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Creative telescoping is a popular method for proving combinatorial identities and the compu-
tation of parametric integrals that involve special functions. Traditional implementations of
this method admit an exponential bit complexity and it is an open problem under which con-
ditions creative telescoping can be achieved in polynomial time. More efficient reduction-based
algorithms were recently introduced in order to get a better grip on such complexity issues.
Initially, reduction-based algorithms only applied to special cases such as rational, algebraic,
or hyperexponential functions. More recently, constructions of reductions appeared for larger
classes of Fuchsian D-finite and general differentially-finite functions.

In this paper, we show how to construct reductions for mixed differential-difference sys-
tems, where the difference operators are either shift operators or q-difference operators. We
recall how this yields an algorithm for creative telescoping and specify under which pre-
cise conditions on singularities this algorithm works. For creative telescoping of differential
type, we next examine the complexity of our algorithms and prove a polynomial complexity
bound. The algorithm for which this bound holds computes generators for a D-finite ideal of
telescopers, but not necessarily a Gröbner basis for the ideal of all telescopers.
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1. INTRODUCTION

1.1. Creative telescoping
The technique of creative telescoping is a powerful tool for proving and finding combinato-
rial identities and the computation of parametric integrals that involve special functions. The
name was coined by van der Poorten [77] in relation with Apéry's irrationality proof of 𝜁(3),
but the first systematic algorithms were only developed about one decade later by Zeilberger
and followers [90, 4, 91, 62, 85, 86]. Early precursors are [35, 89, 42].

Let us briefly recall the main idea behind creative telescoping on an extremely simple
example: assume that we wish to prove the well known identity

F(n) = �
k=0

n

�n
k� = 2n.

Setting f (n,k)=�n
k� and g(n,k)=−� n

k−1�, the defining relation of f in Pascal's triangle yields

f (n+1,k)−2 f (n,k) = g(n,k+1)−g(n,k).

Summing this relation from k=0 until n+1, the right hand side becomes a telescoping sum,
and we obtain F(n+1)−2F(n)=g(n,n+1)−g(n, 0)=0. Since F(0)=1, the recurrence relation
F(n+1)=2F(n) proves F(n)=2n.
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More generally, for the evaluation of a sum of the form F(n)=∑k=a(n)
b(n) f (n,k), the idea is to

construct a relation of the form

cs(n) f (n+ s,k)+⋯+ c0(n) f (n,k) = g(n,k+1)−g(n,k), (1.1)

where the left-hand side does not depend on k and the right-hand telescopes when summing
over k. If we manage to construct such a relation, then the creative telescoping process pro-
vides us with a non-trivial linear recurrence relation for F(n). Writing S1,n for the operator
that sends 𝜑(n,k) to 𝜑(n+1,k), the difference operator cs(n)S1,n

s +⋯+ c0(n) that annihilates f
in (1.1) is called a telescoper, and the function g its corresponding certificate.

A similar idea works for integrals of the form F(x)=∫a(y)
b(y)f (x,y)dy instead of discrete sums.

In that case, we need a relation of the form

cs(x)
∂s f
∂xn(x,y)+⋯+ c0(x) f (x,y) = ∂g

∂y(x,y) (1.2)

instead of (1.1). Again, cs(x) ∂s/∂xs+⋯+ c0(x) is called the telescoper and g the certificate.
Several other variants can be considered as well, such as q-difference equations, multiple sums
and integrals, etc.

After Zeilberger's initial impetus, the development of creative telescoping focussed on
making implementations more efficient, while guaranteeing termination and widening the
class of functions on which the theory can be applied. Whereas early implementations were
particularly successful for first or low order recurrence relations (e.g. hypergeometric summa-
tion), efficient algorithms soon appeared for more general holonomic functions and D-finite
ideals in Ore algebras [26, 29, 27, 63]. For a historical perspective on these advances and fur-
ther references, we refer to [28].

One major application of creative telescoping is proving functional identities. In the purely
differential setting, it should be noticed that alternative methods have been developed for
larger classes of non-linear equations [32, 33, 83, 75, 46, 49].

1.2. From Hermite reduction to reduction-based telescoping
Despite the above successes, the efficiency of creative telescoping remained a major issue. Part
of the problem was due to the fact that the construction of relations of the form (1.1) or (1.2)
often relied on brute force computations rather than a better insight into their precise shape.

The next major step was the introduction of reduction-based algorithms as a remedy to
these problems. The concept of a reduction goes back to the works of Ostrogradsky and Hermite
on the integration of rational functions [74, 44]. Hermite reduction is nowadays a fundamental
tool in symbolic integration and generalizations for algebraic, hyperexponential and hyper-
geometric functions were introduced with this kind of application in mind [88, 30, 2]. It is
interesting to notice that the importance of Hermite reduction for integrals that depend on
parameters was understood quite early [76]; see also [39].

Hermite reduction was first related to creative telescoping in [41]; the complexity perspec-
tive appeared in [13]. Initially, only quite restricted types of functions could be treated this
way and it became a major challenge to develop reduction-based algorithms for similarly gen-
eral classes of functions as for the other approaches. This triggered a lot of activity in recent
years [24, 14, 67, 22, 34, 23, 54, 68], culminating with an algorithm for Fuchsian differential
equations [21]. This last result made it plausible that a fully general algorithm in the differen-
tial case might be quite complex, since it might involve elaborate arguments in order to deal
with irregular singularities. Fortunately this concern turned out to be unwarranted: last year
we constructed suitable reductions for arbitrary differential equations in a purely algebraic
way [50]. Our technique has recently been further improved in [16]. In the present paper, we
continue its development and extend it to mixed differential-difference equations.
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Before we proceed, it is useful to recall how reductions show up in relation with creative
telescoping. Assume that we wish to find a linear differential equation over ℚ(x) for the
function F(y)=∫a(y)

b(y) f (x, y)dy, where f ∈ℚ(x, y). Hermite reduction in y provides us with
a unique decomposition of any g∈ℚ(x,y) as a sum

g = [g]+ ∂h
∂y , (1.3)

where [g] admits only simple poles in y and h∈ℚ(x,y). When restricting ourselves to func-
tions g whose poles in y belong to a fixed finite set (i.e. g∈ℚ(x)[y, 𝜓(x,y)−1] for some fixed
square-free polynomial 𝜓∈ℚ[x, y]), it follows that [g] is “confined” to a finite dimensional
ℚ(x)-vector space 𝕀= [ℚ(x)[y, 𝜓(x, y)−1]]. Indeed, for some algebraic extension 𝕃 of ℚ(x)
that contains all roots of 𝜓, the reduction [g] is always an 𝕃-linear combination of the fractions
1/(y−𝛼), where 𝛼 runs over the set of roots of 𝜓 in 𝕃. In our case, we simply take 𝜓 to be the
square-free part of the denominator of f .

Now the crucial observation is that [ f ], [∂ f /∂x], [∂2 f /∂x2], etc. all belong to the above
finite dimensional vector space, whence there exists a non-trivial relation

cs(x)[[[[[[[ ∂
s f

∂xs]]]]]]]+⋯+ c0(x) [ f ] = 0 (1.4)

with c0,…, cs∈ℚ(x). By construction, there exists an hi∈ℚ(x, y) with ∂if /∂xi=[∂if /∂xi]+
∂hi/∂y for i=0,…,s. It is not hard to check that the reduction [] commutes with partial deriva-
tion with respect to y, whence (1.4) implies

cs(x)
∂s f
∂xs +⋯+ c0(x) f = ∂

∂y(cs(x)hs+⋯+ c0(x)h0). (1.5)

This new relation is of the desired form (1.2). Another advantage of this method with respect
to previous ones is that the computation of certificates is possible, but only optional. Since cer-
tificates tend to be more voluminous than the telescopers themselves, this is very interesting
from a complexity point of view.

In order to generalize the above reduction-based approach to functions f that satisfy higher
order differential equations, one essentially needs to define a confined reduction on a so called
narrow 𝕂(x)[y, ∂/∂x, ∂/∂y]-submodule 𝔻 of 𝕂(x,y) that contains f . In the differential case,
such narrow modules are still of the same form 𝔻=ℚ(x)[y,𝜓(x,y)−1]. In the difference case,
the set of allowed poles are translates of a finite number of points and their orders need to
be bounded in a way that will be made precise.

1.3. On the choice of our setup

The theory of creative telescoping has become very wide, with many variants that cover
specific cases more or less efficiently. For the exposition in this paper, we therefore had to
make several choices concerning the setup. Let us briefly comment on these choices.

Non-commutative operator algebras. It was recognized by Zeilberger that the framework of
holonomic functions is particularly suitable for the development of creative telescoping [90].
The reason is that there exists a systematic elimination theory for the equations satisfied by
such functions that can be regarded as a non-commutative counterpart of the theory of Gröbner
bases.
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Elimination methods for differential equations actually predate Buchberger's famous algo-
rithm [19]. One line of development is due to Riquier–Janet–Thomas [79, 56, 87] and another
one to Ritt–Kolchin [80, 61]. The most “effective” variant of the latter theory [81, 17] essentially
covers both commutative Gröbner basis theory, its skew differential counterpart for Weyl
algebras, and non-linear generalizations that specialize to triangular system type solving in
the algebraic case. Yet another line of development is due to Ore, who introduced a systematic
theory for non-commutative polynomials [72, 73]. A more direct inspiration for Zeilberger's
work were developments in the theory of D-modules in the seventies [9, 10, 12] and the devel-
opment of non-commutative Gröbner basis theory in the computer algebra community in the
eighties and later [40, 84, 60, 71, 64, 26, 70].

In this paper, we have chosen to work over differential-difference algebras generated by
a finite number of coordinates u1, …, un, derivations ∂/∂ui, shift operators S𝜂,ui, and q-dif-
ference operators Qq,ui. All derivations ∂/∂ui and automorphisms S𝜂,ui, Qq,ui are assumed to
commute pairwise. Our setting is not the most general possible, but it has a natural geometric
interpretation, as well as a non-linear counterpart [45]. The commutation of the derivations
is not really essential, except for the main derivation that will be eliminated. It should also
be quite straightforward to replace the algebra 𝔸 in section 6.4 by more general algebras of
solvable type [60, 64], Ore algebras [26], or G-algebras [70, 43]. On the other hand, when tele-
scoping with respect to a difference operator it is essential that singularities are moved in a
bijective way. It is therefore natural to restrict one's attention to homographies. Then, modulo
a change of variables, homographies always operate like shift operators or q-difference oper-
ators: see section 5.1. Other interesting generalizations would concern nested extensions by
solutions of linear differential-difference equations as in [78, 82].

Scalar equations versus first order systems. An eternal dilemma when dealing with linear dif-
ferential or difference equations is whether one should privilege scalar higher order equations
or first order systems. Thanks to the cyclic vector lemma [3], both approaches are essentially
equivalent, so the choice is mainly a matter of taste. The best solution is probably to work
with the representation that was used for the input, whenever possible. Our personal taste is
slightly in favour of scalar equations, although we opted for first order systems in [50]. In [16],
the authors preferred to work with scalar equations instead. In the present paper, we mainly
consider scalar equations, but also outline how to adapt the theory to first order systems. At
the end of the day, it seems that both approaches are more or less equally diligent.

Algebraic extensions versus rational counterparts. From the early days of symbolic compu-
tation, algorithms that require computations in algebraic extensions have acquired the reputa-
tion of being slow. Starting with Trager's work on the integration of rational functions [88],
it has therefore become common practice to develop “rational” counterparts for reduction
algorithms that avoid explicit computations in algebraic extensions. Nevertheless, from a com-
plexity point of view, it is not so clear that working in algebraic extensions is necessarily that
bad: computing in an extension of degree d is roughly d times more expensive, but typically
deals with d conjugate roots in a single pass. Although the development of rational counter-
parts remains an interesting topic, we therefore do not regard such algorithms as intrinsically
better. In this paper, we have chosen to systematically work in algebraic extensions when-
ever appropriate, which is somewhat simpler from a conceptual standpoint.

Characteristic zero. It will be convenient to assume that all fields considered in this paper
are of characteristic zero, although most results can be generalized in a straightforward way
to fields of (sufficiently large) positive characteristic.

1.4. Structure of the paper and outline of the main results
The main purpose of this paper is to present reduction-based algorithms for creative tele-
scoping in the above setting of differential-shift-q-difference equations and to derive complexity
bounds for several of these algorithms. In the purely differential case, our algorithms are

4 CREATIVE TELESCOPING USING REDUCTIONS



completely systematic. In the presence of difference operators it is well known that indef-
inite summation and integration under the integral sign do not always preserve D-finiteness.
Nevertheless, we provide a sufficient condition (explicit telescopability) for our algorithms
to work, as well as a reduction-based algorithm that is able to check D-finiteness in a par-
ticular case. Let us briefly outline the structure of the paper and summarize our contributions.

Abstract reductions. For a gentle introduction to reduction-based creative telescoping, we
refer to [34, Section 1.2]. In section 2, we start with a more abstract presentation of the basic
theory that covers all cases that occurred in the literature so far. We also introduce the notion
of “local reductions” and describe various related constructions on an abstract level.

The Lagrange identity. Let 𝕂 be a field. One major new idea in [16] is the consideration of
reductions with respect to general differential operators K ∈𝕂[x, ∂/∂x] instead of just the
derivation as in (1.3). More precisely, a reduction with respect to K is a 𝕂-linear projection
[]:𝕂(x)→𝕂(x) such that f − [ f ]∈ im K for all f ∈𝕂(x). Now in the case of a rational func-
tion f , ordinary Hermite reduction provided us with a way to derive telescoping relations (1.5)
from linear dependencies (1.4). In the case of a function f that satisfies a linear differential
equation L( f ) = 0, it is shown how to do something similar using reductions with respect
to the adjoint operator L∗ of L. The technical tool that makes this possible is the Lagrange
identity [55, section 5.3]. We recall this formula in section 3 and generalize it to difference
and matrix operators.

Differential reductions. In section 4, we show how to construct reductions for differential
equations. This case was already covered in [50], but it is instructive to present it with the
formalisms from sections 2 and 3 at hand. In sections 4.2 and 4.3, we start with a variant
of the construction from [16], whereas section 4.5 explains the link with [50] and also clari-
fies how the Lagrange identity can be used to simplify the head/tail chopping process. We
also show how new-style reductions with respect to the adjoint operator L∗ give rise to old-
style reductions in the sense of [50] and vice versa. In section 4.6, we finally consider mix-
tures of both reduction styles. This makes it possible to extend creative telescoping to the
resolution of more general linear differential or difference equations that involve parameters:
see Remark 6.7.

Difference reductions. The analogue construction of reductions for difference operators is
the subject of section 5. Whereas derivations do not introduce new singularities, but only
aggravate the order of poles, difference operators move singularities, but do not increase their
severity. The idea behind the construction of differential reductions is to diminish the order
of the poles of the function to be reduced. Likewise, difference reductions are based on the
idea to shift singularities back until they are confined in a finite set. Another difference with
section 4 is that the construction is somewhat less canonical due to the absence of a privileged
section of orbits of singularities (see Remark 5.7), but this is of no consequence for the appli-
cation to creative telescoping. Apart from that, the theory from section 4 naturally adapts to
the difference setting.

Creative telescoping. After the formal introduction of the setting of DD-operator algebras
in section 6.1, we next consider the application to creative telescoping. For suitable “telesco-
pable” D-finite ideals I of a DD-operator algebra 𝔹, the theory from sections 4 and 5 allows us
to define a computable confined reduction on a narrow submodule 𝔻 of 𝔹/I. In section 6.4
we show how this can be used to construct telescopers. The algorithm is a straightforward
generalization of the technique from section 1.2 and only relies on linear algebra. As an end-
result, it produces a finite set of generators for a D-finite ideal of telescopers; in the favourable
case when the reduction is “normal”, these generators actually form a Gröbner basis of the
ideal of all telescopers. In the context of Gröbner basis, the algorithm is reminiscent of the
FGML algorithm [37] and a variant of the one used in [16].

JORIS VAN DER HOEVEN 5



D-finiteness tests for telescoping ideals. In the purely differential case, it is a well-known fact
from the theory of D-modules (reproved in section 7) that all D-finite ideals are telescopable,
so the algorithm from section 6.4 systematically works. In the presence of difference operators,
the telescopability of a D-finite ideals depends on the nature of its singularities. In section 7,
we examine such singularities in more detail and derive sufficient conditions for the telesco-
pability of a D-finite ideal with a given basis for the quotient module (a particular was treated
before in [16, section 4.4]). Sometimes these “explicit telescopability” conditions are only met
after a change of basis. For differential reductions, we present an algorithm to compute such
a base change if it exists. Even when the explicit telescopability conditions do not hold, it
sometimes still happens that the telescoping ideal is D-finite; in the last subsection 7.4, we
present an algorithm that decides whether this is the case and that computes a Gröbner basis
of the telescoping ideal if it is D-finite.

Complexity of rational function arithmetic. The last two sections are devoted to analyzing the
complexity of reduction-based algorithms for creative telescoping. For this, we first recall basic
complexity results for computations with rational functions in several variables, including
partial fraction decomposition. When using the common dense representation, these com-
plexity bounds are quite pessimistic, yet always polynomial if the number of variables is fixed.
When allowing for probabilistic algorithms of Las Vegas type, it is more efficient to repre-
sent rational functions by the straight line programs (SLPs) [20], and fast dense univariate
polynomial arithmetic can be used at every evaluation point.

Complexity of creative telescoping. In the last section we finally turn to the cost of creative
telescoping itself. For this, we use a separate analysis for the complexity of the reduction
process and the complexity of the FGLM-type algorithm for computing linear relations. The
latter algorithm relies on standard linear algebra and its complexity analysis is straightfor-
ward in terms of the dimension of the vector space 𝕀=[𝔻] of reduced functions. We next turn
to the reduction process and restrict our attention to differential reductions. In this case, we
prove a polynomial complexity bound, as well as a polynomial bound for dim 𝕀 as a function
of the input size. Altogether, this yields a polynomial time algorithm for creative telescoping,
as promised in [50]. The complexity exponent is again extremely bad when using dense rep-
resentations, but essentially cubic per evaluation point in the SLP model.

Remark 1.1. It is well known that it is easy to construct operators in ℚ[z, ∂/∂z] of small bit
size that admit polynomial solutions with a large number of terms. For instance, the oper-
ator (∂/∂z+(z − 1)−1) (z (∂/∂z+(z − 1)−1)− n) admits (zn − 1)/(z − 1) as a solution. For the
design of polynomial time algorithms for operators in ℚ[z, ∂/∂z] it is therefore crucial to
avoid the explicit computation of such solutions. For a similar reason, telescopers of minimal
order (e.g. of the form cs∂s/∂xs+⋯+ c0 in (1.5) with minimal s) can admit very large coeffi-
cients. The telescopers computed by our polynomial time algorithm in section 9 are therefore
not necessarily minimal. The above phenomenon also implies that the algorithms at the end
of section 7 (for base changes to reach an explicitly telescopable form and creative telescoping
for not explicitly telescopable ideals) do not run in polynomial time, in general.

1.5. Pending issues
Let us briefly list a few problems that have not been tackled in the present draft by lack of time.
We intend to address them in a future version or in a follow-up paper.

Base changes for explicit telescopability. The base change algorithm to remove apparent sin-
gularities from the end of section 7.3 has been presented in the differential case only. We are
still looking for existing work on this topic in the literature and a similar algorithm for the
difference case.

6 CREATIVE TELESCOPING USING REDUCTIONS



Testing D-finiteness. The general algorithm for creative telescoping from section 7.4 (in
absence of explicit telescopability) has also been presented in the differential case only. The
difference analogue seems to require a bit more work, but it should be feasible to work out
an algorithm along similar lines.

Fast arithmetic for rational functions. Several complexity bounds from section 8 are not very
sharp or a bit sketchy. We intend to improve this section in the next version.

Complexity bounds for the difference case. The final complexity bounds in sections 9.2 and 9.3
have only been presented in the differential case (which still allows for difference operators
among the 𝜃i). If p and q in Proposition 7.7 do not grow too fast, then it should be possible to
prove polynomial complexity bounds in the difference case along similar lines (this in par-
ticular covers the case when 𝜃i=∂i for i=1,…,n). If p or q becomes large, then the defining
equations of I tend to become large as well due to Proposition 7.2. The hope is that a polyno-
mial complexity bound can somehow be derived from this.

Acknowledgments. We are grateful to Grégoire Lecerf for a few helpful thoughts concerning
section 8.

2. ABSTRACT REDUCTIONS

2.1. Definitions and basic properties
Let 𝕂 be a field and consider a linear map 𝜃:V→V on some 𝕂-vector space V. A reduction
with respect to 𝜃 is a linear map []:V→V that satisfies:

R1. x− [x]∈im 𝜃 for all x∈V;
R2. [[x]]=[x] for all x∈V.

Such a reduction is said to be confined if
R3. dim𝕂 im [] is finite;

and normal if
R4. [im 𝜃]=0.

The condition R2 stipulates that [] is a projection. It will be convenient to also introduce the
complementary projection {}:V→V involved in R1, called the remainder:

{x} = x− [x].

A normal reduction []:V →V with respect to 𝜃 can be regarded as a projection of V onto
a subvector space C=im [] of V that is isomorphic to the cokernel of 𝜃.

PROPOSITION 2.1. If 𝜉:V→V is a bijective 𝕂-linear map, then a (normal, confined) reduction [] with
respect to 𝜃 is also a (normal, confined) reduction with respect to 𝜃 ∘𝜉 and vice versa.

Proof. This follows from the observation that R1 and R4 only involve im 𝜃=im 𝜃 ∘𝜉 . −−

− −

Remark 2.2. Sometimes, the linear map 𝜃:W →W is only defined on a 𝕂-vector space W
that contains V. Our definitions easily extend to this case module the replacement of im 𝜃
by im 𝜃∩V in the conditions R1 and R4.

PROPOSITION 2.3. Let 𝕃 be an algebraic extension of 𝕂 and consider a reduction []:𝕃⊗V→𝕃⊗V
with respect to the natural lift 𝜃: 𝕃⊗V →𝕃⊗V of 𝜃. If [𝜎(x)] = 𝜎([x]) for all automorphisms
𝜎:𝕃→𝕃 over 𝕂 and x∈𝕃⊗V, then [x]∈V for all x∈V.

Proof. For any x ∈V, we have 𝜎([x]) = [𝜎(x)] = [x] for all automorphisms 𝜎 of 𝕃, which
implies [x]∈V. −−

− −
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2.2. Local reductions
Let𝜋:V→V be a projection and �̄�=IdV−𝜋. Given a reduction []:V→V with respect to a linear
map 𝜃:V→V, we say that the reduction is local for the projection 𝜋:V→V if

[x] = [𝜋(x)]+�̄�(x) (2.1)

for all x∈V.

PROPOSITION 2.4. If []:V→V is a local reduction with respect to 𝜃 for 𝜋, then 𝜋∘[]:𝜋(V)→𝜋(V)
is a reduction with respect to 𝜋∘𝜃.

Proof. Given x∈𝜋(V), there exists a y∈V with x−[x]=𝜃(y), whence x−𝜋([x])=𝜋(x− [x])=
𝜋(𝜃(y)). Since 𝜋([x])= [x]− �̄�([x]), we also have [𝜋([x])] = [x]− [�̄�([x])] = [x]− �̄�([x])=
[x]− ([x]−𝜋([x]))=𝜋([x]). We conclude that 𝜋([𝜋([x])])=𝜋(𝜋([x]))=𝜋([x]). −−

− −

PROPOSITION 2.5. If []: 𝜋(V)→𝜋(V) is a reduction with respect to 𝜋 ∘ 𝜃 and 𝜉: 𝜋(im 𝜃)→ im 𝜃
a linear mapping with 𝜋∘𝜉 =Id𝜋(Vim𝜃), then we define a local reduction []∗:V→V with respect to 𝜃
for 𝜋 by

[x]∗ = x−𝜉({𝜋(x)}).

Proof. Given x ∈V, there exists a y∈V with 𝜉({𝜋(x)}) = y and x − [x]∗= y. Furthermore,
𝜋([x]∗)=𝜋(x)−𝜋(𝜉({𝜋(x)}))=𝜋(x)−{𝜋(x)}=[𝜋(x)], whence {𝜋([x]∗)}=𝜋([x]∗)−[𝜋([x]∗)]=
[𝜋(x)]− [[𝜋(x)]]=0 and [[x]∗]∗=[x]∗− 𝜉(0)=[x]∗. We finally have [𝜋(x)]∗+�̄�(x)=𝜋(x)−
𝜉({𝜋(𝜋(x))})+�̄�(x)=x−𝜉({𝜋(x)})=[x]∗. −−

− −

2.3. Gluing local reductions together
Two projections 𝜋1, 𝜋2:V→V are said to be orthogonal if 𝜋1∘𝜋2=𝜋2∘𝜋1=0. A family (𝜋i)i∈I
of projections 𝜋i:V→V is said to be orthogonal if its members are pairwise orthogonal. Such
a family is said to be summable if {i∈ I:𝜋i(x)≠0} is finite for all x∈V. In that case, the sum 𝜋=
∑i∈I𝜋i with𝜋(x)=∑i∈I𝜋i(x) is well defined for all x∈V. Moreover, �̄�=IdV−𝜋 is a projection
that is orthogonal to each 𝜋i and any x∈V can be decomposed canonically as

x = �̄�(x)+�
i∈I

𝜋i(x).

Two local reductions []1, []2 for 𝜋1, 𝜋2 are said to be independent if 𝜋1 and 𝜋2 are orthogonal
and for all x∈V, we have

𝜋1({x}2)=𝜋2({x}1)=0. (2.2)

Such reductions necessarily commute: we have [[x]1]2=[x−{x}1]2=[x]2−[{x}1]2=[x2]−{x}1=
x − {x}1− {x}2, and [[x]2]1= x − {x}1− {x}2 in a similar way. A family ([]i)i∈I of reductions for
projections (𝜋i)i∈I is said to be independent if the []i are pairwise independent and if (𝜋i)i∈I
is summable.

PROPOSITION 2.6. Let ([]i)i∈I be a family of independent local reductions []i:V→V with respect to 𝜃
and for the projections 𝜋i:V →V. Let 𝜋=∑i∈I 𝜋i and �̄� = 1−𝜋. Then we may define a reduction
[]:V→V with respect to 𝜃 by

[x] = �̄�(x)+�
i∈I

[𝜋i(x)]i. (2.3)

This reduction is local for 𝜋. For all x∈V, we have

[x] = x−�
i∈I

{x}i (2.4)

[x] = [⋯[[x]i1]i2⋯]ik, (2.5)
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where i1,…, ik∈ I are the indices i with 𝜋i(x)≠0.

Proof. For all i∈ I and x∈V, we get from (2.1) that [x −𝜋i(x)]i= x −𝜋i(x), whence {𝜋i(x)}i=
{x}i − {x−𝜋i(x)}i={x}i. It follows that [x]=�̄�(x)+∑i∈I (𝜋i(x)− {𝜋i(x)}i)=x−∑i∈I {x}i, which
proves (2.4). We also have [{x}i]i = [x]i − [x − {x}i]i = [x]i − [[x]i]i = 0, whence [𝜋i({x}i)]i =
𝜋i({x}i)−{x}i, and [{x}i]=�̄�({x}i)+[𝜋i({x}i)]i+∑j≠i[𝜋j({x}i)]j=�̄�({x}i)+[𝜋i({x}i)]i=�̄�({x}i)+
𝜋i({x}i)−{x}i={x}i −{x}i=0. It follows that [[x]]=[x−∑i∈I {x}i]=[x]−∑i∈I [{x}i]=[x]. Since
{x}=∑i∈I {𝜋i(x)}i ∈im 𝜃, this shows that [] is a reduction with respect to 𝜃. We also have
[x]=[𝜋(x)]+[�̄�(x)]=[𝜋(x)]+�̄�(x)=[𝜋(x)]+x−𝜋(x), so [] is local for 𝜋.

Let us prove (2.5) by induction over k. To simplify notations, assume that ij= j for all j, and
write xi=𝜋i(x) for i=1,…,k. For k=0, we have nothing to prove. For k=1, the result follows
from (2.1). If k⩾2, then let x̄=�̄�(x) and []′= []k−1∘⋯∘[]1. Notice that [xi]k=[𝜋k(xi)]k+xi −
𝜋k(xi)=xi for i=1,…,k−1. The induction hypothesis yields [x̄+x1+⋯+xk−1]′= x̄+[x1]1+⋯+
[xk−1]k−1, whence

[[x]′]k = [x̄+[x1]1+⋯+[xk−1]k−1+xk]k

= x̄+[xk]k+[[x1]1]k+⋯+[[xk−1]k−1]k

= x̄+[xk]k+[[x1]k]1+⋯+[[xk−1]k]k−1

= x̄+[xk]k+[x1]1+⋯+[xk−1]k−1

= [x].

We conclude by induction. −−

− −

2.4. Composition of reductions

PROPOSITION 2.7. The composition [] = []1 ∘⋯ ∘ []k of pairwise commuting reductions []1, …, []k:
V→V with respect to 𝜃 is again a reduction with respect to 𝜃.

Proof. Let us first assume that k = 2. For each x∈V, we have {x} = x − [[x]1]2= x − [x]2+
x2 − [[x]1]2= {x}2 − [{x}1]2= {x}2 − {x}1+ {{x}1}2∈ im 𝜃. We also have [[x]] = [[[[x]1]2]1]2=
[[[[x]1]1]2]2=[[x]1]2=[x]. The general case follows using an easy induction on k. −−

− −

Let []1, []2:V→V be two local reductions with respect to 𝜃:V→V for two orthogonal pro-
jections 𝜋1, 𝜋2:V→V. We have seen that Proposition 2.6 applies whenever (2.2) holds. If we
only have 𝜋1({x}2)=0 for all x∈V, then the following still holds:

PROPOSITION 2.8. If 𝜋1({x}2)=0 for all x∈V, then []=[]2∘[]1 is a reduction with respect to 𝜃.

Proof. For each x∈V, we again have {x}=x−[[x]1]2={x}2−[{x}1]2={x}2−{x}1+{{x}1}2∈im𝜃.
Furthermore, setting y={[x]1}2 with 𝜋1(y)=0, we have

[[[x]1]2]1=[[x]1−y]1=[x]1− [y]1=[x]1− [𝜋1(y)]1−y+𝜋1(y)=[x]1−y=[[x]1]2.

It follows that [[x]]=[[[[x]1]2]1]2=[[[x]1]2]2=[[x]1]2=[x]. −−

− −

2.5. Normalization of confined reductions
Consider a confined reduction []:V→V with respect to 𝜃. Then I=im[] is a finite dimensional
vector space and E=[im 𝜃] a finite dimensional subvector space of I that we call the space of
exceptional functions for []. Notice that E⊆im𝜃. Given any projection 𝜋: I→ I with 𝜋(I)=E and
�̄�= IdI −𝜋, let ⟦⟧:V→V be defined by

⟦x⟧ = �̄�([x]). (2.6)

PROPOSITION 2.9. The relation (2.6) defines a normal confined reduction with respect to 𝜃.
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Proof. For any x∈V, we have

x− ⟦x⟧ = {x}+𝜋([x]) ∈ im 𝜃.

Secondly, for any y∈ I, there exists a z∈V with y=[z], whence [y]=[[z]]=[z]=y. For any
x∈V, we thus obtain

⟦⟦x⟧⟧ = �̄�([⟦x⟧]) = �̄�(⟦x⟧) = �̄�(�̄�([x])) = �̄�([x]) = ⟦x⟧.

Of course, we have dim𝕂 im ⟦⟧=dim𝕂 E⩽dim𝕂 I<+∞. Finally, for any x∈im𝜃, the construc-
tion ensures that [x]∈E whence �̄�([x])=0. −−

− −

This proposition also admits a local analogue. Assume that we are given a local reduction
[]:V→V with respect to 𝜃:V→V for the projection 𝜋:V→V. We say that [] is locally confined
if 𝜋([V]) is finite dimensional, and locally normal if 𝜋([im 𝜃])= 0. Assume that [] is locally
confined and decompose I=𝜋([V])=E⊕ Ē with E=𝜋([im𝜃]). Let 𝜉:I→[V] a linear mapping
such that 𝜋 ∘𝜉 is a projection of I on E (such a map is easily constructed from a basis for E).
Then we define

⟦x⟧ = [x]−𝜉(𝜋([x])). (2.7)

PROPOSITION 2.10. The relation (2.7) defines a local reduction with respect to 𝜃 that is locally normal
and confined for 𝜋.

Proof. Given x∈V, let 𝜀= 𝜉(𝜋([x]))∈ im 𝜃. Then we have x − ⟦x⟧= {x}− 𝜀∈ im 𝜃. Letting
y∈im 𝜃 be such that𝜋(𝜀)=𝜋([y]), we also have [𝜀]=[𝜋(𝜀)]+�̄�(𝜀)=[𝜋([y])]+�̄�(𝜀)=𝜋([y])+
�̄�(𝜀)=𝜋(𝜀)+ �̄�(𝜀)= 𝜀, whence ⟦𝜀⟧= 𝜀− 𝜉(𝜋(𝜀))= (𝜉 ∘𝜋)(𝜋([x]))− (𝜉 ∘𝜋)2(𝜋([x]))=0, since
𝜉 ∘ 𝜋 and (𝜉 ∘ 𝜋)2 coincide on I. From ⟦[x]⟧= [[x]]− 𝜉(𝜋([[x]]))= [x]− 𝜉(𝜋([x]))= ⟦x⟧, we
conclude that ⟦⟦x⟧⟧=⟦[x]⟧− ⟦𝜀⟧=⟦x⟧, whence ⟦⟧ is a reduction with respect to 𝜃.

The reduction is local for 𝜋, since ⟦𝜋(x)⟧ + �̄�(x) = [𝜋(x)] − 𝜉(𝜋([𝜋(x)])) + �̄�(x) = [x] −
𝜉(𝜋([x]))=⟦x⟧. By construction, dim𝕂𝜋(⟦V⟧)=dim𝕂 E⩽dim𝕂 I=dim𝕂𝜋(V). For x∈im 𝜃
and y=𝜋([x])∈E, we finally have 𝜋(⟦x⟧)=𝜋([x])−𝜋(𝜉(𝜋([x])))=y−𝜋(𝜉(y))=0. −−

− −

3. LAGRANGE'S IDENTITY AND GENERALIZATIONS

3.1. The original differential case
Let 𝕂 be a differential field for the derivation ∂ and let 𝕂[∂] denote the skew ring of linear
differential operators over 𝕂. For instance, one may take 𝕂=𝕜(z) and ∂=∂z. Recall that the
adjoint of a differential operator L=Lr∂r+⋯+L1∂+L0∈𝕂[∂] is defined by

L∗ = (−∂)r Lr+⋯+(−∂)L1+L0.

Given two indeterminates u and f , we write (𝕂[∂]⊗𝕂[∂])(u⊗ f ) for the set of 𝕂-linear com-
binations of products (∂i u) (∂ j f ) with i, j∈ℕ. The following identity is due to Lagrange [66]:

PROPOSITION 3.1. For any L∈𝕂[∂] of order r, there exists a

PL(u, f )∈(𝕂[∂]⊗𝕂[∂])(u⊗ f ),

called the “bilinear concomitant”, such that

uL( f )−L∗(u) f = ∂(PL(u, f )). (3.1)

More specifically, we have

PL(u, f ) = �
0⩽i<r

�
0⩽ j<r−i

(−1)i Li+ j+1(∂i u) (∂ j f ). (3.2)
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Proof. Let us first prove the existence of PL by induction on r. If r=0, then L∈𝕂, and we may
take PL(u, f )=0. If r>0, then we write L=K ∂+L0 with K of order r −1 and L0∈𝕂. By the
induction hypothesis, there exists a PK(u, f ) with

uK( f )−K∗(u) f = ∂(PK(u, f )).

It follows that

uL( f )−L∗(u) f = u (K∂)( f )+(∂K∗)(u) f
= ∂(PK(u, ∂ f ))+K∗(u)∂ f +∂(K∗(u)) f
= ∂(PK(u, ∂ f )+K∗(u) f ).

We conclude by taking
PL(u, f )=K∗(u) f +PK(u, ∂ f ).

From this relation, it follows by induction over r that

PL(u, f ) = �
0⩽ j<r

(L≫(j+1))∗(∂ j f ), L≫(j+1)=Lr∂r− j−1+⋯+Lj+1,

which can be rewritten as (3.2). −−

− −

3.2. The difference case
Assume now that 𝕂 is a difference field for the automorphism 𝜎:𝕂→𝕂 and let 𝕂[𝜎] denote
the corresponding ring of skew difference operators. For instance, one may take 𝕂=𝕜(z)
and 𝜎=S𝜂:z↦z+𝜂 or 𝜎=Qq:z↦qz with 𝜂,q∈𝕜≠≔{c∈𝕜:c≠0}. We recall that the adjoint of
a difference operator L=Lr𝜎 r+⋯+L1𝜎 +L0∈𝕂[𝜎] is defined by

L∗ = 𝜎 −rLr+⋯+𝜎 −1L1+L0.

We also define the finite difference operator Δ associated to 𝜎 by Δ=𝜎 −1.

PROPOSITION 3.2. For any L∈𝕂[𝜎] of order r, there exists a

PL(u, f )∈(𝕂[𝜎−1]⊗𝕂[𝜎])(u⊗ f )
such that

uL( f )−L∗(u) f = Δ(PL(u, f )). (3.3)

More specifically, we have

PL(u, f ) = �
0<i⩽r

�
0⩽ j⩽r−i

𝜎−i(Li+ j) (𝜎−i u)(𝜎 j f ). (3.4)

Proof. We again prove the existence of PL by induction on r. If r=0, then L∈𝕂, and we may
take PL(u, f )=0. If r>0, then we write L=K 𝜎 +L0 with K of order r −1 and L0∈𝕂. By the
induction hypothesis, there exists a PK(u, f ) with

uK( f )−K∗(u) f = Δ(PK(u, f )).

It follows that

uL( f )−L∗(u) f = u (K𝜎)( f )−(𝜎 −1K∗)(u) f
= Δ(PK(u, 𝜎 f ))+K∗(u)𝜎 f −𝜎−1(K∗(u)) f
= Δ(PK(u, 𝜎 f )+𝜎 −1(K∗(u)) f )
= Δ(PK(u, 𝜎 f )+(L−L0)∗(u) f ).
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We conclude by taking
PL(u, f )=(L−L0)∗(u) f +PK(u,𝜎 f ).

From this relation, it follows by induction over r that

PL(u, f ) = �
0⩽ j<r

(L≫j −Lj)∗(u)(𝜎 j f ), L≫j=Lr𝜎 r− j+⋯+Lj,

which can be rewritten as (3.4). −−

− −

3.3. Matrix versions
Let 𝕂 again be a differential field for ∂ and consider a not necessarily commutative differ-
ential algebra 𝔸 over 𝕂. One important example of such an algebra is the algebra of n×n
matrices 𝕂n×n. Proposition 3.1 naturally generalizes to the case when L∈𝔸[∂] admits coeffi-
cients in 𝔸, modulo a few precautions: in this setting, it is important to distinguish between
usual operators L∈𝔸[∂] that operate on the left

L( f ) = (Lr∂r+⋯+L0)( f ) = Lr(∂r f )+⋯+L0 f ,

and their adjoints L∗∈𝕂r×r[∂]∗ that operate on the right:

L∗(u) = ((−∂)r Lr+⋯+L0)(u) = ((−∂)r u)Lr+⋯+uL0,

Similarly, a bilinear operator Q∈(𝔸[∂]∗⊗𝔸[∂])(u⊗ f ) acts via

Q(u, f ) = �
i, j

(∂i u)Qi, j (∂ j f ),

where Qi, j∈𝔸 are the coefficients of Q. Similar precautions apply to the difference setting, and
we have:

PROPOSITION 3.3. Let 𝔸 be a differential algebra over a differential field 𝕂 for ∂. For any L∈𝔸[∂]
of order r, there exists a

PL(u, f )∈(𝔸[∂]∗⊗𝔸[∂])(u⊗ f )
such that

uL( f )−L∗(u) f = ∂(PL(u, f )).

More specifically, we have

PL(u, f ) = �
0⩽i<r

�
0⩽ j<r−i

(−1)i (∂i u)Li+ j+1 (∂ j f ). □

PROPOSITION 3.4. Let 𝔸 be a difference algebra over a difference field 𝕂 for 𝜎. For any L∈𝔸[𝜎] of
order r, there exists a

PL(u, f )∈(𝔸[𝜎]∗⊗𝔸[𝜎])(u⊗ f )
such that

uL( f )−L∗(u) f = Δ(PL(u, f )).

More specifically, we have

PL(u, f ) = �
0<i⩽r

�
0⩽ j⩽r−i

(𝜎 −i u)𝜎−i(Li+ j) (𝜎 j f ). □
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3.4. Twisting
Let 𝕂 be a differential field for ∂ and assume that 𝜑∈𝕂 is the logarithmic derivative 𝜑=E†=
∂(E)/E of another element E∈𝕂≠. In fact, we may allow E to live in some abstract extension
field �̂� of 𝕂. Then we have E−1∂(Ef )=(∂+𝜑) f for all f ∈𝕂 and we call ∂⋉𝜑=E−1∂E=∂+𝜑∈
𝕂[∂] the twist of ∂ by 𝜑. More generally, for any L∈𝕂[∂], we define the twist L⋉𝜑=E−1LE∈
𝕂[∂]. One may check that L⋉𝜑=Lr (∂+𝜑)r+⋯+L0 and (KL)⋉𝜑=K⋉𝜑L⋉𝜑 for all K,L∈𝕂[∂].
Using twisting, it is possible to replace the operator ∂ at the right hand side of (3.1) by any first
order differential operator:

PROPOSITION 3.5. Let 𝕂 be a differential field for ∂. For any L∈𝕂[∂] and 𝜑∈𝕂, there exists a

PL,𝜑(u, f )∈(𝕂[∂]⊗𝕂[∂])(u⊗ f )
such that

uL( f )− (L⋉(−𝜑))∗(u) f = (∂+𝜑)(PL,𝜑(u, f )).

Proof. Let E∈�̂�≠ be a formal solution of E†=𝜑 in some extension field �̂� of 𝕂. Let g=Ef and
K=L⋉(−𝜑)∈𝕂[∂]. Then Proposition 3.1 provides us with PK(u,g)∈(𝕂[∂]⊗𝕂[∂])(u⊗g) such
that

uL( f )−(L⋉(−𝜑))∗(u) f = uL(E−1g)−K∗(u)E−1g
= E−1(uK(g)−K∗(u)g)
= E−1∂(PK(u,g))
= E−1∂ (PK(u,Ef )).

Let Q∈(𝕂[∂]⊗𝕂[∂])(u⊗ f ) be the twist of PK in f by 𝜑 with PK(u,Ef )=EQ(u, f ). Then we
conclude by taking PL,𝜑=Q. −−

− −

This proposition again admits a matrix generalization: for L∈𝕂r×r[∂], it suffices to replace𝜑
and E by matrices Φ,E∈𝕂r×r with E invertible and ∂E=ΦE. We also need to assume that
E commutes with each coefficient Li of L.

One interesting special case occurs as follows: let L∈𝕂[∂], let R∈𝕂[∂] be monic of order r
and assume that we wish to obtain a generalization of (3.1) with R instead of ∂ in the right
hand side. Then we lift L into an operator L[r]∈𝕂r×r[∂] by sending each coefficient c∈𝕂 to
c Idr∈𝕂r×r and take

Φ =

((((((((((((((((((
((((((((((((((((((
(((
(
( 0 1

⋮ ⋱
0 1

−R0 −R1 ⋯ −Rr−1 ))))))))))))))))
))))))))))))))))))
)))))
)
)

.

We next apply Proposition 3.5 to obtain a PL,𝜑(u, f )∈(𝕂r×r[∂]∗⊗𝕂r×r[∂])(u⊗ f ) with

uL[r]( f )−�L⋉(−𝜑)
[r] �∗(u) f = (∂+Φ)(PL,Φ(u, f )).

This equation can be considered as the “desired” generalization of (3.1) with R instead of ∂ in
the right hand side.

As usual, Proposition 3.5 also admits a difference version. Let 𝕂 be a differential field for 𝜎
and let 𝜑,E be such that Δ(E)=𝜑E. The twist of an operator L=Lr𝜎 r+⋯+L0 by E is again
defined as L⋉𝜑=E−1LE, so that 𝜎⋉𝜑=(𝜑+1)𝜎.

PROPOSITION 3.6. Let 𝕂 be a differential field for 𝜎. For any L∈𝕂[𝜎] and 𝜑∈𝕂, there exists a

PL,𝜑(u, f )∈(𝕂[𝜎−1]⊗𝕂[𝜎])(u⊗ f )
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such that

uL( f )− (L⋉(−𝜑))∗(u) f = (Δ+𝜑)(PL,𝜑(u, f )). □

3.5. Another twisted variant
There are many more variants and generalizations of Lagrange's identity. Let us describe
one more variant in the differential case. Let 𝔸 be a possibly non-commutative 𝕂-algebra,
where 𝕂 is a field.

PROPOSITION 3.7. Let L=∂−A be a monic first order operator in 𝔸[∂] and let R∈𝕂[∂] be a monic
operator of order r. Then there exist differential operators Ψ0,…,Ψr∈𝕂[A][∂]⊆𝔸[∂] such that

R(u f ) = �
i=0

r

Ψi(u) (∂−A)i( f ).

Proof. Writing K ′= t Kt∂t−1+⋯+2K2∂+K1 for the derivative of a differential operator K=
Kt∂t+⋯+K0, and using the expansion

∂k=(∂−A+A)k=�
i=0

k

�k
i�Ak−i (∂−A)i,

we notice that

R(u f ) = �
k=0

r 1
k! R(k)(u)∂k f

= �
k=0

r

�
i=0

k 1
k! �

k
i�Ak−i R(k)(u)(∂−A)i( f )

= �
i=0

r

[[[[[[[[[[[[[[[[[�k=i

r 1
k! �

k
i�Ak−i R(k)(u)]]]]]]]]]]]]]]]]](∂−A)i( f )

Taking Ψi=∑k=i
r 1

k! �
k
i�Ak−i R(k)(u) for i=0,…, r, the result follows. −−

− −

We typically read the above identity as

Ξ((∂−A)( f ))+Ψ0(u) f = R(uf )

Ξ = Ψ1(u)+⋯+Ψr(u)(∂−A)r−1,
(3.5)

where Ψ0(u) plays a similar role as −L∗(u) in (3.1), where u f plays the role of PL(u, f ), and
where the derivation ∂ got replaced by a general monic operator R∈𝕂[∂].

4. DIFFERENTIAL REDUCTIONS

4.1. Partial fraction decomposition and Hermite reduction

Let 𝕂 be a field with algebraic closure �̄�. Any rational function f ∈�̄�(z) admits a partial
fraction decomposition

f = f(⋆)+ �
𝛼∈�̄�∪{∞}

f(𝛼), (4.1)
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where f(⋆)∈𝕂(z)(⋆)=�̄�,

f(∞) = �
k=1

ord∞ f

f(∞),k zk ∈ �̄�(z)(∞)

�̄�(z)(∞) = z�̄�[z],

and, for each 𝛼∈�̄�,

f(𝛼) = �
k=1

ord𝛼f f(𝛼),k
(z−𝛼)k ∈ �̄�(z)(𝛼)

�̄�(z)(𝛼) = 1
z−𝛼 �̄�� 1

z−𝛼�.

Given 𝛼∈ K̄∪{∞}, we will write 𝜋(𝛼) for the projection f ↦ f(𝛼) and we call f(𝛼) the polar part
of f at 𝛼. The number ord𝛼 f ∈ℕ stands for the order of the pole of f . We also write 𝜋(⋆) for
the projection f ↦ f(⋆) and call f(⋆) the constant part of f .

The decomposition (4.1) has the advantage of being symmetric with respect to all points
in �̄� ∪ {∞}. Often, the polar part at infinity is combined with the constant part, in which
case (4.1) becomes

f = f(∞,⋆)+ �
𝛼∈�̄�

f(𝛼), (4.2)

where f(∞,⋆)= f(∞)+ f(⋆)∈𝕂(∞,⋆)=𝕂[z]. More generally, for subsets Α⊆�̄�∪ {∞, ⋆}, it is
convenient to denote

f(Α) = �
𝛼∈Α

f(𝛼) ∈ �̄�(z)(Α)

�̄�(z)(Α) = �
𝛼∈Α

�̄�(z)(𝛼).

We also denote Ᾱ = �̄�∪ {∞, ⋆} ∖Α and write 𝜋(Α) for the projection f ↦ f(Α). Notice that
�̄�(z)(Α,⋆) forms a ring for any Α⊆�̄�∪{∞}.

The Hermite reduction [ f ] of f ∈�̄�(z) with respect to the ordinary differentiation ∂=∂z with
respect to z is defined by

[ f ] = �
𝛼∈�̄�

f(𝛼),1
z−𝛼 .

It is not hard to check that this indeed defines a normal reduction on �̄�(z) with respect to ∂.
Its restriction to 𝕂(z) determines a normal reduction on 𝕂(z) with respect to ∂, by Proposi-
tion 2.3.

4.2. Local reduction with respect to differential operators
Let us now consider an arbitrary non-zero linear differential operator L∈𝕂[z][∂] instead of
∂. For any 𝛼∈�̄�, it is well-known [55] that there exists an indicial polynomial ind𝛼∈�̄�[𝜌] at 𝛼
and a shift 𝜏𝛼∈ℤ at 𝛼 with

L((z−𝛼)−𝜌) = (z−𝛼)−𝜌−𝜏𝛼(ind𝛼(𝜌)+ o(1)) (z→𝛼),

for all 𝜌∈ℤ. Similarly, at infinity there exist ind∞∈�̄�[𝜌] and 𝜏∞∈ℤ with

L(z𝜌) = z𝜌+𝜏∞(ind∞(𝜌)+ o(1)) (z→∞).
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Given 𝛼∈�̄�, let us now construct a local reduction []𝛼: �̄�(z)→�̄�(z) at 𝛼. Given f ∈�̄�(z), let
𝜌∈ℤ and c∈�̄� be such that

f = (z−𝛼)−𝜌 (c+ o(1)) (z→𝛼).

Setting B𝛼≔max(0,𝜏𝛼), we define [ f ]𝛼 by induction over 𝜌, as follows:

[ f ]𝛼=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{ f if 𝜌⩽B𝛼

c(z−𝛼)−𝜌+[ f − c (z−𝛼)−𝜌]𝛼 if 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)=0
� f −L� c

ind𝛼 (𝜌−𝜏𝛼)
(z−𝛼)−𝜌+𝜏𝛼��

𝛼
if 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)≠0.

(4.3)

In a similar way, we may construct a local reduction []∞: �̄�(z)→�̄�(z) at infinity. Given f ∈
�̄�(z), let 𝜌∈ℤ and c∈�̄� be such that

f = z𝜌 (c+ o(1)) (z→∞).

Setting B∞≔max(0,𝜏∞), we define [ f ]∞ by induction over 𝜌:

[ f ]∞=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{ f if 𝜌⩽B∞

cz𝜌+[ f − cz𝜌]∞ if 𝜌>B∞ and ind∞(𝜌−𝜏∞)=0
� f −L� c

ind∞ (𝜌−𝜏∞)
z𝜌−𝜏𝛼��

∞
if 𝜌>B∞ and ind∞(𝜌−𝜏∞)≠0.

(4.4)

Notice that [ f ]∞∈𝕂(z) for any f ∈𝕂(z).

PROPOSITION 4.1. Let f ∈�̄�(z) and 𝛼∈�̄�∪{∞}. The mapping []𝛼 is a reduction with respect to L
such that:

i. The reduction []𝛼 is local for 𝜋(𝛼).

ii. We have { f }𝛼∈�̄�(z)(𝛼,∞,⋆).

iii. The reductions []𝛼 and []𝛽 are independent for any 𝛼,𝛽∈�̄� with 𝛼≠𝛽.

iv. If 𝛼∈�̄�, then ({ f }∞)(𝛼)=0.

Proof. We adopt the notations from above. Whenever 𝜌>B𝛼, we let h= c(z−𝛼)−𝜌 if 𝛼∈�̄� and
h=cz𝜌 if 𝛼=∞. Whenever ind𝛼(𝜌−𝜏𝛼)≠0, we also denote g=c(z−𝛼)−𝜌+𝜏𝛼/ind𝛼(𝜌−𝜏𝛼) if 𝛼∈�̄�
and g= cz𝜌−𝜏𝛼/ind𝛼(𝜌−𝜏𝛼) if 𝛼=∞.

By induction on 𝜌, let us first show that there exists a u ∈ �̄�(z)(𝛼,∞,⋆) with ord𝛼 u ⩽
max(𝜌−𝜏𝛼, 0) and { f }𝛼=L(u); notice that this in particular implies ii, as well as ord𝛼 [ f ]𝛼⩽𝜌.
If 𝜌⩽B𝛼, then we may take u=0. If 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)=0, then there exists a u∈�̄�(z)(𝛼,∞,⋆)
with ord𝛼 u⩽max (𝜌 − 1 − 𝜏𝛼, 0) and { f − h}𝛼= L(u), whence { f }𝛼= { f − h}𝛼= L(u). If 𝜌>B𝛼
and ind𝛼(𝜌 − 𝜏𝛼) ≠ 0, then there exists a v∈�̄�(z)(𝛼,∞,⋆) with ord𝛼 v⩽max (𝜌 − 1 − 𝜏𝛼, 0) and
{ f − L(g)}𝛼= L(v). Hence { f }𝛼= L(g)+ { f − L(g)}𝛼= L(g + v), so we may take u = g + v ∈
�̄�(z)(𝛼,∞,⋆) with ord𝛼 u⩽max(𝜌−𝜏𝛼, 0).

Again by induction on 𝜌, let us next show that [[ f ]𝛼]𝛼=[ f ]𝛼. If 𝜌⩽B𝛼, then we have [ f ]𝛼=
f = [[ f ]𝛼]𝛼. If 𝜌>B𝛼 and ind𝛼(𝜌 − 𝜏𝛼) = 0, then ord𝛼 [ f − h]𝛼⩽𝜌− 1 implies [h+ [ f − h]𝛼]𝛼=
h+[[ f − h]𝛼]𝛼. Consequently, [[ f ]𝛼]𝛼=[h+[ f − h]𝛼]𝛼= h+[[ f − h]𝛼]𝛼= h+[ f − h]𝛼=[ f ]𝛼. If
𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)≠0, then [[ f ]𝛼]𝛼=[[ f −L(g)]𝛼]𝛼=[ f −L(g)]𝛼=[ f ]𝛼. This completes the
proof that []𝛼 is a reduction with respect to L.

Decomposing f =𝜑+𝜓 with 𝜑= f(𝛼), let us next show by induction on 𝜌 that [ f ]𝛼=[𝜑]𝛼+𝜓.
If 𝜌⩽B𝛼, then we have 𝜑=0=[𝜑]𝛼 and [ f ]𝛼= f =𝜓. If 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)=0, then we may
decompose f = h+ f̃ and 𝜑= h+ �̃� with �̃�= f̃(𝛼), after which [ f ]𝛼= h+[ f̃ ]𝛼= h+[�̃�]𝛼+𝜓=
[𝜑]𝛼+𝜓. If 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)≠0, then 𝜑=(z−𝛼)−𝜌 (c+ o(1)) implies [𝜑]𝛼=[𝜑−L(g)]𝛼. It
follows that [ f ]𝛼=[ f −L(g)]𝛼=[ f −𝜑]𝛼+[𝜑−L(g)]𝛼=[𝜑−L(g)]𝛼+𝜓=[𝜑]𝛼+𝜓. This shows i.
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Now let 𝛽∈�̄� be such that 𝛽≠𝛼. The projections 𝜋(𝛼) and 𝜋(𝛽) are clearly orthogonal and
it follows from ii that ({ f }𝛼)(𝛽)=0 and ({ f }𝛽)(𝛼)=0 ; this shows iii. The last fact iv also follows
from ii. −−

− −

PROPOSITION 4.2. For each 𝛼∈�̄�∪{∞}, let

ℱ𝛼 = {(z−𝛼)−𝜌 : 0<𝜌∧(𝜌⩽B𝛼∨ind𝛼(𝜌−𝜏𝛼)=0)} (𝛼∈�̄�)
ℱ∞ = {z𝜌 : 0<𝜌∧(𝜌⩽B∞∨ind∞(𝜌−𝜏∞)=0)} (𝛼=∞)

Then ([�̄�(z)]𝛼)(𝛼) is included in the vector space Vect(ℱ𝛼) spanned by ℱ𝛼. We also have |ℱ𝛼|⩽2r for
𝛼∈�̄� and |ℱ∞|⩽ r+degz L.

Proof. Adopt the same notations as in the proof of Proposition 4.1. Given f ∈�̄�(z), let us
prove by induction on 𝜌= ord𝛼 f that ([ f ]𝛼)(𝛼)∈Vect(ℱ𝛼). This is clear if 𝜌⩽B𝛼. If 𝜌>B𝛼
and ind𝛼(𝜌 − 𝜏𝛼) = 0, then the induction hypothesis yields ([ f − h]𝛼)(𝛼)∈Vect(ℱ𝛼), whence
([ f ]𝛼)(𝛼)=([ f − h]𝛼)(𝛼)+h(𝛼)=([ f − h]𝛼)(𝛼)+ h∈Vect(ℱ𝛼). If 𝜌>B𝛼 and ind𝛼(𝜌−𝜏𝛼)≠0, then
the induction hypothesis directly yields ([ f ]𝛼)(𝛼)=([ f −L(g)]𝛼)(𝛼)∈Vect(ℱ𝛼). This completes
the proof that ([�̄�(z)]𝛼)(𝛼)⊆Vect(ℱ𝛼). If 𝛼∈ �̄�, then we also have B𝛼⩽ r and B∞=degz L.
Since ind𝛼 admits at most r roots, the cardinality bounds follow. −−

− −

Remark 4.3. Proposition 4.2 shows that []𝛼 is locally confined for all 𝛼∈�̄�∪{∞}. This makes
it possible to define a locally normal reduction ⟦⟧𝛼 using Proposition 2.10. In order to make
this construction fully effective, we still have to determine the space E=([im L]𝛼)(𝛼). Let

ℱ𝛼
# = {(z−𝛼)−𝜌 : 0<𝜌⩽maxℱ𝛼} (𝛼∈�̄�)

ℱ∞
# = {z𝜌 : 0<𝜌⩽maxℱ∞} (𝛼=∞)

We claim that E=([L(Vect(ℱ𝛼
#))]𝛼)(𝛼). Assume for contradiction that there exists a function

f ∈�̄�(z) with ([L( f )]𝛼)(𝛼)∈E∖([L(Vect(ℱ𝛼
#))]𝛼)(𝛼) and chose f such that 𝜌=ord𝛼 f is min-

imal with this property. Let g as in the proof of Proposition 4.1. Since we must have 𝜌>
maxℱ𝛼, it follows that [ f ]𝛼=[ f −L(g)]𝛼. Therefore f −L(g) provides a counterexample with
ord𝛼 ( f −L(g))<𝜌, contracting our minimality hypothesis.

Having proved our claim, one may use linear algebra to determine elements f1,…, fe∈ℱ𝛼
#

with e=dim�̄� E and such that ([L( f1)]𝛼)(𝛼),…,([L( fe)]𝛼)(𝛼) form a basis for E. Setting ord𝛼 E=
{k>0 :∃𝜓∈E, ord𝛼 𝜓= k} and E⊥=Vect((z −𝛼)−𝜌 : 𝜌∉ord𝛼 E), we define 𝜋E to be the “distin-
guished” projection of �̄�(z)(𝛼) on E such that 𝜑−𝜋E(𝜑)∈E⊥ for all 𝜑∈�̄�(z)(𝛼). In order to
apply Proposition 2.10, we finally construct the mapping 𝜉 by sending each ([L( fi)]𝛼)(𝛼) to
[L( fi)]𝛼 and then extend 𝜉 to �̄�(z)(𝛼) by setting 𝜉(𝜑)=𝜉(𝜋E(𝜑)).

Since max ℱ𝛼 can be arbitrarily large, we notice that the determination of f1,…, fe can be
very expensive. In particular, there exists no polynomial time algorithm to compute them. We
also notice that the construction of ⟦⟧𝛼 is symmetric in the sense that ⟦𝜎( f )⟧𝜎(𝛼)=𝜎(⟦ f ⟧𝛼) for
all automorphisms 𝜎 of �̄� over 𝕂.

4.3. Global reduction with respect to differential operators

From Propositions 4.1 and 2.6, it follows that we can glue the local reductions at the finite
points 𝛼∈�̄� together into a reduction []�̄�: �̄�(z)→�̄�(z), defined by

[ f ]�̄� = f(∞,⋆)+ �
𝛼∈�̄�

[ f(𝛼)]𝛼. (4.5)

JORIS VAN DER HOEVEN 17



Notice that Proposition 2.3 implies that [ f ]�̄�∈𝕂(z) whenever f ∈𝕂(z). Using Proposi-
tions 4.1-iv and 2.8, we may next define the global reduction []:�̄�(z)→�̄�(z) with respect to L by

[ f ] = [[ f ]�̄�]∞. (4.6)

Notice that [ f ]∈𝕂(z) whenever f ∈𝕂(z).

Remark 4.4. Applying the above construction to the local reductions ⟦⟧𝛼 from Remark 4.3
instead of []𝛼, we claim that we obtain a normal reduction. Indeed, given f ∈im L, we get
(⟦ f ⟧𝛼)(𝛼)=0 for all 𝛼∈�̄�, whence (⟦ f(𝛼)⟧𝛼)(𝛼)=(⟦ f ⟧𝛼)(𝛼)− ( f(�̄�))(𝛼)=0 and ⟦ f ⟧�̄�∈im L∩�̄�[z].
Since ⟦⟧∞ is locally normal, we conclude that ⟦ f ⟧= 0. We notice that ⟦⟧ is again symmetric
in the sense that ⟦𝕂(z)⟧⊆𝕂(z). It is also easily checked that ⟦⟧ is locally confined for each
projection 𝜋𝛼.

It is interesting to consider the restriction of the global reduction [] to certain differential
subrings of �̄�(z) and 𝕂(z). More precisely, given a subset Α⊆�̄� of poles, the set �̄�(z)(Α,∞,⋆)
forms a differential �̄�[z]-subalgebra of �̄�(z). From Proposition 4.1-ii, it follows that �̄�(z)(Α,∞,⋆)
is stable under reduction. If Α is the set of zeros of a monic separable polynomial 𝜓∈𝕂[z],
then we observe that �̄�(z)(Α,∞,⋆) coincides with �̄�[z,𝜓−1]. In that case, Proposition 2.3 implies
that 𝕂[z,𝜓−1] is stable under reduction as well. We notice that 𝕂[z,𝜓−1] is finitely generated
by 𝜓−1 as a 𝕂[z][∂]-submodule of 𝕂(z); for this reason we call it a narrow submodule of 𝕂(z).

THEOREM 4.5. Let L∈𝕂[z][∂] be of order r⩾0 and let []: �̄�(z)→�̄�(z) be the global reduction with
respect to L. Assume that Α is the set of zeros of a monic separable polynomial 𝜓∈𝕂[z] of degree d.
Then the restriction []𝕄 of [] to 𝕄=𝕂[z,𝜓−1] is a confined reduction with respect to L such that

dim𝕂 [𝕄]𝕄 ⩽ (2d+1) r+degz L+1.

Proof. Given u∈�̄�(z) and 𝛼∈�̄�∖Α with ord𝛼 u>0, we notice that ord𝛼 L(u)= ord𝛼 u+ r,
whence L(u)∉�̄�[z,𝜓−1]. Given f ∈�̄�(z) with { f }=L(u), it follows that u∈�̄�[z,𝜓−1]. In other
words, �̄�[z,𝜓−1] is stable under reduction and so is 𝕄, since the reduction commutes with all
automorphisms of �̄� over 𝕂.

Let us now turn to the dimension bound. Since [] is �̄�-linear, it suffices to show that
dim�̄� [�̄�[z, 𝜓−1]]⩽(2d+1) r+degz L+1. Let ℱ𝛼 be defined as in Proposition 4.2 for all 𝛼∈
Α∪{∞}. Then the proposition implies that

ℱ ={1}∪ �
𝛼∈Α∪{∞}

ℱ𝛼

contains at most |ℱ |⩽(2d+1)r+degz L+1 elements. Now let f ∈�̄�[z,𝜓−1], so that f = f(∞,⋆)+
∑𝛼∈Α f(𝛼). We have

[ f ]�̄� = f(∞,⋆)+ �
𝛼∈Α

[ f(𝛼)]𝛼.

For any 𝛼∈Α, we have { f(𝛼)}𝛼∈�̄�(z)(𝛼,∞,⋆) by Proposition 4.1-ii, whence [ f(𝛼)]𝛼∈�̄�(z)(𝛼,∞,⋆).
Since ([ f(𝛼)]𝛼)(𝛼)∈Vect(ℱ𝛼) by Proposition 4.2, it follows that [ f(𝛼)]𝛼∈�̄�[z]+Vect(ℱ𝛼), whence

[ f ]�̄� ∈ �̄�[z]+Vect(ℱ).

Now [ f ] = [[ f ]�̄�]∞∈ [ f ]�̄�+ �̄�[z] by Proposition 4.1-ii and [ f ](∞)∈Vect(ℱ∞) by Proposi-
tion 4.2. We conclude that [ f ]∈Vect(ℱ), with dim�̄�Vect(ℱ)⩽(2d+1) r+degz L+1. −−

− −
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Remark 4.6. A bit of flexibility is possible regarding the choice of B𝛼 in the definitions of
the local reductions []𝛼. Taking B𝛼= 0 for 𝛼∈ �̄� as in [16] may lead to slightly more con-
fined reductions in Theorem 4.5. Conversely, by taking B𝛼 somewhat larger, one may ensure
that { f }𝛼∈�̄�(z)(𝛼) for all f ∈�̄�(z) in Proposition 4.1-ii, so that []𝛼 and []𝛽 commute for all
𝛼,𝛽∈�̄�∪{∞} in Proposition 4.1-iii. This makes it possible to treat the singularity at infinity in
a more symmetric way and replace definition (4.6) by

[ f ] = f(⋆)+ �
𝛼∈�̄�∪{∞}

[ f(𝛼)]𝛼.

Remark 4.7. Since the reduction ⟦⟧ form Remark 4.4 is both normal and locally confined for
each projection 𝜋𝛼 with 𝛼∈Α∪{∞}, its restriction to (𝕂(z))(Α,∞,⋆) yields a normal confined
reduction.

4.4. Back to reductions with respect to ∂
Assume still that L∈𝕂[z][∂] is a non-zero differential operator. Let r⩾0 be its order, let
𝜙= Lr∈𝕂[z] be its dominant coefficient, and let 𝜓∈𝕂[z] be an arbitrary monic separable
polynomial such that 𝜙−1 is contained in

𝕄 = 𝕂[z,𝜓−1].

Given formal indeterminates f ,…, f (r−1), the set

𝔻 = 𝕄 f ⊕⋯⊕𝕄 f (r−1) (4.7)

admits a natural 𝕄[∂]-module structure for the derivation ∂ with

∂ f (i) = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{ f (i+1) if i< r−1

− 1
𝜙 (L0 f +⋯+Lr−1 f (r−1)) if i= r−1.

By construction, f is a formal solution to L( f )=0 in 𝔻.
Let us show how to construct a confined reduction []𝔻 with respect to ∂ on 𝔻. We start

with the confined reduction []𝕄:𝕄→𝕄 with respect L∗ provided by Theorem 4.5. Now con-
sider

w=w0 f +⋯+ws f (s)∈𝔻

with s< r and let us define [w]𝔻 by induction on s. If s=0, then we take

[w0 f ]𝔻 = [w0]𝕄 f .

By construction, we have {w0}𝕄∈im L∗, whence there exists a u∈𝕄 such that {w0}𝕄=L∗(u).
Using Proposition 3.1, it follows that

{w}𝔻 = {w0}𝕄 f = L∗(u) f = L∗(u) f −uL( f ) ∈ ∂𝔻.

Assume now that s>0. Then we define

[w]𝔻 = [w0 f ]𝔻+[w̃]𝔻
w̃ = −((∂w1) f +⋯+(∂ws) f (s−1)).

We notice that

w−w0 f − w̃ = ∂(w1 f +⋯+ws f (s−1)) ∈ ∂𝔻.

It follows that

{w}𝔻 = {w0 f }𝔻+w−w0 f − w̃+{w̃}𝔻 ∈ ∂𝔻.
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In fact, an easy induction on s shows that

[w]𝔻 = [w0−∂w1+∂2 w2+⋯+(−1)s∂s ws]𝕄 f . (4.8)

In particular, the constructed reduction is confined with im []𝔻=(im []𝕄) f :

THEOREM 4.8. Let L∈𝕂[z][∂] be of order r⩾0 and let 𝜓∈𝕂[z] be a monic separable polynomial of
degree d such that (4.7) admits the structure of a 𝕂[z,𝜓−1][∂]-module. Then (4.8) defines a confined
reduction []𝔻:𝔻→𝔻 with respect to ∂ and we have

dim𝕂 [𝔻]𝔻 ⩽ (2d+1) r+degz L+1. □

4.5. First order systems
Let us now turn to first order systems and study analogues for the theory and results from
the previous subsections. This means that the operator L from section 4.4 is now a first order
operator in 𝕂(z)r×r[∂] and we need to adapt the theory of sections 4.2 and 4.3 to the adjoint
operator L∗∈𝕂(z)r×r[∂]∗; recall that L∗ operates at the right on matrices in �̄�(z)r×r. By Propo-
sition 2.1, we also recall that the construction of a reduction []L∗ with respect to L∗ is equivalent
to the construction of a reduction []UL∗ with respect to U L∗, for any invertible matrix U ∈
�̄�(z)r×r. In particular, for the construction of a local reduction at 𝛼∈�̄�, it suffices to consider
operators of the form ∂(z−𝛼)+A∈�̄�(z)r×r[∂]∗ with A∈�̄�(z)r×r.

As the analogue for the operator L from sections 4.2 and 4.3, we will therefore start with an
operator L=∂(z−𝛼)+A∈�̄�(z)r×r[∂]∗ and show how to construct the local reduction []𝛼=[]𝛼,L
at 𝛼∈�̄�with respect to L. It will be convenient to first put L into an even simpler form through
multiplication by a suitable invertible matrix U∈�̄�(z)r×r. Let 𝜆=ord𝛼 A. In analogy with [50],
we say that an invertible matrix U∈�̄�[z, (z−𝛼)−1]r×r is a tail chopper for L at 𝛼 if we either have
𝜆=0 and A=Idr, or 𝜆>0, ord𝛼(UA)=𝜆, and for some k∈{0,…,n}:

T1. If k>0, then ord𝛼 U♯⩽𝜆− 1 and rank (U A♯)(𝛼),𝜆= k for the matrix U♯ formed by the
first k rows of U.

T2. If k< r, then ord𝛼 U♭=𝜆 and rank U(𝛼),𝜆
♭ = r− k for the matrix U♭ formed by the last r−k

rows of U.

Tail choppers can be computed using the following algorithm:

Algorithm 4.1
INPUT: L=∂(z−𝛼)+A∈�̄�(z)r×r[∂]∗
OUTPUT: a tail chopper for L at 𝛼
Let k≔0, 𝜆≔ord𝛼 A
Let U♯=0r×0∈�̄��z, 1

z−𝛼�
r×k, U ♭=Idr×r∈�̄��z, 1

z −𝛼�
r×(r−k)

while k< r and ord𝛼 U♭<𝜆 do
• Let C≔(UA)(𝛼),𝜆∈�̄�r×r.
• Using row sweeping, we determine an invertible matrix T ∈�̄�r×r such

that the first k rows of T C and T are the same, the first k′⩾k rows of TC
have rank k′, and the last r−k′ rows of TC are zero.

• Set U≔TU and next multiply the last r−k′ rows of U with (z−𝛼)−1.

• Set k≔k′ and let U♯ and U ♭ be the matrices formed by the first k and last
r− k rows of U.

return U
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PROPOSITION 4.9. Algorithm 4.1 terminates and computes a tail chopper U for L at 𝛼.

Proof. At every iteration of this loop, we notice that i=ord𝛼 U♭ increases by one (as long as
k< r) and it is easily checked that T1 and rank (U♭)(𝛼),i= r−k are loop invariants. −−

− −

Remark 4.10. The above algorithm for the computation of tail choppers is somewhat reminis-
cent of Abramov's EG-elimination method [1].

Given a tail chopper U as above, let 𝜓∈�̄�[z] be the denominator of A (so that ord𝛼𝜓=𝜆),
and consider the operator K=𝜓UL∈�̄�[z]r×r[∂]∗. We have

K = ((𝜓UA)(⋆)+ o(1))+(∂−𝛼)((𝜓U)(⋆)+ o(1)), (z→𝛼) (4.9)

We consider K as the “preconditioned” version of L with respect to which we will now con-
struct the local reduction []𝛼=[]𝛼,K. From (4.9) it follows that the shift of K at 𝛼 is simply 𝜏𝛼=0
and its indicial polynomial is given by

ind𝛼(𝜌) = (AU𝜓)(⋆)− (U𝜓)(⋆)𝜌.

By construction, ind𝛼(𝜌) is invertible as a matrix in �̄�(𝜌)r×r, whence there exist at most r values
of 𝜌 where det ind𝛼(𝜌)=0. We are now in a position to formulate a counterpart of (4.3).

Given f ∈�̄�(z)1×r, let 𝜌∈ℤ and c∈�̄�1×r be such that

f = (z−𝛼)−𝜌 (c+ o(1)) (z→𝛼).

We define [ f ]𝛼 by induction over 𝜌, as follows:

[ f ]𝛼={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{

f if 𝜌⩽0
c(z−𝛼)−𝜌+[ f − c (z−𝛼)−𝜌]𝛼 if 𝜌>0 and det ind𝛼(𝜌)=0
[ f −K(c ind𝛼(𝜌)−1 (z−𝛼)−𝜌)]𝛼 if 𝜌>0 and det ind𝛼(𝜌)≠0.

(4.10)

Although this definition works, it is slightly suboptimal in the sense that values of 𝜌 for which
det ind𝛼(𝜌)=0 are “skipped” altogether even though the system y ind𝛼(𝜌)= c might actually
be solvable. Given an arbitrary scalar matrix M∈�̄�r×r, let M†∈�̄�r×r denote a pseudo-inverse
such that c M†M= c for any c∈�̄�1×r M. Also let M‡∈�̄�r×r denote a matrix with c= c M‡+
cM†M for all c∈�̄�1×r. We may now replace (4.10) by

[ f ]𝛼={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{ f if 𝜌⩽0

cP
(z−𝛼)𝜌 +� f − cP

(z−𝛼)𝜌 −K� cU
(z −𝛼)𝜌��𝛼 if 𝜌>0 and P=ind𝛼(𝜌)‡,U=ind𝛼(𝜌)†.

(4.11)

This “more confined” definition ensures that d=dim𝕂 𝜋(𝛼)���̄�1×r(z)�𝛼�⩽ r instead of d⩽ r2.
The local reduction []∞ at infinity can be defined in a similar fashion, via the change of vari-
ables z↦z−1.

Given an arbitrary first order operator L∈𝕂(z)r×r[∂]∗, this completes our construction of
the local reductions []𝛼 and []∞ with respect to L. Proposition 4.1 and the theory from sec-
tion 4.3 can be adapted mutatis mutandis. In particular, []𝛼 and []∞ are indeed local reductions
for 𝜋(𝛼) and 𝜋(∞) that can be glued together into a global reduction []: �̄�(z)1×r→�̄�(z)1×r with
respect to L. Assuming that the mappings M↦M† and M↦M‡ were taken to commute with
all automorphisms of �̄� over 𝕂, we again have [ f ]∈𝕂(z)1×r for all f ∈𝕂(z)1×r. The analogue
of Theorem 4.5 is:
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THEOREM 4.11. Let L∈𝕂[z]r×r[∂]∗ be of order one with invertible L1 and let []:�̄�(z)1×r→�̄�(z)1×r be
the global reduction with respect to L. Assume that Α is the set of zeros of a monic separable polynomial
𝜓∈𝕂[z] of degree d. Then the restriction []𝕄 of the reduction [] to 𝕄=𝕂[z, 𝜓−1]1×r is a confined
reduction with respect to L such that

dim𝕂 [𝕄]𝕄 ⩽ (2d+degz L+2) r. □

As to the counterpart for section 4.4, assume that L=∂−A∈𝕂(z)r×r[∂]with A∈𝕂(z)r×r. Let
𝜓∈𝕂[z] be an arbitrary monic separable polynomial such that A∈𝔸r×r, where 𝔸=𝕂[z,𝜓−1].
Given a formal column vector F with entries f1,…, fr, the set

𝔻 = 𝔸 f1⊕⋯⊕𝔸 fr (4.12)

admits the natural structure of a 𝕂[z][∂]-module for the derivation ∂ with ∂F=A F. Given
a row vector w∈𝕄=𝔸1×r, we define the reduction on 𝔻 by

[wF]𝔻 = [w]𝕄F,

where []𝕄 is the confined reduction on 𝕄 with respect to L∗ as constructed above. By con-
struction, there exists a u∈𝕄 with {w}𝕄=L∗(u), whence

{wF}𝔻 = {w}𝕄F = (−∂u−uA)F = (−∂u−uA)F−u (∂F−AF) = ∂(−uF).

The further results from section 4.4 now adapt mutatis mutandis.

Remark 4.12. Starting from a reduction []𝔻:𝔻→𝔻 for ∂ with [𝔻]𝔻⊆𝕄 f , one may also define
a reduction []𝕄:𝕄→𝕄 for L∗: given w∈𝕄, there exists a v∈𝕄 with [w F]𝔻= v F, and we
take [w]𝕄=v. Then there exists a u∈𝕄 with {wF}𝔻=∂(u F). Using Lagrange's identity the
other way around, we obtain {wF}𝔻=(w−v)F=∂(uF)=(∂u+uA)F=L∗(u)F, whence {w}𝕄=
w−v=L∗(u). This shows that []𝕄 is indeed a reduction with respect to L∗.

4.6. Reductions on D-modules with respect to general operators
We have seen how to construct reductions on 𝕂(z) with respect to general operators and how
to construct reductions on D-modules with respect to ∂. It is natural to ask whether we can
construct reductions on D-modules with respect to more general operators.

Let us first show how to do this in the setting of first order systems from the previous
subsection. More precisely, assume that 𝔸, L=∂−A∈𝕂(z)r×r[∂] with A∈𝔸r×r and 𝔻 are as
in the previous subsection. Given another matrix Φ∈𝔸s×s, our aim is to construct a reduction
on 𝔻s with respect to R=∂−Φ. The idea is to use an explicit variant of Proposition 3.5. Given
a matrix U∈𝔸s×r, we notice that

(∂−Φ)(UF) = U∂F+(∂U)F−ΦUF
= U (∂−A)(F)+(∂U+UA−ΦU)F. (4.13)

Now we may reinterpret U↦∂U+U A−ΦU as a first order differential operator of dimen-
sion r s on 𝕄≔𝔸s×r, for which we may construct a confined reduction []𝕄 using the theory
from the previous subsection. Given W∈𝕄, this means that there exists a U∈𝕄 with {W}𝕄=
∂U+UA−ΦU. Setting

[WF]𝔻s = [W]𝕄F, (4.14)

it follows from (4.13) and the defining equation (∂−A)(F)=0 of F that

{WF}𝔻s = {W}𝕄F = (∂−Φ)(UF) ∈ im (∂−Φ).

This shows that (4.14) indeed defines a reduction with respect to ∂−Φ on 𝔻s.
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The above construction admits several variants. Let us briefly sketch what happens if the
first order matrix operator R is replaced by a monic operator R∈𝔸[∂]. This time, we rather
rely on Proposition 3.7 and more precisely on formula (3.5). Given a row matrix u∈𝔸1×r and
using the fact that (∂−A)(F)=0, we have

R(uF) = Ξ((∂−A)(F))+Ψ0(u)F = Ψ0(u)F.

The idea is now to construct a confined reduction []𝕄 with respect to Ψ0 on 𝕄=𝔸1×r. This can
be done by generalizing the theory of sections 4.2-4.4 to allow for matrix coefficients, along the
lines of section 4.5. We next define the confined reduction on 𝔻 as usual by [wF]𝔻=[w]𝕄F.
Given u∈𝔻, there then exists a w∈𝕄 with {w}𝕄=Ψ0(u), whence

{wF}𝔻 = {w}𝕄F = Ψ0(u)F = R(uF) ∈ im R.

We conclude that []𝔻 is a confined reduction with respect to R on 𝔻.

5. DIFFERENCE REDUCTIONS

5.1. The field 𝕂(z) as a difference field
Let 𝕂 be a field and consider a birational map 𝜏∈𝕂(z) from the projective line over 𝕂 into
itself. Such an map 𝜏 is called a homography and is necessarily of the form

𝜏=𝜏H=𝜏H,z, H=(((((((((((( a b
c d )))))))))))), 𝜏(z)= az+b

cz+d ,

where the matrix H is invertible. Given 𝛼∈�̄�∪{∞} and k∈ℤ, we will denote 𝛼(k)=𝜏−k(𝛼).
Given a homography 𝜏∈𝕂(z), the field 𝕂(z) becomes a difference field for the automor-

phism 𝜎=𝜎H that postcomposes with 𝜏:

𝜎( f ) = f ∘𝜏.

Notice that
ord𝛼(k) 𝜎 k( f )=ord𝛼 f

for all f ∈�̄�(z), 𝛼∈�̄�∪{∞}, and k∈ℤ. More generally, if 𝕂 was already equipped with an
automorphism 𝜔, then we may extend 𝜔 into an automorphism 𝜎=𝜎𝜔,H on 𝕂 by taking

𝜎( f ) = 𝜔( f )∘𝜏,

where 𝜔 acts coefficientwise on rational functions f ∈𝕂(z). Inversely, we must have 𝜏=𝜎(z)
for automorphisms 𝜎 of this kind, and we call 𝜏 the homography associated to 𝜎.

Two important special cases are the shift operators S𝜂 and the q-difference operator Qq:

S𝜂 = 𝜎H, H=(((((((((((( 1 𝜂
0 1 )))))))))))), 𝜂∈𝕂

Qq = 𝜎H, H=(((((((((((( q 0
0 1 )))))))))))), q∈𝕂≠.

Notice that ∞ is a fixed point for 𝜏 for both of these examples.
In fact, we claim that the general case can essentially be reduced to one of these two special

cases via a change of variables z=𝜏T(u). Indeed, such a change of variables transforms differ-
ence equations in z and 𝜎H into difference equations in u and 𝜎T

−1∘𝜎H ∘𝜎T=𝜎T −1HT. Assuming
that we are allowed to extend 𝕂 with the roots of the characteristic polynomial of H, we may
first put H in Jordan normal form and then normalize it through division by d. After this, we
have H=S𝜂 for some 𝜂∈𝕂 or H=Qq for some q∈𝕂≠.
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For what follows, we will always assume that 𝜏 has infinite order. In the case of a shift
operator S𝜂, this means that we should have 𝜂≠0; for a q-difference operator Qq, the number q
should not be a root of unity.

5.2. Difference modules
One particularity of automorphisms 𝜎 of𝕂(z) as above with respect to the ordinary differenti-
ation ∂ is that the sets 𝕂(z)(𝛼) are no longer stable under 𝜎. On the other hand, the set 𝕂(z)(𝛼↑)
is stable under 𝜎, where 𝛼↑={𝛼,𝛼(1),𝛼(2),…} and𝕂(z)(𝛼↑)=⨁𝛽∈𝛼↑�̄�(z)(𝛽). It will be convenient
to expand somewhat more on this observation and introduce a few more notations in addition
to those from section 4.1.

Let us first introduce truncated analogues of the sets �̄�(z)(𝛼) with 𝛼∈�̄�∪{∞}: given 𝜇∈ℕ,
we define

�̄�(z)(𝛼);𝜇 = �
1⩽k⩽𝜇

𝕂
(z−𝛼)k (𝛼∈�̄�)

�̄�(z)(∞);𝜇 = �
1⩽k⩽𝜇

𝕂zk.

The definitions extend to the case when 𝜇=∞ by taking �̄�(z)(𝛼);∞=�̄�(z)(𝛼). Given Α⊆�̄�∪
{∞} and a map 𝜇:�̄�→ℕ∪{∞}, we also denote

�̄�(z)(Α);𝜇 = �
𝛼∈Α

�̄�(z)(𝛼);𝜇(𝛼).

Each of these vector spaces also come with projections similar to the 𝜋(𝛼) and 𝜋(Α) that were
already defined before. For example, f(𝛼);𝜇=𝜋(𝛼);𝜇( f ) stands for truncation at order 𝜇 of f(𝛼)=
𝜋(𝛼)( f ). For Α⊆�̄�∪{∞}, it is also convenient to introduce ordΑ f =sup𝛼∈Α ord𝛼 f ∈ℕ.

Given 𝛼,𝛽∈�̄�∪{∞}, we write 𝛼∼𝛽 if there exists an ℓ∈ℤ such that 𝛽=𝛼(ℓ). This clearly
defines an equivalence relation. We also write 𝛼≼𝛽 if there exists an ℓ∈ℕ such that 𝛽=𝛼(ℓ).
Notice that ≼ is a partial ordering on �̄�∪ {∞} by our assumption that 𝜏 has infinite order.
Given 𝛼∈�̄�∪{∞}, we introduce the subsets 𝛼↑, 𝛼↓ and 𝛼↕ of �̄�∪{∞} by

𝛼↑ = {𝛼(k) :k∈ℕ}
𝛼↓ = {𝛼(−k) :k∈ℕ}
𝛼↕ = {𝛼(k) :k∈ℤ}.

For Α⊆�̄�∪ {∞}, we understand that Α↑= {𝛼↑ : 𝛼∈Α}, Α↓= {𝛼↓ : 𝛼∈Α}, etc. We notice that
�̄�(z)(Α↑) is a �̄�[𝜎]-module, whereas �̄�(z)(Α↓) is a �̄�[𝜎−1]-module. Since ∞ is a fixed point
for 𝜏, then we notice that �̄�(z)(Α↑,∞,⋆) is even a �̄�[z][∂]-module.

More generally, let 𝜇:Α↑→ℕ∪{∞} be an increasing mapping in the sense that 𝜇(𝛼(1))⩾
𝜇(𝛼) for all 𝛼∈Α↑. Then �̄�(z)(Α↑);𝜇 is a �̄�[𝜎]-module. If Α⊆�̄�, then the set �̄�[z]⊕�̄�(z)(Α↑);𝜇 is
actually a �̄�[z][𝜎]-module. We say that Α is symmetric if it is stable under all automorphisms
of �̄� over 𝕂. Similarly, 𝜇 is symmetric if Α is symmetric and 𝜇 commutes with all automor-
phisms of �̄� over 𝕂. In that case, the intersection 𝕂(z)(Α↑);𝜇=�̄�(z)(Α↑);𝜇∩𝕂(z) is a 𝕂[𝜎]-
module and 𝕂[z]⊕𝕂(z)(Α↑);𝜇 a 𝕂[z][∂]-module, whenever Α⊆�̄�.

Assume that Α⊆�̄� and consider a �̄�[z][𝜎]-submodule 𝕄 of �̄�(z) with 1∈𝕄. It is not
hard to check that such a module is necessarily of the form 𝕄=�̄�[z]⊕�̄�(z)(Α↑);𝜇 for some
increasing 𝜇. We say that 𝕄 is narrow if it is a finitely generated as a �̄�[z][𝜎]-module. More
generally, a finitely generated 𝕂[z][𝜎]-module of 𝕂(z) of the form 𝕂[z]⊕𝕂(z)(Α↑);𝜇 is said to
be narrow. Such a narrow submodule of 𝕂(z) is always the intersection of 𝕂(z) with a narrow
submodule �̄�[z]⊕�̄�(z)(Α↑);𝜇 of �̄�(z) for some symmetric 𝜇.
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Consider a narrow submodule �̄�[z]⊕ �̄�(z)(Α↑);𝜇 that is finitely generated by ℱ ⊆�̄�(z).
Without loss of generality, we may replace each f ∈ℱ by the finite set {(z−𝛼)−𝜈 :𝛼∈�̄�,ord𝛼 f =
𝜈>0} and remove any elements (z −𝛼)−𝜈′ such that (z −𝛼)−𝜈∈ℱ for some 𝜈>𝜈′. This means
that we may assume that Α is finite and ℱ ={(z−𝛼)−𝜈(𝛼) : 𝛼∈Α} for some function 𝜈:Α→ℕ>.
Now consider the map 𝜈↑:Α↑→ℕ defined by

(𝜈↑)(𝛼) = max
𝛽≼𝛼

𝜈(𝛽).

Then �̄�[z]⊕�̄�(z)(Α↑);𝜈↑ coincides with the �̄�[z][𝜎]-module generated by ℱ , so that 𝜇=𝜈↑.

5.3. Local and semi-local reduction with respect to shift operators
Let us now move our attention to a shift operator L∈𝕂[z][𝜎−1], where 𝜎=S𝜂 with 𝜂∈𝕂≠. We
assume that L=Lr𝜎 −r+⋯+L0 with both Lr≠0 and L0≠0. We took an operator with respect
to 𝜎−1 rather than 𝜎 since, for the applications that we have in mind (see Proposition 3.2), the
operator L will actually be the adjoint of an operator in 𝕂[z][𝜎].

Since 𝜎 −1=e−𝜂∂, the action of L at infinity can be approximated to any order by a differen-
tial operator in 𝕂[z][∂]. In particular, there still exist an indicial polynomial ind∞∈𝕂[𝜌] and
a shift 𝜏∞∈ℤ (in fact, 𝜏∞∈ℕ, since L admits coefficients in 𝕂[z]) such that

L(z𝜌) = z𝜌+𝜏∞(ind∞(𝜌)+ o(1)) (z→∞).

Consequently, we may define the local reduction []∞: �̄�(z)→�̄�(z) at infinity with respect to L
in a similar way as in subsection 4.2.

Our next aim is to define a “semi-local” reduction []𝛼: �̄�(z)→�̄�(z) at 𝛼∈�̄�. Since f ∈�̄�(z)
admits a singularity at 𝛼 if and only if 𝜎 k( f ) admits a singularity at 𝛼(k) for all k∈ℕ, we also
need to take into account the behaviour at each of these shifted singularities. For this reason,
the reduction []𝛼 will only be “semi-local”.

Given f ∈𝕂(z), we define the 𝛼-span of f to be the largest integer 𝜌=span𝛼 f ∈ℕ such that
f(𝛼(𝜌))≠0. If no such integer exists, then we set 𝜌=span𝛼 f =−∞. Assuming that 𝜌⩾0, consider

g = (((((((((( f
L0))))))))))(𝛼(𝜌)) = ((((((((((((

f(𝛼(𝜌))
L0 ))))))))))))(𝛼(𝜌)).

If L0(𝛼(𝜌))≠0, then the orders of f and g at 𝛼(𝜌) coincide,

L(g)(𝛼(𝜌)) = f(𝛼(𝜌)),

and L(g)∈�̄�[z]⊕�̄�(z)(𝛼(𝜌−r),…,𝛼(𝜌)). If 𝜌⩾ r, then it follows that

( f −L(g))(𝛼↑) ∈ �̄�(z)(𝛼,…,𝛼(𝜌−1)).

This allows us to define [ f ]𝛼 by induction on 𝜌=span𝛼 f as follows:

[ f ]𝛼 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{
{
{ f if 𝜌< r

f(𝛼(𝜌))+[ f − f(𝛼(𝜌))]𝛼 if 𝜌⩾ r and L0(𝛼(𝜌))=0

� f −L�� f
L0
�
(𝛼(𝜌))

��
𝛼

if 𝜌⩾ r and L0(𝛼(𝜌))≠0.
(5.1)

We call []𝛼 the downward semi-local reduction with respect to L at 𝛼.

PROPOSITION 5.1. Let f ∈�̄�(z) and 𝛼∈�̄�∪{∞}. The mapping []𝛼 is a reduction with respect to L
such that:

i. The reduction []𝛼 is local for 𝜋(𝛼↑).
ii. We have { f }𝛼∈�̄�(z)(𝛼↑,∞,⋆).
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iii. The reductions []𝛼 and []𝛽 are independent for any 𝛼,𝛽∈�̄� with 𝛼≁𝛽.

iv. If 𝛼∈�̄�, then ({ f }∞)(𝛼↑)=0.

Proof. If 𝛼=∞, then we have already noticed that []𝛼 is a reduction with respect to L such that i
and ii are satisfied. If 𝛼∈�̄�, then the proof follows the same scheme as in Proposition 4.1; for
the sake of completeness, we give it in full. Throughout the proof, we denote h= f(𝛼(𝜌)) and
g=( f /L0)(𝛼(𝜌)).

By induction on 𝜌=span𝛼 f , let us first show that there exists a u∈𝜎 r(�̄�(z)(𝛼↑)) with { f }𝛼=
L(u); notice that this in particular implies ii and also span𝛼 [ f ]𝛼⩽𝜌. If 𝜌< r, then we may
take u=0. If 𝜌⩾ r and L0(𝛼(𝜌))= 0, then there exists a u∈𝜎 r(�̄�(z)(𝛼↑)) with { f − h}𝛼= L(u),
whence { f }𝛼={ f −h}𝛼=L(u). If 𝜌⩾ r and L0(𝛼(𝜌))≠0, then there exists a v∈𝜎 r(�̄�(z)(𝛼↑)) with
{ f −L(g)}𝛼=L(v), where g∈𝜎 r(�̄�(z)(𝛼↑)). Hence { f }𝛼=L(g)+{ f −L(g)}𝛼=L(g+v), so we may
take u=g+v∈𝜎 r(�̄�(z)(𝛼↑)).

Again by induction on 𝜌, let us next show that [[ f ]𝛼]𝛼=[ f ]𝛼. If 𝜌< r, we have [ f ]𝛼= f =
[[ f ]𝛼]𝛼. If 𝜌⩾r and L0(𝛼(𝜌))=0, then span𝛼 [ f −h]𝛼⩽𝜌−1 implies [h+[ f −h]𝛼]𝛼=h+[[ f −h]𝛼]𝛼.
It follows that [[ f ]𝛼]𝛼=[h+[ f −h]𝛼]𝛼=h+[[ f −h]𝛼]𝛼=h+[ f −h]𝛼=[ f ]𝛼. If 𝜌⩾r and L0(𝛼(𝜌))≠0,
then we have [[ f ]𝛼]𝛼= [[ f − L(g)]𝛼]𝛼= [ f − L(g)]𝛼= [ f ]𝛼. This completes the proof that []𝛼
is a reduction with respect to L.

Decomposing f =𝜑+𝜓 with𝜑= f(𝛼↑), let us next show by induction on 𝜌 that [ f ]𝛼=[𝜑]𝛼+𝜓.
If 𝜌< r, then we have 𝜑= 0= [𝜑]𝛼 and [ f ]𝛼= f =𝜓. If 𝜌⩾ r and L0(𝛼(𝜌)) = 0, then we may
decompose f = h+ f̃ and 𝜑= h+�̃� with �̃�= f̃(𝛼↑), after which [ f ]𝛼= h+[ f̃ ]𝛼= h+[�̃�]𝛼+𝜓=
[𝜑]𝛼+𝜓. If 𝜌⩾ r and L0(𝛼(𝜌))≠ 0, then (𝜑/L0)(𝛼(𝜌))= g implies [𝜑]𝛼= [𝜑− L(g)]𝛼. It follows
that [ f ]𝛼=[ f −L(g)]𝛼=[ f −𝜑]𝛼+[𝜑−L(g)]𝛼=[𝜑−L(g)]𝛼+𝜓=[𝜑]𝛼+𝜓. This shows i.

Now let 𝛽∈�̄� be such that 𝛼≁𝛽. Then the projections 𝜋(𝛼↑) and 𝜋(𝛽↑) are clearly orthogonal
and it follows from ii that ({ f }𝛼)(𝛽)=0 and ({ f }𝛽)(𝛼)=0; this shows iii. The next fact iv also
follows from ii. −−

− −

PROPOSITION 5.2. Let f ∈�̄�(z) and 𝛼∈�̄�.

i. We have ([ f ]𝛼)(𝛼↑)∈�̄�(z)(ℱ𝛼), where

ℛ𝛼={𝛼,𝛼(1),…,𝛼(r−1)}∪{𝛼(k):k⩾ r,L0(𝛼(k))=0}. (5.2)

ii. For some u∈�̄�(z)(𝛼↑), we have { f }𝛼=L(𝜎 r(u)), span𝛼𝜎 r(u)⩽span𝛼 f, and ord𝛼↑ u⩽ord𝛼↑ f.
iii. We have span𝛼 [ f ]𝛼⩽span𝛼 f.

iv. We have ord𝛼↑ [ f ]𝛼⩽ord𝛼↑ f.

Proof. Assume the notations from the previous proposition. Let us prove i by induction on 𝜌.
If 𝜌<r, then ([ f ]𝛼)(𝛼↑)=0. If 𝜌⩾r and L0(𝛼(𝜌))=0, then h∈�̄�(z)(ℛ𝛼); since the induction hypoth-
esis implies ([ f − h]𝛼)(𝛼↑)∈�̄�(z)(ℛ𝛼), we obtain ([ f ]𝛼)(𝛼↑)∈�̄�(z)(ℛ𝛼). If 𝜌⩾ r and L0(𝛼(𝜌))≠0,
then the induction hypothesis yields ([ f ]𝛼)(𝛼↑)=([ f −L(g)]𝛼)(𝛼↑)∈�̄�(z)(ℛ𝛼).

Let us next prove ii, again by induction over 𝜌. If 𝜌<r, then we may take u=0. If 𝜌⩾r and
L0(𝛼(𝜌))=0, then let u∈�̄�(z)(𝛼↑) be such that { f − h}𝛼=L(𝜎 r(u)), span𝛼 𝜎 r(u)⩽span𝛼 ( f − h),
and ord𝛼↑ u⩽ord𝛼↑ ( f −h). Then we have { f }𝛼=L(𝜎 r(u)), span𝛼 𝜎 r(u)⩽span𝛼 ( f −h)⩽𝜌−1<
span𝛼 f , and ord𝛼↑ u⩽ord𝛼↑ ( f −h)⩽ord𝛼↑ f . If 𝜌⩾r and L0(𝛼(𝜌))≠0, then let v∈�̄�(z)(𝛼↑) be such
that { f −L(g)}𝛼=L(𝜎 r(v)), span𝛼 𝜎 r(v)⩽span𝛼 ( f −L(g))⩽𝜌−1, and ord𝛼↑ v⩽ord𝛼↑ ( f −L(g)).
We have { f }𝛼={ f − L(g)}𝛼+L(g). Since 𝜌⩾ r, we have 𝜎 −r(g)∈ �̄�(z)(𝛼↑), span𝛼 𝜎 r(𝜎 −r(g))=
𝜌, and ord𝛼↑ 𝜎−r(g)=ord𝛼(𝜌)↑ g=ord𝛼(𝜌) f ⩽ord𝛼↑ f . It thus suffices to take u=v+𝜎−r(g).

With u as above, we have span𝛼 { f }𝛼= span𝛼 L(𝜎 r(u))⩽ span𝛼 𝜎 r(u)⩽ span𝛼 f , which
implies iii. Similarly, ord𝛼↑ { f }𝛼=ord𝛼↑(L𝜎 r)(u)⩽ord𝛼↑ u⩽ord𝛼↑ f yields iv. −−

− −
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5.4. Aligned downward reduction with respect to shift operators
Let us now turn to the problem of combining the semi-local reductions []𝛼 where 𝛼∈Α for
some subset Α⊆�̄�. Given a general subset Α⊆�̄�, the set Α↑ admits the partitioning

Α↑= �
𝛼∈Α

Ι𝛼, Ι𝛼=𝛼↑∖{𝛽∈Α:𝛼≺𝛽}↑.

The notion of 𝛼-span can also be generalized:

spanΑ f = max {span𝛼 f(Ι𝛼) : 𝛼∈Α} ∈ ℕ∪{−∞}.

In this subsection we start with the case when Α is aligned in the sense that Α={𝛼1,…,𝛼t} with
𝛼1≺⋯≺𝛼t. In that case, we notice that

Ι𝛼i = {𝛽∈�̄�:𝛼i≼𝛽≺𝛼i+1} (i=1,…, t−1)
Ι𝛼t = {𝛽∈�̄�:𝛼t≼𝛽}.

Although the construction from the previous subsection provides us with a local reduction []𝛼1
for the projection 𝜋(Α↑)=𝜋(𝛼1↑), this reduction is sometimes suboptimal due to the fact that
it may take a long time to reduce functions for which spanΑ f is small. For this reason, we
introduce an alternative semi-local reduction []Α: �̄�(z)→�̄�(z) by

[ f ]Α = f(Α↑)+ �
𝛼∈Α

[ f(Ι𝛼)]𝛼.

We call []Α the downward reduction with respect to L for Α. It is “less confined” than []𝛼1 but
relies on the reduction []𝛼i in order to reduce the polar parts for the singularities in Ι𝛼i.

PROPOSITION 5.3. Let Α={𝛼1,…, 𝛼t}⊆�̄� be aligned with 𝛼1≺⋯≺𝛼t and f ∈�̄�(z). Then the map-
ping []Α is a reduction with respect to L that satisfies:

i. The reduction []Α is local for 𝜋(Α↑).

ii. We have { f }Α∈�̄�(z)(Α↑,∞,⋆).

iii. The reductions []Α and []Β are independent for any aligned Β⊆�̄� with Α↕≠Β↕.

iv. We have ({ f }∞)(Α↑)=0.

Proof. Let us denote f#= f(Α↑) and fi= f(Ι𝛼i) for i=1,…, t, so that f = f#+ f1+⋯+ ft. Also let
𝜑i=[ fi]𝛼i=gi+hi with gi=(𝜑i)(Α↑) and hi=(𝜑i)(Α↑) for i=1,…, t.

Let us first show that []Α is a reduction with respect to L. We clearly have { f }Α={ f1}𝛼1+⋯+
{ ft}𝛼t ∈ im L. By Propositions 5.1-ii and 5.2-iii, we notice that 𝜑i ∈�̄�(z)(Ι i,∞,⋆) for i= 1,…, t,
whence hi=(𝜑i)(Ι𝛼i) and [gi+hi]𝛼i=gi+[hi]𝛼i=gi+hi. Then [ f ]Α= f#+g1+⋯+gt+h1+⋯+ht
equals [[ f ]Α]Α= f#+g1+⋯+gt+[h1]𝛼1+⋯+[ht]𝛼t.

The reduction []Α is also local for 𝜋(Α↑) since [ f ]Α= f#+𝜑1+⋯+𝜑t= f#+[ f1+⋯+ ft]Α.
The relation { f }Α={ f1}𝛼1+⋯+{ ft}𝛼t shows that { f }Α∈�̄�(z)(Α↑,∞,⋆). The properties iii and iv
are shown in a similar way as for Proposition 5.1. −−

− −

PROPOSITION 5.4. Let Α={𝛼1,…,𝛼t}⊆�̄� be aligned with 𝛼1≺⋯≺𝛼t and f ∈�̄�(z).

i. We have ([ f ]Α)(Α↑)∈�̄�(z)(ℛΑ), where ℛΑ=ℛ𝛼1∪⋯∪ℛ𝛼t, using the notation from (5.2).

ii. For some u∈�̄�(z)(Α↑), we have { f }Α=L(𝜎 r(u)) and ordΙ𝛼i
u⩽ordΙ𝛼i

f (i=1,…, t).

iii. We have spanΑ [ f ]Α⩽spanΑ f.

iv. We have ordΙ𝛼i
[ f ]Α⩽ordΙ𝛼i

f (i=1,…, t).
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Proof. With the same notations as in the previous proof, Proposition 5.2-i implies hi∈�̄�(z)(ℛ𝛼i)
for i=1,…, t, whence ([ f ]Α)(Α↑)=h1+⋯+ht∈�̄�(z)(ℛΑ). This proves i.

Proposition 5.2-ii implies the existence of u1∈ �̄�(z)(𝛼1↑), …, ut ∈ �̄�(z)(𝛼t↑) with { fi}𝛼i =
L(𝜎 r(ui)), span𝛼i 𝜎 r(ui)⩽span𝛼 fi, and ord𝛼i↑ ui⩽ord𝛼i↑ fi, for i=1,…,t. In particular, this yields
ui∈�̄�(z)(Ι𝛼i). Now consider u=u1+⋯+ut with { f }Α=L(𝜎 r(u)). For i=1,…, t, we conclude
that ordΙ𝛼i

u=ordΙ𝛼i
ui⩽ordΙ𝛼i

fi=ordΙ𝛼i
f .

As to iii, we have spanΑ [ f ]Α=max {span𝛼1 h1,…,span𝛼t ht}=max {span𝛼1𝜑1,…,span𝛼t 𝜑t}⩽
max {span𝛼1 f1, …, span𝛼t ft}= spanΑ f , thanks to Proposition 5.2-iii. Proposition 5.2-iv simi-
larly implies iv, since ordΙ𝛼i

[ f ]Α=ordΙ𝛼i
hi =ord𝛼i↑ hi =ord𝛼i↑ 𝜑i ⩽ord𝛼i↑ fi =ordΙ𝛼i

fi =ordΙ𝛼i
f

for i=1,…, t. −−

− −

COROLLARY 5.5. Let Α={𝛼1,…,𝛼t}⊆�̄� be aligned with 𝛼1≺⋯≺𝛼t, let 𝜈:Α→ℕ, and consider the
narrow �̄�[z][𝜎]-module �̄�=�̄�[z]⊕�̄�(z)(Α↑);𝜈↑. Then �̄� is stable under []Α.

Proof. Let f ∈�̄�(z)(Α↑,∞,⋆) and decompose it as f = f#+ f1+⋯+ ft as above. From Proposi-
tion 5.3-ii, it follows that [ f ]Α∈�̄�(z)(Α↑,∞,⋆). Notice that f ∈�̄� if and only if ordΙ𝛼i

fi⩽(𝜈↑)(𝛼i)
for i=1,…,n. Assuming that that f ∈�̄�, it follows from Proposition 5.4-iv that ordΙ𝛼i

([ f ]Α)(Ι𝛼i)=
ordΙ𝛼i

[ f ]Α⩽ordΙ𝛼i
f =ordΙ𝛼i

fi⩽(𝜈↑)(𝛼i) for i=1,…,n, whence [ f ]Α∈�̄�. −−

− −

Remark 5.6. In analogy with Remark 4.3, one may define a local normalization ⟦⟧Α of []Α.
This time, it follows from Proposition 5.4 that the space E = ([im L]𝛼)(𝛼) is spanned by
{(z−𝛼)−k : 𝛼∈Α↑∩Α↓, 0< k⩽(𝜈↑)(𝛼)}. Again the computation of a basis of E can be expen-
sive and there exists no general polynomial time algorithm for doing so.

5.5. General downward reduction with respect to shift operators
Let us now assume that Α⊆�̄� is such that 𝛼↕∩Α is finite for every 𝛼∈Α. The equivalence
relation ∼ restricted to Α then leads to a natural partitioning

Α=�
i∈I

Αi, I=Α/∼, Α𝛼/∼=𝛼↕∩Α, (5.3)

where each component Αi is aligned, and Αi↕≠Αj↕ whenever i≠ j. This allows us to define

[ f ]Α = f(Α↑)+�
i∈I

[ f(Αi↑)]Αi

[ f ]Α,∞ = [[ f ]Α]∞.

By Propositions 5.3-i, 5.3-iii and 2.6, we get that []Α: �̄�(z)→�̄�(z) is a local reduction for 𝜋(Α↑)
with respect to L. From Propositions 5.3-iv and 2.8, we deduce that []Α,∞: �̄�(z)→ �̄�(z) is
a reduction with respect to L. We call []Α and []Α,∞ the downward reductions with respect to L
for Α and Α∪{∞}. If Α is symmetric, then [𝕂(z)]Α⊆𝕂(z) and [𝕂(z)]Α,∞⊆𝕂(z), by Propo-
sition 2.3.

Remark 5.7. When taking Α to contain a section of �̄� with respect to the equivalence rela-
tion ∼, we ensure that �̄�=∐i∈I Αi↕. Nevertheless, each Αi↑ can only contain “half” of the
set Αi↕, since Αi is assumed to be finite. This means that ∐i∈I Αi↑ cannot cover �̄�, so []Α,∞
cannot truly qualify as a “global reduction”. In order to obtain a global reduction, one needs to
combine downward and “upward” reductions (constructed from downward reductions with
respect to the operator L𝜎 r∈𝕂[z][𝜎]). Even then, the obtained “global” reduction crucially
depends on the choice of Α. In fact, this kind of reductions will not be useful for our applica-
tion to creative telescoping; we rather need reductions on suitable narrow submodules.

In order to obtain a counterpart for Theorem 4.5, let us now turn our attention to restric-
tions of downward reductions to suitable narrow submodules of 𝕂(z).
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THEOREM 5.8. Let L∈𝕂[z][𝜎] be of order r⩾0. Consider a narrow 𝕂[z][𝜎]-submodule

𝕄 = 𝕂[z]⊕𝕂(z)(Α↑);𝜇

of 𝕂(z), where Α⊆�̄� is a symmetric finite set and 𝜇=𝜈↑ for some symmetric function 𝜈:Α→ℕ>.
Let Ζ={𝛼∈Α↑ :L0(𝛼)=0}, 𝜇(Α)=∑𝛼∈Α𝜇(𝛼), and 𝜇(Ζ)=∑𝛼∈Ζ𝜇(𝛼). Then the restriction []𝕄
of []Α,∞ to 𝕄 is a confined reduction with respect to L with

dim𝕂 [𝕄]𝕄 ⩽ r𝜇(Α)+𝜇(Ζ)+degz L+ r.

Given f ∈𝕄, there exists a u∈𝕄 with { f }Α,∞=L(𝜎 r(u)).

Proof. Let Α be partitioned as in (5.3). Let us first show that the narrow �̄�[z][𝜎]-submodule

�̄� = �̄�[z]⊕�̄�(z)(Α↑);𝜇

of �̄�(z) is stable under downward reduction []Α,∞. The module �̄� is clearly stable under
the projection 𝜋(S) for any subset S⊆�̄�∪ {∞, ⋆}. Since []∞ is local for 𝜋(∞), we also have
stability under the reduction []∞. Now given f ∈�̄� and i∈ I, we have [ f ]Α i=[ f(Α i↑)]Αi+ f(Αi↑)
with f(Α i↑), f(Α i↑)∈�̄� and [ f(Αi↑)]Α i by Corollary 5.5. For any f ∈�̄�, it follows that [ f ]Α∈�̄�
and [ f ]Α,∞∈�̄�. Since []𝛼,∞ commutes with all automorphisms of �̄� over 𝕂, we also get the
stability of 𝕄 under []Α,∞.

Given f ∈�̄�, let us next prove the existence of some u∈�̄�with { f }Α,∞=L(𝜎 r(u)). For each
i∈ I, setting fi= f(Α i↑), Proposition 5.4-ii yields an element ui∈�̄�(z)(Αi↑) with { fi}Αi=L(𝜎 r(ui))
and ord𝛼 u⩽𝜇(𝛼) for all 𝛼∈Αi↑, whence ui∈�̄�. At infinity, there also exists a v∈�̄�[z] with
{[ f ]Α}∞=L(v), and 𝜎−r(v)∈�̄�[z]. Taking u=∑i∈I ui+𝜎−r(v), it follows that u∈�̄� and

{ f }Α,∞ = { f }Α+{[ f ]Α}∞ = �
i∈I

{ fi}Α i+{[ f ]Α}∞ = �
i∈I

L(𝜎 r(ui))+L(v) = L(𝜎 r(u)).

If f ∈𝕄 and u admits coefficients in an extension field 𝕃 of 𝕂 of degree s, then we may
replace u by s−1Tr𝕃/𝕂 u∈𝕄, since 𝜙(u)∈�̄� and {𝜙( f )}Α,∞=L(𝜎 r(𝜙(u))) for every automor-
phism 𝜙 of �̄� over 𝕂. Notice that this shows in particular that []𝕄 is a reduction on 𝕄.

Let us finally show that

dim�̄� [�̄�]Α,∞ ⩽ r𝜇(Α)+𝜇(Ζ)+degz L+ r, (5.4)

which also implies the bound on dim𝕂 [𝕄]Α,∞. For each 𝛼∈Α, let ℛ𝛼 be as in (5.2) and notice
that ℛ=⋃𝛼∈Αℛ𝛼 satisfies

ℛ ⊆ Α∪Α(1)∪⋯∪Α(r−1)∪{𝛼∈�̄�:L0(𝛼)=0}.

Given 𝛼∈ℛ , let

ℱ𝛼 = {(z−𝛼)−k : 0<k⩽𝜇(𝛼)}.

We also define ℱΑ=⋃𝛼∈Αℱ𝛼,

ℱ∞ = {z𝜌 : 0<𝜌∧(𝜌⩽degz L∨ind∞(𝜌−𝜏∞)=0)},

and ℱ ={1}∪ℱ∞∪ℱΑ. Now given f ∈�̄�, Proposition 5.3 implies ([ fi]Α i)(Αi↑)∈Vect(ℱΑi)⊆
Vect(ℱΑ) for all i∈ I, where fi= f(Α i↑). It follows that [ f ]Α∈�̄�[z]⊕Vect(ℱΑ). We also have
[([ f ]Α)(∞)]∞∈Vect({1} ∪ℱ∞), whence [ f ]Α,∞= ([ f ]Α)(∞̄)+ [([ f ]Α)(∞)]∞∈Vect(ℱ). Since
|ℱ |⩽ r𝜇(Α)+𝜇(Ζ)+degz L+ r, we conclude that (5.4) indeed holds. −−

− −

Remark 5.9. When using the locally normal reductions ⟦⟧Α i from Remark 5.6 instead of the
reductions []Α i and similarly for the local reduction at infinity, it can be checked that the
resulting reduction ⟦⟧𝕄 in Theorem 5.8 is both confined and normal.
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5.6. Back to reductions with respect to Δ
Assume now that L∈𝕂[z][𝜎] is a difference operator of order r ⩾0 in 𝜎 = S𝜂 with L0≠0.
Consider a narrow 𝕂[z][𝜎]-submodule 𝕄=𝕂[z]⊕𝕂(z)(Α↑);𝜇 of 𝕂(z), where Α⊆�̄� is a sym-
metric finite set, 𝜈:Α→ℕ> a symmetric function, and 𝜇=𝜈↑. Assume that for every zero 𝛼∈�̄�
of Lr of multiplicity 𝜚(𝛼), we have

𝜇(𝛼) ⩾ 𝜇(𝛼(−1))+𝜚(𝛼), (5.5)

where we understand that 𝜇(𝛼(−1))=0 if 𝛼(−1)∉Α↑.
Given formal indeterminates f ,…, f [r−1], we claim that the set

𝔻 = 𝕄 f ⊕𝜎(𝕄) f [1]⊕⋯⊕𝜎 r−1(𝕄) f [r−1] (5.6)

admits the natural structure of a difference module over 𝕂[z] for the shift operator 𝜎 with

𝜎 f [i] = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{ f [i+1] if i<r−1

− 1
Lr
(L0 f +⋯+Lr−1 f [r−1]) if i= r−1.

Indeed, given w0∈𝕄,w1∈𝜎(𝕄),…,wr−1∈𝜎 r−1(𝕄), this forces us to take

𝜎(w0 f +⋯+wr−1 f [r−1]) = 𝜎(w0) f [1]+⋯+𝜎(wr−2) f [r−1]− 𝜎(wr−1)
Lr

(L0 f +⋯+Lr−1 f [r−1]),

and it suffices to check that 𝜎(wr−1)/Lr∈𝕄. Now for any root 𝛼 of Lr of multiplicity 𝜚(𝛼),
we have ord𝛼 𝜎(wr−1)⩽𝜇(𝛼(−1)), whence ord𝛼 𝜎(wr−1)/Lr⩽𝜇(𝛼(−1))+ 𝜚(𝛼)⩽𝜇(𝛼), thanks to
our assumption (5.5). We conclude that 𝜎(wr−1)/Lr∈𝕄, as desired. Notice that f is a formal
solution to the equation L( f )=0 in 𝔻.

Let us now show how to construct a confined reduction []𝔻 with respect to Δ on 𝔻. Let []𝕄
denote the restriction of the directed reduction at Α with respect to L∗ as constructed in the
previous subsection. Now consider

w=w0 f +⋯+ws f [s]∈𝔻, wi∈𝜎 i(𝕄),

with s< r and let us show how to define [w]𝔻 by induction on s. If s=0, then we take

[w0 f ]𝔻 = [w0]𝕄 f .

By construction, we have {w0}𝕄∈im L∗, whence there exists a u∈𝕄 such that {w0}𝕄=L∗(u).
By Theorem 5.8, we actually have u∈𝜎 r(𝕄). Using Proposition 3.2, it follows that

{w}𝔻 = {w0}𝔻 f = L∗(u) f = L∗(u) f −uL( f ) ∈ Δ𝔻.

Assume now that s>0. Then we define

[w]𝔻 = [w0 f ]𝔻+[w̃]𝔻
w̃ = 𝜎−1(w1) f +⋯+𝜎−1(ws) f [s−1].

We notice that

w−w0 f − w̃ = Δ(w̃) ∈ Δ𝔻.

By what precedes, it follows that

{w}𝔻 = {w0 f }𝔻+w−w0 f − w̃+{w̃}𝔻 ∈ Δ𝔻.

In fact, an easy induction on s shows that

[w]𝔻 = [w0+𝜎 −1(w1)+𝜎 −2(w2)+⋯+𝜎−s(ws)]𝕄 f . (5.7)

In particular, the constructed reduction is confined with im []𝔻=[𝕄]𝕄 f :
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THEOREM 5.10. Let L∈𝕂[z][𝜎] be of order r⩾0 with deg L0⩾0 and consider Α, 𝜇, 𝕄 and 𝔻 as
above. LetΖ={𝛼∈Α↑:L0(𝛼)=0}, 𝜇(Α)=∑𝛼∈Α𝜇(𝛼), and 𝜇(Ζ)=∑𝛼∈Ζ𝜇(𝛼). Then []𝔻 is a confined
reduction such that

dim𝕂 [𝔻]𝔻 ⩽ r𝜇(Α)+𝜇(Ζ)+degz L+ r. □

Remark 5.11. The smallest set Α⊆�̄� and map 𝜈:Α→ℕ that satisfy our hypotheses are given
by Α={𝛼∈�̄� :Lr(𝛼)=0} and 𝜈(𝛼)=∑𝛽≼𝛼 𝜚(𝛽). Assume that Α and 𝜈 are taken this way. If
𝛼≠𝛽⇒𝛼≁𝛽 for all 𝛼,𝛽∈Α, then it follows that 𝜇(𝛼)=𝜈(𝛼)=𝜚(𝛼) for all 𝛼∈Α, whence 𝜇(Α)=d.
However, in the other extreme case when Α is aligned, we only have 𝜇(𝛼)⩽d for all 𝛼∈Α and
the growth of 𝜇(Α) can be quadratic in d. This larger growth is due to the fact that we required
functions of small span to be reducible fast in section 5.4. If we drop this requirement, then
linear growth can be restored by changing the definition (5.1) to

[ f ]𝛼 = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{

f if 𝜌<r

f(𝛽)− f(𝛽);k+� f(�̄�)+ f(𝛽);k −L�� f(𝛽);k
L0

�
(𝛽)

��
𝛼

if 𝜌⩾r, (5.8)

where 𝛽=𝛼(𝜌) and k=max (𝜇(𝛼(𝜌−r))− ord𝛽 L0
−1, 0). Compromises between both definitions

are also possible, which should ultimately make it possible to systematically gain a factor d
with respect to some of the complexity bounds later in this paper. However, the details are
technical, so we reserve them for a future work.

5.7. The case of q-difference operators
The theory of the previous section naturally adapts to q-difference operators 𝜎 =Qq (where
q∈𝕂≠ is not a root of unity), except that both zero and infinity now need to be treated apart.

So let us start with the construction of the local reductions []0 and []∞ for L∈𝕂[z][𝜎−1].
This time, the behaviour of L at zero and at infinity is given by

L(z−𝜌) = z−𝜌−𝜏0(ind0(q𝜌)+o(1)) (z→0)
L(z𝜌) = z𝜌+𝜏∞(ind∞(q𝜌)+o(1)) (z→∞),

where ind0, ind∞∈𝕂[q𝜌] and 𝜏0,𝜏∞∈ℤ (in fact, we have 𝜏0=−valz L∈−ℕ and 𝜏∞=degz L∈ℕ).
Since q is not a root of unity, we notice that q𝜌=𝛼 admits at most one solution for any 𝛼∈�̄�≠.

Now consider f ∈�̄�(z). Let 𝜌∈ℤ and c∈�̄� be such that

f = z−𝜌 (c+ o(1)) (z→0).

Setting B0≔max(0,𝜏0)=0, we define [ f ]0 by induction over 𝜌:

[ f ]0=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{ f if 𝜌⩽B0

cz−𝜌+[ f − cz−𝜌]0 if 𝜌>B0 and ind0(q𝜌−𝜏0)=0
� f −L� c

ind0 (q𝜌−𝜏0) z−𝜌+𝜏0��
0

if 𝜌>B0 and ind0(q𝜌−𝜏0)≠0.
(5.9)

Similarly, assume now that 𝜌∈ℤ and c∈�̄� are such that

f = z𝜌 (c+ o(1)) (z→∞).

Setting B∞≔max(0,𝜏∞)=degz L, we define [ f ]∞ by induction over 𝜌:

[ f ]∞=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{ f if 𝜌⩽B∞

cz𝜌+[ f − cz𝜌]∞ if 𝜌>B∞ and ind∞(q𝜌−𝜏∞)=0
� f −L� c

ind∞ (q𝜌−𝜏∞) z𝜌−𝜏∞��
∞

if 𝜌>B∞ and ind∞(q𝜌−𝜏∞)≠0.
(5.10)

Notice that [ f ]0, [ f ]∞∈𝕂(z) for any f ∈𝕂(z).
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The local reductions []𝛼 at other points 𝛼∈�̄�≠ are constructed in a similar way as in sub-
section 5.3. It is not hard to check that the []𝛼 with 𝛼∈�̄�∪{∞} are indeed local reductions that
satisfy similar properties as in Proposition 5.1. Given a subset Α⊆𝕂≠, this allows us to glue
them together into a reduction []Α,0,∞ in a similar way as in subsections 5.4 and 5.5. Mutatis
mutandis, this leads to the following analogue of Theorem 5.8:

THEOREM 5.12. Let L∈𝕂[z][𝜎] be of order r⩾0. Consider a narrow 𝕂[z][𝜎]-submodule

𝕄 = 𝕂[z,z−1]⊕𝕂(z)(Α↑);𝜇

of 𝕂(z), where Α⊆�̄�≠ is a symmetric finite set and 𝜇=𝜈↑ for some symmetric function 𝜈:Α→ℕ>.
Let Ζ={𝛼∈Α↑ :L0(𝛼)=0}, 𝜇(Α)=∑𝛼∈Α𝜇(𝛼), and 𝜇(Ζ)=∑𝛼∈Ζ𝜇(𝛼). Then the restriction []𝕄
of []Α,0,∞ to 𝕄 is a confined reduction with respect to L with

dim𝕂 [𝕄]Α,0,∞ ⩽ r𝜇(Α)+𝜇(Ζ)+degz L+2 r.

Given f ∈𝕄, there exists a u∈𝕄 with { f }Α,0,∞=L(𝜎 r(u)). −−

− −

The results from subsection 5.6 also naturally adapt to the q-difference setting.

5.8. First order systems
Let us now outline how to adapt the theory of this section to first order systems. We assume
that 𝜎=S𝜂 for 𝜂∈𝕂≠; the case of q-difference operators can be treated in a similar way. Con-
cerning the analogue of section 5.3, let us start with an operator L=𝜎−1𝜓+A∈𝕂[z]r×r[𝜎]∗,
where𝜓∈𝕂[z] is a monic separable polynomial and where A∈𝕂(z)r×r is an invertible matrix.
Recall that L operates at the right on matrices in �̄�(z)r×r.

The local reduction at infinity []∞ is constructed in a similar way as for differential opera-
tors. The semi-local reductions []𝛼 at other points 𝛼∈�̄� are somewhat easier to construct in the
sense that there is no need for any auxiliary tail choppers. Given f ∈�̄�(z)1×r, we define [ f ]𝛼
by induction over 𝜌=span𝛼 f :

[ f ]𝛼 =
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{
{
{ f if 𝜌⩽0

f(𝛼(𝜌))+[ f − f(𝛼(𝜌))]𝛼 if 𝜌>0 and detA(𝛼(𝜌))=0
[ f −L(( fA−1)(𝛼(𝜌)))]𝛼 if 𝜌>0 and detA(𝛼(𝜌))≠0.

(5.11)

As in section 4.5, this definition can be further optimized through the use of pseudo-inverses:

[ f ]𝛼 = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
f if 𝜌⩽0
f(𝛼(𝜌))H

‡+[ f − f(𝛼(𝜌))H
‡−L( f(𝛼(𝜌))H

†)]𝛼 if 𝜌>0 and H=A(𝛼(𝜌)). (5.12)

The remainder of the theory and result from sections 5.3, 5.4, 5.5, and 5.6 can be adapted mutatis
mutandis. In particular, for every symmetric finite set Α⊆�̄�, we obtain a reduction []Α,∞ that
satisfies the following analogue of Theorem 5.8:

THEOREM 5.13. Let L∈𝕂[z]r×r[𝜎]∗ be of order be of order one. Assume that L0 is invertible and that
L1=𝜓Idr for some monic 𝜓∈𝕂[z]. Consider a narrow 𝕂[z][𝜎]-submodule

𝔸 = 𝕂[z]⊕𝕂(z)(Α↑);𝜇

of 𝕂(z), where Α⊆�̄� is a symmetric finite set and 𝜇=𝜈↑ for some symmetric function 𝜈:Α→ℕ>.
Let Ζ={𝛼∈Α↑:det L0(𝛼)=0}, 𝜇(Α)=∑𝛼∈Α𝜇(𝛼), and 𝜇(Ζ)=∑𝛼∈Ζ𝜇(𝛼). Then the restriction []𝕄
of []Α,∞ to 𝕄=𝔸1×r is a confined reduction with respect to L with

dim𝕂 [𝕄]𝕄 ⩽ (𝜇(Α)+𝜇(Ζ)+degz L+2) r.

Given f ∈𝕄, there exists a u∈𝕄 with { f }𝕄=L(𝜎(u)). −−

− −
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6. CREATIVE TELESCOPING

6.1. D-finite ideals of DD-operator algebras
Let 𝕂 be a field that is equipped with n pairwise commuting operators 𝜃1, …, 𝜃n: 𝕂→𝕂,
together with derivations ∂1,…,∂n:𝕂→𝕂 and automorphisms 𝜎1,…, 𝜎n:𝕂→𝕂 such that for
each i∈{1,…,n} we have either 𝜃i =∂i and 𝜎i =1 or 𝜃i =𝜎i and ∂i =0. Given such a field 𝕂,
we will say that the skew polynomial ring

𝔸=𝕂[𝜃1,…,𝜃n]

is a DD-operator algebra. In practice, we usually have 𝕂=𝕜(u1,…,un) for some constant field𝕜,
and each 𝜃i is given by either one of the formulas

𝜃i = ∂i, ∂i = ∂
∂ui

, 𝜎i = Id; or
𝜃i = 𝜎i, ∂i = 0, 𝜎i = 𝜎Hi,ui , Hi∈𝕜2×2.

Modulo a homographic change of variables (and quadratic algebraic extensions), we have
seen in section 5.1 that we may further reduce to the case when each 𝜎i is either a shift or
a q-difference operator. DD-operator algebras of this special type will be called standard.

A (left) ideal I of 𝔸 is said to be D-finite if 𝔸/ I is finite dimensional as a vector space
over 𝕂. Given an 𝔸-module ℱ and a “function” f ∈ℱ , we say that f is D-finite if its annihi-
lating ideal

ann f = ann𝔸 f = {𝜔∈𝔸:𝜔( f )=0}

is D-finite. We say that an ideal I of 𝔸 is reflexive if for every i∈{1,…,n} and 𝜔∈𝔸, we have
𝜎i𝜔∈ I⇒𝜔∈ I.

It is well known [40, 60, 71, 64, 26, 70] that the theory of Gröbner bases generalizes to skew
polynomial rings such as 𝔸. As usual, this assumes a total ordering ⩽ on the set of “mono-
mials”

Θ𝔸=𝜃1ℕ⋯𝜃n
ℕ=�𝜃1k1⋯𝜃n

kn :k1,…,kn∈ℕ�

that refines the divisibility relation onΘ𝔸. Let≼ denote this divisibility relation. Given a finite
subset of𝔸, a Gröbner basis G for the left ideal generated by this subset can be computed using
a non-commutative version of Buchberger's algorithm. The initial segment {𝜔1,…,𝜔r}⊆Θ𝔸
of reduced monomials for ≼ under the Gröbner stairs for G admits the usual property that
{𝜔1+ I, …, 𝜔r+ I} forms a basis for the vector space 𝔸/I. Given f ∈𝔸, the reduction of f
with respect to G yields c1,…,cr∈𝕂 with f − c1𝜔1−⋯− cr𝜔r∈ I.

6.2. Matrix representations of operators
Let I be a reflexive D-finite ideal of 𝔸. Consider any basis { f1,…, fr} of 𝔸/I and let F∈(𝔸/I)r×1

be the column vector with entries f1,…, fr (it will be convenient to call such a column vector F
a basis of 𝔸/I as well). Given an operator 𝜉 ∈𝔸, the action of 𝜉 on 𝔸/I gives rise to a matrix
M𝜉 =M𝜉 ,F∈𝕂[𝜃1,…,𝜃n]r×r with

𝜉F = M𝜉F. (6.1)

In particular, for each i∈{1,…, r} there is a matrix Mi=M𝜃i∈𝕂[𝜃1,…,𝜃n]r×r with

𝜃i F = Mi F. (6.2)

If 𝜔1,…,𝜔r∈𝕂𝜌1⊕⋯⊕𝕂𝜌r are such that f1=𝜔1+ I, …, fr=𝜔r+ I, then we may compute
the j-th column of M𝜉 by reducing 𝜉 fj with respect to G and writing the result as a linear
combination of 𝜔1,…,𝜔r.
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PROPOSITION 6.1. If 𝜎∈𝔸 is an automorphism, then M𝜎 is invertible.

Proof. Assume for contradiction that there exists a non-zero row vector V∈𝕂1×r with VMi=0.
Then we would get 𝜎 (𝜎 −1(V)F)=V𝜎(F)=VM𝜎F=0. Writing Ω∈𝔸r×1 for the column matrix
with entries 𝜔1,…,𝜔r, we thus obtain 𝜎(𝜎−1(V)Ω)∈ I and 𝜎−1(V)Ω∈ I, which yields a non-
trivial relation between the fi. −−

− −

PROPOSITION 6.2. For any i, j∈{1,…,n} with i≠ j, we have:

∂j Mi+Mi Mj = ∂i Mj+Mj Mi (𝜃i=∂i, 𝜃j=∂j)
∂j Mi+Mi Mj = 𝜎i(Mj)Mi (𝜃i=𝜎i, 𝜃j=∂j)

𝜎j(Mi)Mj = 𝜎i(Mj)Mi (𝜃i=𝜎i, 𝜃j=𝜎j)

Proof. If 𝜃i=∂i and 𝜃j=∂j, then (6.2) yields

∂i ∂j F = ∂i(Mj F) = (∂i Mj+Mj Mi)F
∂j ∂i F = ∂j(Mi F) = (∂j Mi+Mi Mj)F.

Since both derivations commute and the entries of F form a basis of 𝔸/I, this yields the first
relation. The two other relations are proved in a similar way. −−

− −

Given i∈{1,…, r}, we say that f ∈𝔸/I is a cyclic vector for 𝜃i if f , 𝜃 f ,…,𝜃 r−1 f form a basis
for 𝔸/I. If 𝜃i=∂i and 𝕂 contains an element x with ∂i x≠0, then it is well known that such
a cyclic vector f always exists and can be computed [3, 25, 15]. These results can naturally be
adapted to the case when 𝜃i is a shift operator or a q-difference operator such that 𝕂 contains
an element ui such that 𝜃i

ℤ(ui) is infinite. We will say that 𝜃i acts non trivially on 𝕂 if we are
in either one of these situations. In the terminology of [6, section 5.3], this implies that 𝕂[𝜃i]
is simple, whence [6, Corollary 5.3.6] yields a way to compute cyclic vectors. Given a cyclic
vector f , the left ideal of 𝕂[𝜃i] of operators that annihilate f is principal and its unique monic
generator has order r. In terms of matrices, these properties may be restated as follows:

PROPOSITION 6.3. Let i∈{1,…,n} be such that 𝜃i acts non trivially on 𝕂. Then there exists a basis F
of 𝔸/I with entries f1,…, fr such that

M𝜃i,F =

((((((((((((((((((
((((((((((((((((((
(((
(
( 0 1

⋮ ⋱
0 1

−L0 −L1 ⋯ −Lr−1 ))))))))))))))))
))))))))))))))))))
)))))
)
)

.

The operator L=𝜃i
r+Lr−1𝜃i

r−1+⋯+L0 is the unique monic operator of order r with L( f1)=0. −−

− −

6.3. Narrowness
Let us now consider a reflexive D-finite ideal I of a DD-operator algebra

𝔹=𝕂(z)[𝜃1,…,𝜃n, 𝜃n+1]

with one additional operator 𝜃 = 𝜃n+1. We abbreviate ∂= ∂n+1, 𝜎 = 𝜎n+1, Θ𝔹=Θ𝔸 𝜃ℕ, and
assume that either

∂ = ∂
∂z , 𝜎 = 1, or

∂ = 0, 𝜎 = 𝜎H,z, H∈𝕜2×2,

where 𝕜={ f ∈𝕂:∀i∈{1,…,n},∂i f =0,𝜎i f = f } is the constant field of 𝕂. Moreover, if 𝜃=𝜎,
then we require that 𝜎 is either a shift operator S𝜂 with 𝜂∈𝕜≠ or a q-difference operator Qq,
where q∈𝕜≠ is not a root of unity. As usual, we set 𝜏=𝜏H,z, where we understand that H=
Id2∈𝕜2×2 if 𝜎 =1. We also write 𝛿=∂ if 𝜃=∂ and 𝛿=Δ=𝜎 −1 if 𝜃=𝜎.
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Recall that a 𝕂[z]-submodule 𝕄∋1 of 𝕂(z) is said to be narrow in 𝜃 if it is stable under 𝜃
and finitely generated as a 𝕂[z][𝜃]-module. Given such a module 𝕄, we have shown in sec-
tion 5.2 that there exists a finite symmetric set Α and a symmetric 𝜈: �̄�→ℕ∪{∞} such that
𝕄=𝕂[z]⊕𝕂(z)(Α↑);𝜈↑. Let F∈ (𝔹/I)r×1 be a fixed basis of 𝔹/ I. A 𝕂[z]-submodule 𝔻 of
𝕂(z)1×r F is said to be narrow in 𝜃 if it is of the form 𝔻=𝕄1×r F for a narrow submodule 𝕄
of 𝕂(z).

Given a narrow submodule 𝕄 of 𝕂(z) as above and 𝔻=𝕂(z)1×r F, we have seen in sec-
tions 4.5 and 5.8 how to construct a computable confined reduction []𝕄:𝕄→𝕄 with respect
to the first order operator (𝜃−M𝜃)∗ as well as a corresponding computable confined reduction
[]𝔻:𝔻→𝔻 with respect to 𝛿 =∂. Alternatively, one may rely on the constructions of reduc-
tions with respect to scalar linear differential and difference operators L∈𝕂[z][𝜃]∗, as we will
detail now.

Let f1,…, fr be the entries of the basis F. We say that F is cyclic if fk=𝜃 k−1 f1 for k=1,…, r.
Such a basis always exists by Proposition 6.3 and it comes with a unique monic operator Lmon∈
𝕂(z)[𝜃] of order r with Lmon( f1)=0. Multiplying Lmon with the lcm of the denominators of
its coefficients, we obtain a new operator L= Lr 𝜃 r+⋯+L0∈𝕂[z][𝜃] with gcd(L0,…,Lr)=1
and L( f1)=0.

Assume that 𝜃 = ∂ and that we are given a narrow submodule 𝕄 in 𝜃 as above with
respect to a cyclic basis F. Then we have shown in sections 4.2, 4.3 and 4.4 how to construct
a computable confined reduction []𝕄:𝕄→𝕄 with respect to L∗ as well as a corresponding
computable confined reduction []𝔻:𝔻→𝔻 with respect to 𝛿=∂.

Assume now that 𝜃=𝜎 and that we are given a narrow submodule 𝕄 in 𝜃 as above with
respect to a cyclic basis F. Assume also that ∑𝛽≼𝛼ord𝛽 Lr

−1⩽𝜈(𝛼) for all 𝛼∈�̄�∖Fix 𝜏, where
Fix 𝜏⊆�̄�∪{∞} denotes the set of fixed points of 𝜏. Then we have shown in section 5 how to
construct a computable confined reduction []𝕄:𝕄→𝕄 with respect to L∗ as well as a corre-
sponding computable confined reduction []𝔻′:𝔻′→𝔻′with respect to 𝛿=Δ, where𝔻′=𝕄 f1⊕
𝜎(𝕄) f2⊕⋯⊕𝜎 r−1(𝕄) fr. For i=0,…, r−1, we notice that 𝕄=𝜎 i(𝕄)⊕𝕍i for some 𝕂-vector
space𝕍i of dimension at most∑𝛼(𝜈(𝛼)−𝜈(𝛼(−i))). Given w=w1 f1+⋯+ws fs with w1,…,ws∈𝕄
and s⩽ r, we may write wi=ui+𝜎(vi) with ui∈𝕍1 and vi∈𝕄 for i=1,…, s. By induction on
s, we may then define a confined reduction on 𝔻 by [w]𝔻=[w1 f1]𝔻1+[v2 f1+⋯+vs fs−1]𝔻+
u2 f2+⋯+us fs. We have dim𝕂 [𝔻]𝔻⩽dim𝕂 [𝔻′]𝔻′+(r−1)dim𝕂𝕍1.

Assume that there exists a 𝕂[z][𝜃1, …, 𝜃n, 𝜃]-submodule 𝔻 of 𝕂(z)1×r F that comes with
a (computable) confined reduction []𝔻:𝔻→𝔻 with respect to 𝛿. Then we say that I is telesco-
pable in 𝜃 for the chosen basis F, and we call []𝔻 the associated reduction. By what precedes,
this is the case whenever there exists a 𝕂[z][𝜃1, …, 𝜃n, 𝜃]-submodule 𝔻 of 𝕂(z)1×r F that is
narrow in 𝜃.

6.4. Creative telescoping
With the notations from the previous subsection, given a function 𝜑 in some 𝔹-module, the
set 𝒯𝜑,𝛿 of telescopers for 𝜑 with respect to 𝛿 is defined by

𝒯𝜑,𝛿 = (ann𝔹𝜑+𝛿𝔹)∩𝔸.

From this definition it is immediately apparent that 𝒯𝜑,𝛿 forms an ideal of 𝔸. Given a tele-
scoper g∈𝒯𝜑,𝛿, an element h∈𝔹 such that (g−𝛿h)(𝜑)=0 is called a certificate for g.

Assume now that I is telescopable in 𝜃, with associated reduction []𝔻:𝔻→𝔻. We say that
a function𝜑∈𝔻 is primitive if for each𝜓∈𝔻, there exists an𝜔∈𝔹with𝜓=𝜔𝜑. We write𝔻prim

for the set of such functions. Given 𝜑∈𝔻prim and an operator 𝜔∈𝔸 with 𝜔𝜑∈𝔻, we notice
that [𝜔 𝜑]𝔻= 0 implies the existence of some 𝜔′ ∈𝔹 with 𝜔𝜑= 𝛿 𝜔′ 𝜑, whence 𝜔 − 𝛿 𝜔′ ∈
ann𝔹𝜑 and 𝜔∈(ann𝔹𝜑+𝛿𝔹)∩𝔸=𝒯𝜑,𝛿. In particular, given an operator c1𝜔1+⋯+ ck𝜔k∈𝔸
with c1,…,ck∈𝕂 and 𝜔1,…,𝜔k∈Θ𝔸, we have

c1[𝜔1𝜑]𝔻+⋯+ ck [𝜔k𝜑]𝔻=[(c1𝜔1+⋯+ ck𝜔k)𝜑]𝔻=0 ⟹ c1𝜔1+⋯+ ck𝜔k∈𝒯𝜑,𝛿. (6.3)

JORIS VAN DER HOEVEN 35



Since [(c1𝜔1+⋯+ ck𝜔k)𝜑]𝔻 lives in the finite dimensional 𝕂-vector space [𝔻]𝔻, this yields
a way to determine telescopers through linear algebra, simply by searching 𝕂-linear relations
between the [𝜔𝜑]𝔻 where 𝜔 runs over Θ𝔸. For instance, taking 𝜔=1, 𝜃i, 𝜃i

2,…, one obtains
a telescoper in (ann𝔹𝜑+𝛿𝔹)∩𝕂[𝜃i], which generalizes the introductory example (1.4). Doing
this for each i∈{1,…,n} shows in particular that 𝒯𝜑,𝛿 is D-finite.

In our DD-algebra setting, it is also natural to perform the linear algebra incrementally
following the term order ⩽ on Θ𝔸, as in the FGLM algorithm [37]. This leads to the following
algorithm to compute a D-finite ideal contained in 𝒯𝜑,𝛿.

Algorithm 6.1
INPUT: a telescopable D-finite ideal I⊆𝔹 with associated reduction []𝔻 and 𝜑∈𝔻prim

OUTPUT: the reduced Gröbner basis 𝒢 for a D-finite ideal �𝒢� included in 𝒯𝜑,𝛿

ℒ≔{1} monomials remaining to be treated
𝒢≔∅ Gröbner basis being constructed
ℛ≔∅ monomials under stairs
while ℒ≠∅ do

Let 𝜔∈ℒ be minimal for ⩽ and set ℒ≔ℒ∖{𝜔}
if 𝜔 is not reducible with respect to 𝒢 then

Compute R𝜔≔[𝜔𝜑]𝔻
(If 𝜔=𝜃i𝜔′, then we may also take R𝜔≔[𝜃i R𝜔′]𝔻)
if ∃(c𝜌)𝜌∈ℛ∈𝕂ℛ, R𝜔=∑𝜌∈ℛ c𝜌R𝜌 then

𝒢≔𝒢∪�𝜔−∑𝜌∈ℛ c𝜌𝜌�
else

ℛ≔ℛ∪{𝜔}
ℒ≔ℒ∪{𝜃1𝜔,…,𝜃n𝜔}

return the reduced Gröbner basis for the ideal generated by 𝒢

THEOREM 6.4. Algorithm 6.1 is correct, terminates, and returns the Gröbner basis 𝒢 of a D-finite
ideal �𝒢�⊆𝒯𝜑,𝛿 with

dim𝕂𝔸/�𝒢� ⩽ dim𝕂 [𝔻]𝔻. (6.4)

Moreover, if []𝔻 is normal, then �𝒢�=𝒯𝜑,𝛿.

Proof. Throughout the algorithm, we observe that the elements R𝜌∈[𝔻]𝔻 with 𝜌∈ℛ are
𝕂-linearly independent. Consequently, |ℛ| never exceeds dim𝕂 [𝔻]𝔻, which ensures termi-
nation of the algorithm. By (6.3), it is also clear that we only insert telescopers in 𝒯𝜑,𝛿 to 𝒢. Let
us now prove the bound (6.4).

Throughout the algorithm, it is easily verified that ℛ contains only monomials that are
smaller than 𝜔. It follows that the leading monomial of 𝜔−∑𝜌∈ℛ c𝜌 𝜌 is 𝜔, when inserting
a new element into 𝒢. This in turn implies that, at the start of each iteration of the main loop,
the set ℛ contains precisely those monomials below 𝜔 that cannot be reduced with respect
to 𝒢. At the end of the loop, this means that ℛ consists exactly of those monomials that cannot
be reduced with respect to 𝒢. Consequently, dim𝕂𝔸/�𝒢�⩽|ℛ|⩽dim𝕂 [𝔻]𝔻.

Assume finally that []𝔻 is a normal reduction. Then it is straightforward to verify that (6.3)
becomes an equivalence. In particular, given a telescoper of the form ∑𝜌∈ℛ c𝜌𝜌, we get that
∑𝜌∈ℛ c𝜌 [𝜌𝜑]𝔻=0, whence c𝜌=0 for all 𝜌∈ℛ , since the elements R𝜌 with 𝜌∈ℛ are linearly
independent. In other words, dim𝕂 𝔸/𝒯𝜑,𝛿⩾ |ℛ|⩾dim𝕂 𝔸/�𝒢�, whence 𝒯𝜑,𝛿⊆�𝒢�. At the
end of the main loop, this also means that the S-polynomials of any two elements in 𝒢 neces-
sarily reduce to zero; in other words, 𝒢 is already a reduced Gröbner basis, so we may directly
return it after the main loop. −−

− −
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Remark 6.5. The important property of R𝜔 is that R𝜔−𝜔𝜑∈𝛿𝔹. If 𝜔=𝜃i𝜔′, then it follows
that we may also take R𝜔≔[𝜃i R𝜔′]𝔻 instead of R𝜔≔[𝜔𝜑]𝔻, since

[𝜃i R𝜔′]𝔻−𝜔𝜑=[𝜃i R𝜔′]𝔻−𝜃i R𝜔′+𝜃i (R𝜔′−𝜔′𝜑),

where [𝜃i R𝜔′]𝔻−𝜃i R𝜔′∈𝛿𝔹 and 𝜃i (R𝜔′−𝜔′𝜑)∈𝜃i𝛿𝔹=𝛿𝜃i𝔹⊆𝛿𝔹.

Remark 6.6. Reduction-based algorithms for creative telescoping do not require the computa-
tion of certificates. Nevertheless, it is not hard to modify the algorithms such that certificates
are computed along with the telescopers themselves.

Remark 6.7. It is possible to generalize the theory of this section to the case when 𝛿 is replaced
by a more general operator R∈𝕂[𝛿] that commutes with 𝜃1,…, 𝜃n. In the differential case, it
essentially suffices to replace the confined reduction []𝔻 with respect to 𝛿 by a confined reduc-
tion with respect to R, as constructed in section 4.6. In the difference case, such reductions can
be constructed along similar lines.

7. D-FINITENESS TESTS FOR TELESCOPING IDEALS

7.1. Location of singularities
Adopt the same notations as in section 6.3. Let F∈ (𝔹/ I)r×1 be a fixed basis of 𝔹/I with
entries f1,…, fr. Given an operator 𝜔∈𝔹, we define its order ord𝛼,F 𝜔 at 𝛼∈�̄�∪{∞} in z and
with respect to the basis F by

ord𝛼𝜔 = ord𝛼,F 𝜔 = ord𝛼 M𝜔,F

and its (finite) set of singularities in z by

Sing(𝜔)=SingF(𝜔)={𝛼∈�̄�∪{∞}:ord𝛼,F 𝜔>0}.

Thanks to Proposition 6.2, it turns out that Sing(𝜃i) is closely related to Sing(𝜃n+1) for all i∈ℕ.

PROPOSITION 7.1. Assume that 𝜃=∂ and let i∈{1,…,n}. Then

Sing(∂i) ⊆ Sing(∂) (𝜃i=∂i)
Sing(𝜎i) ⊆ Sing(∂)∪𝜎i(Sing(∂)) (𝜃i=𝜎i)

Proof. Assuming for contradiction that 𝜃i=∂i and 𝛼∈Sing(∂i)∖Sing(∂), we have ord𝛼 Mn+1=
ord𝛼 ∂i Mn+1=0, whence Proposition 6.2 implies

∂Mi = ∂i Mn+1+Mn+1Mi −Mi Mn+1

ord𝛼 Mi+1 = ord𝛼 ∂Mi ⩽ max (ord𝛼 ∂i Mn+1, ord𝛼 Mn+1+ord𝛼 Mi) = ord𝛼 Mi.

Similarly, if 𝜃i = 𝜎i and 𝛼 ∈ Sing(𝜎i)∖ (Sing(∂)∪𝜎i(Sing(∂))), then we have ord𝛼 Mn+1=
ord𝛼 𝜎i(Mn+1)=0, whence

∂Mi = 𝜎i(Mn+1)Mi −Mi Mn+1

ord𝛼 Mi+1 ⩽ max(ord𝛼 𝜎i(Mn+1)+ord𝛼 Mi, ord𝛼 Mi+ord𝛼 Mn+1) = ord𝛼 Mi. □

PROPOSITION 7.2. Assume that 𝜃=𝜎 and let i∈{1,…,n}. Let

S = Sing(𝜎)∪Sing(𝜎 −1)(1) (𝜃i=𝛿i)
S = Sing(𝜎)∪Sing(𝜎 −1)(1)∪𝜎i(Sing(𝜎))∪𝜎i(Sing(𝜎−1)(1)) (𝜃i=𝜎i)
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Then for any 𝛼∈Sing(𝜃i) with 𝛼≠𝛼(1), there exist integers k⩽0 and l>0 with

𝛼(k)∈S, 𝛼(k+1),…,𝛼(l−1)∈Sing(𝜃i), 𝛼(l)∈S.

Proof. Since M𝜎 −1=𝜎 −1(Mn+1)−1, we notice that

Sing(𝜎−1) = {𝛼∈�̄�∪{∞} :ord𝛼 𝜎−1(Mn+1
−1 )>0}

= {𝛼∈�̄�∪{∞} :ord𝛼(1) Mn+1
−1 >0}

= {𝛼∈�̄�∪{∞} :ord𝛼 Mn+1
−1 >0}(−1).

Assume that 𝜃i=∂i and 𝛼∈�̄�∪{∞}∖S. Then Proposition 6.2 implies

Mi = Mn+1
−1 𝜎(Mi)Mn+1−Mn+1

−1 ∂i Mn+1

ord𝛼 Mi ⩽ ord𝛼 𝜎(Mi) = ord𝛼(−1) Mi,

as well as

𝜎(Mi) = (∂i Mn+1)Mn+1
−1 +Mn+1Mi Mn+1

−1

ord𝛼(−1) Mi ⩽ ord𝛼 Mi,

whence 𝛼∈Sing(∂i)⇔𝛼(−1)∈Sing(∂i). Assuming that 𝛼∈Sing(∂i), it follows by induction on
m∈ℕ, we get that 𝛼,…,𝛼(−m+1)∉S implies 𝛼(−1),…,𝛼(−m)∈Sing(∂i). Since Sing(∂i) is finite, we
must have 𝛼(k)∈S for some k⩽0. If 𝛼∈Sing(∂i), it follows similarly that 𝛼(1),…,𝛼(l)∉S implies
𝛼(1),…,𝛼(l)∈Sing(∂i), whence the existence of some l>0 with 𝛼(l)∈S.

Let us next consider the case when 𝜃i=𝜎i and 𝛼∈�̄�∪{∞}∖S. Then Proposition 6.2 implies

Mi = 𝜎i(Mn+1)−1𝜎(Mi)Mn+1

𝜎(Mi) = 𝜎i(Mn+1)Mi Mn+1
−1 ,

whence ord𝛼 Mi=ord𝛼(−1) Mi and 𝛼∈Sing(𝜎i)⇔𝛼−1∈Sing(𝜎i). We conclude in a similar way
as above. −−

− −

7.2. Orders at singularities
Given a set of operators Ω⊆𝔹, we define

ord𝛼Ω = ord𝛼,F Ω = sup
𝜔∈Ω

ord𝛼,F 𝜔 ∈ ℕ∪{∞}.

Let 𝒟𝔸 be the monoid generated by the 𝜃i with i∈{1,…,n} and 𝜃i=∂i. Similarly, let Σ𝔸 denote
the multiplicative monoid generated by the 𝜃i such that 𝜃i=𝜎i.

PROPOSITION 7.3. Assume that 𝜃=𝜎 and let 𝛼∈�̄� with 𝜏(𝛼)≠𝛼 be such that ∂i(𝛼)=0 for i=1,…,n
with 𝜃i=∂i. Then we have

ord𝛼𝒟𝔸 ⩽ �
k⩾1

ord𝛼(k) M𝜎+�
k⩾1

ord𝛼(k) M𝜎
−1.

Proof. Let ℓ∈ℕ be sufficiently large such that ord𝛼(ℓ) ∂i=0 for all i∈{1,…,n} with 𝜃i=∂i. This
implies that ord𝛼(ℓ)𝒟𝔸=0. Let 𝜔∈𝒟𝔸. Since M𝜎 ℓ𝜔=𝜎 ℓ(M𝜔)M𝜎 ℓ and M𝜎 ℓ is invertible, we get

ord𝛼(ℓ) (𝜎 ℓ𝜔) ⩾ ord𝛼(ℓ) 𝜎 ℓ(M𝜔)−ord𝛼(ℓ) M𝜎 ℓ
−1 = ord𝛼𝜔−ord𝛼(ℓ) M𝜎 ℓ

−1. (7.1)

On the other hand, there are constants c𝜔′,𝜔′′∈ℕ with

(𝜔𝜎 ℓ)(F) = 𝜔(M𝜎 ℓF) = �
𝜔=𝜔′𝜔′′

c𝜔′,𝜔′′ (𝜔′(M𝜎 ℓ))(𝜔′′(F)).
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Since ∂i(𝛼(ℓ)) = (∂i 𝛼)(ℓ)= 0 for i= 1,…, n, we have ord𝛼(ℓ) 𝜔′(M𝜎 ℓ)⩽ ord𝛼(ℓ) M𝜎 ℓ in the above
formula. By our choice of ℓ, we also have ord𝛼(ℓ)𝜔′′=0, whence

ord𝛼(ℓ) (𝜔𝜎 ℓ) ⩽ ord𝛼(ℓ) M𝜎 ℓ.

Combined with (7.1), this yields

ord𝛼𝜔 ⩽ ord𝛼(ℓ) M𝜎 ℓ+ord𝛼(ℓ) M𝜎 ℓ
−1.

Since M𝜎 ℓ=𝜎 ℓ−1(M𝜎)⋯𝜎(M𝜎)M𝜎, we have ord𝛼(ℓ) M𝜎 ℓ⩽ord𝛼(1) M𝜎+⋯+ord𝛼(ℓ) M𝜎 and simi-
larly ord𝛼(ℓ) M𝜎 ℓ

−1⩽ord𝛼(1) M𝜎
−1+⋯+ord𝛼(ℓ) M𝜎

−1. −−

− −

PROPOSITION 7.4. Assume that 𝜃=𝜎. Let 𝜔∈Σ𝔸 and 𝛼∈�̄� with 𝜏(𝛼)≠𝛼. Then

ord𝛼 M𝜔 ⩽ �
k⩾1

ord𝜔−1(𝛼(k)) M𝜎+�
k⩾1

ord𝛼(k) M𝜎
−1.

Proof. Let ℓ∈ℕ be sufficiently large such that ord𝛼(ℓ)𝜔=0. Since M𝜎 ℓ𝜔=𝜎 ℓ(M𝜔)M𝜎 ℓ and M𝜎 ℓ

is invertible, we have

ord𝛼 M𝜔 = ord𝛼(ℓ) 𝜎 ℓ(M𝜔) ⩽ ord𝛼(ℓ) M𝜎 ℓ𝜔+ord𝛼(ℓ) M𝜎 ℓ
−1.

Since M𝜎 ℓ𝜔=M𝜔𝜎 ℓ=𝜔(M𝜎 ℓ)M𝜔, we also have

ord𝛼(ℓ) M𝜎 ℓ𝜔 ⩽ ord𝛼(ℓ) 𝜔(M𝜎 ℓ)+ord𝛼(ℓ) M𝜔 = ord𝛼(ℓ)𝜔(M𝜎 ℓ) = ord𝜔−1(𝛼(ℓ)) M𝜎 ℓ.

The combination of both formulas yields

ord𝛼 M𝜔 ⩽ ord𝜔−1(𝛼(ℓ)) M𝜎 ℓ+ord𝛼(ℓ) M𝜎 ℓ
−1.

We conclude in a similar way as in the proof of Proposition 7.3. −−

− −

7.3. Explicit telescopability

PROPOSITION 7.5. Assume that 𝜃=∂. If Σ𝔸(Sing(∂)) is finite, then I is telescopable in ∂.

Proof. Assume that Α=Σ𝔸(Sing(∂)) ∖ {∞}⊆ �̄� is finite and let 𝕄=�̄�[z,𝜓−1], where 𝜓=
∏𝛼∈Α(z−𝛼). Notice that 𝕄 is stable under both ∂ and 𝜃1,…,𝜃n. Given i∈{1,…,n+1}, Propo-
sition 7.1 implies that Sing(𝜃i)⊆Α. Given 𝜑∈𝕄1×r, this means that

∂i(𝜑F) = (∂i 𝜑+𝜑Mi)F ∈ 𝕄1×r F (𝜃i=∂i)
𝜎i(𝜑F) = (𝜎i 𝜑)Mi F ∈ 𝕄1×r F (𝜃i=𝜎i)

This proves that the �̄�[z][∂]-module 𝔻 is narrow, as required. −−

− −

Example 7.6. If 𝔸 is a standard DD-operator algebra with 𝕂=𝕜(u1,…,un), then Σ𝔸(Sing(∂))
is finite if and only if Sing(∂) does not depend on ui for every i∈ {1,…, n} with 𝜃i =𝜎i. In
particular, we may take Α=Sing(∂)∖{∞} in the proof.

PROPOSITION 7.7. Assume that 𝜃=𝜎 and let S=Sing(𝜎)∪Sing(𝜎 −1)(1). Assume that the following
holds for every i∈{1,…,n}:

• if 𝜃i=∂i, then for all 𝛼∈Sing(𝜎), we have ∂i 𝛼=0;
• if 𝜃i=𝜎i, then for all 𝛼∈S, there exist integers p,q>0 with 𝜎i

q(𝛼)⊆𝛼(p).
Then I is telescopable in 𝜎.

Proof. We define the function 𝛿: �̄�∪{∞}→ℕ by

𝛿(𝛼) = max
1⩽i⩽n+1,𝜃i=𝜎i

ord𝛼 𝜎i.

JORIS VAN DER HOEVEN 39



Since {𝛼∈�̄�∪{∞}: 𝛿(𝛼)≠0} is finite, we may also define 𝜇:�̄�∖Fix 𝜏→ℕ by

�̂�(𝛼) = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
0 if 𝛼∉S↕
∑𝛽∈Σ𝔸

−1(𝛼(−ℕ))𝛿(𝛼
(𝜆)) if 𝛼∈S↕.

By construction, this function is increasing. We also notice that

Α = {𝛼∈�̄� : �̂�(𝛼)>�̂�(𝛼(−1))}

is finite, with {𝛼∈�̄� : �̂�(𝛼)≠0}⊆Α↑, and the restrictions �̃�= �̂�|Α↑ and 𝜈=�̂�|Α of 𝜇 to Α↑ and Α
satisfy �̃�=𝜈↑. It follows that �̃�=𝕂(z)(Fix𝜏,⋆)⊕𝕂(z)(Α↑);𝜇 is a narrow𝕂[z][𝜎]-module of 𝕂(z).
In particular, the 𝕂[z][𝜎]-module �̃�=�̃�r×1F comes with a reduction []�̃� with respect to Δ.

We claim that �̃� is stable underΣ𝔹. The stability under 𝜎 is clear. Let𝜑∈�̃�r×1, 𝛼∈�̄�∖Fix 𝜏
and i∈{1,…,n} with 𝜃i=𝜎i, so that 𝜎i(𝜑F)=𝜎i(𝜑)M𝜎i F. Then for any 𝛼∈Α↑∖Fix 𝜏, we have

ord𝛼 (𝜎i(𝜑)M𝜎i) ⩽ ord𝛼 𝜎i(𝜑)+ord𝛼 𝜎i

= ord𝜎i
−1(𝛼)𝜑+ord𝛼 𝜎i

⩽ �̂�(𝜎i
−1(𝛼))+𝛿(𝛼)

⩽ �̂�(𝛼).

In other words, 𝜎i(𝜑F)∈�̃�, which completes the proof of our claim.
Given an iterated derivative 𝜔∈𝒟𝔸 and 𝜑∈�̃�r×1, we next observe that there exist integers

c𝜔′,𝜔′′∈ℕ with

𝜔(𝜑F) = �
𝜔=𝜔′𝜔′′

c𝜔′,𝜔′′𝜔′(𝜑)𝜔′′(F),

= (((((((((((( �
𝜔=𝜔′𝜔′′

c𝜔′,𝜔′′𝜔′(𝜑)M𝜔′′))))))))))))(F),
where we notice that 𝜔′(𝜑)∈�̃�r×1 for all 𝜔′∈𝒟𝔸. For any 𝛼∈�̄�∖Fix 𝜏, it follows that

ord𝛼(((((((((((( �
𝜔=𝜔′𝜔′′

c𝜔′,𝜔′′𝜔′(𝜑)M𝜔′′)))))))))))) ⩽ �̂�(𝛼)+ord𝛼𝒟𝔸.

By Proposition 7.3, there are only a finite number of points 𝛼∈�̄�∖Fix 𝜏 where ord𝛼𝒟𝔸>0
and ord𝛼𝒟𝛼∈ℕ at these points. In other words, setting 𝔻=𝕂[𝒟𝔸](�̃�), there exists a finite
dimensional 𝕂-vector space 𝕍⊆𝔻 with 𝔻=�̃�⊕𝕍. We extend []�̃� to a confined reduction
[]𝔻:𝔻→𝔻 with respect to Δ by setting [g+h]𝔻=[g]�̃�+h for all g∈�̃� and h∈𝕍. Notice that
𝔻 is still stable under Σ𝔹, since Σ𝔹 commutes with 𝒟𝔸. −−

− −

Example 7.8. Consider the case when 𝔸 is a standard DD-operator algebra with 𝕂=𝕜(u).
If 𝜎 =S1,z and 𝜃1=S1,u, then it follows that the denominator of M𝜎 as a rational function in z
should be a power product of linear forms kz+ lu−𝛼 with k∈ℕ>, l∈ℕ and 𝛼∈�̄�. If this is not
the case, then one may try replacing the operator 𝜃1=S1,u by its inverse 𝜃1=S−1,u, for which
one might have more luck. If either 𝜎 or 𝜃=Qq,u is a q-difference operator, and the other one is
a shift operator, then the denominator of M𝜎 should be a polynomial in 𝕜[z]. If both 𝜎 =Qq,z
and 𝜃=Qq,u are q-difference operators, then the denominator of M𝜎 should be a power product
of terms zk ul −𝛼 with k∈ℕ>, l∈ℕ, and 𝛼∈�̄�.

We say that I is explicitly telescopable in 𝜃 with respect to the basis F if it satisfies the suf-
ficient conditions from Propositions 7.5 or 7.7. These conditions present the advantage that
they are formulated exclusively in terms of the singularities of 𝜃. For a fixed basis F, they are
also easy to check. It remains to investigate how to compute a basis with respect to which I is
explicitly telescopable, whenever such a basis exists.
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We will restrict our attention to the case when 𝜃=∂; an algorithm can probably be devel-
oped for the difference case as well, but we will leave this for a future work. Given a singularity
𝛼∈SingF(∂)∩�̄�, let us show how to compute a basis G with SingG(∂)⊆SingF(∂)∖{𝛼} when-
ever such a basis exists. We outline the algorithm over �̄�, but it is not hard to adapt it to
work over 𝕂. The computed basis is no longer cyclic; with additional effort, it can be shown
that there also exist cyclic bases G with SingG(∂)⊆SingF(∂)∖{𝛼}.

We start with the computation of a basis of formal local transseries solutions of the system
∂F=M∂,F F at 𝛼, given in the form of a fundamental matrix Y. If there exist local solutions
that are not Laurent series, then the singularity 𝛼 clearly cannot be removable. Otherwise,
the truncation Ỹ of Y at a sufficiently high order O((z −𝛼)k) gives rise to a basis G= Ỹ−1F=
1+O(z−𝛼) such that M∂,G=�Ỹ−1Y�′ (Y−1 Ỹ) admits no singularity at 𝛼.

Unfortunately, Ỹ−1 may introduce new singularities, so this algorithm needs to be tweaked
a little more. We replace Ỹ with a new approximation at a order O((z−𝛼)k) that can be written
as a product of diagonal matrices with entries of the form (z−𝛼)i with i∈ℤ, invertible constant
matrices in 𝕂r×r, and upper/lower triangular matrices of the form Idr+O(z−𝛼). It is not hard
to compute such an approximation. By construction, its inverse admits a factorization of the
same form, whence it introduces no new singularities.

Even small equations such as (z−𝛼)∂ f = k f may admit solutions with a high valuation k.
It follows that the above algorithm for changing bases may be very expensive and its cost is
generally not polynomial in the input size.

7.4. Testing D-finiteness
If I is explicitly telescopable in 𝜃 with respect to the chosen basis F and associated reduction []𝔻,
then the telescoping ideal 𝒯𝜑,𝛿 is certainly D-finite for any 𝜑∈𝔻. Moreover, Algorithm 6.1
allows us to efficiently compute a Gröbner basis for a D-finite subideal of 𝒯𝜑,𝛿; with more
computational effort, one may even compute a Gröbner basis for 𝒯𝜑,𝛿 itself.

If I is not explicitly telescopable in 𝜃, even after a suitable change of basis, then telescoping
ideals 𝒯𝜑,𝛿 are generally not D-finite, although they exceptionally might be. In this subsection,
we will show how to modify Algorithm 6.1 in order to test D-finiteness of 𝒯𝜑,𝛿 and to compute
a Gröbner basis for 𝒯𝜑,𝛿 if so. We will restrict our attention to the case when 𝜃=∂, but a similar
approach is likely to work in the difference case as well. It will also be convenient to assume
that for any 𝜔∈Σ𝔸 and c∈𝕂 with 𝜔(c)≠ c, we have 𝜔k(c)≠ c for all k∈ℤ≠. This is the case
for standard DD-operator algebras.

Assume that we have fixed a cyclic basis F of 𝔹/I with entries f1,…, fr and let L be the
vanishing operator of F1 in ∂. Denote Α=Sing(∂), Β=Σ𝔸(Α), 𝕄=𝕂(z)(Β,∞,⋆), and 𝔻=𝕄1×rF.
Then𝔻 is a 𝕂[z,𝜃1,…,𝜃n,𝜃]-submodule of 𝔹/I that contains f1,…, fr, but that is not necessarily
narrow in 𝜃.

Let ⟦⟧ be the normal global reduction on 𝕂(z) with respect to L∗ as constructed in
Remark 4.7. The construction from section 4.4 still works and leads to a corresponding
normal reduction ⟦⟧ on 𝔹/I. The restrictions ⟦⟧𝕄 and ⟦⟧𝔻 of these reductions to 𝕄 and 𝔻
are also normal. We call ⟦⟧𝔻 the associated normal reduction to I (and for the chosen basis F).
For any subset Γ⊆�̄�, we notice that ⟦�̄�(z)(Γ,∞,⋆)⟧⊆ �̄�(z)(Γ,∞,⋆). In particular, Sing(⟦u⟧𝕄)⊆
Sing(u)∪{∞} for all u∈𝕄.

LEMMA 7.9. Let𝜔∈Σ𝔸
ℤ and u∈𝕄. Let 𝜆1,…,𝜆r be the entries of the first row of M𝜔. Then ⟦𝜔(uf1)⟧𝔻=

⟦𝜔{u} f1⟧𝔻, where

𝜔{u} = 𝜔(u)𝜆1−∂ (𝜔(u)𝜆2)+⋯+(−1)r−1∂r−1 (𝜔(u)𝜆r)
and Sing(𝜔{u})⊆𝜔(Sing(u))∪Sing(𝜔).

Proof. Let û∈𝕄1×r be the row vector with entries u, 0,…,0. Then 𝜔(ûF)=𝜔(û)M𝜔F implies
𝜔(uf1)=𝜔(u)(𝜆1 f1+⋯+𝜆r fr). The result now follows from (4.8). −−

− −
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PROPOSITION 7.10. Let Ξ be the set of all 𝛼∈Β such that there exists an i∈{1,…,n} with 𝜎i(𝛼)≠𝛼
and 𝜎i

ℕ(𝛼)∩(Α∪Sing(𝜎i)∪Sing(𝜎i
−1))=∅. Let u f1∈⟦𝔻⟧𝔻 with u∈⟦𝕄⟧𝕄 be such that u(Ξ)≠0.

Then the 𝕂-vector space Vect(Σ𝔸(uf1)) generated by all 𝜔(uf1) with 𝜔∈Σ𝔸 has infinite dimension.

Proof. Let 𝛼∈Ξ be such that u(𝛼)≠0 and let i∈{1,…,n} be such that 𝜎i(𝛼)≠𝛼 and 𝜎i
ℕ(𝛼)∩(Α∪

Sing(𝜎i)∪Sing(𝜎i
−1))=∅. Modulo the replacement of 𝛼 by 𝜎i

k(𝛼), we may assume without loss
of generality that u(𝜎i

k(𝛼))=0 for all k>0. Recall that 𝛼,𝜎i(𝛼),𝜎i
2(𝛼),… are pairwise distinct.

Consider the sequence u0,u1,…∈𝕄 with u0=u and uk+1=⟦𝜎i{uk}⟧𝕄 for all k∈ℕ. Let us
show by induction on k that (uk)(𝜎i

k(𝛼))≠0 and (uk)(𝜎i
l(𝛼))=0 for all l>k. These assertions hold

by assumption for k=0, so assume that k>0. By Lemma 7.9, we have

Sing(uk+1)⊆𝜎i(Sing(uk))∪Sing(𝜎i).

For each l> k, the assumption that 𝜎i
l(𝛼) ∉ Sing(uk) therefore implies 𝜎i

l+1(𝛼)∉ Sing(uk+1).
Assume for contradiction that (uk+1)(𝜎i

k+1(𝛼))=0. Let g∈𝔹/I be such that

uk+1 f1=𝜎i(uk f1)+∂(g).
Then we have

⟦𝜎i
−1{uk+1} f1⟧=⟦𝜎i

−1(uk+1 f1)⟧=⟦uk f1+∂(𝜎i
−1(g))⟧=⟦uk f1⟧

and Lemma 7.9 implies

Sing(𝜎i
−1{uk+1})⊆𝜎i

−1(Sing(uk+1))∪Sing(𝜎i
−1).

Since 𝜎i
k+1(𝛼)∉ Sing(uk+1) and 𝜎i

k(𝛼)∉Sing(𝜎i
−1), it follows that 𝜎i

k(𝛼)∉Sing(𝜎i
−1{uk+1}).

From ⟦(uk −𝜎i
−1{uk+1}) f1⟧=0, 𝜎i

k(𝛼)∉Sing(∂), and the normality of ⟦⟧, we also get that (uk −
𝜎i

−1{uk+1})(𝜎i
k(𝛼))= 0. We conclude that 𝜎i

k(𝛼)∉Sing(uk), which contradicts the induction
hypothesis.

We claim that u0, u1, … are 𝕂-linearly independent. Indeed, given a non-trivial relation
𝜆0u0+⋯+𝜆k uk=0 with 𝜆k≠0, we would obtain the contradiction

0=(𝜆0u0+⋯+𝜆k uk)(𝜎i
k(𝛼))=𝜆k (uk)(𝜎i

k(𝛼))≠0.

We conclude by noticing that u0,u1,…∈Vect(Σ𝔸(uf1)). −−

− −

We are now in a position to state the adaptation of Algorithm 6.1 to the case when the
ideal I is not necessarily telescopable.

Algorithm 7.1
INPUT: a D-finite ideal I⊆𝔹 with associated normal reduction ⟦⟧𝔻 and 𝜑∈𝔻prim

OUTPUT: the reduced Gröbner basis 𝒢 for 𝒯𝜑,𝛿 if 𝒯𝜑,𝛿 is D-finite and ⊥ otherwise

ℒ≔{1}, 𝒢≔∅, ℛ≔∅
while ℒ≠∅ do

Let 𝜔∈ℒ be minimal for ⩽ and set ℒ≔ℒ∖{𝜔}
if 𝜔 is not reducible with respect to 𝒢 then

if 𝜔=1 then let R𝜔≔⟦𝜑⟧𝔻
else decompose 𝜔=𝜃i𝜔′ and let R𝜔≔⟦𝜃i R𝜔′⟧𝔻
Let u∈𝕄 be such that 𝜑=uf1 and let Ξ be as in Proposition 7.10
if u(Ξ)≠0 then return ⊥
if ∃(c𝜌)𝜌∈ℛ∈𝕂ℛ, R𝜔=∑𝜌∈ℛ c𝜌R𝜌 then 𝒢≔𝒢∪�𝜔−∑𝜌∈ℛ c𝜌𝜌�
else ℛ≔ℛ∪{𝜔}, ℒ≔ℒ∪{𝜃1𝜔,…,𝜃n𝜔}

return 𝒢

THEOREM 7.11. Algorithm 7.1 is correct and terminates.
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Proof. Let us first show that Β∖Ξ is finite. Given 𝛼∈Β∖Ξ, we either have Σ𝔸(𝛼)={𝛼} and
𝛼∈Α, or 𝜎i(𝛼)≠ 𝛼 for some i. In the latter case, our assumption 𝛼∈Β∖Ξ implies the exis-
tence of a maximal k∈ℕ with 𝜎i

k(𝛼)∈Α∪Sing(𝜎i)∪Sing(𝜎i
−1). We claim that there also exists

a maximal l∈ℕ with 𝜎i
−l(𝛼)∉Ξ. Our claim clearly implies that Β∖Ξ is finite, since we are left

with a finite number of possible 𝛼 for each i.
Assume for contradiction that the claim does not hold. Then 𝜎i

−1(𝛼)∈Σ𝔸(Α), whence there
exists a j∈ {1,…, n} with 𝜎j

ℕ(𝛼) ∩ 𝜎i
ℕ(𝛼) = {𝛼}. For each l∈ℕ, there exists an m∈ℕ with

𝜎j
m(𝜎i

−l(𝛼))∈Α∪Sing(𝜎j)∪Sing(𝜎j
−1). For some l′≠ l and m′≠m, it follows that 𝜎j

m(𝜎i
−l(𝛼))=

𝜎j
m′�𝜎i

−l ′(𝛼)�. Since 𝜎j
ℕ(𝛼)∩𝜎i

ℕ(𝛼)= {𝛼}, we have 𝜚 = (l′ − l)/(m − m′)> 0 and 𝜎j acts on
(𝜎i

ℤ𝜎j
ℤ)(𝛼) as 𝜎i

−𝜚. In particular, there exist minimal s∈𝜚ℤ and maximal t∈𝜚ℤ with 𝜎i
s(𝛼),

𝜎i
t(𝛼)∈Α∪Sing(𝜎i)∪ Sing(𝜎i

−1)∪ Sing(𝜎j)∪ Sing(𝜎j
−1). For l′′ >−s, we conclude that there

cannot exist an m′′∈ℕ with 𝜎j
m′′�𝜎i

−l ′′(𝛼)�=𝜎i
−l′′−𝜚m′′(𝛼)∈Α∪Sing(𝜎j)∪Sing(𝜎j

−1).
Having shown that Β∖Ξ is finite, we either hit some u∈𝕄 with u(Ξ)≠0, in which case

the correctness follows from Proposition 7.10, or all computations take place in the narrow
submodule 𝕂(z)(Β∖Ξ,∞,⋆) of 𝕂(z), and the correctness and termination are proved in a similar
way as for Theorem 6.4. −−

− −

8. COMPLEXITY OF RATIONAL FUNCTION ARITHMETIC

8.1. Complexity of arithmetic in 𝕂
Consider a standard DD-operator algebra 𝔸=𝕂[𝜃1,…, 𝜃n] with 𝕂=𝕜(u1,…, un), as in sec-
tion 6.1. We will use the algebraic complexity model: running times are measured in terms of
the required number of field operations in 𝕜 and space complexity in terms of the required
number of coefficients in 𝕜.

We use a dense representation for polynomials in𝕜[u1,…,un]. A polynomial P∈𝕜[u1,…,un]
of total degree d=deg P thus requires space �n+d

n �=O(dn). From now on, we assume that
the dimension n is a fixed constant, whereas d may become large. Given P,Q∈𝕜[u1,…,un]
of total degrees deg P and deg Q, it is well known for that their product can be computed in
quasi-linear time Õ((deg (PQ))n); see [53] for a particularly efficient algorithm. Partial deriv-
atives and q-differences can clearly be computed in linear time O((deg P)n). It is also well-
known [11] that partial shifts reduce to coefficientwise univariate multiplications, so they can
be computed in time Õ((deg P)n).

The deterministic computation of the greatest common divisor of two polynomials P,Q∈
𝕜[u1,…,un] is more expensive. The best currently known algorithms first select a principal
variable, say un, and reinterpret P and Q as univariate polynomials in un. They next recursively
factor out the content and then compute the univariate gcd using a division-free algorithm
for the computation of subresultants such as Berkowitz' algorithm [8]; see also [69]. This leads
to the complexity bound Õ(max(deg P, deg Q)𝛾n) with 𝛾⩽4. When using randomized algo-
rithms of Las Vegas type, one may take 𝛾=1 instead; since deg gcd(P,Q)⩽max(degP,degQ),
this means that gcds can be computed in quasi-linear time (more precisely: after a generic
linear change of variables, both P and Q can be assumed to be monic in un, and using eval-
uation/interpolation at O(dn−1) points, one reduces to fast univariate gcds [18]).

Rational functions in 𝕂 are represented as fractions P, Q with P, Q ∈𝕜[u1, …, un],
gcd(P,Q)=1, and Q monic with respect to a suitable term ordering. We write deg(P/Q)=
max(degP,degQ) for the degree of such a rational function. Given f ,g∈𝕂 and □∈{+,−, ×,/},
we notice that deg( f □g) ⩽ deg f +deg g. One may compute f □g in non simplified form
in quasi-linear time Õ((deg f +deg g)n), whereas the simplification of the resulting fraction
requires Õ((deg f +deg g)𝛾n) further operations. Of course, it is possible to delay the sim-
plification of fractions in many cases.
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When computing with vectors of matrices with entries in𝕂, we always assume that denom-
inators have been factored out. In other words, a matrix M∈𝕂r×c is represented as a matrix
N∈𝕜[u1,…,un]r×c divided by a monic polynomial D∈𝕜[u1,…,un] such that the gcd of D and
all entries of N equals one (here D is understood to be monic with respect to a suitable mono-
mial ordering on u1

ℕ⋯un
ℕ). We also define deg M=max(maxi, j deg Ni, j, deg D). Simplifying

a general fraction N/D can be done in time Õ(r cmax(deg N, deg D)𝛾n). Ignoring the cost of
the final simplification, two matrices M,N∈𝕂r×c can be added in time Õ(r2(degM+degN)n)
and multiplied in time Õ(r𝜔 (deg M+deg N)n) if r= c. Here 𝜔⩽3 denotes the “exponent of
matrix multiplication”, i.e. two matrices in𝕜r×r can be multiplied using O(r𝜔) operations in𝕜.

When allowing for probabilistic algorithms (of Las Vegas type), it is interesting to con-
sider the alternative straight line program (SLP) representation for polynomials and rational
functions [20]. In this model, the length # f of the SLP that evaluates f ∈𝕂 is a natural mesure
for the complexity of f . Using sparse interpolation [7, 58, 57, 51, 5], the actual coefficients of
a polynomial P∈𝕜[u1,…,un] of degree bounded by d can be retrieved from its SLP represen-
tation in expected time Õ((#P)dn). Similarly, the dense representation of a rational function
f ∈𝕂 can be retrieved in expected time Õ((# f )(deg f )n); see [59].

Algorithms that rely on SLP representations and sparse interpolation are particularly inter-
esting when intermediate expressions swell in size, but the end-result is small in comparison.
It turns out that the sizes of SLPs for creative telescoping remain reasonably small, which
makes this approach relevant in our context. For this reason, we will also analyze the com-
plexity of our algorithms in this model.

8.2. Complexity of arithmetic in 𝕂(z)
Now consider a standard DD-operator algebra extension 𝔹=𝕂(z)[𝜃1,…,𝜃n, 𝜃] of 𝔸 as in sec-
tion 6.3. Polynomials in 𝕂[z] and rational fractions in 𝕂(z) can be represented in a similar
way as in the previous subsection, but for our complexity analysis, it is useful to distinguish
between the degree in z and the total degree in u. As in the case of vectors and matrices, we
also assume that the denominators of polynomials in 𝕂[z] have been factored out.

With the above conventions, the monic gcd G of two polynomials P,Q∈𝕂[z] can be com-
puted in time Õ(max(degu P,degu Q)𝛾nmax (degz P,degz Q)) and we have

degu G ⩽ max(degu P,degu Q)max(degz P,degz Q). (8.1)

In fact, for any monic polynomial A∈𝕂[z] that divides P, we even have

degu A ⩽ degu P ⋅ degz A. (8.2)

It is also possible to compute the corresponding cofactors U,V∈𝕂[z] with

G = UP+VQ,

still with the same complexity. These cofactors satisfy similar degree bounds

degu U ⩽ max(degu P, degu Q)max(degz P, degz Q) (8.3)
degu V ⩽ max(degu P, degu Q)max(degz P, degz Q). (8.4)

in addition to the usual bounds degz U<degz Q−degz G and degz V<degz P−degz G in z.
Similarly, given two polynomials A,B∈𝕂[z] with monic B, the Euclidean division of A

by B yields a relation

A = QB+R,

in which the quotient Q and the remainder R satisfy the degree bounds

degu Q ⩽ degu A+max(degz A−degz B+1,0)degu B (8.5)
degu R ⩽ degu A+max(degz A−degz B+1,0)degu B. (8.6)
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Setting d=degu A+max(degz A−degz B+1,0)degu B, the division itself can be done in time
Õ(d𝛾nmax(degz A, degz B)).

8.3. Complexity of arithmetic in �̄�
The computation of the local reductions []𝛼 in sections 4 and 5 requires us to compute with
roots 𝛼∈�̄� of the leading coefficient P=Lr of our differential or difference operator L. If the fac-
torization of P is known, then this comes down to computations over the extension field 𝕃=
𝕂[z]/(H(z)), where H is the monic irreducible factor of P with H(𝛼)=0.

Let us first examine the cost of arithmetic in such an extension field𝕃 and denote d=degz H.
Elements 𝜆 in 𝕃 are represented by their pre-images �̌�∈𝕂[z] with 𝜆= �̌�+ (H) and degz �̌�<
degz H. It is natural to define the total degree of 𝜆 in u by degu 𝜆=degu �̌�. Given 𝜆,𝜇∈𝕃,
it follows from (8.6) that

degu 𝜆𝜇 ⩽ degu 𝜆+degu 𝜇+(degu H)d,

where we recall from (8.2) that degu H⩽degu P ⋅ degz P. Similarly, the inverse of a non-zero
𝜆∈𝕃 satisfies

degu 𝜆−1 ⩽ max(degu 𝜆,degu H)d,

thanks to (8.3). Since additions and subtraction do not require any Euclidean divisions, we
also have

degu (𝜆±𝜇) ⩽ degu 𝜆+degu 𝜇.

The computations of 𝜆 𝜇 and 𝜆 ± 𝜇 can respectively be performed in time Õ((degu 𝜆 +
degu 𝜇+(degu H)d)𝛾n d) and Õ((degu 𝜆+degu 𝜇)𝛾n d), whereas 𝜆−1 can be computed in time
Õ(max (degu 𝜆, degu H)𝛾n d). One may take 𝛾 = 1 in the first two complexity bounds if we
only require unsimplified results.

For simplicity, we will assume that the irreducible factorization of P is known in what
follows. In order to be complete, we still have to discuss the cost of computing such a factor-
ization. Since this task can be rather expensive, it is actually better to avoid it by relying on the
strategy of “dynamic evaluation” [31].

Starting with the square-free part H of P, the idea is to directly work in the extension
𝕃=𝕂[z]/(H(z)) as if it were a field. Whenever we hit a non-trivial zero-divisor 𝜆 during the
computation of an inverse in 𝕃, we simply abort all computations and resume with gcd(�̌�,H)
and H/gcd (�̌�,H) in the role of H. This can happen at most degz H times, so all complexity
bounds that will be proved in the sequel have to be multiplied by degz H in order to take
into account the cost of the factorization of P. In fact, the degz P overhead can be reduced
at the expense of technical complications; since we merely want to establish polynomial com-
plexity bounds, we can spare ourselves this effort.

Computations with algebraic functions in �̄� are often more efficient in the SLP model. In
that case, at every evaluation point u∈𝕜n, we work in the algebraic extension 𝕝=𝕜[z]/(H⟨u⟩)
of 𝕜 instead of 𝕃. Here we used angular brackets for the evaluation of H at u in order to avoid
confusion with evaluation in z. Now SLPs over this algebraic extension 𝕝 of 𝕜 can be rein-
terpreted as SLPs over 𝕜: additions/subtractions in 𝕝 translate into d additions/subtractions
in 𝕜, whereas each multiplication or division in 𝕝 give rise to Õ(d) ring operations in 𝕜. When
implementing dynamic evaluation, one also must be careful to “take the same branch of the
computation tree” at each evaluation point: whenever we hit a non-trivial zero-divisor 𝜆 of H,
we store the corresponding SLP for 𝜆, and first relaunch the computation with gcd (�̌�,H) in
the role of H (for all evaluation points), and then once more with H/gcd(�̌�,H) in the role of H
(again for all evaluation points).
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8.4. Partial fraction decomposition
Consider a fraction f =N/D∈𝕂(z) with N,D∈𝕂[z] and gcd (N,D)= 1. Assume that D is
monic and that its factorization over 𝕂 is known, say D=H1

𝜇1⋯Hl
𝜇l. Let us analyze the cost of

computing the partial fraction decomposition of f .
The partial fraction decomposition can actually be computed over 𝕂 as well as over its

algebraic closure. When working over 𝕂, the partial fraction decomposition can be written at
choice in one of the following two forms

f = f(∞,⋆)+�
i=1

l Ci

Hi
𝜇i

f = f(∞,⋆)+�
i=1

l

�
j=1

𝜇i ci, j

Hi
j ,

where degz Ci <𝜇i degz Hi and degz ci, j <degz Hi. It is well known [65] that partial fraction
decompositions of these kinds can be computed in quasi-linear time Õ(degz f ) in terms of
operations over 𝕂.

In this paper, we have chosen to systematically work over the algebraic closure �̄� of 𝕂.
Now given a root 𝛼 of D and any automorphism 𝜙 of �̄� over 𝕂, we notice that f(𝜙(𝛼))=𝜙( f(𝛼)).
It therefore suffices to compute f(𝛼) for only one root 𝛼 in each conjugacy class. We define the
partial fraction decomposition of f over �̄� to consist of f(⋆) and the collection of coefficients f(𝛼),k,
where 𝛼 runs over ∞ and one element in each conjugacy class among the set of roots of D, and
where 0< k⩽ord𝛼 f . The “tangling” and “untangling” morphisms from [52, Section 4] allow
for conversions between partial fraction decompositions over 𝕂 and �̄� in quasi-linear time. It
will be convenient to write

degu
∗ f = max�degu f(⋆),max

𝛼,k
degu f(𝛼),k�

for the maximal degree in u of a coefficient in the partial fraction decomposition of f over �̄�.
We have the following deterministic (but rather crude) bounds for the cost of partial frac-

tion decomposition and the resulting degree swell in u.
PROPOSITION 8.1. Let f =N/D∈𝕂(z) be as above. Then

degu
∗ f = O((degz f )3degu f ).

If the factorization of D is known, then the partial fraction decomposition of f over �̄� can be computed
in time

Õ(((degz f )4degu f )𝛾ndegz f ).

Proof. From (8.5) and the fact that we may compute f(∞,⋆) as the quotient of the Euclidean
division of N by D, we first notice that

degu f(∞,⋆) = O(degz f degu f ).
Given a root 𝛼∈�̄� of D of multiplicity 𝜈, let us next prove that

degu f(𝛼),k = O((degz f )3degu f ),
for k=1,…,𝜈. Let H∈𝕂[z] be the monic minimal polynomial of 𝛼. We first notice that degu𝛼k⩽
kdegu H for all k∈ℕ, whencedegu N (i)(𝛼)⩽degz Ndegu H+degu N⩽degz f degu H+degu f for
all i and similarly for D. Let N=N0+N1(z−𝛼)+⋯ and D=D𝜈 (z−𝛼)𝜈+D𝜈+1(z−𝛼)𝜈+1+⋯ be
the power series expansions of N and D at z→𝛼with D𝜈≠0. It follows that degu Ni and degu Di
are bounded by degz f degu H+degu f for all i, and degu D𝜈

−1⩽(degz f degu H+degu f )degz H.
Now consider the power series

Q= N
D𝜈�1+

D
D𝜈 (z−𝛼)𝜈�
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in z − 𝛼. By what precedes, we have degu Qk=O(k (degz f degu H +degu f ) degz H) and we
notice that Qk= f(𝛼),𝜈−k for k<𝜈. Since 𝜈⩽degz f /degz H and degu H⩽degz f degu f , we con-
clude that degu f(𝛼),k=O((degz f )3degu f ).

The quotient f(∞,⋆) of the Euclidean division of N and D can be computed in time
Õ((degu f )𝛾ndegz f ). The naive expansion of the series N and D until order O((z−𝛼)2𝜈) takes
time Õ(((degz f )3degu f )𝛾n𝜈 degz f ) and the division of the results with precision O((z−𝛼)𝜈)
can be performed in time Õ(((degz f )3degu f degz H)𝛾n𝜈). Doing this for one 𝛼 in each con-
jugacy class yields the announced complexity bound. −−

− −

Partial fraction decomposition becomes much faster when carried out directly over 𝕜. In
the SLP model, we have the following complexity bound:

PROPOSITION 8.2. Let f =N/D∈𝕂(z) be as above and assume that the factorization D=H1
𝜇1⋯Hl

𝜇l

of D into irreducibles is known. Given a joint SLP for the evaluation of N, D, and H1,…,Hl at points
u∈𝕜n, there exists an SLP for the evaluation of the partial fraction decomposition of f of length at most
#(N,D,H1,…,Hl)+ Õ(degz f ).

Proof. Direct consequence of [65] and the quasi-linear time algorithm for the “untangling”
morphism from [52, Sections 4.3 and 4.4]. −−

− −

Since the local reductions really operate on partial fraction decompositions, it is also inter-
esting to study the inverse operation that recovers a rational function from its partial fraction
decomposition over �̄�.

PROPOSITION 8.3. Let the partial fraction decomposition of f =N/D∈𝕂(z) over �̄� be given and
define degu

sf f =max {degu H :H is an irreducible factor of D}. Then

degu f = O(degz f (degu
∗ f +degu

sf f ))

and the standard representation f =N/D can be computed in time

Õ((degz f (degu
∗ f +degu

sf f ))𝛾ndegz f ).

Proof. Let 𝛼∈�̄� be one the poles in the partial fraction decomposition of f and let H∈𝕂[z]
be its monic minimal polynomial. Denote 𝜈=degz H, 𝕃=𝕂[z]/(H(z)), and 𝜑=H/(z −𝛼)∈
𝕃[z]. Consider the polar part f(𝛼)=C/(z−𝛼)𝜈 in the partial fraction decomposition of f with
C∈𝕃[z] and degz C<𝜈. This components gives rise to a corresponding component

Tr𝕃/𝕂
C

(z−𝛼)𝜈 = Tr𝕃/𝕂
C𝜑𝜈

H𝜈 = Tr𝕃/𝕂(C𝜑𝜈)
H𝜈

in the partial fraction decomposition of f over 𝕂. Now degu 𝜑⩽degz H degu H, whence
degu 𝜑𝜈⩽ (2 𝜈 − 1) degz H degu H and degu (C 𝜑𝜈) ⩽ degu

∗ f + 2 𝜈 degz H degu H. The traces
of 1, 𝛼, …, 𝛼𝜈−1 can be computed using Newton–Girard's formulas and degu Tr𝕃/𝕂 𝛼k ⩽
2kdegz Hdegu H for all k. Since Tr𝕃/𝕂 is linear, it follows that

degu Tr𝕃/𝕂(C𝜑𝜈) ⩽ degu
∗ f +O(𝜈 degz Hdegu H).

Summing over all poles, the bound for degu f follows. The time complexity bound is proved
in a similar way. −−

− −
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PROPOSITION 8.4. Let f ∈𝕂(z) and assume that we are given an SLP of length ℓ for the evaluation
of the partial fraction decomposition of f over �̄� at points u∈𝕜n (this includes the evaluation of the
roots of the denominator of f). Then there exists an SLP for the evaluation of the numerator and the
denominator of f of length at most ℓ+ Õ(degz f ).

Proof. We first convert the partial fraction decomposition over �̄� back into a partial fraction
decomposition over 𝕂; using the tangling algorithm from [52, Section 4.5], this can be done in
quasi-linear time. We next recover the numerator and denominator using traditional rational
function arithmetic, again in quasi-linear time. −−

− −

9. COMPLEXITY OF CREATIVE TELESCOPING

9.1. Complexity of creative telescoping
Let 𝔹 be a DD-algebra as in the previous section. For all our complexity bounds, we recall
that n=O(1) is assumed to be constant. Consider a telescopable D-finite ideal I ⊆𝔹 with
associated reduction []𝔻. Let B∈𝔻s×1 with entries b1,…,bs be a basis for the finite dimensional
vector space [𝔻]𝔻. In Algorithm 6.1, it often occurs that around s iterations are necessary
before the main loop terminates. In that case, it may be profitable to use the alternative way
R𝜔≔[𝜃i R𝜔′]𝔻 to compute the R𝜔 and to further optimize the reduction process by precom-
puting [𝜃i bj]𝔻 for all basis elements bj. For each i∈{1,…,n}, this leads to a matrix Ωi∈𝕂s×s

such that

[𝜃i B]𝔻 = Ωi B.

Given 𝜑∈𝕂1×s, we then get [𝜃i(𝜑B)]𝔻=𝜑Ωi B. We call Ω1,…,Ωn the reduction matrices for I
and []𝔻. With these optimizations, Algorithm 6.1 becomes:

Algorithm 9.1
INPUT: reduction matrices Ω1,…,Ωn∈𝕂s×s for I and 𝜑∈𝕂1×s with 𝜑B∈𝔻prim

OUTPUT: D-finite generators 𝒢 of a D-finite ideal �𝒢� included in 𝒯𝜑B,𝛿

ℒ≔{1}, 𝒢≔∅, ℛ≔∅
while ℒ≠∅ do

Let 𝜔∈ℒ be minimal for ⩽ and set ℒ≔ℒ∖{𝜔}
if 𝜔 is not reducible with respect to 𝒢 then

if 𝜔=1 then R𝜔≔𝜑
else decompose 𝜔=𝜃i𝜔′ and let R𝜔≔R𝜔′Ωi

if ∃(c𝜌)𝜌∈ℛ∈𝕂ℛ, R𝜔=∑𝜌∈ℛ c𝜌R𝜌 then 𝒢≔𝒢∪�𝜔−∑𝜌∈ℛ c𝜌𝜌�
else ℛ≔ℛ∪{𝜔}, ℒ≔ℒ∪{𝜃1𝜔,…,𝜃n𝜔}

return 𝒢

Remark 9.1. Finding sharp bounds for the complexity of the Gröbner basis computation in
the final step of Algorithm 6.1 is a problem that is somewhat independent from the cost of
creative telescoping itself. For this reason, we removed this step here. The returned set 𝒢 still
admits the property that the set of monomials that are not divisible by a leading monomial of
an element of 𝒢 is finite; for this reason we call 𝒢 a D-finite set of generators.

THEOREM 9.2. Algorithm 9.1 is correct and terminates. Assuming that deguΩi⩽d for i=1,…,s and
degu 𝜑⩽d, its running time is bounded by

Õ((s2d)𝛾n s4).
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Proof. Since each R𝜔 is obtained as the product of at most s+1 matrices of total degree d, we
have degu R𝜔=O(ds) for all 𝜔 encountered in the algorithm. The number of iterations of the
main loop is always bounded by s n=O(s). It follows that the computation of the R𝜔 can be
done in time Õ((sd)𝛾n s). The linear algebra of testing the existence of a relation (c𝜌)𝜌∈ℛ∈𝕂ℛ

(and computing such a relation if it exists) reduces to the computation of the kernel of a matrix
in 𝕂i×s of total degree O(d s) in u and rank ⩾i − 1, where i⩽ s. This can be done in time
Õ((s2 d)𝛾n s3) through evaluation-interpolation of the numerator at O((s2 d)n) points, using
the fact that the determinants of all minors of this numerator have total degree O(s2d). Mul-
tiplying with the maximal number of iterations O(s), the main result follows. −−

− −

THEOREM 9.3. Given an SLP for the joint evaluation of the reduction matrices Ω1, …, Ωn and 𝜑,
Algorithm 9.1 gives rise to an SLP for the joint evaluation of the polynomials in 𝒢, whose length is
bounded by

#(Ω1,…,Ωn,𝜑)+O(s3).

Proof. The evaluation of the input SLPs at a point u∈𝕜n takes #(Ω1,…,Ωn,𝜑) operations and
yields scalar matrices Ω1⟨u⟩, …,Ωn⟨u⟩ ∈𝕜s×s and a scalar vector 𝜑(u)∈𝕜1×s. Applying the
algorithm to Ω1⟨u⟩,…,Ωn⟨u⟩, 𝜑⟨u⟩ instead of Ω1, …,Ωn, 𝜑 produces 𝒢⟨u⟩ instead of 𝒢. This
time, each iteration amounts to one matrix-vector product of cost O(s2) and adding one row
to the matrix of the R𝜔; we incrementally put this matrix in echelon normal form in order to
determine the relations c, again with cost O(s2). Since the algorithm uses at most n s=O(s)
iterations, the complexity bound follows. −−

− −

Remark 9.4. The cost O(s3) of the linear algebra in Theorem 9.3 can be further lowered if the
matrices Ω1, …,Ωn are sparse or in the case when we are using a lexicographic admissible
ordering. For details, see [38] and references therein.

It may happen that some of the basis elements are actually superfluous for the computa-
tion, in which case it is possible to replace the reduction matrices Ω1,…,Ωn by smaller “quasi-
reduction” matrices. More precisely, assume that the vector space Vect(B′) spanned by the
basis elements b1,…,bs′ is stable under the mappings g↦[𝜃i g]𝔻 for i=1,…,n. Then each Ωi is
a block matrix

Ωi = ((((((((((((Ωi′ 0
∗ ∗ )))))))))))),

where Ωi′ ∈𝕂s′×s′. If f1,…, fr∈Vect(B′), then we call Ω1′,…,Ωn′ quasi-reduction matrices for I
and []𝔻. Given 𝜑′∈𝕂1×s′ with 𝜑′B′ ∈𝔻prim, it is not hard to check that Algorithm 9.1 still
applies to Ω1′, …,Ωn′ , 𝜑′ instead of Ω1, …, Ωn, 𝜑, and that the above theorems generalize to
this case.

9.2. Deterministic complexity of differential reduction
In this subsection, we assume that 𝜃=∂ and that our D-finite ideal I⊆𝔹 is explicitly telesco-
pable for some cyclic basis F. We write []𝔻 for the associated reduction. There also exists an
operator L∈𝕂[z][∂] of order r than annihilates the first entry f1 of F. We may write𝔻=𝕄1×r F,
where 𝕄=𝕂[z, 𝜓−1] and 𝜓∈𝕂[z] is the monic annihilator of the zero-set of Lr. We assume
that the irreducible factors of Lr are all known.

In order to apply Theorem 9.2, we need to bound the dimension s of the space [𝔻]𝔻 of
reduced functions and to analyze the cost of computing the reduction matrices Ω1,…,Ωn. Let
us start with the dimension bound.
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LEMMA 9.5. Under the above assumptions, the reduction []𝔻 can be constructed in such a way that

s ⩽ dim𝕂 [𝔻]𝔻 ⩽ (2degz L+1) r+degz L+1 = O(rdegz L).

Proof. We may take Α=Sing(∂)∖ {∞}= {𝛼∈ �̄�: ord𝛼,F M∂,F >0}= {𝛼∈ �̄� : Lr(𝛼)= 0} in the
proof of Proposition 7.5 (see Example 7.6). It follows that |Α|⩽degz L. When applying The-
orem 4.5 to L∗, we thus have d⩽degz L, whence the complexity bound, since dim𝕂 [𝔻]𝔻=
dim [𝕄]𝕄. −−

− −

Given a vector 𝜆∈𝕄1×r with entries 𝜆1, …, 𝜆r, let us now analyze the cost to compute
the reduction [𝜆F]𝔻. By construction, we recall that [𝜆F]𝔻=[Φ(𝜆) f1]𝔻=[Φ(𝜆)]𝕄 f1, where
Φ(𝜆)=𝜆1−∂𝜆2+⋯+(−1)r−1∂r−1 𝜆r and []𝕄 denotes the reduction with respect to the adjoint
operator L∗. It thus suffices to analyze the cost of the reduction []𝕄.

LEMMA 9.6. Given 𝜆∈𝕄, we have

degu
∗ [𝜆]𝕄 = O((degz 𝜆)3degu 𝜆+degz 𝜆(degz L)3degu L)

degu [𝜆]𝕄 = O((degz 𝜆)4degu 𝜆+(degz 𝜆)2(degz L)3degu L)

and [𝜆]𝕄 can be computed in time

Õ(((degz 𝜆)4degu 𝜆+(degz 𝜆)2(degz L)3degu L)𝛾ndegz 𝜆).

Proof. Consider one of the poles 𝛼∈�̄� with 𝜓(𝛼)=0, let H∈𝕂[z] be its monic minimal poly-
nomial, and 𝕃=𝕂[z]/(H). Given 𝜆∈𝕃[z −𝛼, (z −𝛼)−1], written as a Laurent polynomial, let
degu

𝛼 𝜆 denote the maximal degree in u of one of its coefficients. Let us show by induction on
𝜌=ord𝛼 𝜆 that

degu
𝛼 [𝜆]𝛼 ⩽ degu

𝛼 𝜆+max(ord𝛼 𝜆−B𝛼, 0)Δ𝛼.
Δ𝛼 = degu

𝛼 L+max(degu ind𝛼, degu H)degz H+2degu H.

This is clear for 𝜌⩽B𝛼. Otherwise, consider the expansion 𝜆=(z −𝛼)−𝜌 (c+ o(1)) for z→𝛼. If
ind𝛼(𝜌−𝜏𝛼)=0, then we get

degu
𝛼 [𝜆]𝛼 = degu

𝛼(c (z−𝛼)−𝜌+[𝜆− c(z−𝛼)−𝜌]𝛼)
= max(degu c, degu

𝛼 [𝜆− c (z−𝛼)−𝜌]𝛼)
⩽ max(degu

𝛼 𝜆,degu
𝛼 𝜆+(𝜌−1−B𝛼)Δ𝛼)

⩽ degu
𝛼 𝜆+(𝜌−B𝛼)Δ𝛼.

If ind𝛼(𝜌−𝜏𝛼)≠0 and g= c (z−𝛼)−𝜌+𝜏𝛼/ind𝛼(𝜌−𝜏𝛼), then the induction hypothesis yields

degu
𝛼 [𝜆−L(g)]𝛼 ⩽ degu

𝛼 (𝜆−L(g))+(𝜌−1−B𝛼)Δ𝛼.

By construction, we have

degu
𝛼 L(g) ⩽ degu

𝛼 L+degu
𝛼 g+degu H

degu
𝛼 g ⩽ degu c+degu (ind𝛼(𝜌−𝜏𝛼))−1+degu H

degu (ind𝛼(𝜌−𝜏𝛼))−1 ⩽ max(degu ind𝛼,degu H)degz H.

Putting all these bounds together, we conclude that degu
𝛼 [𝜆]𝛼⩽degu

𝛼 𝜆+(𝜌−B𝛼)Δ𝛼.
Let us now bound the quantity Δ𝛼. Rewriting L in terms of z−𝛼 and ∂ amounts to a Taylor

shift from which it is also possible to read off the indicial polynomial ind𝛼. This yields

degu
𝛼 L ⩽ degu L+degu Hdegz L

degu ind𝛼 ⩽ degu
𝛼 L.
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Since H divides Lr, we also have degz H⩽degz L and degu H⩽degz Hdegu L. It follows that

Δ𝛼 ⩽ (1+ o(1))degu L (degz L)3.

For 𝜆∈𝕃[z], a similar reasoning at infinity shows that

degu [𝜆]∞ ⩽ degu 𝜆+(ord∞ 𝜆−B∞)Δ∞.
Δ∞ = degu L+degu ind∞ ⩽ 2degu L.

Let us now turn our attention to a general 𝜆∈𝕄. Proposition 8.1 implies that degu
∗ 𝜆=

O((degz 𝜆)3degu 𝜆). From what precedes, we have degu
𝛼 [𝜆]𝛼⩽degu

∗ 𝜆+ (ord𝛼 𝜆− B𝛼) Δ𝛼 at
every pole 𝛼∈�̄� with 𝜓(𝛼)=0, whence

degu
𝛼 [𝜆(𝛼)]𝛼 ⩽ degu

∗ 𝜆+O(degz 𝜆degu L(degz L)3)
degu

∗ [𝜆(𝛼)]𝛼 ⩽ degu
𝛼 [𝜆(𝛼)]𝛼+degu Hdegz ([𝜆(𝛼)]𝛼)(∞,⋆)

⩽ degu
𝛼 [𝜆(𝛼)]𝛼+degu Hdegz L

⩽ degu
∗ 𝜆+O(degz 𝜆degu L(degz L)3)

degu
∗ [𝜆]�̄� ⩽ max (max𝛼 degu

∗ [𝜆(𝛼)]𝛼, degu
∗ 𝜆)

⩽ degu
∗ 𝜆+O(degz 𝜆degu L(degz L)3)

degu
∗ [𝜆]𝕄 ⩽ degu

∗ [𝜆]�̄�+O(degu 𝜆+degz 𝜆degu L)
⩽ degu

∗ 𝜆+O(degz 𝜆degu L(degz L)3)
⩽ O((degz 𝜆)3degu 𝜆+degz 𝜆(degz L)3degu L).

From Proposition 8.3, we also have

degu [𝜆]𝕄 = O(degz 𝜆(degu
∗ [𝜆]𝕄+degu L)).

Combined with the previous bounds, this yields

degu [𝜆]𝕄 = O((degz 𝜆)4degu 𝜆+(degz 𝜆)2(degz L)3degu L).

The time complexity bound is proved in a similar way. −−

− −

LEMMA 9.7. Let

du = max(degu M𝜃1,…,degu M𝜃n)
dz = max(degz M𝜃1,…,degz M𝜃n).

Then there exist quasi-reduction matrices Ω1′,…,Ωn′ for I and []𝔻 with

degu [Ωi′]𝕄 = O((rdzdegz L)5 (du+degu L))

and we may compute them in time

Õ(((rdzdegz L)5 (du+degu L))𝛾n(rdegz L)2dz).

Proof. Denote Α=Sing(∂)∖ {∞}. For each 𝛼∈Α∪{∞}, let 𝜇(𝛼)∈ℕ be minimal such that
𝜇(𝛼)⩾B𝛼+dz and ind𝛼(𝜌−𝜏𝛼)≠0 for 𝜌=𝜇(𝛼)−dz−r,𝜇(𝛼)−dz−r+1,…,𝜇(𝛼). Since ind𝛼 admits
at most r roots and B𝛼⩽ r, we notice that 𝜇(𝛼) ⩽ (r+ 1) (dz + r). Consider the 𝕂-subvector
space 𝕍=[𝕄]𝕄∩𝕂(z)(Α,∞,⋆);𝜇 of [𝕄]𝕄 and the corresponding 𝕂-subvector space 𝕎=𝕍 f1.
The way we defined 𝜇 ensures that we actually have 𝕍⊆𝕂(z)(Α,∞,⋆);𝜇−dz−r, whence 𝜃i 𝕎⊆
(𝕂(z)(Α,∞,⋆);𝜇−r)1×r F and Φ(𝜃i 𝕎)⊆𝕂(z)(Α,∞,⋆);𝜇 f1 for i=1,…, r. This means that 𝕎 is stable
under the mappings g↦[𝜃i g]𝔻. We construct Ω1′,…,Ωn′ as the quasi-reduction matrices with
respect to a basis b1,…,bs′ of 𝕎.
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The basis elements bi can all be taken to be of the form z𝜌 or zk/H−𝜌, where H is the
minimal polynomial of some 𝛼∈Α and k<degz H. For each basis element bi, it then fol-
lows that degu bi ⩽𝜌 degu H ⩽𝜇(𝛼) degz L degu L. Writing bi

∗ for the column vector with
entries bi, 0,…, 0, we also have degu M𝜃j bi

∗⩽ du+degu bi and degu Φ(M𝜃j bi
∗)⩽degu M𝜃j bi

∗+
rdegz Ldegu L=du+O(rdzdegz Ldegu L) for j=1,…,n. Similarly, we have degz bi⩽𝜌degz H⩽
𝜇(𝛼) degz L, degz M𝜃j bi

∗⩽ dz +degz bi, and degz Φ(M𝜃j bi
∗) ⩽ degz M𝜃j bi

∗+ r=O(r dz degz L).
Applying Lemma 9.6 to 𝜆 =Φ(M𝜃j bi

∗), it follows that degu
∗ [𝜆]𝕄= O((degz 𝜆)3 degu 𝜆 +

degz 𝜆 (degz L)3degu L)=O((r dz degz L)4 (du+degu L)). Regrouping the coefficients of the
partial fraction decomposition of [𝜆]𝕄 by conjugate roots, we directly obtain the expression of
[𝜆]𝕄 in terms of the basis elements b1,…,bs′. Using Proposition 8.3, it follows that degu [Ωj′]𝕄=
O((rdzdegz L)5(du+degu L)).

We need to compute [Φ(M𝜃j bi
∗)]𝕄 for i=1,…, s′ and j=1,…,n, which means that we need

s′n=O(rdegz L) applications of Lemma 9.6, in view of Lemma 9.5. The complexity bound
then follows from Lemma 9.6 and Proposition 8.3. −−

− −

THEOREM 9.8. Assume that 𝜃=∂ and that we are given an explicitly telescopable D-finite ideal I⊆𝔹
for some cyclic basis F with entries f1,…, fr. Then there exists a polynomial time algorithm to compute
a D-finite set of generators of a D-finite ideal that is contained in 𝒯 f1,∂, as a function of the matrices
M𝜃1,…,M𝜃n and the operator L associated to I.

Proof. In view of the discussion at the end of section 8.3, this is a direct consequence of
Lemmas 9.5 and 9.7, together with the straightforward generalization of Theorem 9.2 to the
case of quasi-reduction matrices. −−

− −

Remark 9.9. We did not put a lot of effort in lowering the exponents in the complexity bounds
in Lemmas 9.6 and 9.7. One idea that should allow for significant improvements is to avoid
conversions between the default representation of rational functions and partial fraction
decompositions: it should be possible to carry out most computations directly for the par-
tial fraction representation; see [36] for a similar line of thought in a different context.

9.3. SLP complexity of differential reduction
With the same assumptions as in the previous subsection, let us now carry out the complexity
analysis in the SLP model. Before stating the counterpart of Lemma 9.6, let us first show that
the local reductions from section 4.2 can essentially be computed in quasi-linear time.

LEMMA 9.10. Let 𝛼∈�̄� with monic minimal polynomial H∈𝕂[z], and 𝕃=𝕂[z]/(H). Given a Lau-
rent polynomial f ∈𝕃[z−𝛼,(z−𝛼)−1], we may compute [ f ]𝛼 as in (4.3) using

Õ(degz H (degz L+degz f ) r)

arithmetic operations in𝕂. Similarly, given a Laurent polynomial f ∈𝕂[z,z−1], we may compute [ f ]∞
as in (4.4) using

Õ((degz L+degz f ) r)
arithmetic operations in 𝕂.

Proof. The operator L can be rewritten as an operator in 𝕃[z −𝛼][∂] using a Taylor shift; this
can be done in time Õ(rdegz Ldegz H). Rewritten in this way, the operator L naturally oper-
ates on Laurent polynomials in 𝕃[z−𝛼,(z−𝛼)−1]. We may also decompose L=L#+L♭ with L#,
L♭∈𝕃[z−𝛼][∂] and, for all 𝜌,

L#((z−𝛼)−𝜌) = ind𝛼(𝜌)(z−𝛼)−𝜌−𝜏𝛼

L♭((z−𝛼)−𝜌) = O((z−𝛼)−𝜌−𝜏𝛼+1), z→𝛼.
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This decomposition can be done in linear time since both L# and L♭ are of the form
∑(i, j)∈𝒮 Li, j (z − 𝛼)i ∂ j for suitable sets 𝒮 . Now consider the linear operators J , Π on
𝕃[z−𝛼,(z−𝛼)−1] that act on monomials by

J((z−𝛼)−𝜌) = {{{{{{{{{{{{{{{{{{{{{{{{{{{{ ind𝛼(𝜌)−1 (z−𝛼)−𝜌, if ind𝛼(𝜌)≠0∧𝜌>B𝛼
0, if ind𝛼(𝜌)=0∨𝜌⩽B𝛼.

Π((z−𝛼)−𝜌) = {{{{{{{{{{{{{{{{{{{{{{{{ 0, if ind𝛼(𝜌)≠0∧𝜌>B𝛼
(z−𝛼)−𝜌, if ind𝛼(𝜌)=0∨𝜌⩽B𝛼.

Then we observe that the evaluation of (4.3) at u can be rewritten as

[ f ]𝛼 = Π(g) = g−L#(J((z−𝛼)𝜏𝛼g))
g = f −L♭(J((z−𝛼)𝜏𝛼g)).

The second equation is “recursive”, which allows us to compute its solution in quasi-linear
time in terms of the size of the equation using relaxed evaluation [48, 47]. This directly implies
the first complexity bound. The bound at infinity is proved in a similar way. −−

− −

LEMMA 9.11. Given an SLP for the joint evaluation of L, the irreducible factors H1,…,Hl of Lr and
𝜆∈𝕄 at points u∈𝕜n, we can compute an SLP for the evaluation of [𝜆]𝕄, whose length is bounded by

#(L,H1,…,Hl,𝜆)+ Õ((degz 𝜆+(degz L)2) r)

Proof. Denote Α=Sing(∂)∖{∞} and let u∈𝕜n be an evaluation point. By Proposition 8.2, we
can compute the rational fraction decomposition of 𝜆⟨u⟩ over �̄� in quasi-linear time Õ(degz𝜆).
For each i∈{1,…, l}, let 𝛼i∈Α be a root of Hi. Lemma 9.10 allows us to compute [𝜆(𝛼i)]𝛼i⟨u⟩ in
time Õ(degz H (degz L+ord𝛼i 𝜆) r). Using the fact that

degz 𝜆= �
𝛼∈Α∪{∞}

ord𝛼 𝜆 = ord∞ 𝜆+ �
1⩽i⩽l

degz Hiordai 𝜆,

it follows that all [𝜆(𝛼i)]𝛼i⟨u⟩ for i∈{1,…, l} can be computed in time Õ((degz 𝜆+(degz L)2) r).
Using Proposition 8.4, these values allow us to compute [𝜆(�̄�)]�̄�⟨u⟩ in quasi-linear time
Õ(degz 𝜆). Again by Lemma 9.10, we obtain [𝜆]𝕄⟨u⟩ using Õ((degz L+degz 𝜆) r) more oper-
ations in 𝕜. −−

− −

LEMMA 9.12. Let dz=max (degz M𝜃1,…, degz M𝜃n). Given an SLP for the joint evaluation of the
coefficients of L, the irreducible factors H1,…,Hl of Lr, and the matrices M𝜃1,…,M𝜃n at points u∈𝕜n,
we can compute an SLP for the evaluation of quasi-reduction matrices Ω1′,…,Ωn′ for I and []𝔻, whose
length is bounded by

#(L,H1,…,Hl,M𝜃1,…,M𝜃n)+ Õ((rdegz L)3dz).

Proof. Similarly as in the proof of Lemma 9.7, we apply Lemma 9.11 to 𝜆=Φ(M𝜃j bi
∗) for

i=1,…, s′ and j=1,…,n. We again have degz 𝜆=O(r dzdegz L), whence each individual 𝜆 can
be treated in time Õ((rdegz L)2dz). Since there are n s′=O(rdegz L) values of 𝜆 to consider,
the conclusion follows. −−

− −

THEOREM 9.13. Assume that 𝜃=∂ and that we are given an explicitly telescopable D-finite ideal I⊆𝔹
for some cyclic basis F with entries f1,…, fr. Let dz=max (degz M𝜃1,…, degz M𝜃n). Given an SLP
for the joint evaluation of the coefficients of L, the irreducible factors H1,…,Hl of Lr, and the matrices
M𝜃1,…,M𝜃n at points u∈𝕜n, we can compute an SLP for the evaluation of a D-finite set of generators
of a D-finite ideal that is contained in 𝒯 f1,∂, whose length is bounded by

#(L,H1,…,Hl,M𝜃1,…,M𝜃n)+ Õ((rdegz L)3dz).
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Proof. This is a direct consequence of Lemmas 9.5 and 9.12, together with the straightforward
generalization of Theorem 9.3 to the case of quasi-reduction matrices. −−

− −

Remark 9.14. The bound degz 𝜆=O(r dzdegz L) in the proof of Lemma 9.12 is actually quite
pessimistic, since it corresponds to highly unlucky values of the roots of the indicial poly-
nomials. In practice, the better bound degz 𝜆=O(dz) is likely to hold. In that case, the time
complexity per evaluation point in Theorem 9.13 drops to Õ((rdegz L)2(dz+ rdegz L)).
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