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Abstract

Let K be an effective field of characteristic zero. An effective tribe is a subset of
K[[z1; z2; :::]] = K [ K[[z1]] [ K[[z1; z2]] [ ��� that is effectively stable under the
K-algebra operations, restricted division, composition, the implicit function theorem,
as well as restricted monomial transformations with arbitrary rational exponents.
Given an effective tribe with an effective zero test, we will prove that an effective
version of the Weierstrass division theorem holds inside the tribe, and that this can
be used for the computation of standard bases.

Keywords: Power series, algorithm, Weierstrass preparation, standard basis, d-alge-
braic power series, tribe
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1 Introduction
There are two main aspects about effective computations with formal power series. On
the one hand, we need fast algorithms for the computation of coefficients. There is an
important literature on this subject and the asymptotically fastest methods either rely on
Newton's method [4] or on relaxed power series evaluation [12].

On the other hand, there is the problem of deciding whether a given power series is
zero. This problem is undecidable in general, since we need to check the cancellation of an
infinite number of coefficients. Therefore, a related subject is the isolation of sufficiently
large classes of power series such that most of the common operations on power series can
be carried out inside the class, but such that the class remains sufficiently restricted such
that we can design effective zero tests.

The abstract description of a suitable framework for power series computations is the
subject of section 2. We first recall the most common operations on formal power series over
a field K of characteristic zero: the K-algebra operations, restricted division, composition,
the resolution of implicit equations, and so called restricted monomial transformations with
arbitrary rational exponents. A subset L of K[[z1; z2; :::]]=K[K[[z1]][K[[z1; z2]][��� that
is stable under each of these operations will be called a tribe. We will also specify effective
counterparts of these notions.

The main results of this paper are as follows. Given an effective tribe with an effective
zero test, we show in section 4 that the tribe also satisfies an effective version of the
Weierstrass preparation theorem [23], and we give an algorithm for performing Weierstrass
division with remainder. In section 5, we also introduce �Weierstrass bases� and a recursive
version of Weierstrass division that works for ideals. For Archimedean monomial orderings,
this can in turn be used for the computation of standard bases of ideals generated by series
in the tribe in the sense of Hironaka [10].

�. This work has been supported by the ANR-10-BLAN 0109 LEDA project.
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Our results can for instance be applied to the tribe of algebraic power series. In that
particular case, various alternative algorithms have been developed. An algorithm for
Weierstrass division was given in [2]. This algorithm has recently been extended to the com-
putation of reduced standard bases of ideals that satisfy a suitable condition [1] (namely
Hironaka's box condition). In the case that the ideals are generated by polynomials instead
of power series, one may compute (non-reduced) standard bases using Mora's tangent cone
algorithm [20] or Lazard's homogenization technique [17].

The main other example that motivated our work is the tribe of d-algebraic power
series (see also [7, 8, 15]). The fact that the collection of all d-algebraic power series satisfies
the Weierstrass preparation theorem was first proved in a more ad hoc way by van den
Dries [9]. The notion of a tribe also shares some common properties with the notion of
a Weierstrass system, as introduced by Denef and Lipshitz [6] and used in [9]. Our approach
can be regarded as a simpler, effective and more systematic way to prove that certain types
of power series formWeierstrass systems. Moreover, we show how to compute more general
standard bases in this context.

The idea behind our main algorithm for the computation of Weierstrass polynomials
is very simple: given a series f 2 L \K[[z1; :::; zn]] of Weierstrass degree d in z1, we just
compute the solutions '1; :::; 'd of the equation f(z1; :::; zn) = 0 in z1 inside a sufficiently
large field of grid-based power series. This allows us to compute the polynomial P =
(z1 − '1) ��� (z1 − 'd) which we know to be the Weierstrass polynomial associated to f .
Using the stability of the tribe under restricted monomial transformations, we will be able
to compute P as an element of L.

The algorithms rely on our ability to compute with the auxiliary grid-based power series
'1; :::; 'd. For this reason, we briefly recall some basic facts about grid-based power series
in section 3, as well as the basic techniques that are needed in order to compute with them.

Weierstrass division is a precursor of the more general notion of Hironaka division in
the particular case of a principal ideal in general position. For arbitrary ideals in general
position (or, more precisely, in �Weierstrass position�), we introduce a recursive version of
Weierstrass division in section 5. Assuming that such an ideal I is finitely generated by
elements in the tribe L, this allows us to compute a �Weierstrass basis� for I and to decide
ideal membership for other elements of I. Another application is the computation of the
Hilbert function of I. The main ingredients in section 5 are the possibility to put ideals in
Weierstrass position modulo a suitable linear change of variables and ordinary Weierstrass
division in the principal ideal case. For tribes in which we have alternative algorithms for
the Weierstrass preparation theorem, the techniques of section 5 can use these algorithms
instead of the ones from section 4.

In the last section 6, we show how to compute more traditional standard bases of ideals I
that are finitely generated by elements of L. The main difficulty with standard bases in the
power series setting (in contrast to Gröbner bases in the polynomial setting) is termination.
This difficulty is overcome by using the fact that we may compute the Hilbert function of
the ideal using the techniques from section 5. During the construction of a standard basis,
this essentially allows us to decide whether the S-series of two basis elements reduces to
zero or whether it reduces to a series of high valuation. In general, our algorithm does
not compute a reduced standard basis: it is actually known that such a reduced standard
basis does not necessarily exist. An interesting open question is under which conditions
our algorithm still does compute one. In the algebraic setting, we already mentioned above
that [1] furnishes a conditional algorithm for the computation of reduced standard bases.

Our paper uses several notations from the theory of grid-based power series [13] that are
uncommon in the area of standard bases. For instance, admissible orderings are replaced by
monomial orderings, initial monomials by dominant monomials, and Weierstrass position
is reminiscent of Hironaka's box condition that is essential in [1]. The general motivation
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behind our notations is their natural asymptotic meaning. They have been very useful for
the development of asymptotic differential algebra and we refer the reader to [3] for a more
extensive background and dictionary.

Acknowledgments. The author wishes to express his gratitude to the two referees for
their careful reading and helpful comments, as well as to Alin Bostan and Lou van den
Dries for historical references.

2 Common operations on power series
Let K be a field of characteristic zero and denote

K[[z1; z2; :::]] = K [K[[z1]][K[[z1; z2]][ ���;

where we understand that K[[z1; :::; zn]] is naturally included in K[[z1; :::; zn+1]] for each n.
So each element f 2K[[z1; z2; :::]] is a power series in a finite number of variables.

We say thatK is effective if its elements can be represented by concrete data structures
and if all field operations can be carried out by algorithms. We say that K admits an
effective zero test if we also have an algorithm that takes f 2K as input and that returns
true if f =0 and false otherwise.

If K is effective, then a power series f 2K[[z1; z2; :::]] is said to be computable if we
have an effective bound n for its dimension (so that f 2K[[z1; :::; zn]]), together with an
algorithm that takes i 2Nn as input and produces the coefficient fi 2K of zi= z1

i1 ��� zn
in

on output. We will denote the set of computable power series by K[[z1; z2; :::]]com.

Basic operations on power series

Let L be a subset of K[[z1; z2; :::]]. We will denote Ln=L\K[[z1; :::; zn]] for each n and
say that L is effective if L �K[[z1; z2; :::]]

com. In this section, we will give definitions of
several operations on power series and the corresponding closure properties that L may
satisfy. We say that L is a power series algebra if L is a K-algebra. From now on, we
will always assume that this is the case. It is also useful to assume that L is inhabited in
the sense that zi2L for all i. For each i, we will denote @i= @/@zi and �i= zi @i. We say
that L is stable under differentiation if @iL�L for all i (whence �iL�L).

The above closure properties admit natural effective analogues. We say that L is an
effective power series algebra if K is an effective field, if the elements of L can be repre-
sented by concrete data structures and the K-algebra operations can be carried out by
algorithms. We say that L is effectively inhabited if there is an algorithm that takes i2N
as input and that computes zi2L. We say that L is effectively stable under differentiation
if there exists an algorithm that takes f 2L and i2N as input and that computes @if 2L.

Restricted division

For any ring R, letR=/=R nf0g. We say that L is stable under restricted division if f / g2L
whenever f 2 L and g 2 L=/ are such that f / g 2K[[z1; z2; :::]]. If L is effective, then we
say that L is effectively stable under restricted division if we also have an algorithm that
computes f / g as a function of f ; g 2 L, whenever f / g 2K[[z1; z2; :::]]. Here we do not
assume the existence of a test whether f / g2K[[z1; z2; :::]] (the behaviour of the algorithm
being unspecified if f / g 2/ K[[z1; z2; :::]]). More generally, given g 2L=/ , we say that L is
stable under restricted division by g if f / g 2 L whenever f / g 2K[[z1; z2; :::]], and that
L is effectively stable under restricted division by g if this division can be carried out by
an algorithm.

Common operations on power series 3



Composition

Given f 2K[[z]]=K[[z1; :::; zn]], we let f(0)2K denote the evaluation of f at 0=(0; :::;0).
Given f 2 K[[z]] and g1; :::; gn 2 K[[u]] = K[[u1; :::; up]] with g1(0)= ���= gn(0)=0, we
define the composition f � g = f � (g1; :::; gn) of f and g to be the unique power series
f � g 2K[[u1; :::; up]] with

(f � g)(u1; :::; up)= f(g(u1; :::; up); :::; g(u1; :::; up)):

We say that a power series domain L � K[[z1; z2; :::]] is stable under composition if
f � (g1; :::; gn)2L for any f 2Ln and g1; :::; gn2L with g1(0) = ���= gn(0) = 0. If we also
have an algorithm for the computation of f � (g1; :::; gn), then we say that L is effectively
stable under composition.

We notice that stability under composition implies stability under permutations of
the zi. In particular, it suffices that z12L for L to be inhabited. Stability under composition
also implies stability under the projections �i with

(�i f)(z1; :::; zn)= f(z1; :::; zi−1; 0; zi+1; :::; zn):

If L is also stable under restricted division by z1 (whence under restricted division by
any zi), then this means that we may compute the coefficients [zik] f of the power series
expansion of f with respect to zi by induction over k:

[zi
k] f = �i

f − [zi0] f − ���− ([zik−1] f) zik−1

zi
k

:

Similarly, we obtain stability under the differentiation: for any f 2Ln and i6n, we have

(@i f)(z1; :::; zn) = �n+1
f(z1; :::; zi−1; zi+ zn+1; zi+1; :::; zn)− f(z1; :::; zn)

zn+1
:

Implicit functions

Let '1; :::; 'm2K[[z1; :::; zn]] with p=n−m> 0 and '1(0)= ���= 'm(0)=0. Assume that
the matrix formed by the first m columns of the scalar matrix

@'
@z

(0) =

0BBBBBB@
@'1
@z1

(0) ��� @'1
@zn

(0)

��� ���
@'m
@z1

(0) ��� @'m
@zn

(0)

1CCCCCCA
is invertible. Then the implicit function theorem implies that there exist unique power series
 1; :::;  m 2K[[z1; :::; zp]], such that the completed vector  = ( 1; :::;  n) with  m+1=
z1; :::;  n = zp satisfies ' �  = 0. We say that a power series domain L�K[[z1; z2; :::]]
satisfies the implicit function theorem (for m implicit functions) if  1; :::;  m 2 L for
the above solution of ' �  = 0, whenever '1; :::; 'm 2 Ln. We say that L effec-
tively satisfies the implicit function theorem if we also have an algorithm to compute
 1; :::;  m as a function of '1; :::; 'm.
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We claim that L satisfies the implicit function theorem form implicit functions as soon
as L satisfies the implicit function theorem for one implicit function and L is stable under
restricted division and composition. We prove this by induction over m. For m = 1 the
statement is clear, so assume that m> 1. Since the matrix formed by the first m columns
of (@'/@z)(0) is invertible, at least one of the (@'i/@z1)(0) must be non-zero. Modulo
a permutation of rows we may assume that (@'1 / @z1)(0) =/ 0. Applying the implicit
function theorem to '1 only, we obtain a function � 2Ln−1 with '1 � (�; z1; :::; zn−1)=0.
Differentiating this relation, we also obtain

@�
@zj

= −@'1/@zj+1
@'1/@z1

� (�; z1; :::; zn−1);

for each j. Setting � := 1/(@'1/@z1)(0), this yields in particular

@�
@zj

(0) = −� @'1
@zj+1

(0):

Now consider the series 'i0= 'i+1 � (�; z1; :::; zn−1)2L. For each j6m− 1, we have

@'i
0

@zj
(0) =

@�
@zj

(0)
@'i+1
@z1

(0)+
@'i+1
@zj+1

(0)

=
@'i+1
@zj+1

(0)−� @'1
@zj+1

(0)
@'i+1
@z1

(0):

In particular, ��������������������
@'1
0

@z1
(0) ��� @'1

0

@zm−1
(0)

��� ���
@'m−1
0

@z1
(0) ��� @'m−1

0

@zm−1
(0)

��������������������
= �

������������������
@'1
@z1

(0) ��� @'1
@zm

(0)

��� ���
@'m
@z1

(0) ��� @'m
@zm

(0)

������������������=/ 0:
By the induction hypothesis, we may thus compute series  2; :::;  m 2 Lp such that
'i
0� ( 2; :::;  m; z1; :::; zp)=0 for all i. Setting  1= �� ( 2; :::;  m; z1; :::; zp)2Lp, we conclude

that '1 � ( 1; :::;  m; z1; :::; zp)= '1 � (�; z1; :::; zn−1) � ( 2; :::;  m; z1; :::; zp)= 0 and

'i+1 � ( 1; :::;  m; z1; :::; zp) = 'i+1 � (�; z1; :::; zn−1) � ( 2; :::;  m; z1; :::; zp)
= 'i

0 � ( 2; :::;  m; z1; :::; zp)
= 0

for all i6m− 1.

Restricted monomial transformations

Consider an invertible n � n matrix M 2 Qn�n with rational coefficients. Then the
transformation

� � zM: z1
Q ��� zn

Q −! z1
Q ��� zn

Q

zi 7−! zM �i

is called a monomial transformation, where i 2 Qn is considered as a column vector.
For a power series f 2 K[[z1; :::; zn]] whose support supp f = fi 2 Nn : fi =/ 0g satisfies
M � supp f �Nn, we may apply the monomial transformation to f as well:

f � zM =
X
i2Nn

fi z
M �i:
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We say that L is stable under restricted monomial transformations if for any f 2 Ln and
invertible matrix M 2Qn�n with M � supp f �Nn, we have f � zM 2Ln. We say that L is
effectively stable under restricted monomial transformations if we also have an algorithm
to compute f � zM as a function of f and M . Notice that we do not require the existence
of a test whether M � supp f � Nn in this case (the behaviour of the algorithm being
unspecified whenever M � supp f *Nn).

If M 2Nn�n has non-negative integer coefficients, then we always haveM � supp f �Nn

and L is trivially stable under the monomial transformation f 7! f � zM whenever L is
stable under composition.

Examples

We say that the K-algebra L with z1 2 L is a local community if L is stable under
composition, the resolution of implicit equations, and restricted division by z1. We say
that L is a tribe if L is also stable under restricted division and restricted monomial
transformations. Effective local communities and tribes are defined similarly.

A power series f 2 K[[z1; z2; :::]] is said to be algebraic if it satisfies a non-trivial
algebraic equation over the polynomial ringK[z1; z2; :::]=K[K[z1][K[z1; z2][���. Setting
H =K(z1; z2; :::) =K [K(z1) [K(z1; z2) [ ���, this is the case if and only if the module
H [f ] is an H-vector space of finite dimension. Using this criterion, one can prove that
the set K[[z1; z2; :::]]alg of algebraic power series is a tribe (and actually the smallest tribe
for inclusion). For convenience of the reader, let us state and prove an effective version
of this result. Assume that K is an effective field. Then an effective algebraic power
series f 2K[[z1; z2; :::]] can be effectively represented as an effective power series together
with an annihilator P 2H [F ]. We claim that K[[z1; z2; :::]]alg is an effective tribe for this
representation.

Proposition 1. The K-algebra K[[z1; z2; :::]]alg forms an effective tribe.

Proof. Let f ; g 2K[[z1; z2; :::]]alg, so that P (f)=Q(g)=0 for certain monic polynomials
P ; Q 2 K(z1; :::; zn)[u] of degrees d and e in u. For i = 0; :::; d e, these relations allow
us to rewrite both (f + g)i and (f g)i as K(z1; :::; zn)-linear combinations of fk gl with
0 6 k < d and 0 6 l < e. Since these fk gl span a vector space of dimension at most d e,
this means that there exist monic polynomials R; S 2K(z1; :::; zn)[u] of degree 6d e with
R(f + g)=S(f g)=0, and we may compute R and S using linear algebra. This shows that
K[[z1; z2; :::]]

alg forms an effective power series algebra that is clearly inhabited.
With the above notations, let Q~ = Qe + Qe−1 u + ��� + Q1 u

e−1 + Q0 u
e and assume

that g=/ 0. Then we notice that Q(g)=0,Q~(1/g)=0, so we can compute a polynomial
T 2 K(z1; :::; zn)[u] with T (f / g) = 0 in a similar way as above. This shows that
K[[z1; z2; :::]]

alg is effectively stable under restricted division by g.
Assume now that g1; :::; gn 2 K[[z1; z2; :::]]

alg with g1(0) = ��� = gn(0) = 0 and let
Qi 2 K(z1; :::; zm)[u] be a monic annihilator of gi of degree ei for i = 1; :::; n. Assume
first that the annihilator P of f belongs to K[z1; :::; zn; u]. Given any i 2 N, we may
then rewrite (f � g)i as a linear combination of (f j � g) g1

k1 ��� gn
kn with j < d, k1< e1; :::;

kn< en. In a similar way as above, this allows us to compute a non trivial annihilator of
degree 6d e1 ��� en of f � g. In general, the annihilator of f belongs to D−1K[z1; :::; zn; u]
for some denominator D 2 K[z1; :::; zn]. In that case, the annihilator of D f belongs to
K[z1; :::; zn; u], whence (Df)� g is algebraic, and so is f � g=(D � g)−1 (Df) � g. In other
words, K[[z1; z2; :::]]alg is effectively stable under composition. A similar argument shows
the effective stability under restricted monomial transformations.
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Let us finally assume that f(0)=0, but (@f /@z1)(0)=/ 0, and let  12K[[z1; :::; zn−1]]
and  2=z1; :::;  n=zn−1 be such that f � =0. Let P (z1; :::; zn; u) still be the annihilator
of f . Then P (f) �  = P ( 1; z1; :::; zn−1; f �  ) = P ( 1; z1; :::; zn−1; 0) = 0 yields a non
trivial annihilator for  1. This shows that K[[z1; z2; :::]]alg is effectively stable under the
implicit function theorem.

In order to conclude, we still need to prove the existence of an effective zero test
for f (given by its annihilator P and an algorithm to compute its coefficients). Now the
polynomial equation P (f) = 0 admits at most d solutions. Using the Newton polygon
method for a suitable valuation, it is possible to derive a bound for the maximal valuation
of f in the case when f =/ 0. It then suffices to compute the coefficients of f up to this
valuation bound. For more details, we refer to [15], where we proved a stronger result in
a more general setting. �

A power series f 2 K[[z1; :::; zn]] is said to be d-algebraic if it satisfies an algebraic
differential equation Pi(f ; :::; �i

ri f) = 0 for each i 2 f1; :::; ng, where Pi is a non-zero
polynomial in ri + 1 variables with coefficients in K. This is the case if and only if the
differential field H hf i generated by f over H =K(z1; z2; :::) admits a finite transcendence
degree. We denote by K[[z1; z2; :::]]dalg the set of d-algebraic power series. Using the finite
transcendence degree criterion, and similar techniques as in the proof of Proposition 1, it
can be shown that K[[z1; z2; :::]]dalg forms a tribe.

If K is an effective field, then effective d-algebraic power series may again be represented
through an effective power series and differential annihilators Pi of the above form. In [15],
one may find more information on how to compute with d-algebraic power series, and
a full proof of the fact that K[[z1; z2; :::]]dalg is actually an effective tribe (the proof being
based on earlier techniques from [7, 8]). Notice that the most intricate part of this kind of
computations is zero testing.

3 Grid-based series
Monomial monoids

In what follows, we will only consider commutative monoids. A monomial monoid is
a multiplicative monoid M with a partial ordering 4 that is compatible with the multipli-
cation (i.e. m14 n1^m24n2)m1m24 n1 n2 and m1 n4m2 n)m14m2). The notation 4
generalizes Hardy's notation from asymptotic analysis, so we call4 an asymptotic ordering.
We denote by M� = fm 2 M : m � 1g the set of infinitesimal elements in M and by
M4= fm2M :m4 1g the set of bounded elements in M. We say that M has Q-powers if
we also have a powering operation (k;m)2Q�M 7!mk2M such that (mn)k=mk nk and
(mk)l=mkl for all k; l2Q and m; n2M.

A monomial monoidM is said to be effective if its elements can be represented by effec-
tive data structures and if we have algorithms for the multiplication and the asymptotic
ordering 4. Since m= n,m4 n^ n4m this implies the existence of an effective equality
test. A monomial group M is said to be effective if it is an effective monomial monoid with
an algorithm for the group inverse. We say that M is an effective monomial group with
Q-powers if we also have a computable powering operation.

Grid-based sets

A subset G�M is said to be grid-based if there exist finite sets fm1; :::;mmg �M� and
fn1; :::; nng�M such that

G � fm1
i1 ���mm

im nj : i1; :::; im2N; 16 j6ng: (1)

Grid-based series 7



If M is actually a monomial group that is generated (as a group) by its infinitesimal
elements, then we may always take n=1.

If M is an effective monomial monoid, then a grid-based subset G �M is said to be
effective if the predicate m2M)m2G is computable and if finite sets fm1; :::;mmg�M�

and fn1; :::; nng�M with (1) are explicitly given.

Grid-based series

Let K be a field of characteristic zero. Given a formal series f =
P

m2Mfmm with fm2K,
the set supp f = fm2M : fm=/ 0g will be called the support of f . We say that the formal
series f is grid-based if its support is grid-based and we denote by K[[M]] the set of such
series. A grid-based series f 2K[[M]] is said to be infinitesimal or bounded if supp f �M�

resp. supp f �M4, and we denote by K[[M]]� resp. K[[M]]4 the sets of such series.
In [13, Chapter 2] elementary properties of grid-based series are studied at length.

We prove there that K[[M]] forms a ring in which all series f with 12 supp f �M4 are
invertible. In particular, if M is a totally ordered group, then K[[M]] forms a field. Given
a power series f 2K[[z1; :::; zn]] and grid-based series g1; :::; gn 2K[[M]]�, there is also
a natural definition for the composition f(g)= f � g= f(g1; :::; gn)= f � (g1; :::; gn).

Given a grid-based series f 2 K[[M]] the maximal elements of supp f for 4 are
called dominant monomials for f . If f has a unique dominant monomial, then we say
that f is regular , we write df for the dominant monomial of f , and call fdf the dominant
coefficient of f . If M is totally ordered, then any non-zero grid-based series in K[[M]] is
regular. Given f ; g 2K[[M]]=/ , this allows us to extend the relations 4 and � by defining
f 4 g, df 4 dg and f � g, df � dg. By convention, we also define 04 g and 0� g, g=/ 0
for all g 2K[[M]].

Assume that K and M are effective. Then a grid-based series f 2K[[M]] is said to be
effective if its support is effective and if the map m2M 7! fm is computable. It can be shown
that the set K[[M]]com of computable grid-based series forms an effective K-algebra.

Examples

Given an �infinitesimal� indeterminate z, the set zN= fzi : i 2Ng is a monomial monoid
for the asymptotic ordering zi4 zj, i> j, and K[[zN]] coincides with K[[z]]. Similarly,
K[[zZ]] coincides with the field of Laurent series K((z)). Notice that f =

P
i2Nz

−i is not
an element of K[[zZ]], since its support z−N admits no largest element for 4, whence it
cannot be grid-based. Beyond Laurent series, it is easily verified that K[[zQ]] coincides
with the field of Puiseux series in z overK. If K is algebraically closed, then so is K[[zQ]].

Given monomial monoids M1; :::; Mn, one may form the product monomial monoid
M1 � ��� �Mn with m1 ���mn4 n1 ��� nn, m1 4 n1 ^ ��� ^mn4 nn for all m1; n1 2M1; :::;
mn; nn2Mn. Then K[[z1

N� ���� znN]] coincides with the set of power series K[[z1; :::; zn]],
whereas K[[z1

Z � ��� � zn
Z]] coincides with the set of Laurent series that we denote by

K((z1; :::; zn)). If n>2, then we notice thatK((z1; :::; zn)) is a strict subring of the quotient
field of K[[z1; :::; zn]].

Given monomial monoids M1; :::; Mn, one may also form the set M1 �� ��� �� Mn

whose elements m1 ��� mn are ordered anti-lexicographically: m1 ��� mn � n1 ��� nn if there
exists an i with mi � ni and mj = nj for all j > i. The set K[[z1

N �� ��� �� znN]] should
naturally be interpreted as K[[z1]]���[[zn]] (which is isomorphic to K[[z1; :::; zn]]). The
set K[[z1

Z �� ��� �� znZ]] is a field that contains K((z1; :::; zn)), and this inclusion is strict
if n > 1 (notice also that K[[z1

Z �� ��� �� znZ]]  K((z1)) ��� ((zn))). If K is algebraically
closed, then K[[z1

Q�� ��� �� zn
Q
]] is again an algebraically closed field (and again, we have

K[[z1
Q�� ��� �� zn

Q
]] K[[z1

Q
]] ��� [[zn

Q
]]).
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Asymptotic interpretation
Let M be a totally ordered group. Given f 2K[[z1; :::; zn]] and g1; :::; gn 2K[[M]], we
have already observed that f � g 2K[[M]] whenever g1� 1; :::; gn� 1. This means that
we may regard K[[z1; :::; zn]] as a space of �local functions� (K[[M]]�)n ! K[[M]].
Similarly, f 2K((z1; :::; zn)) can be regarded as a function (K[[M]]� n f0g)n!K[[M]]

and f 2 K[[z1
Z �� ��� �� znZ]] as a function R ! K[[M]] where R = f(g1; :::; gn) 2

(K[[M]]� n f0g)n : 8i < j; 8k; gj � gi
kg. More generally, for any monomial group N with

underlying group z1Z ��� znZ, the algebra K[[N]] can be regarded as a local function space
on a subset of (K[[M]]� n f0g)n.

Cartesian representations
From now on, we will assume that M is a monomial group that is generated as a group
by its infinitesimal elements. Given a series f 2K[[M]], a Cartesian representation for f
is a Laurent series f�2K((z1; :::; zk)) together with monomials m1; :::;mk 2M� such that
f= f�(m1; :::;mk). Given several series f1; :::; fl2K[[M]], and Cartesian representations for
each of the fi, we say that these Cartesian representations are compatible if they are of the
form fi= f�i(m1; :::;mk) for f�i2K((z1; :::; zk)) and m1; :::;mk2M�. In [13, Proposition 3.12]
we show that such compatible Cartesian representations always exist.

In [13, Chapter 3], we gave constructive proofs of several basic facts about Cartesian
representations and L-based series to be introduced below. These constructive proofs can
easily be transformed into algorithms, so we will only state the effective counterparts of
the main results. First of all, in order to keep the number of variables k in Cartesian repre-
sentations as low as possible, we may use the following effective variant of [13, Lemma 3.13]:

Lemma 2. Let z1; :::; zk;m1; :::;ml be infinitesimal elements of an effective totally ordered
monomial group M with Q-powers, such that we have explicit expressions for m1; :::;ml2
z1
Z ��� zkZ as power products. Then we may effectively compute infinitesimal z1

0 ; :::; zk
0 2

z1
Q ��� zk

Q with z1; :::; zk;m1; :::;ml2 (z10 )N ��� (zk0 )N. �

L-based power series
Let L be a local community. We will say that f 2K[[M]] is L-based if f admits a Cartesian
representation of the form f = f�(m1; :::;mk) with f�= 'z1

i1 ��� zk
ik, '2Lk and i1; :::; ik2Z.

The setK[[M]]L of all such series forms aK-algebra [13, Proposition 3.14]. If K, L andM
are effective, then any grid-based series in K[[M]]L is computable. Moreover, we may
effectively represent series in K[[M]]L by Cartesian representations, and K[[M]]L is an
effective K-algebra for this representation.

A Cartesian representation f = f�(m1; :::;mk) of f 2K[[M]] is said to be faithful if for
each dominant monomial v�=z1

i1 ��� zk
ik of f , there exists a dominant monomial w of f with

v�(m1; :::;mk)4w. We have the following effective counterpart of [13, Proposition 3.19]:

Proposition 3. Assume that K, L and M are effective. Then there exists an algorithm
that takes a series in K[[M]]L as input and computes a faithful Cartesian representation
f = f�(m1; :::;mk) with f�= 'z1

i1 ��� zk
ik, '2Lk and i1; :::; ik2Z. �

Faithful Cartesian representations are a useful technical tool for various computations.
They occur for instance in the proof of the following effective counterpart of [13, Proposi-
tion 3.20]:

Proposition 4. Assume that K, L and M are effective. There exists an algorithm that
takes an infinitesimal (or bounded, or regular) series f 2K[[M]] as input and that com-
putes a Cartesian representation f = f�(m1; :::; mk) such that f� is again infinitesimal (or
bounded, or regular, respectively). �

Grid-based series 9



Solving power series equations

Assume now that K is an effective field with an effective zero test and an algorithm for
determining the roots in K of polynomials in K[F ], where F is a new indeterminate. Let L
be an effective local community overK andM an effective totally ordered monomial group.
We notice that a grid-based series in K[[M � FN]] can also be regarded as an ordinary
power series in K[[M]][[F ]]. We are interested in finding all infinitesimal solutions of
a power series equation

P0+P1 f +P2 f
2+ ���=0;

where P =P0+P1F +P2F 2+ ���2K[[M�FN]]L. The Newton polygon method from [13,
Chapter 3] can be generalized in a straightforward way to power series equations instead
of polynomial equations and the effective counterpart of [13, Theorem 3.21] becomes:

Theorem 5. There exists an algorithm that takes P 2 K[[M � FN]]L � K[[M]][[F ]]
with P =/ 0 as input and that computes all solutions of the equation P (f) = 0 with f 2
K[[M]]�. �

Given P 2 K[[M � FN]]L with P =/ 0, we may also consider P as an element of
K[[FN�M]] =�K[[F ]][[M]]. Let NP 2K[[F ]] be the dominant coefficient of P for this
latter representation. The valuation of NP in F is called the Weierstrass degree of P . If K
is algebraically closed, then it can be shown that the number of solutions to the equation
in Theorem 5 coincides with the Weierstrass degree, when counting with multiplicities.

Scalar extensions

Let L be a tribe over K and let �1; :::; �l be indeterminates. Then there exists a smallest
tribe over K(�) that extends L. We will denote this tribe by K(�)
L. Setting

L=�1
Z�� ��� �� �lZ�� (z1N� z2N� ���);

we notice that K(�)�K[[�1
Z�� ��� �� �lZ]]L�K[[L]]L and L �K[[L]]L. This shows that

any element in K(�)
L can be represented by an element of K[[L]]L. In particular, if L
is effective, then so is K(�)
L.

4 Effective Weierstrass preparation

Effective algebraic closures

LetK be an effective field with an effective zero test. We may consider its algebraic closure
Kalg as an effective field with an effective zero test, when computing non-deterministi-
cally (we refer to [5] for more details about this technique, which is also called dynamic
evaluation).

Let L be an effective tribe overK with an effective zero test. It is convenient to represent
elements of Kalg
 L by evaluations of polynomials P 2 L[X ] at � 2Kalg. The algebraic
number � is effectively represented using an annihilator A 2 K[X] and we may always
take P such that degP <degA. We say that L is algebraically stable if Kalg
L forms again
an effective tribe for this representation. This is the case for the tribes of algebraic and
d-algebraic power series, but not for arbitrary tribes: if K=R and L is the smallest tribe
that contains the exponential power series expz1, then it follows fromWilkie's theorem [18]
that L does not contain sin z1; on the other hand, any tribe that contains C 
 L must
contain sin z1.
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Assume that L is algebraically stable. Consider a series f 2 (Kalg
L)\K[[z1; z2; :::]],
represented as f =P (�) =P0+ ���+Pk−1�k−1, where �2Kalg is given by an annihilator
of degree k, and P0; :::; Pk−1 2 L. Then we notice that we can compute a representation
for f as a element of L. Indeed, whenever Pj =/ 0 for some j > 0, then this means that
there exists a monomial zi2 z1N z2N ��� such that the coefficient [zi]P 2K[�] of zi in P is a
polynomial of non-zero degree in �. On the other hand, [zi]P 2K, which means that we
can compute an annihilator for � of degree <k. Repeating this reduction a finite number
of times, we thus reach the situation in which P1= ���=Pk−1=0, so that f =P02L.

Effective Weierstrass preparation
Let L still be an effective algebraically stable tribe over K with an effective zero test.
Given f 2 Ln, we recall that f is said to have Weierstrass degree d in z1 if f(0) =
(@f / @z1)(0) = ��� = (@d−1 f /@z1

d−1)(0) = 0, but (@d f /@z1d)(0) =/ 0. In that case, the
Weierstrass preparation theorem states that there exists a unit u 2 K[[z1; :::; zn]] and
a monic polynomial P = z1

d+Pd−1 z1
d−1+ ���+P02K[[z2; :::; zn]][z1] of degree d such that

f = u P . The polynomial P is called the Weierstrass polynomial associated to f (with
respect to z1). We claim that P 2Ln and that there exists an algorithm to compute P (and
therefore the corresponding unit u, since Ln is effectively stable under restricted division):

Theorem 6. There exists an algorithm that takes a power series f 2 Ln of Weierstrass
degree d in z1 as input and computes its Weierstrass polynomial P as an element of Ln.

Proof. Consider the effective totally ordered monomial group M = z2
Q �� ��� �� zn

Q with
Q-powers. We have a natural inclusion Ln � Kalg[[M � z1

N]]Kalg
L. Now consider f 2
Kalg[[M� z1N]]Kalg
L�Kalg[[M]][[z1]]. By theorem 5, we may compute all infinitesimal
solutions '1; :::; 'd2Kalg[[M]]Kalg
L to the equation f(')=0 in z1 (we recall that there
are d such solutions, when counting with multiplicities, since Kalg is algebraically closed).
Now consider

P = (z1− '1) ��� (z1− 'd)2Kalg[[M� z1N]]Kalg
L

and let P � 2K[[z1; :::; zn]] be the Weierstrass polynomial associated to f . Since P � also
admits the infinitesimal roots '1; :::; 'd when considered as an element of Kalg[[M]][[z1]],
we have P =P � when considering P � as an element of Kalg[[M� z1N]]. It follows that

P 2 Kalg[[M� z1N]]Kalg
L\K[[z1; :::; zn]]:

Now consider a Cartesian representation P = P�(m1; :::;mk) for P with P� 2L. By Propo-
sition 4, we may take P� to be infinitesimal. Since m1; :::;mk are infinitesimal and m1; :::;

mk 2 z1
Q ��� zn

Q, Lemma 2 also shows that we may assume without loss of generality that
k 6 n. Completing the m1; :::; mk with additional elements if necessary, this means that
we may compute an invertible matrix M 2Qn�n such that mi= zi � zM for all i. In other
words, P =P� � zM with P� 2Ln. Since P 2K[[z1; :::; zn]] and L is effectively closed under
restricted monomial transformations, we conclude that P 2Ln. �

Effective Weierstrass division
Recall that L is an effective algebraically stable tribe over K with an effective zero test.
Assume that f 2Ln has Weierstrass degree d in z1 and let g2Ln. The Weierstrass division
theorem states that there exist unique Q2K[[z1; :::; zn]] and R2K[[z2; :::; zn]][z1] with

g = Qf +R

and degz1R<d. We claim that the quotient Q and remainder R of this division once again
belong to Ln and that there exists an algorithm to compute them:

Effective Weierstrass preparation 11



Theorem 7. There exists an algorithm that takes a power series f 2 Ln of Weierstrass
degree d in z1 and g 2 Ln as input and computes the quotient and remainder of the
Weierstrass division of g by f as elements of Ln.

Proof. Let M=z2
Q�� ����� zn

Q be as in the proof of Theorem 6. Let '1; :::; 's be the distinct
solutions of f(')=0 when considered as an equation in z1, and let �i be the multiplicity
of each 'i, so that �1 + ��� + �s= d. For each i, we compute the multiplicity �i and the
polynomials

Ai =
X
j=0

�i−1
1
j!
@j g

@z1
j
� ('i; z2; :::; zn) z1

j 2Kalg[[M]]Kalg
L[z1]

Bi = (z1− 'i)�i2Kalg[[M]]Kalg
L[z1]:

Using Chinese remaindering, we next compute the unique R 2 Kalg[[M]]Kalg
L[z1] such
that R�AimodBi for each i and degz1R< d. It is easily verified that R coincides with
the remainder of the Weierstrass division of g by f . In particular, R 2K[[z1; :::; zn]] and
we may obtain R as an element of Ln in the same way as in the proof of Theorem 6. We
obtain the quotient Q of the Weierstrass division by performing the restricted division
of g−R by f . �
The evaluation approach
Often, it is possible to regard or represent elements of the tribe L as functions. For instance,
we may regard f = z1+ exp z2 as a function f : (t K[[t]])2!K[[t]] that sends (z1(t); z2(t))
to z1(t)+ exp z2(t). This point of view is very useful for heuristic zero testing: in order to
test whether f 2K[[z1; :::; zn]]L vanishes, just pick random infinitesimal univariate series
z1(t); :::; zn(t)2 t K[[t]] and check whether the first N terms of f(z1(t); :::; zn(t)) vanish for
some suitable large number N .

In this evaluation approach, we notice that Weierstrass preparation becomes far less
expensive: instead of explicitly computing '1; :::; 'd2Kalg[[M]]Kalg
L as above, it suffices
to show how to evaluate '1; :::; 'd (in terms of the evaluations of z2; :::; zn). For instance, if
we evaluate z1; :::; zn at infinitesimal ordinary power series in tK[[t]], then the evaluations
of '1; :::; 'd will be Puiseux series in K[[tQ]] that can be computed fast using the Newton
polygon method.

Algebraic power series
In the special case of algebraic power series, we recall from the introduction that an
alternative approach to Weierstrass division was proposed in [2]. In this approach, algebraic
functions are represented in terms of unique power series solutions to certain systems of
polynomial equations. Given an algebraic series f 2K[[z1; :::; zn]] of Weierstrass degree d
in z1, the idea is then to represent the Weierstrass polynomial P associated to f as P =

z1
d + ud−1 z1

d−1 + ��� + u0 for certain undetermined coefficients. Next, it suffices to form
a new system of equations in u0; :::; ud−1 for which the unique solution yields the actual
Weierstrass polynomial. For instance, if f is a polynomial, then the relation f remz1P =0
essentially provides us with such a system, where f remz1 P stands for the remainder of
the Euclidean division of f by P as polynomials in z1.

The efficiency of this approach from [2] highly depends on the way how the systems of
equations that are satisfied by algebraic power series are represented. For instance, com-
pletely writing out the remainder f remz1P as a polynomial in K[u0; :::; ud−1; z1; z2; :::; zn]
typically leads to very large expressions. On the other hand, we expect the approach to be
efficient in combination with the evaluation approach mentioned above. If we replace the
variables z2; :::; zn by infinitesimal power series in t K[[t]], then one may solve the evaluated
system of equations in u0; :::; ud−1 using the relaxed technique from [14].
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D-algebraic power series

One attractive way to represent d-algebraic power series in z1; :::; zn is as elements of
a suitable type of finitely generated algebras A � K[[z1; :::; zn]] over K that are stable
under the derivations @1; :::; @n with respect to z1; :::; zn. For instance, we might have
A=K

�
z1; z2; e

−z12z22; erf(z1 z2)
�
.

In order to compute with implicit functions, there are essentially two approaches. The
traditional one procedes by the elimination of one or more coordinates, which may lead
to expensive rewritings. An alternative strategy is to represent restrictions of functions
in A to subvarieties by the same functions in A, and rather focus on the computation
of the derivations that leave the subvariety invariant. Consider for instance the sphere
(z1 + 1)2 + z2

2 + z3
2 = 1. We keep representing functions on the sphere using all three

coordinates z1, z2, and z3. On the other hand, for differential calculus, we only work with
derivations that annihilate the equation of the sphere. In particular, the local coordinates z2
and z3 give rise to derivations @~2=@2−z2 (1+z1)−1 @1 and @~3=@3−z3 (1+z1)−1 @1 that do
not commute. We refer to [15, Section 5] for more details on how to compute with respect
to such curved coordinates and how to derive an implicit function theorem in this way.

The second, more geometric approach can be generalized to Weierstrass division, by
regarding the implicit function theorem as division with respect to a series of Weierstrass
degree one. For a d-algebraic series f 2 A � K[[z1; :::; zn]] of higher Weierstrass degree
d > 1, we may again consider the restriction of the ambient space to the zero-set of f
(recall that we may regard f as a local function f : (K[[M]]�)n!K[[M]]4 for any totally
ordered monomial group M). Remainders of Weierstrass divisions by f then correspond to
functions on this zero-set. It is likely that an alternative effective Weierstrass preparation
theorem can be obtained by pursuing this line of thought.

5 Effective power series elimination

Throughout this section, we assume that K is an effective field with an effective zero test
and that L is an effective algebraically stable tribe over K with an effective zero test. We
will write S=K[[z1; :::; zn]] =K[[M]] with M= z1

N ��� znN and assume that M is endowed
with the asymptotic ordering 4 that corresponds on the standard lexicographical ordering
on the exponent vectors:

zi� zj () (9k; i1= j1^ ��� ^ ik−1= jk−1^ ik> jk):

For each k 2 f1; :::; ng, we also define Mk= zk
N ��� znN and Sk=K[[zk; :::; zn]] =K[[Mk]].

Given an arbitrary subset S�M, we finally define K[[S]] := ff 2S : supp f �Sg.

Weierstrass systems

Consider a subset B � S=/ together with a mapping l: B!M; b 7! lm with blb=/ 0 for each
b 2 B (intuitively speaking, lb should be interpreted as a �leading monomial� of b; it will
play a similar role as the �dominant monomial� db of b from before). Setting lb= z1

d1 ��� zk
dk

with dk =/ 0 (or dk = 0 and k = 1), we call zk the Weierstrass variable for b and dk the
corresponding Weierstrass degree. We also denote kb= k, db= dk, and

Fb = lbMk

Rb = M nFb
mb = z1

d1 ��� zk−1
dk−1

Mb = fm2M :m4mbg:
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Given any f 2S, we define

�b(f) =
X
n2Mk

fmbnn:

We say that B is a Weierstrass system if supp b � Mb, if �b(b) has valuation db (w.r.t.
z1; :::; zn) for each b 2 B and if Fb \ Fb 0=? for all b=/ b 0 in B. In that case, the elements
of B are totally ordered by b6 b 0, (Mb!Mb 0_ (Mb=Mb 0^ kb6 kb 0)).
Example 8. The set B= fb1; b2g with

b1 = z1
2− z22 (1+ z3)

b2 = z2
2− z32+ z1 z2 z3

forms a Weierstrass system with b1<b2 and

lb1 = z1
2 lb2 = z2

2

Fb1 = z1
2+Nz2

Nz3
N Fb2 = z2

2+Nz3
N

Rb1 = z2
Nz3

N[ z1 z2Nz3N Rb2 = z3
N[ z2 z3N[ z11+Nz2

Nz3
N

mb1 = 1 mb2 = 1

Mb1 = z1
Nz2

Nz3
N Mb2 = z1

Nz2
Nz3

N:

Weierstrass reduction
Let fbg be a Weierstrass system and k= kb. Given f 2S, Weierstrass division of �b(f) by
�b(b) yields a unique series a unique u2Sk such that

�b(f)− u�b(b) 2 K[[zk
f0;:::;db−1gMk+1]]:

It follows that f − u b2K[[Rb]]. Moreover, if f 2K[[Mb]], then f − u b2K[[Mb]]. We
call redb f := f − u b the Weierstrass reduction of f with respect to b. If f ; b 2 SL, then
redb f 2SL and we may compute redb f as described in Section 4.

We notice that redb:S!K[[Rb]] is an Sk+1-linear mapping. The mapping actually
preserves infinite summation in the following sense: a family (fi)i2I 2 SI is said to be
summable if the set fi 2 I : m 2 supp fig is finite for each m 2M. In that case, the sum
f =

P
i2I fi is well defined by taking fm=

P
i2I (fi)m for each m 2M. Linear mappings

that preserve infinite summation are said to be strongly linear .
Now consider a Weierstrass system B= fb1; :::; bpg with b1< ���< bp. Given f 2 S, we

define its Weierstrass reduction with respect to B by

redB f = (redbp � ��� � redb1)(f): (2)

By induction over p, it can be checked that redB:S!K[[RB]] is a strongly linear mapping,
where RB=Rb1\ ��� \Rbp. If f 2SL, then we also have redB(f)2K[[RB]]L, and we may
compute redB(f) using (2).

Example 9. Let us show how to reduce

f = z1 b2= z1
2 z2 z3+(z2

2− z32) z1
with respect to theWeierstrass system B from Example 8. We start with the computation of

redb1 f = f − z2 z3 b1 = z2
3 z3 (1+ z3)+ (z2

2− z32) z1:
Now �b2(redb1 f)= z2

3 z3 (1+ z3) and �b2(b2)= z2
2− z32. Abbreviating b20 :=�b2(b2), it follows

that u= z2 z3 (1+ z3) satisfies redb20 �b2(redb1 f)= redb1 f −u b20 . Consequently,
redB f = redb1 f −u b2

= z2 z3
3 (1+ z3)+ (z2

2− z32− z22 z32 (1+ z3)) z1:
We indeed have supp redB f �RB= z3

N[ z2 z3N[ z1 z2Nz3N.
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Remark 10. Weierstrass reduction is somewhat different in flavour than reduction with
respect to a Gröbner basis in the sense that the variables z1; :::; zn do not play a symmetric
role. In particular, the notion of S-polynomials has no direct counterpart in our context.
Despite these differences, Weierstrass reduction admits similar applications, such as the
computation of Hilbert functions, checking ideal membership, etc. The set RB also plays
a similar role as the set of �boxes below a Gröbner staircase�.

Remark 11. Rather than regarding Weierstrass bases as a power series analogue of
Gröbner bases, it is actually more appropriate to consider them as a natural counterpart
of so-called �Janet bases� [16, 22]. The theory of Janet bases was originally developed in
the context of differential equations. Nevertheless, the theory in particular applies to linear
partial differential equations in @1; :::; @n with constant coefficients in K, in which case we
are really working with polynomials in n indeterminates @1; :::; @n over K.

Reduced Weierstrass systems

AWeierstrass system B is itself said to be reduced if for each b2B, we have b− lb2K[[RB]].
Two Weierstrass systems B and B 0 are said to be equivalent if redB and redB 0 coincide.

Let B be an arbitrary Weierstrass system and consider b 2 B with k = kb and d= db.
We claim that there exists a unique u = ub 2 Sk with u b − lb 2 K[[Rb]]. Indeed, the
Weierstrass preparation theorem implies the existence of a series u 2 Skb with u �b(b) 2
zk
d+ Sk+1 zk

d−1+ ���+ Sk+1. It follows that u b− lb2K[[Rb]]. If b 2SL, then Theorem 6
shows how to compute u.

Replacing b by ub b for each b 2 B, we obtain an equivalent Weierstrass system such
that b − lb 2K[[Rb]] for each b 2 B. Let B = fb1; :::; bpg with b1 < ��� < bp. Replacing bi
by (redbp � ��� � redbi+1)(bi) for i = p; :::; 1, we obtain an equivalent reduced Weierstrass

system B~. If B �SL, then this procedure is completely effective, and B~�SL.

Weierstrass position

Let I be an ideal of S. In this subsection, we will define when I is in Weierstrass position.
We proceed by induction over n. The ideals I = 0 and I = S are always in Weierstrass
position, which deals in particular with the case when n=0.

Assume that n > 0 and I =/ 0, and let d be the minimal valuation of a non-zero
element of I. Given a power series g 2S, let g= g0+ g1 z1+ g2 z1

2+ ��� be its power series
expansion with respect to z1. For each i 2N, the sets I>i := I \ fg 2 S : valz1 g > ig and
I[i] := fgi : g 2 I>ig are ideals of S and S2. We say that I is in Weierstrass position if there
exists an element f 2 I with fz1d =/ 0 and such that the ideals I[0]; :::; I[d−1] of S2 are in
Weierstrass position.

Since we assumed K to be of charactersitic zero, it contains infinitely many elements.
Given a finite number of ideals I1; :::; Ip of S, let us show by induction over n that there
exists a linear change of coordinates for which I1; :::; Ip are simultaneously in Weierstrass
position. A linear change of coordinates is a mapping S! S; f 7! f � ' with ' 2 Slin

n :=
(Kz1+ ���+Kzn)

n

For n = 0, we have nothing to do, so assume that n > 0. For each k 2 f1; :::; pg, let
fk 2 Ik be a non-zero element of minimal valuation dk. Since K is infinite, there exist
�2; :::; �n 2K such that (fk � ')z1dk =/ 0, where '= (z1; z2 + �2 z1; :::; zn + �n z1). By the

induction hypothesis, there exists a vector  2 (S2)linn−1= (Kx2+ ���+Kxn)
n−1 of linear

series such that (Ik � ')[i] �  are simultaneously in Weierstrass position for k 2 f1; :::; pg
and i < dk. Setting  #= (z1;  1; :::;  n−1) 2 Slin

n , we notice that (fk � ' �  #)z1dk=/ 0 and

(Ik � ')[i] �  = (Ik � ' �  #)[i] for all k 2 f1; :::; pg and i < dk. Consequently, the ideals
Ik � ' �  # are all in Weierstrass position.
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From a practical point of view, a random linear change of variables puts an ideal into
Weierstrass position with probability one. From a theoretical standpoint, it suffices to
extend K with

�
n
2

�
formal parameters and to perform a generic triangular linear change of

coordinates. The adjunction of new formal parameters can be done effectively using the
technique from the end of Section 3.

Weierstrass bases

Let I be an ideal of S. A Weierstrass system B is said to be a Weierstrass basis for I if
I = ff 2 S : redB f = 0g. Assuming that I is in Weierstrass position, an abstract way to
construct a Weierstrass basis goes as follows.

If I = f0g, then we take B = ?. Otherwise, let f be an element of I of minimal
valuation d with fz1d =/ 0. For each i 2 f0; :::; d − 1g, the induction hypothesis yields
a Weierstrass basis B[i] for the ideal I[i]. For each b 2 B[i], there exists an element b 0 =
b z1

i+ bi+1
0 z1

i+1+ ���+ bd−10 z1
d−12 I>i. Let B[i]0 be the set of all such elements b 0 with b2B[i].

Then the disjoint union ff gqB[0]0 q ���qB[d−1]0 is a Weierstrass basis for I .

Stable Weierstrass systems

Our next aim is to provide a more effective criterion for checking whether a reduced
Weierstrass system B is in fact a Weierstrass basis of an ideal. Given k2f1; :::; ng we will
denote

B(k] = fb2B : kb6 kg
B[k] = fb2B : kb= kg
B[k) = fb2B : kb> kg:

The Weierstrass system B is said to be stable if for all k 2f1; :::; n− 1g and b2B, we have

redB (xk b) = 0:

Notice that this relation automatically holds for b2B(k], so it suffices to prove the relation
for all k 2 f0; :::; n − 1g and b 2 B[k+1). The main goal of this subsection is to prove the
following theorem:

Theorem 12. Any stable reduced Weierstrass system B is a Weierstrass basis.

Proof. Let k 2 f0; :::; n− 1g and notice that Mk :=K[[RB(k]]] is an Sk+1-module. Now
consider

Mk = ff 2Mk : redB f =0g
= ff 2Mk : redB[k+1) f =0g

Nk = Mk\
X

b2B[k+1)
Sk+1 b:

We claim that Mk=Nk for all k. We clearly have Mk �Nk. For the inverse inclusion, it
suffices to show that Mk is an Sk+1-module. We will use induction over n− k. For k=n,
we have Mn=Nn=0.

Assuming that Mk=Nk, let us now show that Mk−1=Nk−1. Notice that

Mk−1 = Mk�Ek

Ek =
M
b2B[k]

Sk b

16 Section 5



and redB(k]: Mk−1 ! Mk is an Sk+1-linear projection. Now Mk can be regarded as an
Sk-module by letting multiplication by '2Sk act as

' � f := redB(k] (' f) = redB[k] ('f):

Since B is stable, we have xk � b 2Mk for all b 2 B[k+1). Since B[k+1) generates the Sk+1-
module Nk = Mk, it follows that Mk is an Sk+1[xk]-submodule of Mk. Using the fact
that redB is strongly linear, Mk is actually an Sk-submodule of Mk. In other words,
SkMk �Mk + Ek. Using that Mk−1 =Mk � Ek, we conclude that SkMk−1 = Sk (Mk �
Ek)�Mk�SkEk=Mk−1, whence Mk−1 is an Sk-module.

Having proved our claim, we finally observe that B is a Weierstrass basis forN0=M0. �

Computing Weierstrass bases

Let F be a finite subset of SL. Assuming �general position�, we will show in this section
how to compute a Weierstrass basis B �SL for the ideal (F). The algorithm will proceed
by the repeated replacement of elements of B by linear combinations of elements in B.
Consequently, along with the computations, we may calculate a matrix M 2 SL

B�F with
B=MF (in the sense that b=

P
f2FMb;f f for all b2B). The algorithm raises an error if

the general position hypothesis is violated.
As usual, we proceed by induction over n. If F �f0g, then we may take B=? and we

have nothing to do. Otherwise, let f 2F nf0g be of minimal valuation d. If fx1d=0, then
we raise an error. Assuming that fx1d=/ 0, we first replace f by u f , where u 2 SL is such
that u f −z1d2K[[Rf]]. We next replace each other element g 2F nff g by redfg, so that
F nff g�K[[Rf]]. For each i2f0; :::; d− 1g, let F[i]= fg 2F : valz1 g= ig. The recursive
application of the algorithm to (F[i])i yields a matrixMi such thatMi (F[i])i is a Weierstrass
basis of ((F[i])i). Consequently, B[i]=MiF[i] yields a Weierstrass system such that (B[i])i
is a Weierstrass basis. The disjoint union B= ff gqB[0]q ���qB[d−1] is also a Weierstrass
system and we may reduce it using the algorithm described above.

At this point, we have a reduced Weierstrass system with the property that (B[i])i
is a Weierstrass basis for each i. We next compute R = fredB (xk b) : 1 6 k < n; b 2 Bg.
If R = f0g, then B is a Weierstrass basis by Theorem 12. Otherwise, we replace F by
B [R n f0g and recompute B in the same way above, while keeping the same f . During
each iteration of this loop, the ideals ((B[i])i) of S2 can only increase, and one of them must
increase strictly. Since S2 is Noetherian, the loop therefore terminates.

Sufficiently �general position� for avoiding any errors can be forced in a similar way as
described in the subsection aboutWeierstrass position. In that case, we systematically work
with collections F such that each F 2F is a finite subset of SL. Modulo a common linear
change of coordinates '2Slin

n we then compute a Weierstrass basis for each ideal (F � ')
with F 2F .

Hilbert functions

Let I be an ideal of S. For each d 2 N, let Jd be the ideal generated by all monomials
z1
d1 ��� zn

dn with d1+ ���+ dn= d. Setting D(d) = dim (S/(I + Jd)) and HF(d) =HFI(d) =
D(d+1)−D(d), the function HF=HFI is called the Hilbert function of I . It is well known
that there exists a degree �2N and a polynomialH=HI2Q[t] such that HF(d)=H(d) for
all d> �. This polynomial is called the Hilbert polynomial of I . Moreover, the regularity �I
of I is the minimal � 02N such that HF(d)=H(d) for all d> � 0.

Now let B be a Weierstrass basis for I and denote

RB;<d = RB\M<d (3)
M<d = fz1

d1 ��� zn
dn : d1+ ���+ dn<dg: (4)
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Given f 2S, let f<d=
P

m2M<d
fmm, so that f<d is a natural representative of f modulo Jd.

For some (Qb)b2B 2SB, we have f =
P

b2BQb b+ redB(f), whence f<d=
P

b2B (Qb b)<d+

redB(f)<d. It follows that f mod (I +Jd)= redB(f)mod (I + Jd), whence

S/(I + Jd) =� K[[RB;<d]]:

This simply means that

D(d)= jRB;<dj= jM<d nFBj= jM<dj −
X
b2B

jFb\M<dj:

Now given b2B with lb= z1
d1 ��� zk

dk, we have

jFb\M<dj= jxkN ���xnN\M<d−d1−���−dkj=
�
n− k+ d− d1− ��� − dk

n− k+1

�
for all d>d1+ ���+dk. These formulas allow us to explicitly compute the Hilbert polynomial
of I and the corresponding regularity.

Generalization to modules

Using a fairly standard technique, let us briefly show how the results of this section gen-
eralize to finitely generated S-modules instead of ideals.

Let M := Sr be the free S-module with canonical basis e1; :::; er. We may embed this
module in the S-submodule M0=S zn+1� ��� �S zn+r of Ŝ :=S[[z1; :::; zn; zn+1; :::; zn+r]]
via the mapping �:M!M0 defined by

�(a1 e1+ ���+ ar er)= a1 zn+1+ ���+ ar zn+r:

Now consider an S-submodule M of M and let I(M) be the ideal of Ŝ generated by
M 0 :=�(M) and Z2, where Z := (zn+1; :::; zn+r). Then

M 0 = I(M)\M0

and we have a natural isomorphism of S-modules

Ŝ/I(M) =� M/M � Ŝ/Z =� M/M �S:

This latter identity makes it possible to carry over the constructions from this section to
the case of S-modules. In particular, one may define and compute the Hilbert function
of M using the formula

HFM(d) = HFI(M)(d+1)−HFZ(d+1);

and it can be checked that HFM(d)=dim (M/(M +Jd e1+ ���+Jd er)). The corresponding
Hilbert polynomial and Hilbert regularity satisfy

HM(d) = HI(M)(d+1)−HZ(d+1)

�M 6 max (�I(M); �Z)+1:

6 Standard bases
Let K, S =K[[z1; :::; zn]] =K[[M]] and L be as in the previous section, but the reader
may forget about the other notations defined there. Let 4 be an arbitrary total monomial
ordering on M with z1 � 1; :::; zn � 1. Given a series f 2 S and a monomial m 2M, we
denote f�m=

P
n�mfnn. Given a subset S �S, we also denote S�m= ff�m : f 2Sg. The

notations f�m, f4m, S�m, etc. are defined likewise.

18 Section 6



In this section, we first very briefly recall the notions of Hironaka reduction and stan-
dard bases; for more details, we refer to [10, 11]. Given a finite subset F of SL, we next show
how to compute a (not necessarily reduced) standard base for (F), using the techniques
from the previous section.

Hironaka reduction

Let B be a finite subset of S=/ . We define

FB =
S
b2B dbM

RB = M nFB:

Given f 2S, we say that f is reduced with respect to B if supp f �RB. There exists a g2(B)
such that f − g is reduced with respect to B. Writing B=fb1; :::; brg with b1< ���<br, there
actually exist unique q1; :::; qr2S such that f − q1 b1−���− qr br is reduced with respect to B
and m2 supp qi) dbj -mdbi for all 16 j < i6 r. We define redB(f) := f − q1 b1− ���− qr br
to be the Hironaka reduction of f with respect to B and simply write redb = redB if
B= fbg is a singleton. If f 2SL and B�SL, then we do not necessarily have redB(f)2SL.
Nevertheless, for any m2M such that M�m is finite, we may compute redB(f)�m from f�m
and B�m using a similar recursion (over M�m) as in the case of Euclidean division. We say
that B is autoreduced if b is reduced with respect B n fbg for all b2B.

Example 13. Let L be the tribe of algebraic power series. If

f = z1 z2

b = (z1− z22) (z2− z12);

then it can be shown [11, p. 75] that

redb(f) =
X
k>0

(−1)k
(
z1
3�2k+ z2

3�2k�:
Since the power series �(z) :=

P
k>0 (−1)

k z2
k
is lacunary, it cannot be algebraic, whence

redb(f) is transcendental. This means that f ; b2SL, but redb(f)2/ SL.

Example 14. For those readers who are familiar with differential algebra [21], it is not hard
to see that the series �(z) from the previous example is even d-transcendental (this fact
was first proved using different techniques in [19]): assume the contrary and consider a d-
algebraic equation P (�(z))=0 overK(zQ) of minimal Ritt rank. We have �(z)=z−�(z2),
so P (z−�(z2))=0 also yields an equation of the same Ritt rank for �(z2). But the change
of variables z2=z 0 then gives a second, different, d-algebraic equation for �(z 0) of the same
Ritt rank as P . Applying Ritt reduction with respect to P , this yields a new equation
of smaller Ritt rank, which contradicts the minimality hypothesis. In other words, if we
replace L by the tribe of d-algebraic power series in the above example, then we still have
f ; b2SL, but redb(f)2/ SL.

Standard bases

Given an ideal I �S, let

FI = fdf : f 2 I n f0gg
RI = M nFI:

We say that a finite subset B of S=/ is a standard basis for I if (db)b2B is a set of generators
of (FI). We say that B is reduced if B is autoreduced and b − db 2K[[RI]] for all b 2 B.
Any ideal I �S admits a unique reduced standard basis.
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Let f ; g 2 S=/ be such that df = zi = z1
i1 ��� zn

in and dg = zj = z1
j1 ��� zn

jn. Let
k= sup (i; j)= (max (i1; j1); :::;max (in; jn)). We define the S-series S(f ; g)2S of f and g
to be

S(f ; g) = gdg z
k−i f − fdf zk−j g:

In a similar way as in the case of Gröbner bases, it can be shown that a finite autoreduced
subset B of S=/ is a standard basis if and only if redB(S(b; b 0))=0 for all b; b 02B. For any
pair (b; b 0)2B2, the relation redB(S(b; b0))=0 gives rise to an S-linear relation between the
elements of B. Using standard Gröbner basis techniques it can be shown that the space of
all S-linear relations between elements of B (the module of syzygies) is generated by the
relations of this special form.

Given a finite setF �S and I=(F), this characterization theoretically allows us to com-
pute the reduced standard basis B for I using a suitable local adaptation of Buchberger's
algorithm. However, such an �algorithm� relies on our ability to compute reductions and
Examples 13 and 14 show that we do not have any general algorithm for doing so. Nev-
ertheless, we will show next that it is still possible to compute suitable truncations of B.

Truncated standard bases

Given an ideal I �S and a monomial m2M, we have I = I�m� I4m, where I4m= I \S4m
is again an ideal. Let B be the reduced standard basis for I and assume that I is generated
by a finite subset F of SL.

If M�m is finite, then for any f 2S�m and S �S�m we have an algorithm to compute
the truncated reduction redS

>(f) := redS(f)�m 2 S�m. Similarly, for f ; g 2 S�m
=/ , we can

compute the truncated S-polynomial S>(f ; g) := S(f ; g)�m 2 S�m. When using these
truncated variants of reduction and S-polynomials, the local analogue of Buchberger's
algorithm terminates, since all computations take place in a finite dimensional vector space.
This provides us with an algorithm to compute T = B�m n f0g, together with a matrix
M 2SL

T �F such that T =(MF)�m.

Hilbert functions

Let B be a standard basis of an ideal I of S, let d2N, and let RB;<d be defined as in (3).
In a similar way as at the end of section 5, one can show that

S/(I + Jd) =� K[[RB;<d]]:

Moreover, RB=Rfdb:b2Bg and the dimension of K[[Rfdb:b2Bg;<d]] can be computed by the
familiar technique of counting boxes below a Gröbner staircase. In other words, if we know
a standard basis B �SL of an ideal I of S, then we can compute the Hilbert function of I.

Computing standard bases in the Archimedean case

In this subsection we show that the Hilbert function of I also provides us with information
about the possible shapes of standard bases for I. We will assume that the monomial
ordering 4 on M is Archimedean in the sense that for any m; n 2M n f1g, there exists
a k 2N with mk� n. In particular, the set M�m is finite for any m2M.

Theorem 15. Let F be a finite subset of SL and assume that the monomial ordering 4
on M is Archimedean. Then there exists an algorithm to compute a standard basis B~

for I =(F), together with a matrix M 2SL
B~�F with B~ =MF.
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Proof. Using the techniques from Section 5, we can compute the Hilbert function HFI
of I . Let B be the reduced standard basis of I and m2M. Since 4 is Archimedean, the set
M�m is finite. We have shown above that this allows us to compute T =B�mnf0g, as well
as a matrix M 2SLT �F with T =(MF)�m. Let B~=MF . Given b~2B~, there exists a b2B
with b~�m= b�m=/ 0 and db= db�m = db~�m = db~. Consequently, FB~ � FB. Now we may also
compute the Hilbert function HFJ~ of the ideal J~=(FB~). We claim that B~ is a standard basis
for I if and only if HFI=HFJ~. Indeed, we have FJ~=FB~�FB=FI, so HFI=HFJ~ if and only
if FB~=FB. By definition, a subset A� I is a standard basis of I if and only FA=FI=FB.

In order to compute a standard basis, we pick smaller and smaller elementsm2M for4,
and perform the above computations until we have HFI =HFJ~. Since 4 is Archimedean,
m eventually becomes sufficiently small so that m � db for all b 2 B. At that point, we
necessarily have FB~=FB and HFI=HFJ~. This proves the termination of our algorithm. �

Standard bases for modules

LetM=Sr, Ŝ=K[[z1; :::; zn+r]] be as at the end of section 5, as well as the further notations
Z, � and I(M). Assume also that the monomial ordering on M has been extended to
M̂ := z1

N ��� zn+rN in such a way that zn+1� 1; :::; zn+r� 1.
Given an S-submodule M of M, a subset B of M is defined to be a standard basis

for M if B 0 := �(B)[ fzi zj : n+ 16 i6 j 6 n+ rg is a standard basis for the ideal I(M)
of Ŝ. Given such a standard basis, we may compute the Hilbert function of M using
HFM(d) = HFI(M)(d + 1) − HFZ(d + 1), by counting boxes below the standard bases B 0
and fzn+1; :::; zn+rg of I(M) and Z.

Given a subset S �M and a monomial m 2M, we denote S�m= f(f1)�m e1 + ��� +
(fr)�m er : f1 e1 + ��� + fr er 2 Sg, and we define S�m, etc. likewise. We again have
M = M�m � M4m, where M4m = M \M4m is an S-module. The notions of truncated
reduction and truncated S-�polynomials� readily generalize to modules (the S-polynomial of
f ei and g ej with i=/ j being zero, by definition) and it can be shown that the same holds
for Theorem 15. In fact, we are up to proving something even better.

Computing standard bases in the general case

Modulo a permutation of variables, we may assume without loss of generality that
z1� ��� � zn. The Archimedean rank of M is defined to be the number of indices
m2f1; :::; ng such that m = n or m < n and zm � zm+1

k for all k 2 N. Given a finite
subset F of ML :=SL e1�����SL er, we also denote by SF the S-module generated by F .

Theorem 16. Let F be a finite subset of ML. Then there exists an algorithm to compute
a standard basis B~ for M =SF, together with a matrix T 2SL

B~�F with B~=TF.

Proof. We proceed by induction over the Archimedean rank % of M. If %= 0, then the
result is obvious. So assume that %> 0 and let m6n be maximal such that M]= z1

N ��� zmN
has Archimedean rank one. We denote S[ = K[[zm+1; :::; zn]] and notice that M[ =
zm+1
N ��� znN has Archimedean rank %− 1.
Givenm2M], we notice that the truncationM�m is a free finite dimensional S[-module.

By the induction hypothesis, it follows that we can compute a standard basis for the
S[-submodule generated by any finite subset G of M�m. Given f 2M�m, we can also check
whether f 2S[ G: it suffices to decide whether the Hilbert functions of S[ G and S[ (G[ff g)
coincide.

Given a finite subset G of M�m as above, we say that G is stable if for all i2f1; :::; rg,
f ; g 2S[, and v;w2M] with v�m and w�m, we have

1. If f v ei2G and w2 vM], then (f w ei)�m2S[ G.
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2. If f v ei; gw ei2G and v=/ w, then S(f v; gw)�mei2S[ G.

By what precedes, we have an algorithm to check whether G is stable. If not, then we may
keep enlarging G with elements of the form (f w ei)�m or S(f v; g w)�m ei until stabilization
takes place. Due to the Noetherianity of M�m, this happens after a finite number of steps.

In other words, given m 2 M], the above procedure allows us to compute a stable
standard basis G for the S[-module (SF)�m together with the matrix T 2SLB�F for which
G = (TF)�m. Let B~ = TF . Since M] is Archimedean, a similar reasoning as in the proof
of Theorem 15 shows that the Hilbert functions of S B~ and M coincide for a sufficiently
small m2M]. At that point, B~ =TF contains the desired standard basis of M . �
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