � y � x � x� � �y� � y x� � y�� In
this case� we have a natural ordering de�ned on E��� and the projection E � E��
is an increasing mapping� We state without prove the following easy proposition�
where !c$� !d$ and !e$ follow from proposition A���

Proposition A�

a� Any ordering on a �nite set is Noetherian�
b� The usual ordering on N is Noetherian�
c� If E and F are Noetherian ordered sets� then so is E q F �
d� If E and F are Noetherian ordered sets� then so is E � F �
e� Let E be a Noetherian ordered set and let � be a surjective increasing mapping

from E onto an ordered set F � Then F is Noetherian�
f� If E is a Noetherian ordered set� then so is any subset of E for the induced

ordering�
g� If E is a Noetherian ordered set� and � an equivalence relation� compatible

with �E� then E�� is a Noetherian� �

Corollary �Dickson�s lemma� Nn is a Noetherian ordered set for each n� �

To �nish this section� let us state the so called Noetherian induction prin�
ciple� which generalizes the classical induction principle over N as well as trans�nite
induction�

Proposition A� Let P be some property concerning ordered sets� such that
P �E	 is true whenever P �I	 is true for every proper initial segment I of E� Then
P �E	 holds for all Noetherian ordered sets�

Proof Assume that P �E	 is false for some Noetherian ordered set� then we can
construct a strictly decreasing sequence of initial segments I� ( I� ( � � � of E� such
that P �In	 is false for each n� But then EnI� � EnI� � � � � would be an in�nite
strictly increasing sequence of �nal segments� �
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A�� Classical theorems on Noetherian orderings

In this section we will generalize proposition A�� in order to provide more examples
of Noetherian orderings� Let us be given an ordered set E� We will denote by E�

resp� E� the sets of non commutative words and commutative words over E�
The sets of non empty words resp� commutative words are denoted by E� resp� Ey�
We denote words either by products of letters x� � � �xn� or by n�tuples �x�� � � � � xn��
in the case when confusion might arise� Elements of E� are also denoted by words�
although it is understood that the letters commute� We remark that an element of
E� can always be represented by a word x� � � �xn 
 E�� with xi � xj � i � j� for
all i� j� If the ordering on E is total� then this representation is canonical�

The sets of commutative and non commutative words can be given �natural�
orderings in the following way� we de�ne x� � � �xn �E� y� � � � ym� if and only if
there exists a strictly increasing mapping � � f�� � � � � ng � f�� � � � �mg� such that
xi �E y��i�� for all � � i � n� It is not hard to verify that the equivalence relation
determined by the permutation of letters is compatible with �E�� Hence� we also
have a natural ordering de�ned on �E�� For instance� if E � N� then we have

�
� ��� �� �� �N� �
� �� �� ��� �� �� ��

�
� ��� �� �� ��N� �
� �� �� ��� �� 
� ��

�
� ��� �� �� �N� �
� �� �� ��� �� 
� ��

Theorem A� �Higman� If E is a Noetherian ordered set� then so is E��

Proof We will give a proof due to Nash�Williams !see "NaWi ��#$� using his
technique of minimal bad sequences� If � denotes any ordering� then we say that
�x�� x�� � � � 	 is a bad sequence� if there do not exist i � j with xi � xj� An
ordering is Noetherian� if and only if there are no bad sequences� Now assume for
contradiction that s � �w�� w�� � � � 	 is a bad sequence for �E�� Without loss of
generality� we may assume that each wi was chosen such that the length !as a word$
of wi were minimal� under the condition that wi be in E�n�w�� � � � � wi��	� We say
that �w�� w�� � � � 	 is a minimal bad sequence�

Now none of the wi can be the empty word� so we can factorize wi � xiw
�
i�

where xi is the �rst letter of wi� By proposition A��!d$� we can extract an in�
creasing sequence xi�� xi�� � � � from x�� x�� � � � � Now consider the sequence s� �
�w�� � � � � wi���� w

�
i�
� w�

i�
� � � � 	� By the minimality of s� this sequence is good� Hence�

there exist j � k with w�
ij
�E� w

�
ik
� But then� wij �E� wik � which contradicts the

badness of s� �

Corollary If E is a Noetherian ordered set� then so is E��
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More generally� one can consider the set E� of �nite trees� whose nodes are
labeled by elements of E� We recall that a �nite E�labeled tree T is recursively
de�ned as being an element x of E� together with an n�tuple T�� � � � � Tn of E�labeled
trees !n � � being allowed$� We write T � x�T�� � � � � Tn�� Equivalently� we can see
an E�labeled tree as a �nite set T of points� called nodes� labeled by elements of
E� One of the nodes root�T 	 of T is said to be the root of T � To each other node is
associated a unique distinct node� which is said to be its predecessor or parent�
Finally� a total ordering is given on the successors of each node�

A node which is not the predecessor of any other node is called a leaf � The set
of leafs of T is denoted by leaf�T 	� The transitive closure �T of the predecessor
relation determines a partial ordering on T % we say that a is an ancestor of b� if
a �T b� For each node a 
 T � the descendants of a form a subtree of T � of which a
is the root� The subtrees determined by the successors of a node are said to be its
children� Any two nodes a� b of T admit a lowest common upper bound w�r�t� �T �
which we denote by a � b�

The partial ordering �T can canonically be extended into a total ordering �T

by imposing that the children of each node a are ordered by the corresponding
ordering on the successors of a and that a� �T b� for any a� �T a� b� �T b such that
a �T b� The �natural� embeddability ordering on E� is given by T �E� T �� if and
only if there exists an injective strictly increasing !for the total orderings$ mapping
� � T � T �� such that ��a � b	 � ��a	 � ��b	� and l�a	 �E l���a		� for all a� b 
 T �
The following is an example of a tree which embeds into another tree� if E � N�

�

	 �

� �

�N�

�

� � �

� � � � �

Theorem A� �Kruskal� If E is a Noetherian ordered set� then so is E��

Proof Assume that there exists a minimal bad sequence �T�� T�� � � � 	 in the sense
that the cardinal of Ti is minimal� for �xed T�� � � � � Ti��� We can write Ti �
xi�Ti��� � � � � Ti�ni� for each i� We claim that the induced ordering on S � fTi�jjj � nig
is Noetherian�

Indeed� suppose for contradiction that the claim is false� and let

�Ti��j�� Ti��j� � � � � 	
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be a bad sequence� Let k be such that ik is minimal� Then the sequence

�T�� � � � � Tik��� Tik�jk � Tik���jk�� � � � � 	
is also bad� which contradicts the minimality of �T�� T�� � � � 	�

Finally� we know that E � S� is a Noetherian ordered set by Higman�s theorem
and proposition A��!d$� But each tree Ti can be interpreted as an element of this
set� Hence� we obtain the desired contradiction� �

Remark A� In the case when we restrict ourselves to trees of bounded arity�
the above theorem was already due to Higman� The general theorem was �rst
conjectured by V'zsonyi� Let us also notice that much research has been done
in order to extend Kruskal�s theorem to trees with in�nite arities� This led to the
concept of better�quasi�ordering� which lies between well�quasi�ordering and well�
ordering� We refer to "Mil �# and "Pouz �# for surveys� It would be interesting
to know whether this related theory can be given an interpretation in our context�
Another very deep result !see "RS#$ is that the graph minor ordering on the set
of �nite labeled graphs is Noetherian� That is� G � G�� if G can be obtained from
G� by deleting and contracting edges and decreasing labels� Again we do not have
an interpretation in our context�

By playing some combinatorial games with the encoding of �nite trees� one can
obtain many variants of Kruskal�s theorem� We will mention one of them now� Let
X be any ordered set and let � be an ordered set of operations on X !that is� each
f 
 � is an nf �ary operation f � Xnf � X$� We say that the operations in � are
extensive� and that the ordering on M is compatible with the ordering on X� if
the following two conditions are veri�ed respectively�

O� xi �X f�x�� � � � � xnf 	 for any f 
 �� and � � i � nf %
O� Let f �� g be in �� Then f�x�� � � � � xnf 	 �X g�y�� � � � � ygn	� whenever

there exists a strictly increasing mapping � � f�� � � � � nfg � f�� � � � � ngg�
such that xi �X y��i� for each i�

Now let G be a subset of X� The smallest subset of X which contains G and which
is stable under � is said to be the subset of X generated by G w�r�t� �� and will
be denoted by �G	�� Then we have

Theorem A� Let X be an ordered set and � a Noetherian ordered set of
operations on X verifying the above conditions� Then if �G	� is a Noetherian subset
of X� whenever G is�

Proof Any element of �G	� can be represented as a �nite tree labeled by elements
of Gq �� We conclude by proposition A��!c$ and Kruskal�s theorem�

We remark that Kruskal�s theorem can also be derived from the present theorem�
To do this� one takes G � ��� � � E � N !with n�x�k� � k$ and X � E�� Then the
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smallest ordering relation on X verifying conditionsO� and O� is the embeddability
ordering� �

A�� Noetherian choice operators

The results of this section �nd their origin in the theory of transseries !see chapters �
and �$� They can be used to establish implicit function theorems of a very general
type� Roughly speaking� we prove a generalization of Kruskal�s theorem� where
the elements of � are not operations� but rather mappings f from Xnf into the
power set P�X	 of X� The reason why we need this� is that the support of the
derivative of a transmonomial is generally not a singleton !think of �ee

x��x�����x �
�x�� � x�� � 
x�� � � � � 	exeex��x���$% we do not have this di�culty in the case of
ordinary power series� where �xk��x � kxk���

Let X denote an ordered set and let � be a set of X�labeled structures� This
means that to each  
 � we can associate a set I� and a mapping l� � I� � X
!note that this association need not to be injective$� If Y � X� then we denote by
�Y � f 
 �j im l� � Y g the subset of � of Y �labeled structures� We order couples
in ��X by � � x	 � � �� x�	� x � x��

A mapping � � � � P�X	 is called a choice operator� We say that � is
Noetherian� if for any Noetherian subset Y of X� the subset f� � x	j 
 �Y � x 

�� 	g of � � X is Noetherian� We say that � is extensive� if for each  
 ��
a 
 im l� and b 
 �� 	� we have a � b� We say that � is strictly extensive� if for
each  
 �� a 
 im l� and b 
 �� 	� we have a � b�

Remark A� Let us comment why we insist the subset S � f� � x	j 
 �Y �
x 
 �� 	g of � � X to be Noetherian in our de�nition� and not simply the set
S� �

S
���Y �� 	� Indeed� this condition guarantees that for a given x� we only have

a �nite number of  with � � x	 
 S . a property which will prove to be important
for future purposes�

Example A� Let f be an extensive n�ary operation� and let � � Xn� with

l�x����� �xn� � f�� � � � � ng � X
i �� xi�

Then
� � � � X

�x�� � � � � xn	 �� ff�x�� � � � � xn	g
is an extensive Noetherian choice operator�

As in the previous section� we now want to build trees� In fact� it su�ces to show
how to build words� because of the strength of the formalism� Let � � �� P�X	 be
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a choice operator and let us inductively de�ne the choice operator ��� First we set
T
 � X� with lx � f�g � X� � �� x and ���x	 � fxg� Next� assume that we de�ned
�� on the domain T
 q � � � q Tk� Let  
 � be given together with a family ��i	i�I�
of elements of T
 q � � � q Tk� Assume that �i 
 Tk� for at least one i !we say that
�i has depth k$� and that l��i	 
 ���ti	� for each i� Then these data determine a
unique structure � �  ��i�i�I� in Tk��� We take I� � qi�I�I�i� with l��j	 � l�i�j	�
for j 
 I�i� and we de�ne �

��� 	 � �� 	� This construction inductively determines a
choice operator �� with domain T
 q T� q � � � � We take the choice operator �� to
be the restriction of �� to the domain T� q T� q � � � �

Theorem A	 Let � be a strictly extensive Noetherian choice operator� Then ��

is a strictly extensive Noetherian choice operator�

Proof The tree operator �� is clearly strictly extensive� by induction� Let Y be a
Noetherian subset of X� Assume that there exists a minimal bad sequence

����� x�	� ���� x�	� � � � 	�

with xi 
 ����i	 and im l�i � Y for each i� in the sense that the depth of �i is
minimal� for �xed x�� � � � � xi��� Write �i �  i��i�j�j�I�i for each i� We claim that the
induced ordering on S � f�����i�j	� l�i�j		jj 
 I�ig is Noetherian�

Indeed� suppose for contradiction that the claim is false� and let

������i��j�	� l�i� �j�		� ��
���i��j�	� l�i� �j�		� � � � 	

be a bad sequence� Let k be such that ik is minimal� Then the sequence

����� x�	� � � � � ��ik��� xik��	� �����ik�jk	� l�ik �jk		� �����ik���jk��	� l�ik��
�jk��		� � � � 	

is also bad� since � is strictly extensive� But this contradicts our minimality hypo�
thesis� Having proved the claim� the desired contradiction is obtained by using the
Noetherianity of � for S� �
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Appendix B

Partial algebras and their geometry

B�� Introduction

The aim of this appendix is to introduce algebraic geometry methods for structures
which are di
erent from rings� by adopting the language of category theory� In
chapter �� this theory is applied to de�ne and manipulate transseries in several
variables� but this quite technical appendix can be skipped without much harm� at
least at a �rst reading of �� To facilitate the reading of this appendix� let us now
comment its motivation and main results�

Just as rings are used in algebraic geometry to study algebraic equations� we
want to construct generalized transseries in order to study very general singular
equations� Following this parallel� elements of a generalized transseries ring need an
interpretation as functions on some space !just as k�x� y� is the ring of polynomial
functions on the plane$� Di
erent problems arise at this point� First� contrary to the
ring operations� the logarithm can only be de�ned for positive elements !or non zero
elements� if one considers log jxj$� Secondly� we need to have an interpretation for
the ordering relation� Thirdly� we need to interpret in�nite summation� Fourthly� we
should make the concept of �the space� associated to a ring of generalized transseries
more precise� Fifthly� we would like to incorporate in our theory the most common
spaces� such as the line� the plane� etc� And we can go on�

Now the �rst problem also arises in algebraic geometry� if we want to incorporate
the division� This is precisely what motivates the systematic use of localization� We
might therefore borrow some of these ideas for our treatment� and consider spaces
with sheaves of functions de�ned on it� Alternatively� we can consider spaces with
partially de�ned functions on it� The second problem is not a classical one� Never�
theless� it has a strong analogy with the �rst one� we can consider the de�nability
of a partially de�ned function as a relation� In other words� the �rst problem can
be seen as a special case of the second one�

The algebraic translation of what precedes is that we will consider categories
of sets with partially de�ned functions and relations� so called partial ��algebras�

���
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Next� we impose axioms on such structures� which are of a particular type� namely
Horn clauses� Ordered rings can for example be de�ned using such axioms� It can
be shown that the category of partial ��algebras which satisfy certain Horn�clauses
has a very rich structure� i�e� many abstract nonsense constructions can be carried
out� Moreover� we can solve the third problem by allowing functions and relations
to have in�nite arities% in�nite summation can then be seen as a partially de�ned
function� Partial ��algebras will be studied in sections B��� B�� and B�	�

Geometrically� partial ��algebras correspond to functions on a space� The next
step is to introduce the spaces themselves� As in algebraic geometry we will work
�over� a �xed partial ��algebra A� For instance� a Z�algebra is a morphism fromZ
into a ring R� Now a B�point of a partial ��algebra F over A is a morphism from
F into B� where B is another partial ��algebra over A� For example� an R�point
�x� y	 in the �plane� Z� Z�x� y� naturally associates a value P �x� y	 
 R to each
polynomial in Z�x� y�� Instead of considering B�points for all possible B� we may
restrict our attention to B�points with B 
 obj�P	� where P is a subcategory of the
category of partial ��algebras over C� For instance� we may restrict B to be a �eld
in the case ofZ�algebras% in terms of systems of algebraic equations� this means that
we are only looking for solutions in a �eld�

Assume that we have �xed P� so that the points of a partial ��algebra over A
are B�points� with B 
 obj�P	� Not all partial ��algebras F have a �pointwise� geo�
metrical interpretation� In particular� it is not always possible to interpret elements
of F as unique functions from the point space of F to a ��algebra B over A in P

!the union of all these B corresponds to the a�ne line$� For instance� in the case of
Z�algebras� where P is taken to be the category of �elds� this is due to the possibility
of nilpotent elements� for every morphism of R�x���x�	 into a �eld� � and x have
the same image� yet they are not equal� Now varieties are partial ��algebras F
over A for which a suitable pointwise interpretation of the elements of F is possible�
In section B�� we will show that there is a canonical way of associating a variety
�F to any partial ��algebra F over A� In the case of Z�algebras� we just quotient
by the ideal of all elements x� which are sent to zero by every point in the above
sense� The canonical nature of the association F �� �F implies that we can carry
out many abstract nonsense constructions� In particular� we can construct many
familiar spaces such as the line� the plane� etc�

A consequence of the pointwise nature of a variety is that the function space
of a variety V shares a lot of properties with A� In particular� any Horn clause
veri�ed by A is veri�ed by the function space of V � The interesting point is that
this resemblance is preserved for a lot of other intrinsic properties of A� which can
not . or not easily . be modelized by Horn clauses� This it what makes the
construction useful in the case of transseries� In the last section we discuss some
possible extensions of our theory� More precisely� we discuss a trick of Lawvere
based on the construction of a�ne varieties from section B��� which permits us to
incorporate !the analogue of$ nilpotent elements in the function spaces of varieties�
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We also discuss another extension of the notion of a point� which allows us to recover
the analogues of projective varieties and others�

In this appendix� we assume the reader is familiar with category theory� although
a certain number of de�nitions will be recalled� We refer to "ML ��# for a more
extensive treatment� A very basic knowledge of commutative algebra� universal
algebra� and algebraic geometry might also ease the reading� We respectively refer
to "AtMac ��# or "Lang 	#� "Cohn ��# and "Har ��#� Let us �nally remark that
some of the nomenclature may not correspond to the classical nomenclature� For
instance� varieties may be reducible !which is not the case in "Har ��#$� and are
always understood in the algebraic geometry sense !in "Cohn ��# a variety is not at
all the same thing$�

Most of the results of this appendix are not new� perhaps with the exception
of the last two sections� However� our way of exposition is not very standard�
The classical theory of ��algebras does not treat partially de�ned functions nor
relations� and the arities are classically restricted to be �nite� In particular� the
device of subquotient objects seems to be new� However� we think that all our
results about partial ��algebras can be obtained by reformulation of related theories�
For simplicity reasons� we have chosen a quite classical approach� but it should
be noticed that many generalizations can be obtained by a more extensive use of
category theory� For instance� it is possible to study topological ��algebras and so
on�

B�� Partial algebras

A signature � is a set of function symbols �f and relation symbols �R �
together with there associated arities� That is� to every f 
 �f � resp� R 
 �r

corresponds a set Nf resp� NR � which is called the arity of f resp� R� For our
purposes� we may assume that all arities are at most countable�

From now on we will �x a signature �� A ��algebra is a set E on which these
function and relation symbols correspond to functions resp� relations� That is� each
f 
 �f corresponds to a function f !or fE� whenever confusion might arise$ from
ENf into E and similarly for relations� A ��algebra E is said to be full� if the
relation symbols of �R are maximal� RE � ENR� for each R 
 �R� A partial
��algebra is de�ned like a ��algebra� with the exception that the function symbols
need not to be de�ned totally� We will note by dom f the domain of a function f �

A morphism of ��algebras E � F is a mapping �� such that ��f�x		 �
f���x		 resp� R�x	 � R���x		� for all f 
 �f resp� R 
 �R and x 
 ENf resp�
x 
 ENR� Of course� f�x	 is de�ned by �f�x		i � f�xi	� for each I and x 
 EI �
A morphism of partial ��algebras is de�ned similarly� with the exception that
��f�x		 � f���x		 only needs to hold� when ��f�x		 is de�ned !hence� x 
 domfE
implies ��x	 
 dom fF $� Similarly� one de�nes partial morphisms of partial ��
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algebras� by demanding ��f�x		 � f���x		 resp� R�x	 � R���x		 to hold when
de�ned only� Morphisms of partial ��algebras will often be called ��morphisms�
It is straightforward to verify that ��algebras and partial ��algebras form categories
and we will note them respectively by ��Alg resp� ��PAlg�

Let X be any set and consider the set IX of trees� labeled by elements of �f qX�
Here we assume that the arities of each node of the tree correspond to the arity of
each label !the arities of elements of X being zero$� The set IX has a natural �f �
algebra structure� Taking RIX � INR

X � for each R 
 �R� we give IX the structure of
a full ��algebra which satis�es the following universal property� if � is any mapping
from X into a full ��algebra E� then there exists a unique ��morphism IX

�� E�
such that � � � � �X� where �X is the natural inclusion from X into IX � We say that
IX is the free full ��algebra over X�

Usually� one is interested in ��algebras or partial ��algebras which verify certain
axioms� Let us make this more precise� Let W denote a set of variable symbols
!which is always assumed to be su�ciently large$� and let T � IW denote the set
of ground terms w�r�t� �� If E is a partial ��algebra� then by an assignment�
we mean a mapping � � W � E� An assignment � can recursively be extended
to a subset of T � by putting ��f�x		 � f���x		� for all f 
 �f and x 
 TNf

k � with
��x	 
 domf � If ��t	 is de�ned for every assignment �� then we say that t is totally
de�ned� or de�ned on E�

A ground property w�r�t� � is either an expression of the form t � t�� where
t� t� 
 T � or an expression of the form R�x	� where R 
 �R and x 
 TNR� A ground
property t � t� resp� R�x	 is valid for an assignment �� if t and t� resp� the xi are
de�ned and if ��t	 � ��t�	 resp� ��R�t�x		 holds� If a ground property is valid for
all assignments into E� then we say that it is valid on E� A ground property of the
form t � t� for some ground term t� is valid for � if and only if ��t	 is de�ned� We
will write t� instead of t � t and read �t is de�ned��

A Horn clause !w�r�t� �$ is a pair ��Pi	i�I� Q	� where the Pi and Q are ground
properties� We say that ��Pi	i�I � t	 is valid in a partial ��algebra E� if ��Q	 holds
for all assignments �� such that every ��Pi	 holds� We write E j� V

i�I Pi � Q�
if this is the case� We remark that ground properties can be interpreted as Horn
clauses� by taking I � ��� We denote by C� the set of Horn clauses w�r�t� �� If E is
a partial ��algebra� then we denote by CE the set of Horn clauses which are valid
in E� Inversely� let C be a set of clauses or axioms� A model for C is a partial
��algebra E with C � CE� These models form a subcategory A�Mod � ��� C	�PAlg
of ��PAlg� which is called the category of partial ��algebras verifying C�

Let us now discuss some matters concerning the foundations of set theory and
category theory� The objects of a category C do not form a set in general� and
neither do the morphisms of C� However� by enlarging our model of set theory�
we can interpret the objects resp� morphisms of most categories C as sets obj�C	�
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resp� hom�C�C	� More precisely� assume that we have a model M of the Zermelo�
Fraenkel axioms� such that there exists a privileged set U � which is also a model of
the Zermelo�Fraenkel axioms for the induced relation 
�

To avoid confusion between sets w�r�t� M and U � sets w�r�t� M are called
meta�sets !alternatively� sets w�r�t� U are sometimes called small sets$� Using
this formalism� we can for example speak about the meta�set of all groups� We
also have U � obj�Set	� where Set denotes the category of sets� The formalism is
also useful when considering mathematical structures where we do not have any a
priori bounds for the arities of the operations� This arises for example in the case
of in�nite summation of well�ordered transseries� where the arity depends on the
exponential depths of the transseries we are considering� This problem is solved by
taking meta�sets of function and relation symbols� instead of classical sets�

We �nally remark that our formalism can still be strengthened by allowing meta�
meta�sets� and so on� Indeed� this is done by assuming that we have an even bigger
model �M of the Zermelo�Fraenkel axioms� for which M is a set� Nevertheless� for
most of the practical applications� the consideration of meta�sets !and sometimes
meta�meta�sets$ is su�cient�

B�� The lattice of subquotient objects

In this section� � denotes a �xed signature and C a set of axioms w�r�t� �� Let E
be a partial ��algebra� A subalgebra F of E is a subset of E on which we have
a partial ��algebra structure� such that the canonical injection is a ��morphism�
Assume now that E is a full ��algebra� Then a quotient algebra F of E is a
quotient set of E on which we have a ��algebra structure� such that the canonical
surjection is a ��morphism� A subquotient algebra F of E is a partial subalgebra
of a quotient algebra of E� These de�nitions can be extended to the case in which
F models C� In that case� we say that F is a ��� C	�subalgebra resp� quotient
��� C	�algebra resp� subquotient ��� C	�algebra�

To a subalgebra of a partial ��algebra E corresponds a monomorphism F
�� E�

which is said to be a subobject of E� We quasi�order subobjects by

F
�� I � F � ��� E � �F �� F � � � � � ���

Similarly� if E is a full ��algebra� then a quotient algebra of E gives rise to an
epimorphism E


� F � which is said to be a quotient object of E� We quasi�order
quotient objects by�

E

� F � E


�� F � � �F �� F � 	� � � � 	�

In the literature� the opposite quasi ordering is usually taken� The ordering on
subquotient objects justi�es our inversion� a subquotient object of E is a pair of
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morphisms F �� Q

) E� where 	 is a quotient object of E� and � a subobject of Q�

We quasi�order subquotient objects of E by

F
�� Q


) E � F � ��� Q� 
�) E�

if and only if there exist F
�� F � and Q

�� Q�� such that

F Q

E

F � Q�

�




� �

��

�

commutes� We remark that it can be shown that the above de�nitions of subobjects
and quotient objects coincide with the usual de�nitions !as monomorphism F � E
resp� epimorphisms E � F $ up to isomorphism� In particular� one can generalize
and de�ne quotient objects of partial ��algebras� However� this leads to several
complications� and our restricted de�nition will su�ce for what follows�

Proposition B� Let E be a full ��algebra� The set of subquotient ��� C	�objects
of E forms a complete lattice for ��

Proof S
�� E�� 
) E is maximal for �� if we take �� E�� S � E�� and

� � IdE��� Next� let �Sk
�k� E��k


k) E	k�K be a family of ��� C	�subquotient
objects� Let �� Tk�K �k� The natural surjection E


� E�� naturally induces a
�f �algebra on E��� Let S � 	�

T
k�K 	��k �Sk		� We give S the structure of a partial

��algebra� by taking dom fS � 	�
T
k�K 	��k �dom fSk		 and RS � 	�

T
k�K 	��k �RSk 		�

for each f 
 �f resp� R 
 �R� It is clear from the de�nition that S �� E�� 
) E

must be the in�mum of the �Sk
�k� E��k


k) E	� if S models C� Let us show that
this is indeed the case�

Remark �rst that the mapping �k � 	k � �	��	 is well de�ned for k 
 K and as
im�k � � � im �k� there exists a unique mapping S

�k� Sk with �k ��k � �k � �� Let us
now show by structural induction� that if t is a ground term and � a substitution
into S� then ��t	 is de�ned� i
 ��k � �	�t	 is de�ned for every k 
 K� Surely� this is
the case� if t 
 W � Suppose now that t � f�x	� where ��x	 and every ��k � �	�x	
is de�ned� Then ��t	� � ��x	 
 domfS �  k 
K �k���x		 
 domfSK �  k 

K ��k � �	�t	�� Similarly ��P 	 is valid� for a ground property P � i
 ��k � �	�P 	
is valid for every k 
 K� Finally� let ��Pi	i�I � Q	 be a Horn clause in C and � a
substitution into S� such that ��Pi	 holds for every i 
 I� Then ��k � �	�Pi	 holds
for every i 
 I and k 
 K� Therefore ��k � �	�Q	 is holds for every k 
 K� so that
��t	 holds� �

Let E be a partial ��algebra E and let E be the in�mum of all quotient algebras
IE�� of IE� such that E � IE � IE�� is a ��morphism� This in�mum is de�ned
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by proposition B��� noticing that any quotient object IE��) E can be interpreted
as a subquotient object IE�� Id� IE��) E� We say that E is the ��closure of E�
and we have

Proposition B� Let E be a partial ��algebra� Then

a� For each ��morphism E
�� F into a full ��algebra� there exists a unique ��

morphism E
�� F � such that � � E � E

�� F �
b� E � E ) IE is a subquotient algebra of IE�

Proof Let � be given� There exists a unique ��morphism IE
�� F � such that

� � E � IE
�� F � This � factorizes uniquely into the composition of a surjection

and an injection � � IE � im � � F � There exists a unique ��morphism E � im ��
which makes all triangles commutative� by the minimality of E� This yields the
desired ��morphism E � F which is easily seen to be unique by decomposing it as
the composition of a surjection and an injection�

To prove !b$� we consider any extension �E of the partial ��algebra structure on
E into a full ��algebra structure� By !a$� there exists a ��morphism E � �E� such

that E
IdE� �E � E � E � �E� The injectivity of E � E follows from the injectivity

of IdE� �

Proposition B� Let E be a partial ��algebra� The set of ��� C	�subobjects of E
forms a complete lattice for ��

Proof This follows easily by abstract nonsense from proposition B��� when rep�
resenting ��� C	�subobjects of E as ��� C	�subquotient objects of IE� using propos�
ition B��!b$� �

Let us �nally remark that subquotient algebras can also be considered as �quo�
tientsub algebras� and vice versa !under some restrictions$� More precisely� let
S

�� Q

) E be a quotient object of E� Denoting S� � 	���S	� we have a canon�

ical injection S� ��� E� a canonical surjection S� 
�� S� and the following diagram
commutes�

S S�

Q E


�




� ��

Inversely� assume that we are given a partial subobject S �� E of E and an equival�
ence relation � on S� such that S 
� S�� is a morphism of partial ��algebras� Then
we can consider the smallest relation � containing � on E� such that Q � E�� is
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a ��algebra� In general� S�� is not a subalgebra of Q� Nevertheless� a su�cient
condition is that S is an initial segment for the smallest ordering on E such that
xi � f�x	� for any f 
 �f � x 
 ENf and i 
 Nf � In the proof of theorem B�� we
will see a natural example of the use of quotientsub algebras�

B�� Existence theorems for adjoints

In this section we will show that a lot of so called universal constructions can be
carried out in ��� C	�PAlg� We �rst recall the necessary language� If C is a category�
its opposite category Co is obtained by reversing all arrows� If C � � C and �� �
�� then each partial ��� C	�algebra is in particular a partial ���� C �	�algebra� The
natural functor from ��� C	�PAlg into ���� C �	�PAlg is called the forgetfull functor�

Let H be any functor Co � K from into the category Set of sets� A universal
object associated to an object x in C is an object F �x	 in K� together with a
mapping �x 
 H�x� F �x		� such that for any other object y in K� together with a

mapping � 
 H�x� y	� there exists a unique morphism F �x	
�� y� with � � � � �x�

If such a couple �F �x	� �x	 exists for each object x� then it is a classical exercise to
verify that F is a functor� called universal functor� Dually� we have couniversal
objects and couniversal functors� I�e� a couniversal object associated to y 
 K

is an object G�y	� together with a mapping �y 
 H�G�y	� y	� such that the natural
universal property holds�

Usually� H�x� y	 is the set of homomorphisms from x to G�y	� where G is some
functor from K to C� In that case� a universal functor is called a left�adjoint for G�
Similarly� a couniversal functor is called a right�adjoint� It is easy to verify that if
F is a left�adjoint for G� then G is a right adjoint for F and the following relation
holds�

homC�x�G�y		 �� homK�F �x	� y	�

Theorem B� Let U be the forgetfull functor from ��� C	�PAlg to ���� C �	�PAlg�
where �� � � and C � � C� Then U admits a left adjoint�

Proof Let A be in ���� C �	�PAlg and let IA be the free full ��algebra over A�
Consider the family � � �Si � IA��i) IA	i�I of subquotient ��� C	�objects� such
that each A � IA��i is of the from A

�i� Si � IA��i� where �i is a ���morphism�
The maximal subquotient object is in �� whence � �� ��� By proposition B�� we
may consider the partial ��� A	�algebra U � which is the in�mum of all elements in
�� Then A� IA�� factors through U by mapping x to

T
i�I �i�x	� Here

T
i�I �i�x	

is well de�ned in view of the proof of proposition B��� Moreover� A � U is a
���morphism� so that U 
 �� We claim that U satis�es the universal property�

Let A
�� B be a ���morphism into a partial ��� C	�structure B� Then � factors

uniquely through the smallest partial ��� C	�subalgebra �im�	 of B containing im��
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Let us show that �im�	 is a subquotient object of Iim� and therefore of IA� First�
we have a natural maximally de�ned partial ��morphism � from Iim� into B� It
is straightforward to verify that im� is a ��� C	�algebra� whence �im�	 � im��
Therefore� we can canonically extend the injection of im� into im� into a mapping
� of �im�	 into im�� by sending each ��x	 in �im�	 to x� Then � is injective� since
�im�	� �im�	 is� In fact� we have �im�	 �� im��

We now observe that the resulting subquotient object �im�	 � im� ) IA is
in �� Hence� there exist unique ��morphisms U � �im�	 and IA��� IA��� such
that

A

U

�im�	

B

IA��

im�

IA

�

commutes� Now let U
�� B be another ��morphism with � � A � U

�� B� We
decompose � � U

��� �im�	
��� B� and observe that �im�	 � �im�	� Again� the

��morphism from im� into im� naturally extends to an injective ��morphism from
�im�	 into im�� Thus� �im�	 is a subquotient algebra of IA in �� and we have a
unique morphism from U into �im�	 which makes all relevant triangles commutative�
We deduce that �� � U � �im�	� �im�	� whence �im�	 � �im�	� �

Let G be a graph� where we allow multiple edges and let C be a category� Then
the category CG is de�ned in the following way� objects are pairs �o�m	� where
o � V �G	 � obj�C	 is a labeling of the vertices of G with objects in C and m �
E�G	 � hom�C�C	 is a labeling of the edges with morphisms in C� such that the
obvious commutation rules hold� A morphism from �o�m	 to �o��m�	 is a family
of morphisms from o�a	 to o��a	� where a runs over V �G	� such that the obvious
commutation rules hold� The category Cg is called a C�pointed category� We
have the so called diagonal functor from C into CG� such that ��x	 � �G�V �G	 ��
x�E�G	 �� Idx	�

Theorem B� Let G be a graph� Then there exists a left adjoint and a right

adjoint to the diagonal functor ��� C	�PAlg
�� ���� C	�PAlg	G�

Proof The existence proof of the left adjoint runs along the same lines as the
proof of theorem B��� This time� assuming that O � �o�m	 
 ���� C	�PAlg	G and
denoting X �

�
v�V �G� o�v	� we take � to be the set of subquotient ��� C	�objects

S � IX��) IX of IX��� such that each o�v	� IX�� factors through S and such

that for each vw 
 E we have o�v	� U � o�v	
m�vw��� o�w	 � U � We leave it as an

exercise to the reader to carry out the remaining details�
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Let us now treat the right adjoint� Suppose that O � �o�m	 is in ���� C	�PAlg	G�
Let P �

Q
v�V �G� o�v	 and denote by 	v the natural projection from P onto o�v	�

for each v 
 V �G	� We give P the natural partial ��� C	�algebra structure� by
setting 	o�v��fP �x		 � fo�v��	v�x		� and RP �x	 i
  v 
 V �G	 Ro�v��	v�x		� Then
the projections 	v are ��morphisms� Let U be the set of points x 
 P � such that
m�vw	�	v�x		 � 	w�x	� for all vw 
 E�G	� For each f 
 �f and x 
 domf � UNf �
we have f�x	 
 U � From this� it is straightforward to verify that U is a partial
��� C	�subalgebra of P � We claim that �U � O satis�es the universal property�

Let �B � O be a morphism� Then there exists a unique mapping B
�� P such

that �B � O � �B
��� �P

��v�v�V �G��� O as a family of mappings� This mapping
factors uniquely � � B � �im�	 � P � We observe that im� � U � whence
�im�	 � U � Denoting the corresponding inclusion by �� we deduce that

�U

�B

��im�	

�P

O

��

commutes� We thus get a morphism B
�� U which is unique with the property

that �B � O � �B
��� �U � O� Indeed� if �� is another such morphism� then

B
��� U � P � B

�� U � P � because of the uniqueness of � and its factorization�
Hence �� � � since U � P is injective� �

Many universal results about the category ��� C	�PAlg can be deduced immedi�
ately from the two above theorems� Taking the category of sets Set for ���� C �	�Palg
in theorem B��� we prove the existence of the free partial ��� C	�algebra hXi on X
for any set X� In particular� ��� C	�PAlg has an initial object� by taking X � ���
��� C	�PAlg also has the trivial full singleton ��algebra as a terminal object� Taking
a suitable C� ��� C	�PAlg is the category of full ��algebras� Hence� we can reinter�
pret the ��closure for partial ��algebras as the left adjoint of the forgetfull functor
from ��� C	�PAlg to �����	�PAlg�

From theorem B�� it follows that direct sums� direct products� pushouts� pull�
backs� direct and inverse limits exist in ��� C	�PAlg� Taking the direct sum AhXi �
AqhXi of A and hXi gives the free extension of a partial ��� C	�algebra by a set X�
It can also be proved !exercise% this does not follow from theorem B��$ that for each
partial ��� C	�algebra B the functor A �� A � B admits a left adjoint� Together
with the existence of a terminal object and the existence of direct products� this
implies that ��� C	�PAlg is Cartesian closed�
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B�
 Varieties

B���� De�nitions and the right adjoint functor theorem

In algebraic geometry� it is a classical wish to interpret elements of partial ��� C	�
algebras as functions on a variety� In general� partial ��� C	�algebras may contain
functions without any direct pointwise geometric interpretation� although such an
interpretation is sometimes possible� By de�nition� varieties are partial ��� C	�
algebras F in which such a suitable pointwise interpretation of the elements of F is
possible� In this section we will see that the notion of a point is in fact variable� but
once we made it precise� an appropriate theory of varieties can be developed� As is
customary in algebraic geometry� we will work over a �xed partial ��algebra A�

The category of ��� C	�prevarieties over A !or shortly prevarieties� if no con�
fusion is possible$ is de�ned to be ��� C	�PVarA � hom�A� ��� C	�PAlg	o� which we
also denote by PVarA� if C � ��� That is� a prevariety is a ��morphism from A
into a partial ��� C	�algebra� A morphism between two prevarieties A � F and
A� F � is a ��morphism F � � F so that A � F � A� F � � F � Given a variety
V � A � F � we say that F�V 	 def

� F is the function space of V � A morphism
between two prevarieties �A � F 	 � �A � F �	 maps functions in F � to functions
in F � Partial ��� C	�algebras A � F are often abusively denoted by F � To avoid
confusion� we will denote A� F considered as a prevariety by V�F 	�

A natural question is how to de�ne the points of a prevariety� Using a simplistic
point of view� the point�prevariety is de�ned by ! � A

IdA� A� Then a point of a
prevariety V is just a morphism from ! to V � We denote the set of these points by
P�V 	� and call it the point space of V � We observe that a morphism V

�� W from
one variety to another induces a mapping P��	 from P�V 	 to P�W 	 and that this
association is functorial� Pursuing this geometric point of view� we would like to be
able to interpret functions on V as actual morphisms between prevarieties� This can
be done by considering the line�prevariety L � V�Ahxi	� whose points correspond
precisely to the elements of A� We have a natural bijection between the elements of

F and morphisms from V into L� by mapping f 
 F to the morphism Ahxi ��f�� F �
with ��f	�x	 � f �

More generally� the point�prevariety does not need to be the identity morphism
IdA� In fact� we may allow di
erent types of points� let P be a subcategory of
��� C	�PVarA� whose objects are called point types� Given a variety V � a point
of type B 
 obj�P	 in V is a morphism B � V � Such points are also called B�
points and the set of B�points is denoted by PB�V 	� The point space of V is
by de�nition the meta�set P�V 	 � S

B�obj�P�PB�V 	� The point space of the line�
prevariety V�Ahxi	 from above is isomorphic to the disjoint union of all B in obj�P	�

Now consider the mapping � � �V
�� L	 �� �P�V 	 P���� P�L		� This mapping is

not necessarily injective� as shows the example V � Z 
� Z�
Zfrom the category
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of rings !with obj�P	 � fZIdZ� Z$� A prevariety for which � is injective is said to be
reduced� This is equivalent to the condition that

� F �� B 
 P�V 		 � f � g ��f	 � ��g	� !B��$

for all f� g 
 F � Dually� � generally is not surjective� Nevertheless� the relations and
the domains of partially de�ned functions on F can often be extended in a natural
way� If this is not the case� then V is said to be full� More precisely� this means
that

� F �� B 
 P�V 	 �� � �	�t	�	 � ��t	� !B��$

� F �� B 
 P�V 	 �� � �	�P 		 � ��P 	� !B��$

for all ground terms t� ground properties P and assignments � into F � A prevariety
which is both reduced and full is said to be a variety� relative to P !or shortly a
variety� if no confusion about P is possible$�

The idea behind the de�nition of varieties is that the properties of the di
erent
types of points should be re0ected in each point of a variety� As a consequence� if
B models a certain Horn clause H� for each B 
 obj�P	� then any ��variety relative
to P automatically models H too !see the proposition below$� In particular� the
category VarP of varieties relative to P is a subcategory of ��� C	�PVarA�

Proposition B	 Let V � A� F be a variety� Then
S
B�obj�P�CB is included in

CF �

Proof Let ��Pi	i�I� Q	 be a Horn clause in
S
B�obj�P� CB� Let � be an assignment

into F � such that all ��Pi	 are valid� Let F
�� B be a point of V � Then all ����	�Pi	

are valid in B� Therefore� �� � �	�Q	 is valid� Consequently� ��Q	 is valid� �

Theorem B� The forgetfull functor from VarP into PVarA admits a right ad�
joint �� The points of any prevariety V and the variety �V associated to V are in
a natural one�to�one correspondence�

Proof Let V � V�F 	 be a prevariety� and let � be the canonical inclusion from F
into IF � Let S be the subset of IF given by

�� � �	�t	 
 S �  F �� B 
 P�V 	 �� � �	�t	�� !B�	$

for all ground terms t and assignments � into F � Notice that ��F 	 � S� We de�ne
the relations R 
 �R on S by

�� � �	�R�t		�  F �� B 
 P�V 	 �� � �	�R�t		� !B��$

�We notice that varieties are not necessarily irreducible� when using this de�nition� In algebraic
geometry it is often assumed that varieties are irreducible�
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for all families t of ground terms and assignments � into F � Finally� let � be the
equivalence relation on S de�ned by

�� � �	�t	 � �� � �	�t�	�  F �� B 
 P�V 	 �� � �	�t	 � �� � �	�t�	� !B��$

for all ground terms t and t� and assignments � into F � The equivalence relation
is compatible with the partial ��algebra structure on S� whence �V def

� V�S��	 is
a partial ��algebra� By construction� the points of V and �V are in one�to�one
correspondence and �V is a variety� We claim that �V satis�es the desired universal
property�

Let F
�� G be a morphism of a variety W � V�G	 into V � There is a natural

maximally de�ned partial ��morphism �� from IF into G� Now let t be a ground
term and � an assignment into F � such that ����	�t	 
 S� Then ����	�t	 is de�ned
for all points � 
 P�V 	� In particular� �� � � � �	�t	 is de�ned for points � 
 P�W 	�
Hence �� � �	�t	 is de�ned in G� since W is a variety� so that �� is totally de�ned on
S� Similarly� it can be shown that �� preserves the relations R 
 �R� whence is a
��morphism� Finally� again using the same type of arguments� �� maps equivalent
elements in S to the same elements in G� In other words� �� factors uniquely through
S��� �� � �� � 	� Then �� is the desired ��morphism� �

Proposition B� Let V be a variety� let P be a ground property and let � be
an assignment into F�V 	� Then there exists a natural subvariety of V � whose point
space is in one�to�one correspondence with those points � � F�V 	 � B in V � such
that �� � �	�P 	 is valid�

Proof Consider the smallest partial ��subalgebra G of F�V 	� which contains
F�V 	 and in which ��P 	 is valid� The point space of the prevariety V�G	 is in a
natural one�to�one correspondence with those points � � F�V 	� B in V � such that
�� � �	�P 	 is valid� We now apply theorem B�� to this prevariety� The terminology
�subvariety� is justi�ed below� �

B���� Elementary properties

Let us now investigate the properties of the categories of prevarieties over A and
varieties relative to P� First� for each set X we have the free prevariety V�AhXi	
over A in X� The variety A X

P
relative to P associated to this prevariety is called

the a�ne X�space relative to P Next� we observe that theorem B�� still holds�
if we replace ��� C	�PAlg by PVarA� Indeed the right adjoint version is obtained by
joining a new vertex to the graph with edges to all other vertices and applying the
theorem for left adjoints� What concerns the left adjoint� suppose that O � �o�m	 is
in �PVarA	G� We can interpret O as a morphism from �A to O� � �o��m�	 for some
object O� in ���� C	�PAlg	G� Applying the right adjoint to the diagonal functor to
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O�� we get partial ��� C	�algebra U and a morphism from A to U � by the universal
property� Composing with the functor�we deduce that the analogue of theorem B��
also holds for varieties�

From what precedes it follows that direct sums and products� pushouts and
pullbacks� direct limits and inverse limits� etc� exist in VarP� In the case of direct
products� pullbacks� inverse limits� etc� the corresponding right adjoint functor
commutes with the functor which associates to each variety its point space� This is
easily proved by abstract nonsense� For instance� P�V �W 	 is naturally isomorphic
to P�V 	 � P�W 	� A similar statement does not hold for direct sums� pushouts�
etc� Nevertheless� in the case of entire rings� P�V q W 	 is naturally isomorphic
to P�V 	 q P�W 	 !i�e� � contains the ring operations and B 
 obj�P	 is an entire
ring$� Indeed� if � is a ring homomorphism from R � S into an entire ring B� then
���� �	���� �	 � �� Hence � is either of the form ��x� y	 � ��x	 or ��x� y	 � ��y	�
where � is a ring homomorphism from R resp� S into B�

From now on� it will be convenient to identify varieties V with their point spaces
P�V 	� Let X be any meta�subset of points in V � Replacing P�V 	 by X in !B�	$�
!B��$ and !B��$� we construct a variety VjX � V�FjX	 instead of X� Each point
FjX � A in VjX determines a unique point F � FjX � A in V � and we will identify
both from now on� We say that VjX is the smallest subvariety of V containing
X� In particular� a subvariety of V is a meta�subset X of V � such that VjX � X�
The meta�set of subvarieties of V is stable under arbitrary intersections� This can
be shown by considering the pullback of the inclusion morphisms associated to a
family �Ui	i�I of subvarieties of V � and observing that this pullback satis�es the
same universal property as the smallest subvariety which contains the intersection
of the Ui�

It should be remarked that a variety often has a lot of subvarieties� For instance�
assume that A is a �eld and that obj�P	 � fIdAg� Then A Anfag is a subvariety
of the a�ne line A A � for any a 
 A P �� A� whose function space is isomorphic to
A�x� ���x�a	�� Hence� all subsets of A P are subvarieties� A subvarietyW of V is said

to be Zarisky closed� if F�W 	 � �F�V 	�� for some quotient relation � on F�V 	�
By abstract nonsense� the intersection of an arbitrary family of closed subvarieties
is closed� Hence� the Zarisky closed subvarieties determine a closure operator� the
Zarisky closure� Usually� the Zarisky closed subvarieties of V do not determine
a topology� Nevertheless� in the case of entire rings� the Zarisky closed subsets do
determine a topology� because the zero�set of fg is then given by the union of the
zero�sets of f and g� This topology generalizes the usual Zarisky topology�

B���� Partial functions on a variety

A partial function on a variety V is an element of the function space OV �U	 �
F�U	 of a subvariety U of V � In fact� OV is a functor which associates OV �U	 to
each subvariety U of V � and a ��morphism OV �U�	

�U�U�� OV �U�	 to each inclusion
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morphism U� � U�� This functor determines a presheaf� the presheaf of partial
functions on V � We recall that a presheaf is de�ned by the following conditions�

P� OV ���	 is the trivial full ��structure f�g�
P� We have �UU � IdOV �U� for each U �
P� We have �U�U� � �U�U� � �U�U�� for U� � U� � U��

Let us �nally investigate what are the analogues of stalks and function �elds in
our context� Restricting the presheaf OV to the open subvarieties of V for some
topology or closure operator� we can de�ne the stalk of OV at P 
 V to be the
direct limit of the OV �U	 with open U * P via the restriction morphisms� Here the
concept of functions de�ned in a neighbourhood of P is not always the best re0ected
by taking the Zarisky closure� For instance in the case of the line transvariety !see
chapter �$� any series in x should clearly be a function in the neighbourhood of
x � �� This will not be the case if we take the Zarisky topology�

Similarly� if V is the variety associated to an integral domain� then its function
�eld is the direct limit of all OV �U	 with non empty Zarisky open U � via the restric�
tion morphisms� In our context� the Zarisky topology is again replaced by any other
topology on V � We remark that for this de�nition the function ��eld� does not ne�
cessarily extend F�V 	� in the classical case F�V 	 needs to be an integral domain for
this� Nevertheless� the direct limit along all monomorphisms OV �U�	 � OV �U�	�
for open subvarieties U� and U� of V always extends F�V 	� In the commutative
algebra setting� this corresponds to inverting all non zero divisors�

B�� Complements

B���� P�structures

The concept of varieties as introduced in the preceding section has sometimes the
disadvantage that the analogues of nilpotent elements in the category of rings do
not exist� An obvious solution would be to work in the category of partial ��� C	�
algebras itself� However� this is not possible if the properties of the objects we want
to manipulate can not adequately . or easily . be modelized by Horn clauses�
This happens for example in the case of transseries� The solution to this dilemma
is to generalize a trick� which was invented by Lawvere !see "MoRe ��#$ in order to
de�ne C��rings�

Let us explain this trick� Let B be a ring� Then every map Zn
p� Zm given by

an m�tuple of polynomials� naturally induces a map Bn ��p�� Bm� in such a way that
projections� composition and identity are preserved by �� Actually� this can be taken
as an equivalent de�nition for rings� Now a C��ring is de�ned analogously� except

that we now ask that each smooth map Rn f� Rm induces a map Bn ��f�� Bm !i�e�
can be interpreted in B$� We remark that any smooth map Rn � Rm can be seen
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as an m�tuple of smooth maps Rn � R� Hence� it su�ces to have interpretations
for these latter maps�

In our case� we are given a partial ��structure A and a category P of point types�
In order to apply Lawvere�s trick� we have to consider those partial ��algebras F �
in which we can interpret all partially de�ned functions and relations on all a�ne
spaces A N

P
� Let us reformulate this by introducing a signature ��P	 and axioms

C�P	� taking into account the discussion at the end of section B��� The function
symbols of arity N of ��P	 are partially de�ned functions on A N

P
and the relation

symbols of arity N are the subvarieties of A N
P
� Now consider Horn clauses of the

form R�x	 � P �x	� where R is a relation symbol� �xi	i�NR
a family of variable

symbols� and P �x	 a ground property in the xi� Such a Horn clause is in C�P	� if
P �x	 is well de�ned and valid for all points x in R !considered as a subvariety of
A NR
P
$�
We de�ne a P�structure to be a partial ���P	� C�P		�algebra� Let us now as�

sume that each B 
 obj�P	 is a partial ��� C	�algebra and let F be an P�structure�
Then each function symbol f 
 �f determines a function in A

Nf

P
and hence a func�

tion on F � Similarly� the relation symbols determine relations on F � Consequently�
we can see each partial ���P	� C�P		�algebra as a partial ��algebra� Now all axioms
in C which are equations are also satis�ed by F � However� this is not the case for
general Horn clauses� for instance� if we take A � Zand obj�P	 � fIdZg� then we
obtain nothing but the category of rings� NowZis a ring without nilpotent elements
!which can be modelized using Horn clauses$� while every ring is not�

Example B� Using the notion of partial ���P	� C�P		�algebras� we can de�ne a
transring to be a P�structure� where P is one of the point type categories given in
chapter �� Transrings can have nilpotent elements� as in the case of Rhxjx� � �i�
In fact� Rhxjx� � �i �� R�� where x corresponds to ��� �	� We have exp�a � bx	 �
�exp a	�� � bx	 and log�a � bx	 � log a � bx�a� Finally�

P
i�I ai � bix is de�ned if

and only if
P

i�I ai � �
P

i�I bi	x is� in which case they are equal�

B���� Generalized varieties

Another disadvantage of the theory of varieties from the previous section is that we
do not have the analogues of projective varieties !and more generally of schemes$�
In fact� following "MoRe ��#� the concept of a point can still be extended� In the
previous section� we had for each B 
 obj�P	 the set PB�V 	 � hom�F�V 	� B	 of
B�points for a given variety V � The association B �� PB�V 	 is functorial� and this
is precisely the property we retain in order to generalize� More precisely� we de�ne a
generalized variety to be a contravariant functor from P into Set� The category of
generalized varieties is denoted by �SetP	o� morphisms of generalized varieties being
natural transformations� The category of varieties relative to CP can be embedded
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into �SetP	o by the Yoneda embedding Y �

Y �B	 � P� Set� B �� hom�F�B	�

In fact� the category SetP can be seen as an enriched set�theoretic universe� in which
we can perform algebraic as well as set�theoretic constructions� using a non standard
language� We will not go any further into this� but we remark that properties of a
variety V in the usual sense may no longer hold if we consider V as a generalized
variety� using non�standard logic� However� the preservation of properties can often
be forced by considering certain subcategories of �SetP	o� We refer to "MoRe ��# for
such a study in the case of C��rings�

Example B� Take A �Zand let obj�P	 be the category of rings� Then the plane
is the generalized set Y �Z�x� y�	� The circle can be considered as the generalized
subset of the plane which associates to each B the set of those ring homomorphisms
Z�x� y�

�� B� such that ��x	����y	� � �� The projective line associates to each ring
B the set of those ring homomorphismsZ�x� y�

�� B� quotiented by the equivalence
relation � de�ned by

� � � � �u
B� ���x	� ��y		 � u���x	� ��y		�

Here B� denotes the set of invertible elements of B�
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Appendix C

Fast evaluation of holonomic

functions

C�� Introduction

A holonomic function is an analytic function f � which satis�es a linear di
erential
equation over C �z�� In other words�

Pp�z	f
�p��z	 � � � �� P
�z	f�z	 � �� !C��$

for some polynomials P
� � � � � Pp 
 C �z�� with Pp �� �� Many classical special func�
tions like the exponential� the logarithm� trigonometric functions� Bessel functions�
hypergeometric functions� etc� are holonomic� It is a well known fact� that a function
f which satis�es !C��$ can be analytically continued in all points where Pp does not
vanish� Hence� denoting the zeros of Pp by w�� � � � � w� � f is de�ned on a Riemann
surface X over U � C nfw� � � � � � w�g� We denote by 	 the natural projection X � U �

For each point � on X � we denote by F ��	 the vector

F ��	 �

�BB	
f��	
���

f �p�����	


CCA �

If � � �� is a path� on X � from � to another point �� 
 X � then f���	 is uniquely
determined by F ��	 and � � ��� by integrating !C��$� The aim of this article is to
compute f���	 as a function of F ��	 and � � ��� The e
ective point of view requires
to make two additional assumptions on f � �rst� P
� � � � � Pp should be polynomials
over some algebraic number �eld K� Secondly� F ��	 and � � �� need to be e
ective�
in a sense that will be made precise in section C���

�In all what follows� we assume that paths are determined up to homotopy! i�e� a path on X is
really the homotopy class of a continuous mapping 	�� �
	 X �

���



C��� PRELIMINARIES ���

In section C��� we treat the simplest case when � � �� is a straight line path
between two su�ciently close points � and �� above Z��

�
� i� on the Riemann surface

X � In section C�	 we extend this result to compute so called truncated transition
matrices between � and ��� In section C��� such matrices are used to perform analytic
continuations and to tackle the general case� We will show that the asymptotic cost
of the computation of the �rst n digits of f���	 is O�n log� n llog� n� T �n�O��			�
if the �rst n digits of 	��	� 	���	 and F ��	 can be computed in time O�T �n		�

Our algorithms involve bounds for f and its iterated derivatives on certain com�
pact subsets of X � Although the existence of such bounds is guaranteed theoretically�
we show how to compute them in section C���

C�� Preliminaries

In this section� we establish an e
ective framework for dealing with complex numbers
and points on Riemann surfaces over open subsets of C � Throughout this article�
we will use the notation size�O	 for the natural size of an object O� For instance�
the size of an integer is its length in bits� the size of a matrix is the sum of the sizes
of its entries� etc� We will also denote llog x � log log x�

A complex number z 
 C is said to be e
ective� if there exists an approx�
imation algorithm for z� which given n 
 N computes a �z 
 Z��

�� i�� such that
j�z� zj � 
�n� The set of these numbers is denoted by C eff � and numbers in C eff are
redundantly represented by approximation algorithms for them� A number z 
 C eff
is said to have time complexityO�T �n		 if there exists an O�T �n		 approximation
algorithm it% i�e� the computation of an approximation �z of z with j�z � zj � 
�n

is performed in time O�T �n		� The following theorem is classical !see "SS ��#� "Kn
�#$�

Theorem C� Let z�� z� 
 C eff have time complexities O�T �n		� Then z� �
z�� z��z�� z�z� and z��z� provided z� �� �� admit approximation algorithms with time
complexities O�T �n		� O�T �n		� O�T �n	� n log n llog n	 and O�T �n	� n log n llog n	
respectively� �

Using Newton�s method for the approximation of roots� the following theorem is
also classical�

Theorem C� Let z 
 �Q be an algebraic number� Then z has an O�n log n llog n	
approximation algorithm� �

Let X be a connected Riemann surface over an open subset U of C and let
	 � X � U denote the natural projection� For each z 
 U � let d�z� �U	 denote the
distance between z and the frontier �U of U � For 

 
 X and juj � ��

	� there is
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a unique point 
� � 

 � u 
 X at distance juj of 

� with 	�
�	 � 	�

	 � u� Such
points 

� 
� are said to be close� if j
� � 

j � �

�
maxfd�	�

	� �U	� d�	�
�� �U		g�

Paths � � �� on X can always be written as compositions

� � �� � �� � 

 � 
� � � � � � 
� � ��	

of straight line paths 

 � 
�� � � � � 
��� � 
�� where 
i�� and 
i are close for each
� � i � �� If 	��	 and 	���	 are e
ective� then we say that the path � � �� is
e
ective� Such paths are represented as above� where we require 	�
�	� � � � � 	�
���	
to be in Z���� i�� Points �

� on X are represented by paths � � �� from a �xed point
� to ��� If such a path is e
ective� then so is the point ���

We recall that an algebraic number �eld K is a �eld of characteristic zero of
�nite dimension over the rationals Q� During intermediate computations� we will
frequently approximate complex numbers by elements of a �xed algebraic number
�eld K * i� For most practical applications� we may assume that K � Q�i��

Let us now detail how arithmetic in K is performed� We assume that K is
given through a subring Z of K� which is a free Z�module with K � QZ� Then
we have a basis for K resp� Z� such that each bibj is a Z�linear combination of
the bk� We represent elements in Z by d�tuples of integers� �a�� � � � � ad	 represents
a�b�� � � ��adbd� Then FFT�multiplication naturally extends to Z and has the usual
asymptotic complexity O�n log n llog n	� Elements of K are represented as elements
of Z divided by a strictly positive integer� where common factors in the numerators
and the denominator are allowed� Then the naive addition� and multiplication
algorithms in K� based on those in Z� have complexities O�n log n llog n	�

A truncation of an element z 
 K at precision � � � 
Z��
�
� is by de�nition an

approximation �z � �a� bi	�
m 
Z��
�� i� of z� with j�z� zj � � and 
��m � �� Hence�

the asymptotic size of a truncation at precision � � 
�n is O�n	� By theorem C��� a
truncation of z 
 K at precision � � 
�n can be computed in time O�s log s llog s	�
where s � maxfsize�z	� ng�

Remark C� For some applications� we may restrict ourselves to e
ective real
numbers instead of e
ective complex numbers� In this case� numbers are approxim�
ated by elements inZ��

�
�� and we do not need require i 
 K� The theory of this article

is easily adapted to this case� but no analytic continuation around singularities is
possible�

C�� Evaluations near a non singular point above

Z��
� i�

Let D be a compact disk on X with center above Z���� i� and radius in Z�
�
��� Let 



and 
� be points in D� such that the compact disk with center 

 and radius 
j
��

j
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is contained in the interior of D� We denote by ��

	 the distance between 

 and
�B� Let f be the function� which satis�es !C��$ and such that the entries of F �

	
are e
ective� of time complexities O�T �n		� Let B
 
 Z���� be a bound for jf j on
D� In what follows� we will denote by jM j� resp� jM j� the L� resp� L��norm of a
matrix !or vector$ M �

Let f�

 � u	 � f
 � f�u� f�u
� � � � � be the power series expansion of f at 

�

Using the rewriting rules �
�uk�ug�u	 � �uk���g�u	�
�uk�g��u	 � �k � �	�uk���g�u	

for the extraction of k�th coe�cients in power series� the relation !C��$ transforms
into a linear di
erence relation for f
� f�� � � � overK�k�� Substitution of fk by �fk�
��


	k	�
��

	�k and division by a suitable power of k yields a linear di
erence relation

fk�q�
� � 

	
k�q � Qk�q���k	fk�q���
� � 

	

k�q�� � � � ��Q
�k	fk�
� � 

	
k� !C��$

with Q
� � � � � Qq�� 
 K���k�� We notice that the polynomials Q
� � � � � Qq�� depend
on 

 and 
�� Furthermore� q �� p� in general� but q does not depend on 

 nor 
��

Example C� Let us perform the above rewritings� if we take a simple Bessel
di
erential equation

f ���z	 �
�

z
f ��z	 �

�
� � �

z�

�
f�z	 � � !C��$

for !C��$ and 

 � �� 
� � � Writing z � � � u� !C��$ becomes

�u� � �u� �	f ���� � u	 � �u� �	f ��� � u	 � �u� � �u� �	f�� � u	 � ��

Using the rewriting rules� this leads to the following recurrence relation for the fk�

��k����k ����	fk�� � ��k
����k ���	fk�� � �k

���k ���	fk�� ��fk�� � fk � ��

Substitution of fk by 
�k�fk
k	 in this equation and division by k� �nally yields

�
��
�� � �� �

k
� ��� �

k�
	�fk��
k��	 �

�
�
�� � �� �

k
� �� �

k�
	�fk��
k��	�

�
��� � �

�
k
� �� �

k�
	�fk��
k��	 � ��fk��
k��	 � �fk
k	 � ��

This is the desired equation !C��$�

Denote by �k the column vectors formed by fk�
� � 

	k� � � � � fk�q�
� � 

	k�q�
Repeated di
erentiation of !C��$ and substitution of z by 	�

	 yields expressions for
any �nite number of coe�cients fk as linear combinations of f�

	� � � � � f �p����

	�
In particular� we have a matrix A�

	 with �
 � A�

	F �

	�

Let  k�� � fk�
��

	k�� � ��fk�����
��

	k���� for all � 
 N and let�k�� denote
the column vectors with entries  k��� � � � �  k�q��� We claim that if � is a power of
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two� then there exist matrix equations with coe�cients in K of the following form�

�k���� � Mk���k�
�k�� � Nk���k�

!C�	$

If � � �� this follows directly from !C��$� Now assume that we have proved the
claim for a certain �� Then the claim also holds for 
�� by taking

Mk��� � Mk�� �Mk����Nk���
Nk��� � Nk����Nk���

!C��$

From an e
ective point of view� the matrices Mk�� and Nk�� are represented as
matrices M �

k�� and N �
k�� with entries in Z� divided by a common denominator qk���

In this representation� !C��$ becomes�

qk��� � qk����qk���
M �

k��� � qk����M
�
k�� �M �

k����N
�
k���

N �
k��� � N �

k����N
�
k���

!C��$

We now have the following approximation algorithm for f�
	�

Algorithm approximate� !path length �� begin and end points in Z���� i�$�
Input� A precision � � � 
Z�����
Output�An approximation of f�
�	 with error � ��

Step �� Compute the di
erence equation !C��$ from !C��$ as a function of 

 and

��

Step �� Compute the smallest � � 
l for which


B


� j
� � 

j
��

	

��
�

�



�

Step �� For � � �� 
� �� � � � � � compute M
��� � � � �M����� and N
��� � � � � N������
using !C��$ and !C��$�

Step �� Compute A�

	 by repeated di
erentiation of !C��$� and the �rst line L��

of the product M
��A�

	�
Step �� Compute an approximation �F �

	 of F �

	� with rjL��j�j �F �

	�F �

	j �

��
� Return L��
�F �

	�

Proposition C� The algorithm approximate� is correct and has asymptotic
complexity O�n log� n llog n� T �n�O��			� for � � 
�n�

Proof Let us prove the correctness of approximate�� By Cauchy�s formula�

jfkj �
����� �
	i

Z
juj	�����

f�

 � u	

uk��
du

����� � B


��

	k
�
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for all k� In particular�

jf��
� � 

	
� � f����
� � 

	

��� � � � � j � 
B


�j
� � 

j
��

	

��
�

�



�

Hence�

jL��
�F �

	� f�
�	j � jL��

�F �

	� L��F �

	j� jL��F �

	� f�
�	j � ��

Let us now estimate the complexity of approximate�� step � is a precomputation
of cost O��	� In step �� we have � � O�n	�

In step �� we have size�Mk��	�size�Nk��	 � O�log k	� since theQi are polynomi�
als in K���k�� By induction� it follows that size�Mk��	�size�Nk��	 � O���log k		�
Hence� the computations of M
��� � � � �M����� require ��� operations of costs
O�� log� n llog n	 for �xed �� Thus� the computation of M
�� requires
O�n log� n llog n	 operations�

In step 	� the computation of A�

	 is actually another precomputation of cost
O��	� The matrix multiplicationM
��A�

	 takes a time O�n log� n llog n	�

In step �� L�� tends to the �rst line in the transition matrix between 

 and

� !see the next section$ for � � �� Hence� lim�� jL��j is �nite and �F �

	 is
computed in timeO�T �n�O��			� Finally� the multiplication L��

�F �

	 takes a time
O�n log� n llog n	� �

C�� Transition matrices

In this section we introduce the main tool for performing analytic continuations�
transition matrices and their truncations� Let 

 
 X and let I be a column vector
with p entries� Let f �

 � I� denote the unique function f � which satis�es !C��$ and
such that F �

	 � I� Denote f �

 � I��i� � f �i��

 � I� for each i� We notice that
f �i��

 � I � J � � f �i��

 � I� � f �i��

 � J � for all i� I and J � by linearity� If 

 � 
� is
a path on X from 

 to 
�� then F �
�	 depends linearly on I� by integrating !C��$�
The matrix ������ such that

F �
�	 � ������F �

	

for all F �

	 is called the transition matrix associated to 

 � 
� !and of course
to the equation !C��$$� Obviously�

��������� � ������������ �

for all compositions 

 � 
� � 
� of 

 � 
� with a path 
� � 
� on X �
Assume now that D� 

� 
�� ��

	 are as in the previous section� Let

f �i��

 � I��

 � u	 � f
�i�

 �

 � I� � f

�i�
� �

 � I�u� � � �
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denote the power series of f �i��

 � I� at 

 for each i� For � � p� let F���
�	 be the
column vector

F���
�	 �

�BB	
f
 � � � �� f����
� � 

	

���
���

f
�r���

 � � � � � f

�r�p�
��p �
� � 

	��p


CCA
The matrix ������� with

F���
�	 � �������F �

	

for all F �

	 is called truncated transition matrix at order � associated to


 � 
�� The following technical lemma gives us precise information about the
computational complexity of truncated transition matrices�

Lemma C� Let s � size�	�

		�size�	�
�		� There exists an algorithm which
computes ������� in time

O���s� log �	 log� � llog � � s log s llog s	�

uniformly in 

� 
� 
 D� provided that j
� � 

j � �
���

	�

Proof The computation of ����� �� is done by steps �� � and 	 of approximate�
with the following modi�cations� instead of working with coe�cients in K� we work
with coe�cients in K������p	� Instead of starting from the di
erence relation !C��$�
we now start from the di
erence equation satis�ed by the sequence f
� f��
� � � �


	� f��
� � �� 

	�� � � � � Modulo these changes� the line L�� computed in step 	 has
the form L�� � L���
�L������ � � ��L���p���p��� where L���
� � � � � L���p�� are precisely
the lines of �������� Intuitively speaking� � is a formal in�nitesimal variable� which
enables us to compute formal expansions at 
� up to the order p�

Let us now bound the complexity� step � is a precomputation of cost
O�s log s llog s	�

In step �� we have size�Mk��	 � size�Nk��	 � O�s � log k	� since the Qi are
polynomials in K���k� with coe�cients of sizes O�s	� By induction� it follows
that size�Mk��	 � size�Nk��	 � O���s � log k		� Hence� the computations of
M
��� � � � �M����� require ��� operations of costs O���s�log �	 log � llog �	 for �xed
�� Thus� the computation of M
�� requires O���s� log �	 log

� � llog �	 operations�
In step 	� the !pre�$computation of A�

	 has cost O�s log s llog s	� The matrix

multiplicationM
��A�

	 takes a time O���s� log �	 log � llog �	� �

The remainder of this section is devoted to the obtaining of theoretical bounds
concerning transition matrices�
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Forward transitions Let E
� � � � � Ep�� be the columns of the identity matrix�
Then the entry ������i�j equals f

�i��

 � Ej��
�	� By Cauchy�s formula� we have�

jf �i�k �

 � Ej�j �
����� �


	
p��

Z
juj	�����

f �i��

 � Ej ��

 � u	

uk��
du

����� � supD f
�i��

 � Ej �

��

	k
�

Let � � p� Summing over k � �� we have for each 
� with j
� � 

j � �
�
��

	�

j��������i�j �������i�jj � 
 supD f �i��

 � Ej�

� j
� � 

j
��

	

���i
� !C��$

Hence� denoting
S�

	 � max


�i�j�p��
sup
D

f �i��

 � Ej��

we have

j������� ������ j � 
S�

	
� j
� � 

j

��

	

�����p
� !C�$

Notice that this proves in particular our claim in the proof of proposition C�� that
L�� tends to the �rst line of ����� for � ���

Backward transitions Let C
 be a constant with C
 � sup������D pj�����j�� Let
��

	 resp� ��
�	 be the matrix� with entries f �i��

 � Ej � resp� f �i��
� � Ej �� We
observe that

��
�	 � �������

	�

In particular� S�
�	 � C
S�

	� Let C� be a constant with C� � C
S�

	� Then !C�$
implies

j������� ������j � C�

�j
� � 

j
��

	

�����p
� !C��$

and this relation is valid for all 

� 
� 
 D with j
� � 

j � �
���

	� In particular� for

C� � pjF �

	jC
� we get

j�������F �

	� F �
�	j � C�

� j
� � 

j
��

	

�����p
� !C���$

where the bound is again valid for all 

� 
� 
 D with j
� � 

j � �
���

	�

In�nitesimal transitions Let � be the radius of D� Then substitution of � by p
in !C��$ yields

j������p � Idj � �e� � �	j
� � 

j�
Applying !C��$ once� we get

j����� � Idj � �C� � e� � �	j
� � 

j�
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Let C� � �e� � �	 � 
C�� Applying !C��$ once more� we deduce that

j������� � Idj � C�j
� � 

j�

whence

pj�������j� � � � C�j
� � 

j� !C���$

for all � � p�

C�
 Analytic continuation

In this section� we give the complete evaluation algorithm for holonomic functions�
Let C be a connected �nite union of compact disks in X with centers above Z���� i�
and radii in Z��

�
�� For each � 
 C� denote by ���	 the distance between � and �C�

Let B� 
Z���� be such that

j������F ��	� F ���	j � B�

� j�� � �j
���	

�����p
�

for all � � p and �� �� 
 C� such that j�� � �j � �
����	� Such a constant B� exists

by !C���$� Let � � B� 
 Z��
�
� be a constant� such that for all �� �� 
 Di with

j�� � �j � �
����

�	� we have

pj������j� � � �B�j�� � �j� !C���$

Such a constant B� exists� by !C���$�

C���� Begin and endpoints above Z���� i�

We �rst consider the case of an e
ective path

� � �� � 

 � � � � � 
��

with 	�

	� 	�
�	 
 Z���� i� and such that j
i�� � 
ij � �
���
i	 for all � � i � �� For

each � � i � �� let

�i � �� �B�j
i�� � 
ij	 � � � �� �B�j
� � 
���j	�

Let B� 
Z���� be a constant for which B� � �
�

Algorithm approximate� !begin and end points in Z���� i�$�
Input� A precision � � � 
Z�����
Output�An approximation of f�
�	 with error � ��
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Step �� For i � �� � � � � � do the following�
a� Compute the smallest �i � 
l � p for which

B�B�

� j
i�� � 
ij
��
i	

��i���p
� �����

b� Compute ��i�i�� ��i� by the algorithm from lemma C���
Step �� Compute an approximation �F �

	 of F �

	� with B�j �F �

	�F �

	j � ����
Step �� For each i � �� � � � � ���� compute a truncation �F �
i��	 of ��i�i����i

�F �
i	
at precision ����B��

Step �� Return the �rst element of �F �
k	�

Remark C� The need of truncating the �F �
i	 will become apparent in the next
algorithm� which uses approximate� as a subalgorithm�

Proposition C� The algorithm approximate� is correct and has asymptotic
complexity O�n log� n llog n	� for � � 
�n�

Proof For each � � i � �� we have�

�i��j �F �
i��	� F �
i��	j � �i��j �F �
i��	���i�i����i
�F �
i	j�

�ij �F �
i	� F �
i	j�
�i��j��i�i�� ��iF �
i	��i�i��F �
i	j

� ��
� ��ij �F �
i	� F �
i	j�

By induction� we get

j �F �
�	� F �
�	j � ��
 � �
j �F �

	� F �

	j�

whence the correctness of approximate�� since �
j �F �

	� F �

	j � ���� The com�
plexity bound is proved in a similar way as in proposition C��� using lemma C���

�

C���� Arbitrary paths

Now let � � �� be an arbitrary e
ective path on D� represented by � � �
 �
� � � � �� � ��� We assume that d � j�
 � �j � �

����	� d
� � j�� � ��j � �

����
�	 and

j�i�� � �ij � �
���i� for all � � i � �� Clearly� any e
ective path can be represented

in this way� by subdividing abnormally long segments�
To approximate f���	� we need two special paths in order to connect good ap�

proximations �	 and ��	� above Z�
�
�� i� of � resp� �

� to their rough approximations �
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and ��� Then the e
ective path to compute f���	 has the form

� � �	 � � � � � �
 � �
 � � � � � �� � ��
 � � � � � ��	� � ��� !C���$

Given � � � 
 Z��
�
�� such a path is called an ��re�nement of � � ��� when com�

puted as follows� �rst compute approximations �� and ��� of � resp� �� with error
� �� Next� truncate �� at precisions 
��

�
d� 
��

�
d� � � � � 
���d� until 
���d � �% this

yields �
� � � � � �	� Similarly� we truncate ��� at precisions 
��
�
d�� � � � � 
����d� until


��
��
d� � � in order to yield ��
� � � � � ��	�� Of course� the starting point of the re�ne�

ment is � � ��	 � 	��		�
In order to apply approximate� we have to �nd a suitable constant B�� which

works for all possible ��re�nements !C���$� We observe that
�Y
i	


�
� �

B�d


�i

�
� C� � 
�� �B�d	

dlog�logmaxfB���g� log��� log�e !C��	$

and
�Y
i	


�
� �

B�d
�


�i

�
� C� � 
�� �B�d

�	dlog�logmaxfB���g� log ��� log�e� !C���$

Now for B� we take a constant in Z����� such that

C�C��� �B�d	�� �B�d
�	
���Y
i	


�� �B�j�i�� � �ij	 � B�� !C���$

Hence B� � �
� Finally� let B� 
 Z���� be a constant� with supC jf �i�j � B� for all
� � i � p�

Algorithm approximate� !general case$�
Input� A precision � � � 
Z��

���
Output�An approximation of f���	 with error � ��

Step �� Compute an ����B�B�	�re�nement of � � ��� and let 

 � � � � � 
� be its
representation�

Step �� Apply approximate� to the path 

 � � � � � 
� with initial conditions
F ��	 at 

�

Theorem C� Let f be a holonomic function satisfying C���� such that P
� � � � �
Pp 
 K�z� for an algebraic number �eld K� Let X be the Riemann surface of
f over C nfw� � � � � � w�g� where w�� � � � � w� are the zeros of Pp� Let � � �� be an
e�ective path on X � such that the initial conditions f��	� � � � � f �p�����	 are e�ective�
Assume that 	��	� 	���	� f��	� � � � � f �p�����	 have time complexities O�T �n		� Then
there exists an O�n log� n llog� n� T �n�O��			 expansion algorithm for f���	�

Proof Let us �rst prove the correctness of approximate�� Since j

��j � ���B�B��
we have jF �

	 � F ��	j � ���B� � ����
� Hence� j �F �

	 � F �

	j � ����� As in
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the proof of proposition C��� we deduce that j �F �
�	 � F �
�	j � ����� Finally�
jF ���	 � F �
�	j � ���� since j�� � 
�j � ���B�B� and B� � �� It follows that
jF ���	� �F �
�	j � �� which completes the correctness proof�

Let us now prove the complexity bound� First we notice that j
i��� 
ij � �
�
��
i	

for all � � i � �� so that lemma C�� applies� Now� using similar notations as
above� let 

 � � � � � 
� be the path !C���$ and let � � 
�n� By the de�nition
of ��re�nements� we have � � O�log n	� size�	��i		 � O�
i	� size�	���i		 � O�
i	�
log j�i�� � �ij � O�
i	 and log j��i�� � ��ij � O�
i	� Furthermore� if �i resp� ��i
denotes the �j which corresponds to �i resp� ��i� then

�i � O

�
log �� log ��B�B�

log j�i � �i��j � log ��� � ��i�� � 	��			

�
� O

�
n


i

�
resp�

��i � O
�
n


i

�
�

Hence� by lemma C��� the execution time of approximate� is bounded by

O

�	n log� n llog n� O�logn�X
i	


n


i
�
i � log n	 log� n llog n


A �
Now

O�logn�X
i	


n


i
�
i � log n	 log� n llog n ��	blog logncX

i	


�
O�logn�X

i	blog lognc��


A n


i
�
i � log n	 log� n llog n � O�n log� n llog� n	�

whence the desired complexity bound� �

C�� Computation of the constants Bi

In this section� we show how the constants B�� B�� B�� B� can be computed e
ect�
ively� We �rst show how to compute bounds for jf j� jf �j� � � � on a �xed compact disk
D on X � which center 

 above Z���� i� and radius � 
 Z����� where we assume that
F �

	 is e
ective� Let f�

 � u	 � f
 � f�u� � � � be the power series expansion of
f at 

� Let 
� � 

 � �� and let the matrices Nk�� be de�ned as in section C��� We
start by showing how to compute suitable bounds for the fk�

For each � � 
l there exists a matrix N�� with coe�cients in K�k	� such that
Nk��� is obtained by replacing k by k� for all k�� Indeed� such matrices are obtained
in a similar way as the Nk�� from !C��$ and !C��$� by considering k as a formal
parameter� Hence� we even have an algorithm to compute the N���
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Substitution of k by in�nity in N�� yields a matrix N���� which is an O���k	�
perturbation of N��� !i�e� the entries of N����N�� are O���k	$� Intuitively speak�
ing� taking k � � amounts to neglecting the contribution of the terms stemming
from Pp��f �p���� � � � � P
f in the recurrence relation !C��$� Therefore� N��� re0ects
the linear recurrence relation satis�ed by the coe�cients of the Taylor series ex�
pansion of ��Pp�

 � u�	 in u� In particular� the non zero eigenvalues of N��� are
����w� � 

		�� � � � � ����wn � 

		��

Now consider the following algorithm�

Algorithm bound�
Input� 

� 
� 
Z�����
Output�Constants C� and j� j � �� such that jfk�
� � 

	

kj � C��
k for all k�

Step �� Compute the smallest �
 � 
l� such that pjN���� j� � ��
Step �� Compute the matrix N��� �N���� with O���k	 entries in K�k	�
Step �� Compute a k
 and � � �� pjN���� j�� such that pjNk��� �N����j� � ��

for all k � k
�
Step �� Let � �� �pjN����j� � �	�����

and C� �� maxfjf j� � � � � jfk�����
� � 

	�� 	k���jg

In particular� the algorithm yields the desired upper bounds

sup
D

jf �i�j � C�

�X
k	


�k � i	�� k

k�j
� � 

ji �
C��

ii�

�� � � 	i��j
� � 

ji � !C���$

In section C��� this yields an algorithm to compute B
� if we take 

 to be the center
of D� Adopting the notations from section C�	� we also obtain an algorithm to
compute upper bounds for supD jf �i��

 � Ej �j� for all i and j�

Correctness and termination proof of bound In step �� the power of two
�
 indeed exists� because the eigenvalues of N��� are all strictly inferior to �� and
N���� � N�

���� for all powers of two �� by !C��$� The validity and termination of
the remainder of bound is trivial� �

For the computation of the constants B�� B�� B�� B�� we have to show how to
compute C
 in section C�	� We start with the following preliminary� let D and 


be as above� and let 
� be such that j
�� 

j � �

��� Applying !C�$ twice� we deduce
as we did in section C�	 that

j����� � Idj � �
S�

	 � e� � �	j
� � 

j�
Using !C���$� we can compute a constant C��

	 
Z����� such that C��

	 � 
S�

	�
e� � �� We have

j����� � Idj � C��

	j
� � 

j
�� C��

	j
� � 

j �
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for j
� � 

j � C��
�	��� In particular� this yields the bound

pj�������j� � � !C��$

for all 
 �
� 

�
� 
 D� with j
 �
 � 

j � ��
C��

	 and j
 �� � 

j � ��
C��

	� Hence we

may take C
 � �� whenever 
� is su�ciently close to 

�
Let us now treat the general case� We construct a sequence U��U�� � � � of open

disks on X as follows� assuming that U�� � � � �Un have been constructed for n � ��
the center �n�� of Dn�� is taken to be any point above Z���� i� in Dn�U�  � � �  Un	%
if such a point does not exist� the construction is terminated� Next� we let Dn��

be any compact disk on X � with center �n�� and radius in Z����� We next compute
a number �n�� 
 Z��

�
� in the way described above� such that !C��$ holds for all


 �
� 

�
� 
 Dn��� with j
 �
 � �n��j � �n�� and j
 �� � �n��j � �n��� Termination of this

procedure is guaranteed by the compactness of D� Ultimately� we take C
 �� �n�

Proposition C� There is an algorithm to compute the bounds B�� B�� B�� B�

involved in approximate� and approximate��

Proof Using the algorithms above� we compute the constants C�� C�� C�� C� by the
formulas from section C�	� To compute the constants B�� B� and B�� we use the fact
that C is a �nite union of compact disks� each on which the preceding algorithms
apply� In the case of B�� we use !C���$ and !C��$ !for supC jf �p�j$� Finally� B� is
computed using !C���$� �

Remark C� For simplicity of the presentation� the constants B�� B�� B�� B� are
�relative to C as a whole�� In practice� we compute such constants on each com�
pact disk� which constitutes C� This allows us to avoid the computation of the
sequence U��U�� � � � by precomputing a suitable re�nement of the path � � �� in
approximate��

C�� Conclusion and extensions

We have presented an algorithm to evaluate certain holonomic functions� Although
our algorithm has a good asymptotic complexity� it also has several disadvantages�

� Bad complexity as a function of q !5 order of !C��$$�

� The initial conditions need to be speci�ed in a point di
erent from w�� � � � � w��

� Bad behaviour near singular points�

� Not clear how to choose the path for analytic prolongation�

On the other hand� several generalizations of the algorithm are possible�

� Holonomic functions in several variables�
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� Small perturbations of !C��$�

In this section� we brie0y discuss these issues�

Dependence on q Our algorithm has a quite dramatic complexity as a function
of q� namely the complexity of q by q matrix multiplications !which is O�q����	� see
"Str ��#$�

Nevertheless� we are currently investigating an optimization of the algorithm�
where the matricesMk��� Nk�� are not computed up to order � in approximate�� but
up till a slightly smaller power of two% the last steps of the evaluation are performed
by a more classical Horner�like method� This should lead to a general purpose
algorithm� which reduces to the standard way of evaluating power series for small
precisions and which partially uses our optimized algorithm for large precisions�
Moreover� this approach should extend to the case when the coe�cients are no longer

algebraic numbers� although the complexity drops down to O�n
�
� log� n llog n	 in this

case� at a �rst sight�
Let us �nally notice that for large values of q� FFT�multiplication becomes prof�

itable for smaller precisions� since we can FFT�transform the entire matrices�

Initial conditions Sometimes� f may be analytically continued above some of
the points w�� � � � � w�� For many classical special functions� the initial conditions
are even speci�ed in such �fake singularities�� as an example� we mention the sine�
integral function

Six �
Z x



t�� sin tdt�

which satis�es the equation

z Si��� z � 
Si�� z � z Si� z � ��

with initial conditions Si��	 � ��Si���	 � ��Si����	 � �� Using the recurrence relation

Sik���



k
Sik���

�

�k � �	�k � 
	
Sik � ��

approximate� still applies in this case� Moreover� modulo some precautions� this
is a general situation� it su�ces that the power series expansion be convergent and
that K contains 	�

	� Then taking 
� � 

 
 Z���� i�� a suitable adaptation of lem�
ma C�� applies� This reduces the problem to the case when the initial conditions
are speci�ed in 
�� The bounds involved in these computations are computed in a
similar way as in section C���

Singularities When the point �� in which we want to evaluate f is very near to
a singularity� the bounds Bi and the complexity of the algorithm as a function of
�� may become very bad� No straightforward numerical methods can be applied to
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solve this problem� and resummation techniques are essentially needed to handle
this situation !see "Th ��#� for instance$� Here we notice that the Borel and Laplace
transforms preserve holonomy� Therefore� our algorithm can theoretically be used
in the resummation process�

Analytic continuation path Clearly� the complexity of the algorithm heavily
depends on the choice of the path used for analytic continuation� At present� we have
not studied this point in detail� We expect several similarities with the way paths
are chosen for the computation of Laplace transforms in resummation algorithms�

Multivariate holonomic functions A multivariate function f�z�� � � � � zk	 is said
to be holonomic� if f is holonomic in each of its variables� It is classical that
the restriction of a multivariate holonomic function to a straight line segment is a
holonomic function in one variable only� Moreover� the di
erential equation satis�ed
by this restriction can be computed in a generic way� i�e� for a generic straight line
segment� Consequently� our algorithms generalize in a straightforward way to the
multivariate case�

Small perturbations In the proof of lemma C��� we used a trick to compute
f�
�	� � � � � f �p����
�	 simultaneously� by introducing the in�nitesimal variable �� If
instead of working in the ring K������p	� we work in the ring K������r	� the same
method yields approximations for the �rst r terms of the power series expansion of
f in 
�� Moreover� the cost is just multiplied by a factor O�r	 in this case� More
generally� we may allow the polynomials P
� � � � � Pp themselves to depend on �� In
this case� we compute the e
ect of such a small perturbation in 
�� up to a precision
of r terms�

Divergent series In priciple� the techniques of this appendix can also be used to
e
eciently evaluate holonomic functions in the neighbourhood of points where the
series expansion diverges� by summing �up to the smallest term�� Of course� we only
get approximations of the value of the holonomic function in this way� but it is well
known that these approximations have exponential accuracy� when we approach the
singularity�
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Appendix D

Computations with special functions

D�� Introduction

Transcendental functions like exp� log� sin� #� etc� have been studied since a long
time� In our age of symbolic computation it is natural to ask whether computations
with such functions can be done automatically� Essentially� this question can be
reduced to the following one� given an expression built up from the rationals� a �nite
number of indeterminates and a given set of elementary functions� can we decide
whether the expression is zero* Since the expressions are not necessarily canonically
determined !they usually admit non trivial Riemann surfaces$� the problem should
be speci�ed further� can we decide whether the expression is locally zero at a given
point on the Riemann surface* We also have to specify what we mean by elementary
functions� in this chapter� we will consider a very large class of elementary functions�
namely those which can be entirely speci�ed by a �nite number of algebraic partial
di
erential equations with initial conditions� In what follows� such functions will be
called D�algebraic functions�

Let us �rst brie0y discuss some of the history of the above problem� Initially�
most of the research has been centered around �nding canonical ways for represent�
ing expressions of the above type� based on our experience with polynomials� The
study of functions built up from algebraic functions� exponentiation and logarithm
was started by Liouville !see "Li ���# and "Li ��#$ and culminated one and a half
century later in the Risch structure theorem !see "Ris ��#$� These techniques were
extended to include a few other transcendental functions such as the error function
by Cherry and Caviness !see "Ch �#� "CC �#$� However� for many other special
functions� the desire of having canonical representations seems to be to ambitious�

The emergence of holonomic functions has provided a new way of looking at the
question� Holonomic functions !in one variable$ are functions which satisfy a non
trivial linear di
erential equation over the polynomials with rational coe�cients�
They are represented� although not uniquely� by such a di
erential equation and
a number of initial conditions� The basic idea is now to compute with these rep�

�	�
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resentations� without searching for canonical ones� Denef and Lipshitz� followed by
others have generalized the holonomic function approach to D�algebraic functions
!see "DL �#� "SH �#$� At this moment� the most promising algorithm for computa�
tions with D�algebraic functions is due to P�ladan�Germa !see "P�l ��#$� However�
no implementation of this algorithm is available yet�

We �nally mention that in the above discussion� we implicitly assumed the exist�
ence of an oracle� to perform the necessary computations with constants� Actually�
this is a very strong hypothesis since computations with transcendental numbers
turn out to be even harder than computations with transcendental functions !mod�
ulo a suitable oracle for the constants$� Although it is often easy to decide whether
a constant is zero !it su�ces to perform a 0oating point evaluation at a su�cient
precision$� it can be very hard to prove that a constant is zero� Nevertheless� in the
case of constants determined by exp�log equations� an algebraic zero�test does exist
modulo Schanuel�s conjecture and we refer to the introduction for more details�

� � �

Let us now come more particularly to the contents of this chapter� We have
chosen the di
erential algebra with initial conditions setting to study local func�
tions� This has the disadvantage of restricting the class of functions which can
be studied� but the advantage of being suitable for e
ective computations by its
algebraic character�

In section D��� we introduce the formalism of D�rings� This formalism is due
to Nichols and Weisfeiler !see "NiWe �#� "Bu ��#$ and provides an algebraic setting
for studying p�d�e��s on curved geometrical objects� Its originality with respect to
the classical theory of di
erential algebra !as developed by Riquier� Janet� Ritt�
Raudenbush� Seidenberg� Kolchin� etc�% see "Riq ��#� "Jan ��#� "Ritt ��#� "Kol ��#�
"Kap ��#$ is that the derivations do not necessarily commute� Consequently� p�d�e��s
on non a�ne objects such as spheres can be considered� even though no essentially
new functions are introduced by this� Actually� the formalism of D�rings mainly
allows us to place ourselves in the coordinates� which correspond to the underlying
geometry of the problem� Moreover� in "VdH ��c# it is shown that the main res�
ults from classical di
erential algebra can be generalized without much e
ort� In
section D��� we introduce D�rings with initial conditions� We will mainly consider
initial conditions in a point� which correspond to !non di
erential$ maximal ideals
of the D�ring�

In section D�	� we establish the main algorithms for computations with D�
algebraic functions� We start with a generalization of an algorithm due to Shackell
and an optimization of this algorithm using a local pseudo�Buchberger algorithm�
This work was carried out jointly with A� P�ladan�Germa in "PV ��#� For the
local pseudo�Buchberger algorithm� we refer to section D��� We proceed with a
zero�equivalence algorithm which is particularly useful when the point in which the
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zero�test is performed may be chosen randomly� in that case� virtually all functions
which evaluate to zero are zero� and this property is exploited in the algorithm�

In section D�� we consider some other computations which can be done with
D�algebraic functions� Most importantly� we obtain an implicit function theorem�
which permits to solve e
ectively certain systems of implicit equations determined
by D�algebraic functions� This is a crucial result on which many algorithms in part
B of this thesis rely�

D�� Basic concepts

D���� De�nition of a D�ring and examples

A D�ring is a couple �A�D	 satisfying

DR� A is a commutative ring�
DR� D is an A�module of derivations on A satisfying

�D a � ��
�bd	a � b�da	�

�d� � d�	a � d�a� d�a�

for all d� d�� d� 
 D and a� b 
 A�
DR� D has the structure of a Lie algebra and

�d�� d��a � d�d�a� d�d�a�
�d�� ad�� � �d�a	d� � a�d�� d���

for all d�� d� 
 D and a 
 A�

For simplicity� we often write A instead of �A�D	� In practice� �A�D	 is �nite
dimensional� i�e� D is a �nitely generated A�module� We notice that D�ring
theory generalizes ring theory� by taking D � � for the set of derivations�

Example D� If k is a �eld� then �k�x� y�� �dx� dy		 is a D�ring� Here dx and
dy denote the partial derivatives with respect to x resp� y and D � �dx� dy	 the
k�x� y��module generated by dx and dy� D has a natural Lie algebra structure� given
by

�Adx �Bdy� A
�dx �B�dy � � �AA�

x �BA�
y �AxA

� �AyB
�	dx �

�AB�
x �BB�

y �BxA
� �ByB

�	dy�

The D�ring �k�x� y�� �dx� dy		 corresponds to the plane !over k$� In a similar fashion�
one de�nes a�ne n�space �k�x�� � � � � xn�� �dx�� � � � � dxn		�
Example D� If k is a �eld� then �k�x� y���x� � y� � �	� �ydx � xdy		 is a D�
ring� This object corresponds to the circle with its natural derivations� Similarly�
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�k�x� y� z���x� � y� � z� � �	� �d�� d�� d�		 is a D�ring� where d� � ydx � xdy� d� �
zdy � ydz and d� � xdz � zdx� We have �d�� d�� � d�� �d�� d�� � d� and �d�� d�� � d��
Finally� �k�x� y���xy	� �xdx� ydy		 is a non entire D�ring� which corresponds to the
union of two lines�

Example D� Assume that �A�D	 is a D�ring and that I is a usual ideal of
A� Then AjI � A�I can naturally be given the structure of a D�ring by taking
DjI � fd 
 D�IDjdI � Ig for the derivations� Indeed� we have a natural induced
Lie bracket on DjI � since dI � I and d�I � I imply �d� d��I � I� for all d� d� 
 D�
The D�ring �AjI �DjI	 is called the restriction of domain of �A�D	 by I� If A is
Noetherian and �nite dimensional� then so is AjI� The D�rings of example D�� are
obtained as restrictions of domain of k�x� y� by x��y���� of k�x� y� z� by x��y��z���
and of k�x� y� by xy�

Example D	 Let A be an algebra over R� Denote by DerR�A	 the set of R�
derivations on A !i�e� the set of derivations d � A � A with dR � �$� Then
�A�DerR�A		 is a D�ring� If A is �nitely generated� then this D�ring is �nite dimen�
sional�

D���� Morphisms of D�rings

Let us now show how familiar concepts in di
erential algebra generalize to the
context of D�rings� Amorphism of D�rings or D�morphism �A�D	

����� �A��D�	

is a pair of mappings A
�� A� and D

�� D�� preserving all D�ring operations�
Clearly� D�rings with their morphisms form a category� Let us show that each
morphism �A�D	

����� �A��D�	 can be factored canonically through �A�� A� +A D	�
where we consider A� as an A�algebra� by �a � ���	a� for � 
 A and a 
 A��
Roughly speaking� this means that we can decompose a morphism in a part which
preserves the structure of the module of derivations� and in a part which preserves
the structure of the ring�

As we have a A�bilinear mapping � � A� � D � D�� �a� d	 �� a��d	� there

exists a unique A�linear mapping A� +A D
�� D�� such that � � � � �� + Id	�

This mapping induces a canonical operation of A� +A D on A� by da � ��d	a�
This makes it possible two de�ne a Lie bracket on A� +A D by �a + d� a� + d�� �
aa� + �d� d�� � a�da�	+ d� � a��d�a	+ d� Then we have the desired factorization

�A�D	
����Id�� �A�� A� +A D	

Id���� �A��D�	�

A D�morphism is said to be pure� if � � Id in the above decomposition� By the
transitivity of base change� D�rings with pure D�morphisms form a category�

Remark D� Consider the D�ring �k�x� y�� �dx� dy		� Then interchanging x and y
resp� dx and dy gives a D�automorphism � of k�x� y�� We remark that this would not
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be the case in di
erential algebra� because the derivations dx and dy are restricted
to remain �xed� Nevertheless� � is not a k�x� y��morphism of D�algebras !see below$�

D���� D�ideals� D�A�modules and D�A�algebras

A D�ideal of �A�D	 is an ideal� stable under D� We denote by ��� the D�ideal
generated by a subset � of A� If I is such a D�ideal� then A�I has a canonical quo�
tient D�ring structure� If S is a multiplicatively stable subset� we each derivation
d 
 D naturally gives rise to a derivation on S��A by d�a�s	 � �da�s	 � �a�s�	�
Therefore� S��A has a canonical D�ring structure and is called a local D�ring of
A� We recall that A � S��A is injective if and only if S contains no zero divisors�
The total D�ring of fractions is the D�ring Q�A	 � S��A� where S is the set of
non zero�divisors� In particular� Q�A	 is the quotient D��eld� if A is entire�

A D�A�module or D�module over A is an A�moduleM � such that each deriv�
ation d 
 D gives rise to a derivation �d on M � satisfying �d�ax	 � �da	x� a �dx and
��d�� d��x � �d� �d�x � �d� �d�x� for a 
 A� d� d�� d� 
 D and x 
 M � A morphism of
D�modules over A is an A�linear mapping� which commutes with the derivations
of D�

A D�A�algebra or D�algebra over A is a D�A�module� which is an A�algebra
B� such that �d�xy	 � x �dy � � �dx	y� for each x� y 
 B� We remark that �B�DB	
is a D�ring in this case !assuming that B has a unit$� where DB � B +A DA acts
naturally on B by �x+d	y � xdy� We have a canonical D�morphism of �A�DA	 into
�B�DB	� Inversely� given such a morphism� we can consider B as a D�A�algebra in
a natural way� Amorphism of D�A�algebras is a morphism of A�algebras� which
commutes with the derivations of D�

D���� D�operator algebras

Let �A�D	 be a �nite dimensional Ritt D�ring� One can naturally associate the
free linear D�operator algebra � � A�D� to �A�D	� this is the free associative
A�algebra� generated by A and D� subject to the relations

a �� d � ad�
d �� a � da�

d� �� d� � d� �� d� � �d�� d���

We also de�ne �
 � A and �r�� � �r D�r� for each r 
 N� These sets are subsets
of �� with � �

S
r�N�r� If  
 �� we de�ne its order to be the smallest r� with

 
 �r�

Proposition D� Let d�� � � � � dr be in D� Then d���� � � � d��r�� d� � � � dr has order
strictly inferior to r� for any permutation  �
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Proof It su�ces to prove this� in the case when  is a transposition of two sub�
sequent indices i and i� �� In that case� we have

d� � � � di��di � � � dn � d� � � � didi�� � � � dn � d� � � � �di��� di� � � � dn�

which has order at most n� �� �

Operators of the form d� � � � dr are calledwords� The word operator d���� � � � d��r�
is said to be a shu�e of the word operator d� � � � dr� Suppose that we have �xed
generators or a basis d�� � � � � dn forD� Then we denote � fd��

� � � � d�nn j��� � � � � �n 

Ng and  r � fd��

� � � � d�nn j�� � � � �� �n � rg� for each r� Then we have

Proposition D� The set  resp�  r� generates � resp� �r� as an A�module�
It even forms a basis� if d�� � � � � dn form a basis of D�

Proof Let us show by induction over r that  r generates �r as an A�module� This
is clear for r � �� Assume that  r�� generates �r��� By linearity� it su�ces to
show that did

��
� � � � d�nn 
 � r	� for each i and d��

� � � � d�nn 
  r��� By the previous
proposition� we have did

��
� � � � d�ii � � � d�nn � d��

� � � � d�i��i � � � d�nn � � with  
 �r���
This completes the induction� As � �

S
r�N�r and  �

S
r�N r� this implies that

� is generated by  �
Suppose now that d�� � � � � dn form a basis for D� The free A�module �� gener�

ated by  � can naturally be given the structure of an associative A�algebra� and
it is easily checked that this algebra satis�es the universal property of �� Hence�
�� is isomorphic to �� Therefore�  is linearly independent over A� and so is  r�
for each r� �

D���� Geometric interpretation of D�rings

The concept of D�rings has a strong geometric appeal� we can interpret A as the
space of functions on a manifold and D as its tangent bundle� In order to let
things correspond properly� assume that A is entire and that D �nitely generated
by d�� � � � � dn� Then we remark that D is locally trivial� Indeed� whenever we have a
relation a�d�� � � ��aidi � �� with ai �� �� then D is generated by fd�� � � � � dngnfdig�
when localizing with respect to the multiplicative subgroup generated by ai� After
a �nite number of such localizations� the tangent bundle becomes trivial�

Now the analogy can be carried out further� Finitely generatedA�modules !which
are locally trivial� by the above argument$ correspond to vector bundles� For ex�
ample� we have the cotangent space D� � LinA�D�A	� the tensor bundles

D+A
n times� � � +AD +A D

�+A
m times� � � +AD

��
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etc� Other geometric structures can be imposed on A such as metrics !which are
just elements of D� +A D�$� connections !which are Z�bilinear maps from D � D
into D� such that

radd
� � ardd

��

rd�ad
�	 � �da	d� � ardd

��

and� optionally� rdd
� �rd�d � �d� d��$� etc�

Many di
erential geometric properties admit straightforward algebraic analo�
gues� This observation� combined with the results of subsequent sections� makes it
possible to perform many di
erential geometrical computations automatically�

D�� D	rings with initial conditions

In this section we will algebrize the notion of a system of partial di
erential equations
with boundary conditions� In section D����� we �rst give a very general de�nition�
with arbitrary partial di
erential equations and partially speci�ed boundary con�
ditions� In section D����� and all what follows� we will restrict ourselves to initial
conditions in a point�

D���� D�boundary value problems

A D�boundary value problem is a chain of triplets �An� Jn� In	� � � � � �A�� J�� I�	�
where the Ji are D�ideals of the D�rings Ai� where the Ii are ideals of Ai�Ji and
where Ai�� � �Ai�Ji	jIi� for each 
 � i � n� Denote A
 � �A��J�	jI� � We have
canonical mappings

An � An�Jn � An�� � � � � � A� � A��J� � A
�

The composite of these mappings is denoted by � and it is called the evaluation
mapping� We de�ne an equivalence relation � on An by

a � b�  $ 
  An ��$�a		 � ��$�b		�

for all a and b in An�

Remark D� This de�nition of equivalence may appear non natural at a �rst time�
because of the example f � e���x

�
� However� f can not be speci�ed in x � �� because

��x� would not be de�ned� In fact� the theory of D�rings with initial conditions
somehow generalizes complex function theory� where a function is also determined
by the values of its iterated derivatives in a point�

The zero�equivalent elements form an ideal� which is easily checked to be a
D�ideal� If this ideal is non zero� we say that the D�boundary value problem is
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non reduced� In that case we can transform the problem into a reduced D�
boundary value problem �A�

n� J
�
n� I

�
n	� � � � � �A�

�� J
�
�� I

�
�	� with A

�
i � Ai��� J �i � Ji +A�

i

and I �i � Ii + �A�
i�J

�
i	� for all i� If I� is a maximal ideal� then A
 is a �eld and the

D�boundary value problem is said to be completely speci�ed�

Example D� Suppose that we wish to represent f � ex�y as a function which
is equal to ey� for x � �� and which satis�es the di
erential equation fx � f � We
take A� � k�x� y�ffg� J� � �fx � f � and I� � �x	� Then A�

�� k�y�ffjxg and we take
J� � ��fjx	y � fjx� and I� � �x� fjx � �	� We remark that f can also be speci�ed
by two partial di
erential equations and initial conditions in a point !see the next
example$�

D���� D�systems

In the rest of this chapter� we will restrict our attention to D�boundary value prob�
lems� with n � �� J� � � and where I� is maximal� This leads to the notion of a
D�system� which is a pair ��A�D	�m	� where �A�D	 is a D�ring and m a maximal
ideal of A� Again� we often write A instead of ��A�D	�m	� D�systems correspond to
D�rings with initial conditions in a point� We have an evaluation mappingA� A�m�
A morphism of a D�system ��A�DA	�mA	 into a D�system ��B�DB	�mB	 is a morph�
ism of D�rings �A�DA	� �B�DB	� which commutes with the evaluation mappings�
This means that mA is the inverse image of mB�

Example D� A D�system in which we can represent the function f � ex�y is

�k�x� y�ffg��fx� f� fy � f �� �x� y� f � �		�

with the usual partial derivations dx and dy on k�x� y�� Indeed� f is determined
by the equations fx � fy � f and the initial condition f��� �	 � �� To represent
g � exe

x�y
� we build a tower on this D�system� Indeed� it su�ces to consider the

D�supersystem

�k�x� y�ff� gg��fx� f� fy � f� gx � f � xfx� gy � xfy�� �x� y� f � �� g � �		�

Example D� An example of a non reduced system is k�x�ff� gg��fx � f� gx �
g�� �x� f��� g��	� Indeed� f �� g are formally di
erent in k�x�ff� gg��fx�f� gx� g��
but they both represent the function ex� so that f � g�

Example D� Consider the D�system ��k�x� y���xy	� �xdx� ydy		� �x � �� y		� A
polynomial P �x� y	 � c � xP��x	 � yP��y	 is zero�equivalent� i
 ��$�P 		 � �� for
any linear di
erential operator $� Now ��ydyQ	 � �� for any Q� so that P � � �
x � P� � �� This means that the behaviour of P on the y�axis is irrelevant for its
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zero�equivalence� This should not surprise� since the initial point does not lie on the
y�axis�

More strikingly� if we took �x� y	 as our initial condition� then all polynomials
vanishing in � would even have been zero�equivalent� This comes from the fact that
� is a singular point� The same holds true� if we consider ��k�x� y���x��y�	� ��y�dx�

xdy		� �x� y		�

Proposition D� Let ��A�D	�m	 be a D�system� such that A�m has characteristic
zero� Then A�� is an entire ring�

Proof Suppose that xy � �� but x �� � and y �� �� Let $ and $� be linear di
erential
operators� of minimal orders k and l� such that ��$x	 �� � and ��$�y	 �� �� Thus� for
any � 
  k�� and �� 
  l��� we have ���x	 � ����y	 � �� As d� � � � dk � d���� � � � d��k�
has order � k� for any derivations d�� � � � � dk and any permutation  � we have
��d� � � � dkx	 � ��d���� � � � d��k�x	� Similarly� ��d� � � � dly	 � ��d���� � � � d��l�y	�

Let us �x some well ordering � on D� This ordering induces well orderings on
the Mp�D	� the sets of multisets of p elements of D� More precisely� we order the
elements of multisets in increasing order and take the lexicographical orderings� We
also have a well ordering onM�D	 � qp�NMp�D	� by ordering �rst on size and then
using the above ordering on each component� We remark that the union operation
is compatible with this ordering� so that M�D	 is an ordered commutative monoid�

Now take fd�� � � � � dkg 
 Mk�D	 and fdk��� � � � � dk�lg 
 Ml�D	 minimal� such
that ��d� � � � dkx	 �� � and ��dk�� � � � dk�ly	 �� �� Then

��d� � � � dk�l�xy		 �
X

fi����� �ikgqfj����� �jlg	f����� �k�lg
��di� � � � dikx	��dj� � � � djly	 � ��

Now if fdi� � � � � � dikg �� fd�� � � � � dkg as a multiset� then either fdi� � � � � � dikg �
fd�� � � � � dkg� or fdj�� � � � � djlg � fdk��� � � � � dk�lg� because of the compatibility of
the union with the ordering� Therefore� either ��di� � � � dikx	 � � or ��dj� � � � djly	 � �
from the minimality hypothesis� We conclude that

��d� � � � dk�l�xy		 � m��d� � � � dkx	��dk�� � � � dk�ly	 � ��

for some integer m � �� This yields a contradiction� since m �� � in A�m� �

We can perform di
erent constructions on a D�system ��A�D	�m	� First� we
can naturally associate the reduced D�system ��A���D��	�m��	 to it� where�
denoting by z the D�ideal of zero�equivalent elements� D��� D�zD and m���
m�zm� with A�z �� A���

Secondly� we can associate the local D�system ��Am�Dm	�mm	 to it� Here Mm

denotes the localization of any A�module or ideal M w�r�t� m� We say that Am��
is the local ring of functions at m�
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Finally� if I � m� we have the restriction of domain ��AjI�DjI	�mjI	 of
��A�D	�m	 w�r�t� I� where mjI � m�Im� The next propositions show how these
constructions are related�

Proposition D	 Let ��A�D	�m	 be a D�system� Then Am���� �A��	m��
as D�systems�

Proof We claim that the mapping from Am�� into �A��	m�� de�ned by a�s ��
a�s is well de�ned and bijective� Indeed� a�s � � is equivalent to saying that
��$�a�s		 � �� for any $ 
  Am� By induction over the order of $� this is equivalent
to ��$�a		 � � for each $ 
  Am� since ��s	 �� �� Hence� a�s � � � a � �� Next�
a�s � � is equivalent to the existence of an s�� with s�a � �� By a similar argument�
one shows that this is also equivalent to a � �� �

Proposition D� Let I � m be a �nitely generated ideal of a D�system
��A�D	�m	� Then �Am	jIm �� �AjI	mjI as D�systems�

Proof Let M be an A�module� Then we have a natural isomorphism between
Mm�ImMm and �M�IM	mjI � which sends x�s to x�s� Therefore� it su�ces to
check that fd�sjdI � Ig � fd�sj�d�s	Im � Img� when identifying Dm�ImDm with
�D�ID	mjI � If dI � I� then clearly �d�s	Im � Im� Inversely� suppose that �d�s	Im �
Im� If a�� � � � � an are generators for I� then we have si��d�s	ai	 
 I� for certain si
and all i� This means that d�I � I� where d� � s� � � � snd� and d�s � d���ss� � � � sn	�

�

Example D� The restriction of domain operator does not satisfy any simple
commutation rule with the equivalence operator� take A � K�x� y�� D � �dx	�
m � �x� y	 and I � �xy	� Then y � �� so that A���� K�x� and I��� �� However�
Pdx�xy	 � Py� so that the set of derivations leaving invariant I is generated by xdx�
Thus� all elements of AjI are zero�equivalent�

Example D�� The restriction of domain operator does not necessarily satisfy
AjIjJjI

�� AjJ for I � J � A counterexample is given by A � K�x� y�� DA � �dx� dy	�
I � �xy	 and J � �x	� Similarly� we do not necessarily have ��A� �	jI��� �
	j�J���jI	��� �� �A��	jJ���

D�� Zero	equivalence algorithms

In this and the next section� we shall borrow without further mention some concepts
of the theory of Groebner bases !see for instance "CLO ��#$� The sections D�	��
and D�	�� are the result of a collaboration between A� P�ladan�Germa and the
author !see also "PV ��#$�
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Let C be an e
ective �eld . i�e� we have algorithms for performing the �eld
operations of C and we have an e
ective zero�test !see also section ����� for this
terminology$� A simple e
ective D�system over C is a couple ��A�D	�m	 which
satis�es the following conditions�

ES� A � C�f�� � � � � fk��i and we have a Groebner basis GA for the ideal i�
ES� D is a free A�module with basis d�� � � � � dn�
ES� �A�D	 is an e
ective D�ring . i�e� A� the action of D on A and the Lie

bracket on D are e
ective�
ES	 m is a maximal ideal of A� such that A�m �� C� and the evaluation mapping

� � A� C is e
ective�

In the remainder of this section� ��A�D	�m	 is a D�system which satis�es the above
requirements�

The aim of this section is to show how to compute with special functions in Am���
Such functions are redundantly represented by rational fractions in C�f�� � � � � fk��
whose denominators do not evaluate to zero� whence the ring operations in A��
can be implemented in a straightforward way� However� for the equality test� we
need a zero�equivalence test in A� In this section� we shall provide several of such
zero�equivalence tests�

D���� A naive zero�equivalence algorithm

In what follows� Groebner�basis stands for an algorithm to compute Groebner basis
in C�f�� � � � � fk�� Given a polynomial P 
 C�f�� � � � � fk�� we will abusively denote its
natural projection on A by P as well� The following zero�equivalence algorithm
generalizes the �rst algorithm from "Sh �# to test zero�equivalence in the context
of ordinary di
erential equations over Q�

Algorithm zero�equivalence���P 	�
Input� A polynomial P 
 C�f�� � � � � fk��
Output�The result of the zero�equivalence test for P �

if ��P 	 �� � then return false
G �� Groebner�basis�GA  fPg	
while �i �Q
G diQ mod G �� � do

if ��diQ	 �� � then return false
G �� Groebner�basis�G  fdiQg	

return true

Proposition D� The algorithm zero�equivalence�� is correct and terminates�

Proof Let us �rst prove the correctness� It is clear that if the algorithm returns
false� then P is not zero�equivalent� If the algorithm returns true� then let G be
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the Groebner basis at the end of the algorithm� We have �diQ	 
 �G	� for each
� � i � k�Q 
 G� Hence� �G	 is stable by �� and ��P 	 � � for each P 
 �G	�
Consequently� all elements of �G	 . which contains P . are zero�equivalent�

As to the termination of zero�equivalence��� the heads !see also section D��
for this terminology$ of the polynomials in the successive values of G form a strictly
increasing chain of ideals� Now the termination follows from the Noetherianity of
polynomial rings� �

Remark D� A slight modi�cation of the algorithm allows us to exploit previous
computations� since we are interested in A�� rather than A itself� we may turn
GA into a global variable� Then setting Gglob �� G just before we return true in
zero�equivalence�� has the e
ect of remembering all non trivial relations we �nd
between the fi in A���

Remark D	 It is also possible to test several polynomials P�� � � � � Pp for zero�
equivalence at the same time� This is done by checking �rst whether they evaluate
to zero and then replacing the line G �� Groebner�basis�GA  fPg	 by G ��
Groebner�basis�GA  fP�� � � � � Ppg	�

Remark D� The algorithm naturally extends to the case when the initial
conditions depend on parameters via the automatic case separation strategy !see
chapter $� More precisely� we may take C to be a parameterized constant �eld
C � K���� � � � � �p	 over an e
ective �eld K� This means that the elements in C are
rational fractions in a �nite number of parameters ��� � � � � �p� These parameters
are subject to polynomial constraints� which are either equations or inequations�
The consistency of such systems of constraints can be checked by Groebner basis
techniques� Moreover� no in�nite loops can arise from the parameterized Groebner
basis computations in zero�equivalence�� !see "GoDi �	#� for instance$�

D���� An optimized zero�equivalence algorithm

In the naive zero�equivalence algorithm� we do not exploit the local character of
our problem from an algebraic point of view� Now in section D��� we show that
Buchberger�s algorithm can be generalized to local rings� although the computed
pseudo�Groebner bases do not possess all of the nice properties of usual Groebner
bases� Nevertheless� this local pseudo�Buchberger algorithm can be used instead
of the usual one in zero�equivalence��� yielding the following optimized zero�
equivalence test�
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Algorithm zero�equivalence���P 	�
Input� A polynomial P 
 C�f�� � � � � fk��
Output�The result of the zero�equivalence test for P �

if ��P 	 �� � then return false
G �� Pseudo�Groebner�basis�GA  fPg	
while �i �Q
G Red�diQ�G	 �� � do

if ��diQ	 �� � then return false
G �� Pseudo�Groebner�basis�G  fdiQg	

return true

Proposition D� The algorithm zero�equivalence�� is correct and terminates�

Proof The termination is proved in a similar way as before� As to the correctness�
it is again clear that if the algorithm returns false� then P is not zero�equivalent�
If the algorithm returns true� then let G be the pseudo�Groebner basis at the end
of the algorithm� We have Red�diQ�G	 � �� for each � � i � k�Q 
 G� In
particular� �G � �G	A�S� where �G	A�S denotes the ideal in A�S generated by G�
This implies that �G	A�S is stable by �� Since all elements of G evaluate to zero�
so do all elements of �G	A�S� Hence all elements of �G	A�S . which contains P .
are zero�equivalent� �

The interest of this local pseudo�Buchberger algorithm is illustrated on the fol�
lowing example� proposed by Shackell� let A � C�f�� f�� f�� f��� D � Adx� dxf� �
�� dxf� � f�� dxf� � 
f�f�� dxf� � 
f�f�� ��f�	 � �� ��f�	 � ��f�	 � ��f�	 � ��
Then the polynomial P � �fM� � f�	�f� � f�	 is zero�equivalent since f� � f� is�
However� the naive algorithm needs O�M	 steps to conclude this� whereas the new
one terminates after one step� dxP is pseudo�reduced to zero by P �

D���� A randomized zero�equivalence algorithm

Often� if we want to determine whether some special function . such as an exp�log
function . is zero� then the initial point may be chosen randomly� provided that we
avoid singularities� Now the set of points in which a non zero function vanishes� has
measure zero� In this section� we show how this observation can be used to speed up
the zero�equivalence algorithm� if the initial point may be chosen by the algorithm�

The idea of the algorithm is the following� an initial point is said to be good�
if all polynomials P 
 m considered during the computations are actually zero�
equivalent� Otherwise� the initial point is said to be bad� Under the hypothesis
that an initial point is good� we can insert any polynomial which vanishes under
evaluation into the Groebner basis GA� Whenever � is in the ideal generated by
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the Groebner basis G� this means that the initial point is bad� and an exception is
raised� This leads to the following algorithm�

Algorithm zero�equivalence���P 	�
Input� A polynomial P 
 C�f�� � � � � fk��
Output�The result of the zero�equivalence test for P � The algorithm aborts

whenever a bad initial point was chosen�

if ��P 	 �� � then return false
GA �� Groebner�basis�GA  fPg	
while �i �Q
GA diQ mod GA �� � do

if ��diQ	 �� � then raise �bad initial point�
G �� Groebner�basis�GA  fdiQg	

return true

Remark D� The Groebner basis computations may also be speeded up by in�
serting each polynomial P 
M we encounter during these computations into GA�

Let us now sketch in which circumstance the above algorithm applies� Assume
that we are given an analytic function f de�ned on some Riemann surface� Assume
also that we are given a sequence of points z�� z�� � � � in which f is de�ned� such
that fz�� z�� � � �g is dense in some open set U � Assume �nally that to each initial
point zi corresponds a simple e
ective D�system ��A�D	�mi	� which speci�es f in
zi !notice that A and D do not depend on i$� Then we claim that we can test the
zero�equivalence of f by the above algorithm� by running it successively in z�� z�� � � �
until we have found a good initial point�

First� the zero�equivalence algorithm can be aborted due to the vanishing of only
a �nite number of non zero functions at the initial point� Now at least one of the
parts of a �nite partition of U is also dense in some open subset !the measure of
the closure of one of the parts has to be non zero$� Therefore� if there were no good
initial point in the sequence z�� z�� � � � � there would exist an open subset on which a
non zero function would vanish� This is not possible�

D���� Other algorithms and conclusion

A very nice zero�equivalence algorithm . quite di
erent in spirit from those con�
sidered in the previous sections . has been given by P�ladan�Germa in "P�l ��# in
the context of commutating derivations d�� � � � � dk� In a nutshell� the idea is to con�
sider both the initial points and the initial conditions to be variable� Then algebraic
conditions on the initial point and the initial conditions are given under which a
�xed function in A is zero�equivalent� These algebraic conditions are obtained via
Ritt�s classical di
erential elimination theory�

Another advantage of P�ladan�Germa�s approach is that her algorithm partially
generalizes to the case of more general boundary value problems� where the initial
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conditions are no longer speci�ed in a point !see "P�l ��#$� However� in its full
generality� this algorithm crucially depends on Kolchin�s problem !see "Kol ��# and
also "VdH ��c#$� Nevertheless� the algorithm can be applied in several non trivial
and interesting cases�

It should be noticed that certain more general boundary value problems can
also be treated by the approach of this section� This is for instance the case if the
quotient �eld of A�� is taken as the constant �eld w�r�t� a new derivation� We
also notice that the algorithms from this section apply in characteristic p� while
P�ladan�Germa�s approach fails in this case�

Another question which can be raised is the following� since the zero�equivalence
elements in A form an ideal� there exists an ideal z with A��� C�f�� � � � � fk��z� Now
can we compute a Groebner basis for z* This question is very hard in general� and
algorithms are only known in the case of exp�log functions� using the Risch structure
theorem !see "Ris ��#$� and in a few other cases !see "Ch ��#� "CC �#$�

� � �

After all the theoretical considerations made up till here� the reader might wonder
how to implement an e�cient zero�equivalence algorithm� For this purpose� several
remarks of a more heuristic nature should be made�

�� In the zero�equivalence problem the hard thing is to prove that a function
is zero�equivalent� whenever this is the case� On the contrary� it is usually easy to
prove that a function is not zero�equivalent� either by evaluating some terms of the
power series expansion� or by choosing a suitable initial point !when we are allowed
to do so$�

�� Following the previous remark� two types of zero�equivalence problems should
be distinguished� those in which the initial point is �xed� and those in which the
initial point may be chosen by the algorithm� In the �rst case� only power series
expansions can be used to prove that a function is not zero�equivalent . and many
terms may need be evaluated� In the second case� we would rather search for a
point in which the function does not vanish% such a point is chosen at random with
probability ��

�� Many di
erent !partial$ methods may be used to prove or disprove a function
to be zero�equivalent� A good �nal algorithm should start with cheap tests for zero�
equivalence and non zero�equivalence and proceed with the more expensive ones�
whenever these tests fail to decide� In particular� the time spent on tries to prove
zero�equivalence should be proportional to the time spent on tries to disprove zero�
equivalence�

	� In some circumstances� it is not reasonable to demand an immediate answer
to a zero�equivalence quest� but we rather postpone a decision to a later moment
and temporarily perform a case separation !see chapter $�
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�� In relation to 	� it should be noticed that the e�ciency of successive zero�
equivalence tests may crucially depend on the order in which we perform them !when
applying remark D��$�

D�
 Implicit functions

D���� Inversion of regular matrices

Let �A�m	 be a simple e
ective D�system and let �Mi�j	 be a matrix with � � i � p�
� � j � n and p � n� We say that M is regular matrix� if its evaluation

��M	 �

�BB	
��M���	 � � � ��M��n	

���
���

��Mp��	 � � � ��Mp�n	�


CCA
has rank p� Given such a matrix� we will now show how to compute an invertible
square matrix U with entries in Am� such that

MU � In�p �

�BB	
� � � � � � � � � �
��� �

���
���

���
� � � � � � � � � �


CCA !D��$

in Am��� The algorithm proceeds by swapping rows and columns in a straightfor�
ward manner�

Algorithm invert�M	
Input� A regular n by p matrix M with entries in A�
Output�An invertible n by n matrix U with entries in Am satisfying !D��$�

U �� Id
for i �� � to p do

let j � i be such that ��Mi�j	 �� �
swap�Mi���Mj��	
swap�Ui��� Uj��	
Mi�� �� �digi	��Mi��
Ui�� �� �digi	��Ui��
for j 
 f�� � � � � ngnfig do

M��j ��M��j �Mi�jM��i
U��j �� U��j �Mi�jU��i

D���� Restriction of domain and resolution of implicit equa�

tions

Let �A�m	 be a simple e
ective D�system of characteristic zero� such that DA admits
d�� � � � � dn as a basis� Let j � �g�� � � � � gp	 be a �nitely generated ideal of A� such
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that ��g�	 � � � � � ��gp	 � �� The Jacobian matrix of g�� � � � � gp is de�ned by

J �

�BB	
d�g� � � � dng�
���

���
d�gp � � � dngp


CCA �

We say that the ideal j is regular� if rank���J		 � p� Under this assumption� we
will now show how to compute a simple e
ective D�system �B� n	� such that

Bn���� �Am��	jjm���� �

We takeB � C�f�� � � � � fk���i� j	� so that we start by computing a Groebner basis
for �i� j	� In order to compute a basis for DB� we �rst compute a matrix U with
JU � In�p by invert� Performing the base change�BB	

d�
���
dn


CCA �� tU

�BB	
d�
���
dn


CCA �
we then reduce the general case to the case when J � In�p� In this case� dp��� � � � � dn
leave j invariant and it is easily seen that their natural images in �Am��	jjm����
form a basis for �Am��	jjm�����

In practice� when we solve the equations g� � � � � � gp� we often want to express
the solutions w�r�t� given coordinates gp��� � � � � gn 
 A� In order to make this
possible� we need assume that the evaluation

��J	 �

�BB	
��d�g�	 � � � ��dng�	

���
���

��d�gn	 � � � ��dngn	�


CCA
of the Jacobian matrix of g�� � � � � gn is invertible� Now compute a matrix U with
JU � Id by invert� We again reduce the general case to the case when J � � via
the base change �BB	

d�
���
dn


CCA �� tU

�BB	
d�
���
dn


CCA �
Then the natural images of dp��� � � � � dn in Bn�� have the desired property that�BB	

dp��gp�� � � � dngp��
���

���
dp��gn � � � dngn�


CCA � Id�

Remark D� As in remark D��� the above computations generalize in a straight�
forward way to the case when the initial conditions depend on parameters� using
the automatic case separation strategy !see chapter $�
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D���� D�algebraic power series

In this section� all D�systems �A�m	 we consider have characteristic zero% i�e� A�m
has characteristic zero�

Let ��A�D	�m	 be a reduced D�system� such that A is a �nitely generated algebra
over C � A�m� and D is a free A�module� which is �nitely generated by pairwise
commuting derivations ���z�� � � � � ���zn� Then A admits a natural di
erential em�
bedding � into the ring C��z�� � � � � zn�� of formal power series by

f �� ��f	 �
X

i����� �in

�

i�� � � � in��
�

�i������in

�i�z� � � � �inzn

�
zi�� � � � zinn �

A power series of the form ��f	 !for some D�system ��A�D	�m	 which satis�es the
above hypotheses$ is called a regular D�algebraic power series�

Remark D� In characteristic p � �� the above embedding does not exist� Actu�
ally� we may interpret elements in A as formal Borel transforms of power series in
this case�

From our de�nition� it follows immediately that the regular D�algebraic power
series form a local ring� which is stable under the partial derivations� and per�
mutation of coordinates� Moreover� if we are given a regular D�algebraic power
series f 
 C��z�� � � � � zn����� such that f��� � � � � �	 � � and ��f��zn��	��� � � � � �	 ��
�� then by what has been said in the previous section� there exist derivations
d�� � � � � dn��� such that the Jacobian matrix of z�� � � � � zn� f is the identity !assum�
ing that z�� � � � � zn 
 A$� It is easily checked that d�� � � � � dn commute for the Lie
bracket� whence we have the natural embedding

g �� X
i����� �in

�

i�� � � � in���d
i�z� � � � dinzng	zi�� � � � zinn �

from Aj�f��� into C��z�� � � � � zn��� This mapping sends f to zero and �xes z�� � � � � zn�
In other words� the mapping corresponds to the implicit de�nition of zn�� by f � ��
Consequently� the regular D�algebraic power series form a local community !see
page �����$�

If �A�m	 is a simple e
ective D�system with a basis of pairwise commuting deriv�
ations� the above passage from functions in Am�� to power series yields an e
ective
way to compute with regular D�algebraic power series over C � A�m� In view of the
algorithm from the previous section to solve implicit equation� it follows that the
set of regular D�algebraic power series over C forms an e
ective local community�

A regular D�algebraic Laurent series is a Laurent series f � such that
z��
� � � � z�nn f is a D�algebraic power series for suitable ��� � � � � �n 
 N� Unfortu�
nately� we did not solve the following problem� prove or disprove that if zi is a
power series in z�� � � � � zn and z�f is D�algebraic� then so is f � Consequently� we
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have no proof that the set of D�algebraic Laurent series forms a local community�
Nevertheless� we will now de�ne D�algebraic power and Laurent series� which do
have the desired property�

Let A be as in the beginning of this section and denote by �A the set of those
fractions f�s in Q�A	� such that there exists a power series g with ��f	 � g��s	� We
extend the evaluation mapping on A to �A by ��f�s	 � g��� � � � � �	� where ��f	 �
g��s	� Clearly� �A forms a reduced local D�system over C� The natural inclusion of A
into C��z�� � � � � zn�� also extends to �A by ��f�s	 � g� where ��f	 � g��s	� A power
series g of the form ��f�s	 !for some A$ is said to be D�algebraic� A Laurent series
f is said to be D�algebraic� if fz��

� � � � z�nn is a D�algebraic power series for certain
��� � � � � �n 
 N�

Now let �A�m	 again be a simple e
ective D�system with a basis of pairwise

commuting derivations� The set �A ��Am�� is clearly an e
ective D�algebra� since it
is a sub�eld of the �eld of fractions of Am��� Notice however� that we do not claim
that we can test whether a given fraction f�s 
 Am�� is in �A !actually� we think
that such a test can be designed using the theory from chapter ��� but we have not
studied this issue in detail$�

Given an element f�s 
 �A� we can also compute its evaluation� we �rst compute
a dominant monomial z��

� � � � z�nn for ��s	 by idm !see section �����$� Then ��f�s	 �
�z��

� � � � z�nn �f��z��
� � � � z�nn �s�

Having shown that all D�system operations in �A can be carried out e
ectively�
the algorithm to solve implicit equations from section D���� naturally generalizes�
if we replace Am�� by �A� In particular� the sets of D�algebraic power series resp�
Laurent series over C are both e
ective local communities�

D�� A local pseudo	Buchberger algorithm

This section is the result of a collaboration between A� P�ladan�Germa and the
author !see also "PV ��#$�

Let A � C�x�� � � � � xn� be the ring of polynomials in n indeterminates over an
e
ective �eld C of constants� and S be an e
ective multiplicative subset of A .
that is� provided with an e
ective membership test� We present here a method to
test whether a given polynomial P 
 A belongs to the ideal generated by polynomials
Q�� � � � � Qs in the quotient ring A�S� We only give a weak membership test in the
sense that P 
 �Q�� � � � � Qs	A�S� whenever the algorithm returns true� However� in
the case of a negative response� P might still be in �Q�� � � � � Qs	A�S� Nevertheless�
for the application in section D�	�� such a weak membership test is su�cient�

Actually� our algorithm is based on the heuristic idea that the exploitation of local
information should accelerate Buchberger�s algorithm� Unfortunately� the pseudo�
Groebner bases we compute does not have all the theoretical properties of classical
Groebner bases� However� up to our knowledge� no complete membership test has
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been given yet in the case of a general e
ective multiplicative set S� Only in some
particular cases� Mora�s tangent cone algorithm� and A� Logar�s algorithms give
complete membership tests !see "MPT ��#� "Lo �#$�

D���� Pseudo�reduction

Let A � C�x�� � � � � xn� be the ring of polynomials in n indeterminates over an e
ective
�eld C� We use the pure lexicographical order on monomials� with x� � � � � � xn�
Let S � C� be a multiplicative subset of C with an e
ective membership test�

In order to compute �pseudo�bases� of ideals of A�S� we use a classical reduction�
completion approach� The keystone of our method lies in the non�classical de�nitions
of the head H�P 	 and the leading�coe�cient C�P 	 of non�zero polynomials P � they
are inspired both by Ritt�Wu�s work and Buchberger�s terminology�

Each non constant polynomial P in A can be written P � IPx
dP
P � RP � where

xP is the greatest indeterminate involved in P � and dP the highest order of P with
respect to xP � IP is usually called the initial of P � Now we de�ne H�P 	 and C�P 	
for non�zero polynomials�

� if P 
 S then H�P 	 � � and C�P 	 � P %

� if P �
 S and IP 
 S then H�P 	 � xdPP and C�P 	 � IP %

� if P �
 S and IP �
 S then H�P 	 � xdPP H�IP 	 and C�P 	 � C�IP 	�

Example D�� Let S be the set of polynomials that do not vanish at x� � � � � �
xn � �� If P � �x� � �	x� � x�� then H�P 	 � x� and C�P 	 � x� � �� Now if
P � ��x� � �	x� � x�	x�� � x�x�� then H�P 	 � x�x

�
� and C�P 	 � x� � ��

Suppose Q �� �� Q �
 S and P �� �� We say that P is reduciblewith respect to Q
if H�P 	 is divisible by H�Q	� In this case� write P � UH�Q	 � V � where U� V 
 A�
and no monomial appearing in V is divisible by H�Q	� P is then elementary
reduced to red�P�Q	 � C�Q	P � UQ by Q� If Q 
 S� then P is reducible with
respect to Q and red�P�Q	 � �� It can be easily checked� although this is a little
technical� that H�red�P�Q		 � H�P 	 !H��	 � �� by convention$� Repeating the
elementary reduction of P by Q� that is

P � P� � red�P�Q	� red�P�� Q	� � � � �

we end up with a polynomialR such thatH�Q	 does not divideH�R	 or R � �� This
process stops because the heads of the intermediate polynomials strictly decrease�
This polynomial R is called the reduction of P by Q and is denoted by Red�P�Q	�
More generally� we can reduce P by a set E of polynomials by reducing P by Q 
 E
as long as we can� Although the result R of this procedure is not necessarily unique�
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we will abusively denote R � Red�P�E	� Note that R belongs to the ideal �P�E	A�S
generated by P and E in A�S and if R � �� then P 
 �E	A�S�

Let P�Q be nonzero elements of C�x�� � � � � xn�� Let i be the highest index such that
C�P 	 and C�Q	 are both in Ai � C�x�� � � � � xi���� We write P � Ci�P 	Hi�P 	�R�P 	�
where Hi�P 	 is highest monomial occurring in P � when considered as a polynomial
in xi� � � � � xn with coe�cients in Ai� Similarly� we write Q � Ci�Q	Hi�Q	 � R�Q	�
Then the S�polynomial of P and Q is de�ned by

SPol�P�Q	 ��
Ci�Q	Hi�Q	

gcd�Hi�P 	�Hi�Q		
P � Ci�P 	Hi�P 	

gcd�Hi�P 	�Hi�Q		
Q�

This de�nition enables us to assert that H�SPol�P�Q		 � scm�H�P 	�H�Q		� Note
also that Spol�P�Q	 
 �P�Q	 and a fortiori Spol�P�Q	 
 �P�Q	A�S�

D���� The algorithm

We now apply Buchberger�s algorithm !see "CLO ��#� "Buch ��#$ with our alternative
de�nitions of heads� leading coe�cients� reduction� and S�polynomials� We recall
hereafter a compact but non optimized version of this algorithm�

Algorithm Pseudo�Groebner�basis�E	
Input� A �nite set E of non zero polynomials in A�
Output�A pseudo�Groebner basis G of the ideal generated by E in A�S�

G �� E
repeat
G� �� G
for each P 
 G� do
P �� Red�P�G � fPg	
if R �� � then G �� G  fRg

for each pair P �� Q in G� do
R �� Red�SPol�P�Q	� G�	
if R �� � then G �� G  fRg

until G � G�

The ideals generated by the heads of the elements of the successive values of
G form a strictly increasing sequence of ideals� whence the algorithm terminates�
The subsets E and G of A�S generate the same ideal IA�S� Indeed� we only insert
elements that are already in �E	A�S into G� G is not a Groebner basis� but has the
property that if P is in A and Red�P�G	 � �� then P 
 IA�S� The computation
of G enables us to quickly extract much information about IA�S� without obtaining
a complete description of IA�S� Notice that if G contains a polynomial in S� then
IA�S is trivial� and every polynomial in A is reduced to zero by G�

Our algorithm reduces to the usual Buchberger algorithm if S � C�% that is the
reason why we call G a pseudo�Groebner basis rather than a pseudo�Ritt basis�
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Conclusion

 tant arriv� au terme de la th�se� on peut toujours se poser les questions
suivantes �

� Quelles sont les applications *

� Peut�on simpli�er les r�sultats obtenus� les formuler ou expliquer autrement�
ou les r�organiser d�une fa�on di
�rente *

� Comment aller plus loin *

En ce qui concerne les applications� j�avoue pleinement que cela n�a pas encore
vraiment �t� � l�ordre du jour� La cause en revient partiellement � ce que nous
avons consid�r� jusqu�ici surtout des comportements fortements monotones . une
restriction s�v�re pour des applications en physique� N�anmoins� cette th�se peut
d�ores et d�j� avoir des applications signi�catives en combinatoire et en analyse
d�algorithmes� car dans ces domaines� les comportements fortement monotones sont
plus fr�quents� Le lecteur pourra se rapporter � "FSZ �#� "Sal ��#� "Sor ��# et "FS
��# pour plus de d�tails�

Consid�rons maintenant la deuxi�me question� Avec un peu de recul� il m�est
apparu � l�issue de cet �pais travail� que si certaines parties de la th�se �taient �
refaire� alors nous nous y prendrons di
�remment� Premi�rement� nous sommes de
plus en plus convaincus que les deux parties de la th�se auraient pu faire l�objet
de deux publications di
�rentes � le choix de travailler avec des transs�ries bien
ordonn�es est surtout justi�� d�un point de vue th�orique� En e
et� ceci permet
d��tudier des �quations fonctionnelles bien plus g�n�rales que les �quations di
�ren�
tielles alg�briques !voir aussi plus bas$� En revanche� d�un point de vue pratique�
c�est surtout les applications au calcul di
�rentiel qui int�ressent les math�maticiens
et informaticiens�

Quoi qu�il en soit� il faut noter que la restriction aux transs�ries r�ticul�es
n�apporte pas autant de simpli�cations que l�on pourrait penser dans les chapitres ��
	 et �� En e
et� on ne pourra se d�barrasser des r�currences trans�nies que dans
le calcul des mon�mes dominants des solutions distingu�es� mais pas dans la cons�
truction de ces solutions elles�m�mes� En outre� dans ce cadre il faut v�ri�er que la
propri�t� des supports r�ticul�s se pr�serve lors de la r�solution d��quations di
�ren�
tielles alg�briques !voir la section ����$�

���
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D�autre part� les transs�ries r�ticul�es interviennent essentiellement dans l��tude
de singularit�s plus g�n�rales que celles qui interviennent dans la r�solution d��qua�
tions di
�rentielles lin�aires � coe�cients dans les s�ries� En e
et� c�est l�extension
la plus simple du corps des s�ries qui a les propri�t�s de cl�ture appropri�es pour une
�tude asymptotique des singularit�s qui interviennent lors de la r�solution d��qua�
tions di
�rentielles alg�briques� Donc toute restriction suppl�mentaire sur le type
de transs�ries consid�r�es r�duirait notre th�orie � une th�orie plus �banale� et
porterait essentiellement atteinte au type de r�sultats obtenus�

Mais venons en maintenant � la troisi�me question� car nous avons surtout ima�
gin� notre th�se comme ouvrant la porte vers des th�ories plus g�n�rales� inacces�
sibles jusqu�alors� Nous diviserons la pr�sentation en trois parties � d�abord nous
avons obtenu quelques � r�sultats �� que nous avons pas eu le temps d��crire en d��
tail et qui �taient originalement destin�s � faire partie de la th�se� Deuxi�mement�
nous pr�voyons quelques extensions de la th�orie� sur lesquelles nous avons d�j� des
id�es assez pr�cises� En�n� nous r�verons un peu � des extensions plus lointaines�
mais pas pour autant farfelues�

Extensions dans un avenir proche
�� Dans "VdH ��a#� nous avons donn� une premi�re approche visant � utiliser

les m�thodes de cette th�se pour calculer les signes de constantes exp�logs comme

c � ee
������������

� ee
������e��

��

�

et plus g�n�ralement pour obtenir des renseignements sur leur ordre de grandeur�
Ceci est en fait un probl�me plus di�cile que le d�veloppement de fonctions exp�
logs� car la substitution d�une valeur tr�s grande � x dans une fonction exp�log f�x	
n�cessite en particulier une connaissance pr�cise du comportement asymptotique de
f � Pour r�soudre ce probl�me� nous avons introduit dans "VdH ��a# des �d�velop�
pements asymptotiques avec estimation de l�erreur�� Apr�s� nous avons su ra�ner
et simpli�er ces r�sultats� mais ceci reste � �tre d�velopp� compl�tement�

�� Dans la partie B de cette th�se nous supposons fr�quemment l�existence d�un
oracle pour tester si un syst�me d��quations et in�galit�s exp�logs sur les constantes
admet une solution� En g�n�ralisant les techniques �voqu�es au point de �� et en
employant les techniques d��limination exp�logs du chapitre ��� nous pr�conisons
une r�duction de ce probl�me au probl�me du test � z�ro pour les � constantes
�l�mentaires � de Richardson� qui a �t� r�duit � la conjecture de Schanuel dans
"Rich ��#� Nous avons r�cemment appris dans "Mar ��# que ce probl�me peut��tre
r�solu par d�autres techniques !voir "Wil )#� "MW )#$� Quoi qu�il en soit� notre
approche peut conduire � des algorithmes e�caces pour ce probl�me�

�� On peut regretter le r�sultat un peu vague de l�existence d�un algorithme
th�orique pour r�soudre n�importe quelle �quation di
�rentielle alg�brique dans les
transs�ries dans le chapitre ��� Nous avons aussi un r�sultat� qui bien que moins
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fort� est plus frappant � si P est un polyn�me di
�rentiel � coe�cients dans T� et
f � g sont telles que P �f	 � � et P �g	 � �� alors il existe un h 
 T avec f � h � g
telle que P �h	 � �� On pourrait dire que T est D�r�ellement clos� Ce th�or�me se
montre naturellement � l�aide des techniques du chapitre ��

	� Bien que ceci introduise quelques di�cult�s techniques suppl�mentaires� la
th�orie des chapitres 	 et � se g�n�ralise au cas d��quations di
�rentielles aux
di
�rences alg�briques� Ici� on exige que les op�rateurs aux di
�rences soient des
compositions � droite par des transs�ries d�exponentialit� z�ro� Le r�sultat men�
tionn� au point �� se g�n�ralise �galement � ce cas� En fait� ces r�sultats ont �t� �
l�origine de l�emploi syst�matique des transs�ries bien ordonn�es dans la partie B de
cette th�se� mais leur r�daction n�a malheureusement pas pu aboutir � temps�

�� Nous voulons �galement implanter une partie plus importante des algorithmes
de cette th�se� Un probl�me majeur que l�on rencontre ici� est que la strat�gie de
la s�paration automatique des cas ne puisse pas s�implanter de fa�on naturelle dans
la plupart des langages de programmation actuels� Durant la pr�paration de cette
th�se� nous avons consacr� beaucoup de temps � la mise au point d�une extension
de C66 pour rem�dier � ce !et d�autres$ probl�me� Nous esp�rons transformer nos
id�es sur ce sujet dans un logiciel concret�

Extensions dans un avenir moyen

�� Nous nous sommes r�cemment rendu compte que notre algorithme de r�solu�
tion d��quations di
�rentielles alg�briques peut �tre interpr�t� d�une fa�on di
�rente�
en l�int�grant dans le cadre de l�algorithmede d�veloppement de transs�ries multivar�
i�es du chapitre ��� En e
et� consid�rons f� f��� � � � � fr� et x comme des transs�ries
g�n�riques� avec l�ordre d��limination f � f�� � � � � � fr� � x� Initialement� les
fi� sont les d�riv�es logarithmiques� it�r�es r fois� de f � Mais les fi� peuvent �tre
ra�n�s durant l�ex�cution� Pour r�soudre l��quation di
�rentielle� on �limine f en
utilisant l�algorithme du chapitre �� avec les changements suivants �

Premi�rement� on impose toujours les contraintes f ��� � � � ��� fr�� Deuxi�m�
ement� lorsque l�on ra�ne

fi�� c�x	���x	 �gfi�	 �gfi� �� �	�

avec ��x	 � �� on v�ri�e que les d�riv�s logarithmiques it�r�es de c�x	 v�ri�ent bien
les contraintes impos�s sur les d�riv�s logarithmiques de fi�� Apr�s� on � oublie �

fi���� � � � � fr� et on les remplace par des�fi���� � � � � gfr� �neufs �� qui correspond�
ent aux d�riv�s logarithmiques it�r�s de gfi�� Troisi�mement� lorsque l�on impose
la contraite ci�dessus� on s�pare les cas o� c�x	gfi� "" � et c�x	gfi� �� �� Dans le
dernier cas� on impose la contrainte

fi��� � exp�
Z
c�x	��x		�
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Quatri�mement� si l�on veut imposer une contrainte de la forme

�fi�	�i � � � �fr�	�r � ��x	

on le transforme en une contrainte �quivalente qui ne fait pas intervenir fi���� � � � �
fr�� en utilisant le fait que fi� ��� � � � ��� fr�� et des propri�t�s di
�rentielles�
En�n� on prend soin � faire les mouvements montants n�cessaires pour rester dans
le cas purement exponentiel�

�� L�avantage de l�approche d�crite ci�dessus est qu�elle se g�n�ralise � des sys�
t�mes d��quations plus g�n�rales� comme �

� Des syst�mes d��quations di
�rentielles alg�briques aux d�riv�s partielles� No�
tons que dans ce cas� le r�le des � constantes� sera jou� par des fonctions
arbitraires en moins de variables� v�ri�ant des �quations aux d�riv�s parti�
elles�

� Des syst�mes d��quations di
�rentielles ordinaires non n�cessairement alg��
briques� Dans le cas extr�me� on fera intervenir simultan�ment la d�rivation
et l�exponentation�

� Des m�langes de ces deux choses�

� Dans le cas o� l�on consid�re des �quations di
�rentielles non alg�briques de
la forme X

������ ��r�N
P������ ��rf

�� � � � �f �r�	�i�

il est important pour des raisons d�e
ectivit� d�avoir une th�orie d��limination ana�
logue � la th�orie de Ritt pour ce genre d��quations� En supposant que les coe�cients
sont � sympathiques�� nous pensons que l�on peut d�velopper une telle th�orie�
justement � l�aide des techniques expos�es dans cette th�se�

�� On peut enrichir la classe des expressions L�exp�logs avec la composition �
gauche par des fonctions r�elles analytiques sur des intervalles ferm�s� D�un point
de vue th�orique� cette extension est facile� mais d�un point de vue e
ectif� il faut
trouver des classes de ce genre de fonctions r�elles qui se comportent bien�

��� On peut donner le d�veloppement du n�i�me z�ro positif de tan x � x� pour
x � �� On b�n��cie ici du fait que les singularit�s de la fonction tangante se
trouvent dans les points 	�
 � 	Z� Or consid�rons maintenant la fonction

f�x	 � sinx� sin ex� � � x���

Clairement� on peut � nouveau exprimer le n�i�me z�ro positif de f en fonction du
n�i�me z�ro de sinx � sin ex � �� Plus g�n�ralement� nous pouvons consid�rer les
fonctions

fa����� �an�b����� �bn���x	 � sin�a�x� b�	 � � � � � sin�anx� bn	� ��
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et les suites Na����� �an�b����� �bn�� qui donnent le n�i�me z�ro de fa����� �an�b����� �bn�� !quand
il y a une in�nit� de z�ros$� Alors se posent plusieurs questions� Quelles relations
alg�briques sont v�ri��es par ces suites * Quelles sont les relations avec les d�velop�
pements en fractions continues * Quelles sont les relations avec le groupe lin�aire
sur Qn *

��� L�algorithme de r�solution asymptotique d��quations di
�rentielles alg�bri�
ques se g�n�ralise vraisemblablementau cas des �quations aux di
�rences alg�briques�
si on ne recherche que les solutions r�ticul�es� Ceci tient au faite que la th�orie de
Ritt s�adapte � ce cas !voir par exemple "VdH ��c#$� et que l�on peut se ramener au
cas o� f�g�x		 se d�veloppe par la formule de Taylor dans le cas r�ticul��

��� Il est aussi possible de donner des algorithmes pour calculer des transform�es
int�grales�  calle a donn� des formules pour les transform�es de Borel et Laplace
formelles pour les transs�ries dans " c ��#� et Salvy a donn� des algorithmes dans
des classes plus restreintes !voir "Sal ��#$� mais il prouve la validit� analytique des
r�sultats� Il reste � �tendre ses travaux � des classes plus �tendues de fonctions�

Discussion �nale
Grossi�rement parlant� on peut r�soudre les �quations di
�rentielles de trois

fa�ons di
�rentes�

� R�solution num�rique�

� R�solution asymptotique�

� Recherche des solutions sous forme close�

Nous pensons que sur long terme� ces trois m�thodes de r�solution se m�langerons�
De plus� notre ultime espoir et conviction est qu�au moins dans le cas des �quations
di
�rentielles ordinaires� il existe une th�orie de r�solution asymptotique compl�te�

Dans notre vision des choses� des algorithmes de r�solution asymptotique seront
utiles d�un point de vue num�rique de trois fa�ons� Premi�rement� ils permettrons
de d�terminer dans quelles r�gions de l�espace des m�thodes de r�solution num�rique
classiques �chouerons � cause de l�impr�cision des calculs� Deuxi�mement� ils per�
mettront de savoir quand une r�solution num�rique est possible d�un point de vue
pratique !penser � la d�termination du signe de sin ���


����

-$� Finalement� dans des
r�gions proches de singularit�s violentes� on pourra appliquer la th�orie de resom�
mation num�rique pour faire des calculs num�riques �ables et e�caces�

Des techniques asymptotiques pourraient aussi s�av�rer utiles lorsque l�on cherche
des solutions sous forme close� Par exemple� �tant donn�es des transs�ries f�� � � � � fn�
on peut donner des algorithmes e�caces pour d�terminer les relations lin�aires� Q�
lin�aires� voire alg�briques qu�elles v�ri�ent� En e
et� les propri�t�s asymptotiques
de f�� � � � � fn servent � �diriger � ce genre de calculs� tout comme la r�duction
modulo p peut par exemple servir pour diriger les calculs de bases de Groebner !voir
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"Fau �	#$� La d�termination des relations Q�lin�aires est par exemple importante
dans l�algorithme d�int�gration formelle de Risch !voir "Ris ��#$ et dans le test �
z�ro de Richardson !voir "Rich ��#$ pour les constantes exp�logs !voir le point ��$�
Des techniques asymptotiques ont aussi �t� appliqu�es avec succ�s � la factorisation
d�op�rateurs di
�rentielles lin�aires !voir "VH ��#$�

D�un point de vue logique� il y a aussi quelques remarques int�ressantes � faire�
Pour un num�ricien acharn�� un algorithme est correct quand il marche dans tous les
cas auquels il veut l�appliquer� Pour un math�maticien puriste� un algorithme doit
�tre accompagn� d�une preuve de correction et de terminaison � partir des axiomes
de Zermelo�Fraenkel� Or� les deux approches ont des avantages et des inconv�nients�

Le num�ricien a raison de se �er � son exp�rience � si un algorithme lui rend
syst�matiquement service pour r�soudre ses probl�mes� une preuve de correction est
super0ue� Mais le num�ricien doit disposer d�un grand savoir faire pour juger s�il
a e
ectivement r�solu son probl�me initial� Et est�ce qu�il sera toujours capable
de d�terminer � ce qui cloche� quand son algorithme cesse de donner les bonnes
r�ponses *

Le math�maticien a raison de faire con�ance � des algorithmes dont il a su
d�montrer la validit� � � moins que les axiomes de Zermelo�Fraenkel soient contra�
dictoires� son algorithme produira toujours le bon r�sultat� Mais le math�maticien
puriste se trouve souvent �disconnect�� de la r�alit� � est�ce qu�il a d�j� appliqu�
son algorithme pour r�soudre un probl�me concret * L�exp�rience montre que cer�
tains probl�mes d�cidables� comme la d�termination du signe de sin ���


����

s�av�rent
ind�cidables dans la pratique� tandis que des probl�mes ind�cidables en analyse
peuvent souvent se � r�soudre� d�un point de vue pratique -

On peut alors envisager de r�concilier les deux approches et de rechercher une
�d�ontologie � commune pour le num�ricien et le math�maticien� Cette d�ontologie
doit �tre r�gie par des axiomes pr�cis� qui permettrons au math�maticien de valider
ses algorithmes� Ces r�gles doivent aussi �tre orient�es vers la pratique� pour que
les algorithmes d�velopp�s soient utiles pour le num�ricien�

Dans le cadre plus restreint de cette th�se� une telle d�ontologie consistera par
exemple � supposer la conjecture de Schanuel� Dans ce cas� le math�maticien sera
content de pouvoir a�rmer que les algorithmes dans la partie B de cette th�se
terminent� De plus� on n�a toujours pas trouv� de contre�exemples � cette conjecture�
tout comme on n�est jamais arriv� � une contractiction � partir des axiomes de
Zermelo�Fraenkel� Et il n�est a priori pas moins raisonnable de faire con�ance � la
conjecture de Schanuel qu�� ces derniers axiomes�

Cependant� le num�ricien n�est pas tout � fait satisfait encore� car le test � z�ro
pour les constantes exp�logs de Richardson co(te souvent tr�s cher% en particulier�
il n�y a pas de bornes de complexit�� On est alors amen� � la question de savoir
si la conjecture de Schanuel peut �tre remplac�e par une autre conjecture� qui ser�
vira alors de � r�gle de d�ontologie �� Proposons en une� dans le cadre restreint
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des constantes exp�logs� Pour tout entier N � �� soit EN la classe d�expressions
construites � partir de ������ �� �� exp et log j � j� telle que la valeur absolue de toute
sous�expression stricte s��value vers une valeur entre N�� et N � Nous notons par
��f	 la taille d�une telle expression f � Nous proposons alors�

Conjecture Pour tout N � �� il existe une constante CN � telle que pour toute
expression f dans EN � il su�t d
�valuer f � une pr�cision de C

��f�
N d�cimales� pour

savoir si elle s
�value � z�ro�

Si on remplace la fonction C��f�
N par une fonction calculable quelconque� la con�

jecture est impliqu�e par la conjecture de Schanuel� D�une autre c�t�� on pourra
peut��tre remplacer C��f�

N par ��f	CN � Dans la nouvelle version de l�algorithme
mentionn� dans le point ��� il sera possible de remplacer la conjecture de Schanuel
par la conjecture ci�dessus�

Il est clair que pour des applications plus g�n�rales� il sera int�ressant de faire
une conjecture plausible� dans le style de notre conjecture� mais pour des classes
plus vastes de constantes�
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Glossary

Conventions

fi�j � �fi�j index convention

�E ��E� � � � the implicit ordering� sum� etc� on a set E

E � F sum of two sets� E � F � fx � yjx � E� y � Fg� A similar notation

is often used for other operations

�xi�i�I sequence or family notation

IdE the identity mapping E � E

E q F the disjoint union or direct sum of A and B

EnF the set of elements in E which are not in F

E � F the set EnF � FnE

jxj� jEj absolute value of x or cardinality of E

N the natural numbers including zero

Nk the set f�� � � � � kg

Z�Q�R�C the integers� rationals� reals and complex numbers

R� the set of invertible �resp� non zero� elements of a ring �resp� a �eld�

R� positive elements of an ordered ring

R�
� positive invertible elements of an ordered ring

Part A

f �� g f is dominated by g �Hardy�s notation�� 	
� �	� ��

f � O�g� idem �Landau�s notation�� 	
� �	� ��

f �� g f is negligible w�r�t� g �Hardy�s notation�� 	
� �	� ��

f � o�g� idem �Landau�s notation�� 	
� �	� ��

f  g f is asymptotic to g� 	
� �	� ��

f 
 g f is equivalent to g� 	
� �	� ��

f ��� g f has a smaller comparability class than g� 	�� �	� ��

f� g f and g have the same comparability classes� 	�� �	� ��

C��X�� ring of grid�based series over C in X � ��

supp f support of f � ��

C��X��o set of in�nitesimal elements of C��X��� ��

C��X��O set of bounded elements of C��X��� ��

C��z�� � � � � zn�� ring of grid�based series in z�� � � � � zn over C� ��

C��z�� � � � � zn�� ring of lexicographical grid�based series in z�� � � � � zn over C� ��

mf dominant monomial of f � ��

��



��� GLOSSARY

�f dominant term of f � ��

cf dominant coe�cient of f � ��

limf limit of f � �	

f � f� � fc � f� canonical decomposition of a series f � �	

C��X��� set of purely unbounded series with �� �	

	f dominant exponent of f � �

logk k�th iterated logarithm� ��� 


expk k�th iterated exponential� ��� 


logp x logarithmic monomial xp� � � � logpkk x� ��

logC� x group of logarithmic monomials� ��

Calog���x��� �eld of alogarithmic transseries� ��

C���x��� �eld of grid�based transseries over C in x� ��

T �eld of transseries� ��

Cr���x��� set of transseries with exponential depth bounded by r� ��

T�� set of positive in�nitely large transseries� ��

f� upward shift of f � ��

f� downward shift of f � ��

expo f exponentiality of f � ��

ginv functional inverse of g� ��� 


C		X

 ring of series with Noetherian support over C in X � ��


 smallest in�nite ordinal� �	

C�
� 			x


 �eld of well�ordered transseries of exponential depth � �� ��

C�
��			x


 �eld of well�ordered transseries of exponential depth � �� ��

f E g f is a truncation of g� �

stat limi�I fi stationary limit of �fi�i�I � �
T compacti�cation of T� 
�

Texp �eld of purely exponential transseries� ���

��h � ��h � h asymptotic relations �� � �� �� modulo ��� h perturbations� ���

oh� Oh Landau�s notation for ��h � ��h � ���

L linear di�erential operator� ���

m�L� dominant monomial of L� ���

L�h multiplicative conjugate of L� ���

L� upward shifting of L� ���� ���

L�� distinguished right inverse of L� ��

P di�erential polynomial with transseries coe�cients� ���

P�h additive conjugate of P � ��


P�h multiplicative conjugate of P � ��


� quasi�linear operator� ��

���g dominant term of distinguished solution to �f � g� ���

��� distinguished right inverse of �� �	�

�c grid�based summation symbol� ��

GTVC category of grid�based transvarieties over C� ��



GLOSSARY ���

NTVC category of Noetherian transvarieties over C of �nite logarithmic and

exponential depths� ���

Part B

C e�ective �eld of constants� ���� �
� ���

T
expr set of exp�log expressions� ��

SB �e�ective� asymptotic scale generated by B� ��

B � fb�� � � � �bng �e�ective� asymptotic �normal� basis� ��� ��	� ���� �	


G
expr
B set of exp�log Z�expressions w�r�t� B� ��

	z�i 
u coe�cient of z�i in u� ��

Z � fz�� � � � � zkg �nite set of in�nitesimal elements in SB� ��� ���

L
expr
Z set of exp�log Laurent series in Z� ��

u �trans�series represented by u� ��� ���

SZ set of monomials in Z� �	

�Z natural product ordering on SZ � �	� ���

�B quasi�ordering on SZ induced by B� ��

C		z�� z�� � � � 

 direct limit of C�C��z���� C��z�� z���� � � � � ���

C��z�� z�� � � ��� direct limit of C�C��z���� C��z�� z���� � � � � ���

R�L e�ective Cartesian algebra or local community� ���� ���� ���� ���

X e�ective �quasi�ordered� monomial group� ���� ���

�X quasi�ordering on SZ induced by X� ���

f �natural� Cartesian representation of f � ��
� ���� ��	� ���

hqif pseudo�coe�cient of f � ���

B � B� q � � � q Bq lexicographical decomposition of normal basis� �	


cexpo exponential part of c� ��	

cfree �free part� of c� ��	

supp�L operator support of a linear operator� ��

T e�ective di�erential �eld of transseries over C� ��

Sd� Sd shift operators� �
�

f ��s g f is steadily dominated by g� �


Appendices

�A� �nal segment generated by A� 	��

E q F disjoint union of E and F � 	��

E� set of words over E� 	�

E	 set of commutative words over E� 	�

E� set of non empty words over E� 	�

Ey set of non empty commutative words over E� 	�

x� � � �xn product notation for words� 	�

	x�� � � � � xn
 n�tuple notation for words� 	�

E
 set of �nite E�labeled trees� 	�




��� GLOSSARY

x	T�� � � � � Tn
 tree with root labeled by x and children T�� � � � � Tn� 	�


root�T � the root of a tree T � 	�


leaf�T � set of leafs of a tree T � 	�


�T ancestor relation on a tree T � 	�


 signature� 	��

f �R function resp� relation symbols of �� 	��

Nf � NR arity of a function f resp� a relation R� 	��

domf domain of f � 	��

�Alg category of ��algebras� 	��

�PAlg category of partial ��algebras� 	��

IX free full ��algebra on X � 	��

t� t is de�ned� 	��

C� Horn clauses w�r�t� �� 	��

CE Horn clauses valid in E� 	��

�� C��PAlg category of partial ��algebras modeling C� 	��

E ��closure of E� 	��

AhXi free extension of A by X � 	��

F�V � function space of V � 	�	

P category of point types� 	�	

VarP category of varieties relative to P� 	��

AX
P

a�ne X�space relative to P� 	��

A a D�ring� 	��

D the Lie algebra of derivations on A� 	��

	
 D�ideal generated by a set �� 	��

Q�A� quotient �eld or total ring of fractions of A� 	��

� free linear D�operator algebra 	 � A�D�� 	��

� basis for A�D�� 	��

� evaluation mapping� 	�	

A e�ective D�ring of the form C�f�� � � � � fk��i� 	�

GA Groebner basis for i� 	�

D e�ective Lie�algebra of derivations on A� 	�

m maximal ideal of A� which determines �� 	�



Index

A

Abelian� group� strong ���
absolute value ��
additive� conjugate ���
ade
mod
solve ��	
ade
solve ��	
adjoint ���
admissible

Cartesian coordinate ���
Cartesian representation ���
g�labeled tree in tree 	�
re�nement ��� �	� ���

algebra
Archimedian ��
Cartesian

e�ective ���
exp�log ���

linear ���
algebraic

Newton polynomial ���
regular % function or extension ���
structure� e�ective ���

algebraically closed� �eld� e�ective ���
A�algebra� ordered ��
�algebra ���

full ���
free ���

partial ���
morphism ���

quotient ��	
subquotient ��	

algorithm
approximation ���
asymptotic expansion ���� ���� ��	
asymptotic zero test �	�
dominant monomial computation ���
renormalization ���
theoretical ���
ultra�regularization ���

alogarithmic transseries ��
ancestor� node ���

antichain ���
approximate� ���
approximate� ���
approximate ���
approximation� algorithm ���
Archimedian

algebra ��
element ��

arity ���
ascending chain condition ���
assignment ���
asymptotic

algebraic di�erential equation ���
basis ��
e�ective ��	

density ���
ordering ��
scale ��� ��� ���� ��	� ���

Asymptotic� scale ���
asymptotic

scale� e�ective ��	
series ��
strongly monotonic % behaviour �	� ���

���
system ���
weakly oscillatory % behaviour ���

automatic
case separation ���
partial constraint checking ���

expansion tree ���
Laurent series ���
lexicographically % Cartesian represent�

ation ���
lexicographically % Laurent series ���
lexicographically % power series ���
power series ���
transseries ���
updating ���

automatic Laurent series �	�
axiom ���

B

���
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bad� initial point ���
bad sequence ��	

minimal ��	
base� change ��
basis

asymptotic ��
e�ective ��	

canonical ��
normal ��
e�ective ���� ���
level ��

renormalization ���
better�quasi�ordering ���
bounded ��

series ��
bound ���
bundle

cotangent ���
tangent ���� ���

C

C ��	
C�in�nitesimal� Cartesian representation �	�
C�regular� Cartesian representation �	�
canonical

basis ��
expansion ��

canonical decomposition of a series ��
Cartesian

algebra
e�ective ���
exp�log ���

change of coordinates ���
coordinate ���
admissible ���

faithful % representation ���
representation �	�� ���
admissible ���
C�in�nitesimal �	�
C�regular �	�
in�nitesimalization ���
lexicographical ���
lexicographically automatic ���
regularization ���

wider % coordinates ���
Cartesian closed ���
case� singular ���
case separation

automatic ���
partial constraint checking ���

category
opposite ���
C�pointed ���

chain ���
change

base ��
Cartesian % of coordinates ���
of coordinates ���� ���
of variables ���
scale ��

checker� constraint ���
children� node ���
choice operator ���

extensive ���
Noetherian ���
strictly extensive ���

circle ���
class� comparability ��
classical� potential dominant monomial ���
close� point ���
closed� exp�log ��	
closure

exp�log ��	
Zarisky ���

�closure ���� ���
coe�cient ��

dominant ��� ��	
iterated ��	

combinatorial� Newton polytope ���
community

local ���� ���
e�ective ���
exp�log ���

compacti�cation� continuous total ordering ��
comparability� class ��
comparability class ��
comparable ���
compatible� facet ���
complete

�eld of transseries ��
subset of T��
totally ordered vector space ���

completion
weakly oscillatory ���
free ���

complex
transplane ���
transseries ���
transvariety ���

complex number� e�ective ���



INDEX ���

complexity� problem ��
composition ��

compatible with derivation ��
grid�based series ��
grid�based transseries ��
transseries ���
well�ordered transseries 	�

computation
tree ��� ���

computation model� parallel ���
computer algebra system� parallelism ���
condition� initial ���
conjecture

Hardy �	
Schanuel �	
Shackell ���

conjugate
additive ���
multiplicative ���� ���

connection ���
consistent� generic output ���
constraint

checker ���
normal ���
partial % checking ���

constraint ���� ���� ���� ���
q�constraint ���
construction� elementary ���
continuous

ordering ��
total ordering� compacti�cation ��

contraction ��� ��
coordinate ���

Cartesian ���
admissible ���

Cartesian change of %s ���
change of ���� ���
wider Cartesian %s ���

coordinates� restriction ���
cotangent� bundle ���
cotangent space ���
couniversal

functor ���
object ���

critical� case ���
curve� transvariety ���

D

D�algebra ���
D�algebraic

Laurent series ���
regular ���

power series ���
regular ���

D�boundary value problem ���
completely speci�ed ���
reduced ���

D��eld� quotient ���
D�ideal ���
D�module ���

morphism of ���
D�morphism ���

pure ���
D�operator algebra� free linear ���
D�polynomial

additive conjugate ���
dominant monomial ���
multiplicative conjugate ���

D�ring ���
�nite dimensional ���
local ���
morphism of ���
quotient ���

D�system ���
e�ective� simple ��	
local ���
reduced ���
restriction of domain ���

D�A�algebra ���
morphism of ���

D�A�module ���
decomposition

along orders ��	
into homogeneous parts ��	
natural ��	

degree
Newton ��� ���� ���
purely exponential ���

density� asymptotic ���
depends ���
depth

choice word ���
weakly oscillatory ���

dep
dom
mon ��	
derivation ���

grid�based transseries ��
partial exp�log ring ��
well�ordered transseries ��

derivative
transseries ���� ���
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descending chain condition ���
desingularization ���

e�ective ��	
diagonal ���

generalized ���
diagonal functor ���
Dickson� lemma ���
di�erence� operator ��
di�erential

asymptotic % algebraic equation ���
Newton polynomial ���
polynomial ���

dilatation ��
dimension

transvariety ���
Zarisky ���

Diophantine approximation ��
direct limit ���� ���
direct product ���� ���� ���
direct sum ���� ���� ���
disjoint union� ordering ���
distinguished

right inverse ��	
solution ��	� ���

domain
exp�log expression ��	
system of exp�log equalities and inequal�

ities ��	
dominant

coe�cient ��� ��	
exponent �	
potential ��

intermediary % monomial �	�� ���
monomial ��� ��	
classical potential % ���
D�polynomial ���
linear di�erential operator ���
potential ��� ���� ���

term ��� ��	
potential ��� ��� ���

vector exponent ��
dominated ��

series ��
domination� steady ��	
dom
mon ���
dom
sub ���
downward

movement ��
shifting ��

dynamic� e�ective normal basis ���

dynamic evaluation ���

E

e�ective
algebraic structure ���
algebraically closed �eld ���
asymptotic basis ��	
asymptotic scale ��	
Cartesian algebra ���
complex number ���
D�system� simple ��	
desingularization ��	
exp�log �eld ���
group ���
local community ���
normal basis ���� ���� ���
path ���
re�nement ��	
ring ���
�structure ���
totally ordered exp�log closed �eld ��	

e�ectively generated ���
elementary� reduced ���
elementary construction ���
elementary function ���
ellipsoid method ���
equality� expo�linear ���
equation

Newton ��
Riccati ���� ���

equivalent� series ��
evaluation

dynamic ���
lazy ���
mapping ���

exp�log
Cartesian algebra ���
closed ��	
closure ��	
e�ective totally ordered % closed �eld

��	
equalities and inequalities
solution to system of ��	
system of ��	

expression ��	
�eld� e�ective ���
local community ���
ring ��
ordered ��� ��	
partial ��
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L�exp�log� expression ���
expand ���� ���� ��	
expansion

canonical ��
nested ��
w�r�t� normal basis ��

expo�linear
equality ���
inequality ���

exponent
dominant �	

potential ��
dominant vector ��
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