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Abstract

Let K be an effective field of characteristic zero. An effective tribe is a subset of
K[[z1, z2, ...]] =K ∪K[[z1]] ∪K[[z1, z2]] ∪ ··· which is effectively stable under the K-
algebra operations, restricted division, composition, the implicit function theorem, as
well as restricted monomial transformations with arbitrary rational exponents. Given
an effective tribe with an effective zero test, we will prove that an effective version of
the Weierstrass division theorem holds inside the tribe.
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1 Introduction

There are two main aspects about effective computations with formal power series. On
the one hand, we need fast algorithms for the computation of coefficients. There is an
important literature on this subject and the asymptotically fastest methods either rely on
Newton’s method [1] or on relaxed power series evaluation [7].

On the other hand, there is the problem of deciding whether a given power series is
zero. This problem is undecidable in general, since we need to check the cancellation of an
infinite number of coefficients. Therefore, a related subject is the isolation of sufficiently
large classes of power series such that most of the common operations on power series can
be carried out inside the class, but such that the class remains sufficiently restricted such
that we can design effective zero tests.

In section 2, we first recall the most common operations on formal power series over
a field K of characteristic zero: the K-algebra operations, restricted division, composition,
the resolution of implicit equations, and so called restricted monomial transformations with
arbitrary rational exponents. A subset L of K[[z1, z2, ...]] =K ∪K[[z1]] ∪K[[z1, z2]] ∪ ···
which is stable under each of these operations will be called a tribe. We will also specify
effective counterparts of these notions.

The main result of this note is presented in section 4: given an effective tribe with an
effective zero test, we show that the tribe also satisfies an effective version of the Weierstrass
preparation theorem [10], and we give an algorithm for performing Weierstrass division
with remainder. Our result can for instance be applied to the tribes of algebraic power
series and D-algebraic power series (see also [4, 5, 9]).

The fact that the collection of all D-algebraic power series satisfies the Weierstrass
preparation theorem was first proved in a more ad hoc way by van den Dries [6]. The notion
of a tribe also shares some common properties with the notion of a Weierstrass system, as
introduced by Denef and Lipshitz [3] and used in [6]. Our main theorem can be regarded
as a simpler, effective and more systematic way to prove that certain types of power series
form Weierstrass systems.

∗. This work has been supported by the ANR-10-BLAN 0109 LEDA project.
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The idea behind our main algorithm is very simple: given a series f ∈L∩K[[z1, ..., zn]]
of Weierstrass degree d in z1, we just compute the solutions ϕ1, ..., ϕd of the equation
f(z1, ..., zn)=0 in z1 inside a sufficiently large field of grid-based power series. This allows
us to compute the polynomial P =(z1−ϕ1) ··· (z−ϕd) which we know to be theWeierstrass
polynomial associated to f . Using the stability of the tribe under restricted monomial
transformations, we will be able to compute P as an element of L.

The algorithms rely on our ability to compute with the auxiliary grid-based power series
ϕ1, ..., ϕd. For this reason, we briefly recall some basic facts about grid-based power series
in section 3, as well as the basic techniques which are needed in order to compute with them.

2 Common operations on power series

Let K be a field of characteristic zero and denote

K[[z1, z2, ...]] = K ∪K[[z1]]∪K[[z1, z2]]∪ ···,

where we understand that K[[z1, ..., zn]] is naturally included in K[[z1, ..., zn+1]] for each n.
So each element f ∈K[[z1, z2, ...]] is a power series in a finite number of variables.

We say that K is effective if its elements can be represented by concrete data structures
and if all field operations can be carried out by algorithms. We say that K admits an
effective zero test if we also have an algorithm which takes f ∈ K on input and which
returns true if f =0 and false otherwise.

If K is effective, then a power series f ∈K[[z1, z2, ...]] is said to be computable if we
have an effective bound n for its dimension (so that f ∈K[[z1, ..., zn]]), together with an
algorithm which takes i∈Nn on input and produces the coefficient fi∈K of zi= z1

i1 ··· zn
in

on output. We will denote the set of computable power series by K[[z1, z2, ...]]
com.

Basic operations on power series

Let L be a subset of K[[z1, z2, ...]]. We will denote Ln=L∩K[[z1, ..., zn]] for each n and
say that L is effective if L ⊆K[[z1, z2, ...]]

com. In this section, we will give definitions of
several operations on power series and the corresponding closure properties that L may
satisfy. From now on, we will always assume that L is at least a K-algebra. It is also
useful to assume that L is inhabited in the sense that zi ∈ L for all i. For each i, we will
denote ∂i= ∂ /∂zi and δi= zi ∂i. We say that L is stable under differentiation if ∂iL⊆L

for all i (whence δiL⊆L).
The above closure properties admit natural effective analogues. We say that L is an

effective K-algebra if K is an effective field, if the elements of L can be represented by
concrete data structures and the K-algebra operations can be carried out by algorithms.
We say that L is effectively inhabited if there is an algorithm which takes i ∈N on input
and which computes zi∈L. We say that L is effectively stable under differentiation if there
exists an algorithm which takes f ∈L and i∈N on input and which computes ∂i f ∈L.

Restricted division

We say that L is stable under restricted division if f / g∈L whenever f ∈L and g∈L \{0}
are such that f /g ∈K[[z1, z2, ...]]. If L is effective, then we say that L is effectively stable
under restricted division if we also have an algorithm which computes f / g as a function
of f , g ∈ L, whenever f / g ∈ K[[z1, z2, ...]]. Here we do not assume the existence of a
test whether f / g ∈ K[[z1, z2, ...]] (the behaviour of the algorithm being unspecified
if f / g ∈/ K[[z1, z2, ...]]). More generally, given g ∈ K[[z1, z2, ...]] \ {0}, we say that L is
stable under restricted division by g if f / g ∈ L whenever f / g ∈K[[z1, z2, ...]], and that
L is effectively stable under restricted division by g if this division can be carried out
by algorithm.
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Composition

Given f ∈K[[z]]=K[[z1, ..., zn]], we let f(0)∈K denote the evaluation of f at 0=(0, ...,0).
Given f ∈ K[[z]] and g1, ..., gn ∈ K[[u]] = K[[u1, ..., up]] with g1(0)= ···= gn(0)= 0, we
define the composition f ◦ g = f ◦ (g1, ..., gn) of f and g to be the unique power series
f ◦ g ∈K[[u1, ..., up]] with

(f ◦ g)(u1, ..., up)= f(g(u1, ..., up), ..., g(u1, ..., up)).

We say that a power series domain L ⊆ K[[z1, z2, ...]] is stable under composition if
f ◦ (g1, ..., gn)∈L for any f ∈Ln and g1, ..., gn∈L with g1(0) = ···= gn(0) = 0. If we also
have an algorithm for the computation of f ◦ (g1, ..., gn), then we say that L is effectively
stable under composition.

We notice that stability under composition implies stability under permutations of
the zi. In particular, it suffices that z1∈L for L to be inhabited. Stability under composition
also implies stability under the projections πi with

(πi f)(z1, ..., zn)= f(z1, ..., zi−1, 0, zi+1, ..., zn).

If L is also stable under restricted division by z1 (whence under restricted division by
any zi), then this means that we may compute the coefficients [zi

k] f of the power series
expansion of f with respect to zi by induction over k:

[zi
k] f =πi

f − [zi
0] f − ··· −

(

[zi
k−1] f

)

zi
k−1

zi
k

.

Similarly, we obtain stability under the differentiation: for any f ∈Ln and i6n, we have

(∂i f)(z1, ..., zn) = πn+1

f(z1, ..., zi−1, zi+ zn+1, zi+1, ..., zn)− f(z1, ..., zn)
zn+1

.

Implicit functions

Let ϕ1, ..., ϕm∈K[[z1, ..., zn]] with p=n−m> 0 and ϕ1(0)= ···= ϕm(0)=0. Assume that
the matrix formed by the first m columns of the scalar matrix

∂ϕ

∂z
(0) =









∂ϕ1

∂z1
(0) ···

∂ϕ1

∂zn
(0)

···
···

∂ϕm

∂z1
(0) ···

∂ϕm

∂zn
(0)









is invertible. Then the implicit function theorem implies that there exist unique power
series ψ1, ..., ψm ∈ K[[z1, ..., zp]], such that the completed vector ψ = (ψ1, ..., ψn)
with ψm+1 = z1, ..., ψn = zp satisfies ϕ ◦ ψ = 0. We say that a power series domain
L⊆K[[z1, z2, ...]] satisfies the implicit function theorem (for m implicit functions) if
ψ1, ..., ψm ∈ L for the above solution of ϕ ◦ ψ = 0, whenever ϕ1, ..., ϕm ∈ Ln. We
say that L effectively satisfies the implicit function theorem if we also have an algorithm
to compute ψ1, ..., ψm as a function of ϕ1, ..., ϕm.

We claim that L satisfies the implicit function theorem for m implicit functions as soon
as L satisfies the implicit function theorem for one implicit function and L is stable under
restricted division and composition. We prove this by induction over m. For m = 1 the
statement is clear, so assume that m > 1. Since (∂ϕ/∂z)(0) is invertible at least one of
the (∂ϕi/∂z1)(0) must be non zero. Modulo a permutation of rows we may assume that
(∂ϕ1/∂z1)(0)=/ 0. Applying the implicit function theorem to ϕ1 only, we obtain a function
ξ ∈Ln−1 with ϕ1 ◦ (ξ, z1, ..., zn−1)= 0. Differentiating this relation, we also obtain

∂ξ

∂zj
= −

∂ϕ1/∂zj+1

∂ϕ1/∂z1
◦ (ξ, z1, ..., zn−1),
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for each j. Setting λ := 1/(∂ϕ1/∂z1)(0), this yields in particular

∂ξ

∂zj
(0) = −λ

∂ϕ1

∂zj+1

(0).

Now consider the series ϕi
′= ϕi+1 ◦ (ξ, z1, ..., zn−1)∈L. For each j6m− 1, we have

∂ϕi
′

∂zj
(0) =

∂ξ

∂zj
(0)

∂ϕi+1

∂z1
(0)+

∂ϕi+1

∂zj+1

(0)

=
∂ϕi+1

∂zj+1

(0)− λ
∂ϕ1

∂zj+1

(0)
∂ϕi+1

∂z1
(0).

In particular,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ1
′

∂z1
(0) ···

∂ϕ1
′

∂zm−1

(0)

···
···

∂ϕm−1
′

∂z1
(0) ···

∂ϕm−1

∂zm−1

(0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λ

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ1

∂z1
(0) ···

∂ϕ1

∂zm
(0)

···
···

∂ϕm

∂z1
(0) ···

∂ϕm

∂zm
(0)

∣

∣

∣

∣

∣

∣

∣

∣

=/ 0.

By the induction hypothesis, we may thus compute series ψ2, ..., ψm ∈ Lp such that
ϕi
′◦(ψ2, ..., ψm,z1, ..., zp)=0 for all i. Setting ψ1= ξ ◦(ψ2, ..., ψm, z1, ..., zp)∈Lp, we conclude

that ϕ1 ◦ (ψ1, ..., ψm, z1, ..., zp)= ϕ1 ◦ (ξ, z1, ..., zn−1) ◦ (ψ2, ..., ψm, z1, ..., zp)= 0 and

ϕi+1 ◦ (ψ1, ..., ψm, z1, ..., zp) = ϕi+1 ◦ (ξ, z1, ..., zn−1) ◦ (ψ2, ..., ψm, z1, ..., zp)

= ϕi
′ ◦ (ψ2, ..., ψm, z1, ..., zp)

= 0

for all i6m− 1.

Restricted monomial transformations

Consider an invertible n × n matrix M ∈ Qn×n with rational coefficients. Then the
transformation

· ◦ zM: z1
Q ··· zn

Q −→ z1
Q ··· zn

Q

zi 7−→ zM ·i

is called a monomial transformation, where i ∈ Qn is considered as a column vector.
For a power series f ∈ K[[z1, ..., zn]] whose support supp f = {i ∈ Nn: fi =/ 0} satisfies
M · supp f ⊆Nn, we may apply the monomial transformation to f as well:

f ◦ zM =
∑

i∈Nn

fi z
M ·i.

We say that L is stable under restricted monomial transformations if for any f ∈ Ln and
invertible matrix M ∈Qn×n with M · supp f ⊆Nn, we have f ◦ zM ∈Ln. We say that L is
effectively stable under restricted monomial transformations if we also have an algorithm
to compute f ◦ zM as a function of f and M . Notice that we do not require the existence
of a test whether M · supp f ⊆ Nn in this case (the behaviour of the algorithm being
unspecified whenever M · supp f *Nn).

If M ∈Nn×n has positive integer coefficients, then we always haveM · supp f ⊆Nn and
L is trivially stable under the monomial transformation f 7→ f ◦ zM whenever L is stable
under composition.
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Examples

We say that the K-algebra L with z1 ∈ L is a local community if L is stable under
composition, the resolution of implicit equations, and restricted division by z1. We say
that L is a tribe if L is also stable under restricted division and restricted monomial
transformations. Effective local communities and tribes are defined similarly.

A power series f ∈ K[[z1, z2, ...]] is said to be algebraic if it satisfies a non trivial
algebraic equation over the polynomial ring K[z1, z2, ...]=K ∪K[z1]∪K[z1, z2]∪···. Setting
H =K(z1, z2, ...) =K ∪K(z1) ∪K(z1, z2) ∪ ···, this is the case if and only if the module
H [f ] is a H-vector space of finite dimension. Using this criterion, it is not hard to prove
that the set K[[z1, z2, ...]]

alg of algebraic power series is a tribe (and actually the smallest
tribe for inclusion). Assume that K is an effective field. Then an effective algebraic power
series f ∈K[[z1, z2, ...]] can be effectively represented as an effective power series together
with an annihilator P ∈K[z1, z2, ...][F ]. It can be shown that K[[z1, z2, ...]]alg is an effective
tribe for this representation.

A power series f ∈ K[[z1, ..., zn]] is said to be D-algebraic if it satisfies a non trivial
algebraic differential equation Pi(f , ..., δi

ri f) = 0 for each i ∈ {1, ..., n}, where Pi is a non
zero polynomial in ri+ 1 variables with coefficients in K. We denote by K[[z1, z2, ...]]

dalg

the set of D-algebraic power series. If K is an effective field, then effective D-algebraic
power series may again be represented through an effective power series and differential
annihilators Pi of the above form. In [9], one may find more information on how to compute
with D-algebraic power series, and a full proof of the fact that K[[z1, z2, ...]]

dalg is an
effective tribe (the proof being based on earlier techniques from [4, 5]).

3 Grid-based series

Monomial monoids

In what follows, we will only consider commutative monoids. A monomial monoid is
a multiplicative monoid M with an asymptotic partial ordering 4 which is compatible
with the multiplication (i.e. m14n1∧m24n2⇒m1m24n1 n2 and m1 n4m2 n⇒m14m2).
We denote by M≺ = {m ∈ M: m ≺ 1} the set of infinitesimal elements in M and by
M4= {m∈M:m4 1} the set of bounded elements in M. We say that M has Q-powers if
we also have a powering operation (k,m)∈Q×M 7→mk∈M such that (mn)k=mk nk and
(mk)l=mkl for all k, l ∈Q and m, n∈M.

A monomial monoidM is said to be effective if its elements can be represented by effec-
tive data structures and if we have algorithms for the multiplication and the asymptotic
ordering 4. Since m= n⇔m4 n∧ n4m this implies the existence of an effective equality
test. A monomial group M is said to be effective if it is an effective monomial monoid with
an algorithm for the group inverse. We say that M is an effective monomial group with
Q powers if we also have a computable powering operation.

Grid-based sets

A subset G⊆M is said to be grid-based if there exist finite sets {m1, ...,mm} ⊆M≺ and
{n1, ..., nn}⊆M such that

G ⊆ {m1

i1 ···mm
im nj: i1, ..., im∈N, 16 j6n}. (1)

If M is actually a group which is generated (as a group) by its infinitesimal elements, then
we may always take n=1.
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If M is an effective monomial monoid, then a grid-based subset G ⊆ M is said to be
effective if the predicate m∈M 7→m∈G is computable and if finite sets {m1, ...,mm}⊆M≺

and {n1, ..., nn}⊆M with (1) are explicitly given.

Grid-based series

Let K be a field of characteristic zero. Given a formal series f =
∑

m∈M
fmm with fm∈K,

the set supp f = {m∈M: fm=/ 0} will be called the support of f . We say that the formal
series f is grid-based if its support is grid-based and we denote by K[[M]] the set of such
series. A grid-based series f ∈K[[M]] is said to be infinitesimal or bounded if supp f ⊆M≺

resp. supp f ⊆M4, and we denote by K[[M]]≺ resp. K[[M]]4 the sets of such series.
In [8, Chapter 2] elementary properties of grid-based series are studied at length. We

prove there that K[[M]] forms a ring in which all series f with 1 ∈ supp f ⊆ M4 are
invertible. In particular, if M is a totally ordered group, then K[[M]] forms a field. Given
a power series f ∈K[[z1, ..., zn]] and grid-based series g1, ..., gn ∈K[[M]]≺, there is also
a natural definition for the composition f(g)= f ◦ g= f(g1, ..., gn)= f ◦ (g1, ..., gn).

Given a grid-based series f ∈K[[M]] the maximal elements of supp f for 4 are called
dominant monomials for f . If f has a unique dominant monomial, then we say that f is
regular , we write df for the dominant monomial of f , and call fdf the dominant coefficient
of f . If M is totally ordered, then any non zero grid-based series in K[[M]] is regular.

Assume that K and M are effective. Then a grid-based series f ∈K[[M]] is said to be
effective if its support is effective and if the map m∈M 7→ fm is computable. It can be shown
that the set K[[M]]com of computable grid-based series forms an effective K-algebra.

Examples

Given an “infinitesimal” indeterminate z, the set zN ∈ {zi: i ∈ N} is a monomial monoid
for the asymptotic ordering zi4 zj⇔ i> j, and K[[zN]] coincides with K[[z]]. Similarly,
K[[zZ]] coincides with the field of Laurent series K((z)) and K[[zQ]] with the field of
Puiseux series in z over K. If K is algebraically closed, then so is K[[zQ]].

Given monomial monoids M1, ..., Mn, one may form the product monomial monoid
M1 × ··· ×Mn with m1 ··· mn 4 n1 ··· nn⇔ m1 4 n1 ∧ ··· ∧ mn 4 nn for all m1, n1 ∈M1, ...,

mn, nn∈Mn. Then K[[z1
N×···× zn

N
]] coincides with the set of power series K[[z1, ..., zn]],

whereas K[[z1
Z× ···× zn

Z
]] coincides with the set of Laurent series K((z1, ..., zn)).

Given monomial monoids M1, ..., Mn, one may also form the set M1 ×· ··· ×· Mn

whose elements m1 ··· mn are ordered anti-lexicographically: m1 ··· mn ≺ n1 ··· nn if there
exists an i with mi ≺ ni and mj = nj for all j > i. The set K[[z1

N ×· ··· ×· zn
N
]] should

naturally be interpreted as K[[z1]]···[[zn]] (which it is isomorphic to K[[z1, ..., zn]]). The
set K[[z1

Z×· ··· ×· zn
Z
]] is a field which contains K((z1, ..., zn)), and this inclusion is strict

if n > 1 (notice also that K[[z1
Z ×· ··· ×· zn

Z
]]  K((z1)) ··· ((zn))). If K is algebraically

closed, then K[[z1
Q×· ··· ×· zn

Q
]] is again an algebraically closed field (and again, we have

K[[z1
Q×· ··· ×· zn

Q
]] K[[z1

Q
]] ··· [[zn

Q
]]).

Cartesian representations

From now on, we will assume that M is a monomial group which is generated as a group
by its infinitesimal elements. Given a series f ∈K[[M]], a Cartesian representation for f
is a Laurent series f̌ ∈K((z1, ..., zk)) together with monomials m1, ...,mk ∈M≺ such that
f = f̌ (m1, ...,mk). Given several series f1, ..., fl∈K[[M]], and Cartesian representations for
each of the fi, we say that these Cartesian representations are compatible if they are of the
form fi= f̌i(m1, ...,mk) for f̌i∈K((z1, ..., zk)) and m1, ...,mk∈M≺. In [8, Proposition 3.12]
we show that such compatible Cartesian representations always exist.
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In [8, Chapter 3], we give constructive proofs of several basic facts about Cartesian
representations and L-based series to be introduced below. These constructive proofs can
easily be transformed into algorithms, so we will only state the effective counterparts of
the main results. First of all, in order to keep the number of variables k in Cartesian repre-
sentations as low as possible, we may use the following effective variant of [8, Lemma 3.13]:

Lemma 1. Let z1, ..., zk,m1, ...,ml be infinitesimal elements of an effective totally ordered
monomial group M with Q-powers, such that we have explicit expressions for m1, ...,ml∈

z1
Z ··· zk

Z as power products. Then we may effectively compute infinitesimal z1
′ , ..., zk

′ ∈

z1
Q ··· zk

Q with z1, ..., zk,m1, ...,ml∈ (z1
′ )N ··· (zk

′ )N. �

L-based power series

Let L be a local community. We will say that f ∈K[[M]] is L-based if f admits a Cartesian
representation of the form f = f̌(m1, ...,mk) with f̌ = ϕ z1

i1 ··· zk
ik, ϕ∈Lk and i1, ..., ik ∈Z.

The set K[[M]]L of all such series forms a K-algebra [8, Proposition 3.14]. If K, L and M

are effective, then any grid-based series in K[[M]]L is computable. Moreover, we may
effectively represent series in K[[M]]L by Cartesian representations, and K[[M]]L is an
effective K-algebra for this representation.

A Cartesian representation f = f̌(m1, ...,mk) of f ∈K[[M]] is said to be faithful if for

each dominant monomial v̌= z1
i1 ··· zk

ik of f , there exists a dominant monomial w of f with
v̌(m1, ...,mk)4w. We have the following effective counterpart of [8, Proposition 3.19]:

Proposition 2. Assume that K, L and M are effective. Then there exists an algorithm
which takes a series in K[[M]]L on input and computes a faithful Cartesian representation

f = f̌(m1, ...,mk) with f̌ = ϕz1
i1 ··· zk

ik, ϕ∈Lk and i1, ..., ik∈Z. �

Faithful Cartesian representations are a useful technical tool for various computations.
They occur for instance in the proof of the following effective counterpart of [8, Proposi-
tion 3.20]:

Proposition 3. Assume that K, L and M are effective. There exists an algorithm which
takes an infinitesimal (or bounded, or regular) series f ∈ K[[M]] on input and which

computes a Cartesian representation f = f̌(m1, ..., mk) such that f̌ is again infinitesimal
(or bounded, or regular, respectively). �

Solving power series equations

Assume now that K is an effective field with an effective zero test and an algorithm for
determining the roots in K of polynomials in K[F ]. Let L be an effective local community
over K and M an effective totally ordered monomial group. We notice that a grid-based
series in K[[M× FN]] can also be regarded as an ordinary power series in K[[M]][[F ]].
We are interested in finding all infinitesimal solution of a power series equation

P0+P1 f +P2 f
2+ ···=0,

where P =P0+P1F +P2F
2+ ··· ∈K[[M×FN]]L. The Newton polygon method from [8,

Chapter 3] can be generalized in a straightforward way to power series equations instead
of polynomial equations and the effective counterpart of [8, Theorem 3.21] becomes:

Theorem 4. There exists an algorithm which takes P ∈ K[[M × FN]]L ⊆ K[[M]][[F ]]
with P =/ 0 on input and which computes all solutions of the equation P (f) = 0 with
f ∈K[[M]]≺. �
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Given P ∈ K[[M × FN]]L with P =/ 0, we may also consider P as an element of
K[[FN × M]] =∼ K[[F ]][[M]]. Let NP ∈ K[[F ]] be the dominant of P for this latter
representation. The valuation of NP in F is called the Weierstrass degree of P . If K is
algebraically closed, then it can be shown that the number of solutions to the equation in
Theorem 4 coincides with the Weierstrass degree, when counting with multiplicities.

4 Effective Weierstrass preparation

Effective algebraic closures

Let K be an effective field with an effective zero test. We may consider its algebraic closure
Kalg as an effective field with an effective zero test, when computing non deterministi-
cally (we refer to [2] for more details about this technique, which is also called dynamic
evaluation).

Let L be an effective tribe overK with an effective zero test. It is convenient to represent
elements of Kalg⊗L by polynomials P ∈L[α], where α∈Kalg. The algebraic number α is
effectively represented using an annihilator A∈L[X] and we may always take P such that
degP < degA. It is a routine verification that Kalg⊗L forms again an effective tribe for
this representation.

Consider a series f ∈Kalg ⊗ L ∩K[[z1, z2, ...]], represented as f = P (α) = P0 + ··· +

Pk−1 α
k−1, where α ∈ Kalg is given by an annihilator of degree k. Then we notice that

we can compute a representation for f as a element of L. Indeed, whenever Pj =/ 0 for
some j > 0, then this means that there exists a monomial zi ∈ z1

N z2
N ··· such that the

coefficient [zi] P ∈K[α] of zi in P is a polynomial of non zero degree in α. On the other
hand, [zi] P ∈ K, which means that we can compute an annihilator for α of degree <k.
Repeating this reduction a finite number of times, we thus reach the situation in which
P1= ···=Pk−1=0, so that f =P0∈L.

Effective Weierstrass preparation

Let L still be an effective tribe over K with an effective zero test. Given f ∈ Ln, we
recall that f is said to have Weierstrass degree d in z1 if f(0) = (∂f / ∂z1)(0) = ··· =

(∂d−1 f /∂z1
d−1)(0) = 0, but (∂d f /∂z1

d)(0) =/ 0. In that case, the Weierstrass preparation
theorem states that there exists unit u ∈ K[[z1, ..., zn]] and a monic polynomial P =
zd+Pd−1 z1

d−1+ ···+P0∈K[[z2, ..., zn]][z1] of degree d such that f=u P . The polynomial P
is called the Weierstrass polynomial associated to f . We claim that P ∈Ln and that there
exists an algorithm to compute P (and therefore the corresponding unit u, since Ln is
effectively stable under restricted division):

Theorem 5. There exists an algorithm which takes a power series f ∈Ln of Weierstrass
degree d on input and computes its Weierstrass polynomial P as an element of Ln.

Proof. Consider the effective totally ordered monomial group M = z2
Q ×· ··· × zn

Q with
Q-powers. We have a natural inclusion Ln ⊆ Kalg[[M × z1

N
]]Kalg

⊗L. Now consider f ∈

Kalg[[M× z1
N
]]Kalg

⊗L ⊆Kalg[[M]][[z1]]. By theorem 4, we may compute all infinitesimal

solutions ϕ1, ..., ϕd∈K
alg[[M]]Kalg

⊗L to the equation f(ϕ)= 0 in z1 (we recall that there
are d such solutions, when counting with multiplicities, since Kalg is algebraically closed).
Now consider

P = (z1− ϕ1) ··· (zd− ϕd)∈K
alg[[M× z1

N
]]Kalg

⊗L
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and let P ∗ ∈K[[z1, ..., zn]] be the Weierstrass polynomial associated to f . Since P ∗ also
admits the infinitesimal roots ϕ1, ..., ϕd when considered as an element of Kalg[[M]][[z1]],
we have P =P ∗ when considering P ∗ as an element of Kalg[[M× z1

N
]]. It follows that

P ∈ Kalg[[M× z1
N
]]Kalg

⊗L∩K[[z1, ..., zn]].

Now consider a Cartesian representation P = P̌ (m1, ...,mk) for P with P̌ ∈L. By Propo-
sition 3, we may take P̌ to be infinitesimal. Since m1, ...,mk are infinitesimal and m1, ...,

mk ∈ z1
Q ··· zn

Q, Lemma 1 also shows that we may assume without loss of generality that
k 6 n. Completing the m1, ..., mk with additional elements if necessary, this means that
we may compute an invertible matrix M ∈Qn×n such that mi= zi ◦ zM for all i. In other
words, P = P̌ ◦ zM with P̌ ∈Ln. Since P ∈K[[z1, ..., zn]] and L is effectively closed under
restricted monomial transformations, we conclude that P ∈Ln. �

Effective Weierstrass division

Assume that f ∈Ln has Weierstrass degree d in z1 and let g∈Ln. The Weierstrass division
theorem states that there exists a quotient Q and a remainder R in K[[z2, ..., zn]][z1] with

g = Qf +R

and degz1R<d. We claim that Q and R once again belong to Ln and that there exists an
algorithm to compute them:

Theorem 6. There exists an algorithm which takes a power series f ∈Ln of Weierstrass
degree d and g ∈Ln on input and computes the quotient and remainder of the Weierstrass
division of g by f as elements of Ln.

Proof. Let ϕ1, ..., ϕs be the distinct solutions of f(ϕ)=0 when considered as an equation
in z1, and let µi be the multiplicity of each ϕi, so that µ1 + ··· + µs = d. For each i, we
compute the polynomials

Ai =
∑

j=0

µi−1
1
j!
∂j g

∂z1
j
◦ (ϕi, z2, ..., zn) z1

j ∈Kalg[[M]]Kalg
⊗L[z]

Bi = (z1− ϕi)
µi∈Kalg[[M]]Kalg

⊗L[z]

Using Chinese remaindering, we next compute the unique R ∈ Kalg[[M]]Kalg
⊗L[z] such

that R ≡ Ai modBi for each i and degz R < d. It is easily verified that R coincides with
the remainder of the Weierstrass division of g by f . In particular, R ∈K[[z1, ..., zn]] and
we may obtain R as an element of Ln in the same way as in the proof of Theorem 5. We
obtain the quotient Q of the Weierstrass division by performing the restricted division
of g−R by f . �

Bibliography

[1] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal of the
ACM , 25:581–595, 1978.

[2] J. Della Dora, C. Dicrescenzo, and D. Duval. A new method for computing in algebraic number
fields. In G. Goos and J. Hartmanis, editors, Eurocal’85 (2), volume 174 of Lect. Notes in Comp.
Science , pages 321–326. Springer, 1985.

[3] J. Denef and L. Lipshitz. Ultraproducts and approximation in local rings. Math. Ann., 253:1–28,
1980.

[4] J. Denef and L. Lipshitz. Power series solutions of algebraic differential equations. Math. Ann.,
267:213–238, 1984.

Bibliography 9



[5] J. Denef and L. Lipshitz. Decision problems for differential equations. The Journ. of Symb. Logic,
54(3):941–950, 1989.

[6] L. van den Dries. On the elementary theory of restricted elementary functions. J. Symb. Logic,
53(3):796–808, 1988.

[7] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.
[8] J. van der Hoeven. Transseries and real differential algebra , volume 1888 of Lecture Notes in Math-

ematics . Springer-Verlag, 2006.
[9] J. van der Hoeven. Computing with D-algebraic power series. Technical report, HAL, 2014. http://

hal.archives-ouvertes.fr/.
[10] K. Weierstrass. Mathematische Werke II, Abhandlungen 2 , pages 135–142. Mayer und Müller, 1895.

Reprinted by Johnson, New York, 1967.

10 Section


	1 Introduction
	2 Common operations on power series
	Basic operations on power series
	Restricted division
	Composition
	Implicit functions
	Restricted monomial transformations
	Examples

	3 Grid-based series
	Monomial monoids
	Grid-based sets
	Grid-based series
	Examples
	Cartesian representations
	L-based power series
	Solving power series equations

	4 Effective Weierstrass preparation
	Effective algebraic closures
	Effective Weierstrass preparation
	Effective Weierstrass division

	Bibliography

