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Assume that we wish to expand the produ
t h = fg of two formal power series

f and g. Classi
ally, there are two types of algorithms to do this: zealous algorithms

�rst expand f and g up to order n, multiply the results and trun
ate at order n. Lazy

algorithms on the 
ontrary 
ompute the 
oeÆ
ients of f; g and h gradually and they

perform no more 
omputations than stri
tly ne
essary at ea
h stage. In parti
ular, at

the moment we 
ompute the 
oeÆ
ient h

i

of z

i

in h, only f

0

; : : : ; f

i

and g

0

; : : : ; g

i

are

known.

Lazy algorithms have the advantage that the 
oeÆ
ients of f and g may a
tually

depend on \previous" 
oeÆ
ients of h, as long as they are 
omputed before they are

needed in the multipli
ation. I.e. the 
oeÆ
ients f

i

and g

i

may depend on h

0

; : : : ; h

i�1

.

For this reason, lazy algorithms are extremely useful when solving fun
tional equations

in rings of formal power series. However, lazy algorithms have the disadvantage that the


lassi
al asymptoti
ally fast multipli
ation algorithms on polynomials | su
h as the

divide and 
onquer algorithm and fast Fourier multipli
ation | 
an not be used.

In a previous paper, we therefore introdu
ed relaxed algorithms, whi
h share the

property 
on
erning the resolution of fun
tional equations with lazy algorithms, but

perform slightly more 
omputations than lazy algorithms during the 
omputation of

a given 
oeÆ
ient of h. These extra 
omputations anti
ipate the 
omputations of the

next 
oeÆ
ients of h and dramati
ally improve the asymptoti
 time 
omplexities of su
h

algorithms.

In this paper, we survey several 
lassi
al and new zealous algorithms for manipulating

formal power series, in
luding algorithms for multipli
ation, division, resolution of dif-

ferential equations, 
omposition and reversion. Next, we give various relaxed algorithms

for these operations. All algorithms are spe
i�ed in great detail and we prove theo-

reti
al time and spa
e 
omplexity bounds. Most algorithms have been experimentally

implemented in C++ and we provide ben
hmarks. We 
on
lude by some suggestions for

future developments and a dis
ussion of the �tness of the lazy and relaxed approa
hes

for spe
i�
 appli
ations.

The paper is intended both for those who are interested in the most re
ent algorithms

for the manipulation of formal power series and for those who want to a
tually implement

a power series library into a 
omputer algebra system.

1. Introdu
tion

Let C be an e�e
tive ring, whi
h means that we have algorithms for addition, subtra
-

tion and multipli
ation. In this paper, we des
ribe several fast algorithms for manipulat-
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ing formal univariate power series in the ring C[[z℄℄. In prin
iple, it is not ne
essary to

assume that C is 
ommutative or an integral domain. Nevertheless, for 
ertain algorithms

we need to assume that C 
ontains the rational numbers, or more modestly, that C is

divisible. Here C is said to be divisible, if we have a division algorithm for elements x in

C by integers n, whi
h raises an ex
eption if x is not divisible by n.

Be
ause of the in�nite nature of formal power series, we will always be 
on
erned with

the 
omputation of the �rst n 
oeÆ
ients of a given power series. The time and spa
e


omplexities of our algorithms will be measured in terms of the number of ring operations

in C and the number of elements in C stored in memory. Only in the 
ase of �nite rings,

these 
omplexity measures 
oin
ide with bitwise 
omplexities.

1.1. The different approa
hes

Assume that we want to 
ompute the �rst n 
oeÆ
ients of the produ
t h = fg of two

power series f and g. We will distinguish three approa
hes in order to do this; the �rst

and the se
ond are 
lassi
al, while the third one was (brie
y) introdu
ed in (van der

Hoeven, 1997b). For simpli
ity, we dis
uss the approa
hes in the 
ase of multipli
ation,

but they apply to any operation on formal power series and in this paper, we will also


onsider 
omposition, reversion, et
.

1.1.1. The zealous approa
h

This approa
h 
onsists of expanding f and g up to order n, to multiply the results and

trun
ate the produ
t

(f

0

+ � � �+ f

n�1

z

n�1

)(g

0

+ � � �+ g

n�1

z

n�1

)

at order n. This yields the �rst n 
oeÆ
ients of h.

The advantage of the zealous approa
h is that we may 
ompute the 
oeÆ
ients h

0

; : : : ;

h

n�1

together as a fun
tion of f

0

; : : : ; f

n�1

and g

0

; : : : ; g

n�1

. Therefore, many fast al-

gorithms on (trun
ated) polynomials 
an be used, su
h as divide and 
onquer and fast

Fourier multipli
ation (shortly: DAC- and FFT-multipli
ation). In the 
ases of 
omposi-

tion, reversion and resolution of di�erential equations, Brent and Kung's algorithms may

be used. We will brie
y re
all some of these 
lassi
al zealous algorithms in Se
tion 3 and

a few new ones will be added.

1.1.2. The lazy approa
h

Another approa
h is to 
ompute the 
oeÆ
ients of h one by one and to do no more work

than stri
tly ne
essary at ea
h stage. In parti
ular, at stage i (i.e. for the 
omputation

of h

i

), we 
ompute only those 
oeÆ
ients of f and g whi
h are really needed | that is

f

0

; : : : ; f

i

and g

0

; : : : ; g

i

.

Lazy algorithms have the advantage that the 
oeÆ
ients f and g may a
tually depend

on \previous" 
oeÆ
ients of h, as long as they are 
omputed before they are needed in the

multipli
ation algorithm. In other words, f

i

and g

i

may depend on h

0

; : : : ; h

i�1

. For this

reason, lazy algorithms are extremely useful for the resolution of fun
tional equations.

For instan
e, 
onsider the formula

e

'

=

Z

'

0

e

'
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for exponentiating a formal power series ' with '

0

= 0. When evaluating the produ
t

fg lazily, where f = '

0

and g = e

'

, this formula yields a method to 
ompute e

'

.

A se
ond advantage of the lazy approa
h is that the 
omputation pro
ess 
an be

resumed in order to 
ompute more than n 
oeÆ
ients of h. In the 
ase of the zealous

approa
h all 
oeÆ
ients would have to be re
omputed.

A third advantage of the lazy approa
h is that it naturally applies to the problems of


omputing the valuation and the �rst non zero 
oeÆ
ient of a power series.

1.1.3. The relaxed approa
h

Lazy algorithms have the disadvantage that the 
lassi
al asymptoti
ally fast algorithms

on polynomials, su
h DAC- and FFT-multipli
ation, 
an no longer be used. This is

what motivated us in the introdu
tion of a slightly di�erent, relaxed approa
h (van der

Hoeven, 1997b).

Relaxed algorithms share with lazy algorithms the fa
t that the 
oeÆ
ients of h are


omputed gradually and that at ea
h stage we only 
ompute those 
oeÆ
ients of f and g

whi
h are needed for the 
omputation of the next 
oeÆ
ient of h. In parti
ular, relaxed

algorithms 
an be used in a similar manner as lazy algorithms in order to solve fun
tional

equations.

The di�eren
e between the lazy and the relaxed approa
hes is that at the 
omputation

of a given 
oeÆ
ient of h lazy algorithms only perform \the stri
tly ne
essary operations",

while relaxed algorithms \anti
ipate the 
omputation of the next 
oeÆ
ients". Let us

illustrate this by an example.

Assume that we want to 
ompute the �rst three 
oeÆ
ients of the produ
t of two

power series f = f

0

+ f

1

z+ f

2

z

2

+ � � � and g = g

0

+ g

1

z+ g

2

z

2

+ � � � . When using a lazy

algorithm, we do the following:

0. We 
ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We 
ompute f

1

; g

1

and (fg)

1

= f

0

g

1

+ f

1

g

0

.

2. We 
ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Of 
ourse, the values of f

0

and g

0

are stored somewhere, so that they do not have to

be reevaluated at stage 1 and similarly for f

1

and g

1

at stage 2. When using a relaxed

algorithm, we would rather do the following:

0. We 
ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We 
ompute f

1

; g

1

and (fg)

1

= (f

0

+ g

0

)(f

1

+ g

1

)� f

0

g

0

� f

1

g

1

.

2. We 
ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Here we used a tri
k in order to evaluate (f

0

+f

1

z)(g

0

+g

1

z) using 3 multipli
ations only.

Indeed, the three multipli
ations f

0

g

0

; (f

0

+g

0

)(f

1

+g

1

); f

1

g

1

yield (f

0

+f

1

z)(g

0

+g

1

z) =

f

0

g

0

+ ((f

0

+ g

0

)(f

1

+ g

1

) � f

0

g

0

� f

1

g

1

)z + f

1

g

1

z

2

. Although we perform some extra

additions at stage 1, we anti
ipate the 
omputation of f

1

g

1

at stage 2. Consequently, we

only perform 5 multipli
ations in total, against 6 for the lazy approa
h.

1.2. Outline of the paper

In Se
tion 3, we mainly re
all 
lassi
al zealous algorithms for manipulating formal

power series. The 
orresponding 
omplexity results are summarized in Table 1. In the
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Algorithm Time 
omplexity Spa
e 
omplexity

DAC-multipli
ation M(n) = O(n

log 3= log 2

) O(n)

FFT-multipli
ation M(n) = O(n log n) O(n)

Division O(M(n)) O(n)

Solving impli
it equations and o.d.e.'s O(M(n)) O(n)

Algebrai
 and holonomi
 fun
tions O(n) O(n)

Right 
omposition with polynomials O(M(n) log n) O(n)

Right 
omposition with algebrai
 fun
tions O(M(n) log n) O(n)

Composition and reversion (divisible ring C) O(M(n)

p

n log n) O(n logn)

Composition and reversion (�nite ring C) O(M(n) log n) O(n)

Table 1. Time and spa
e 
omplexities of zealous algorithms.

table, M(n) denotes the time 
omplexity for fast multipli
ation (see Se
tion 3.1); basi


referen
es for fast integer and polynomial multipli
ation algorithms are (Knuth, 1997;

Nussbaumer, 1981) and (Karatsuba and Ofman, 1962; Toom, 1963b; Cooley and Tukey,

1965; Cook, 1966; S
h�onhage and Strassen, 1971; Cantor and Kaltofen, 1991; Heideman

et al., 1984). Most of the remaining results are due to Brent and Kung (Brent and

Kung, 1975; Brent and Kung, 1978). The result about general 
omposition in �nite


hara
teristi
 is due to Bernstein (Bernstein, 1998).

Although most algorithms from Se
tion 3 are 
lassi
al, we have given several variants

whi
h we 
ould not �nd in the standard literature:

� In Se
tion 3.1.2 we give a simple fast multipli
ation algorithm for polynomials

using the FFT-transform. This algorithm is an analogue of S
h�onhage-Strassen's

algorithm and simpli�es Cantor and Kaltofen's algorithm for the frequent 
ase when

2 does not divide zero in C.

� In Se
tion 3.2.5, we spe
ify and prove Brent and Kung's algorithm for the resolution

of o.d.e.'s for general orders. In the original papers, only �rst and se
ond order

equations were 
onsidered and the latter only by means of examples.

� In Se
tion 3.4.2, we observe that Brent and Kung's method for right 
omposition

with polynomials generalizes to right 
omposition with rational and algebrai
 fun
-

tions; in the relaxed 
ase, this observation will be useful for solving 
ertain di�eren
e

equations.

In Se
tion 4, we propose several relaxed multipli
ation algorithms. We �rst observe

that the divide and 
onquer algorithm 
an easily be transformed into a relaxed algo-

rithm with the same time 
omplexity but a logarithmi
 spa
e overhead. We next give

an asymptoti
ally better algorithm, whi
h also has the best possible spa
e 
omplexity.

However, this algorithm may be slower for small input sizes, whi
h makes it diÆ
ult to


hoose a best overall strategy (see Se
tion 4.4). Some examples of problems to whi
h

relaxed multipli
ation 
an be applied are given in Se
tion 4.5.

In Se
tion 5, we give algorithms for relaxed 
omposition. A
tually, Brent and Kung's

and Bernstein's algorithms 
an easily be adapted to this 
ase, while preserving the same

time 
omplexity (modulo repla
ing a zealous multipli
ation algorithm by a relaxed one).

An overview of our 
omplexity results for relaxed algorithms is given in Table 2, where
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Algorithm Time 
omplexity Spa
e 
omplexity

Relaxed DAC-multipli
ation M

�

(n) = O(n

log 3= log 2

) O(n logn)

Fast relaxed multipli
ation M

�

(n) = O(M(n) log n) O(n)

Division O(M

�

(n)) O(n)

Algebrai
 and holonomi
 fun
tions O(n) O(n)

Right 
omposition with rational fun
tions O(M

�

(n) log n) O(n)

Right 
omposition with algebrai
 fun
tions O(M

�

(n) log n) O(n)

Composition and reversion (divisible ring C) O(M

�

(n)

p

n log n) O(n

p

n log n)

Composition and reversion (�nite ring C) O(M

�

(n) log n) O(n logn)

Table 2. Time and spa
e 
omplexities of relaxed algorithms.

M

�

(n) stands for the time 
omplexity of relaxed multipli
ation. The spa
e 
omplexities

assume that we use a relaxed multipli
ation with linear time 
omplexity; when using

relaxed DAC-multipli
ation, these 
omplexities should be multiplied by logn (ex
ept in

algebrai
 and holonomi
 
ases).

In Se
tion 6 we suggest how to improve the performan
e of the algorithms for par-

ti
ular 
oeÆ
ient rings. In Se
tion 6.1, we outline how to take more advantage of the

FFT-transform. In Se
tion 6.2, we study the numeri
al stability of our algorithms. In

Se
tion 6.3, we dis
uss the issue of multivariate power series. Several approa
hes will be

proposed in an informal style and the development of a more detailed theory remains a


hallenge.

Most of the algorithms in this paper have been implemented in an experimental C++-

pa
kage and we have in
luded several tables with ben
hmarks. In the last Se
tion 7, we

draw some �nal 
on
lusions and dis
uss the relevan
e of the di�erent algorithms presented

in this paper for spe
i�
 appli
ations su
h as symboli
 
omputation, 
ombinatori
s, the

analysis of algorithms and numeri
al analysis. We also give some suggestions for those

who want to implement a power series library in a 
omputer algebra system and for those

who want to \upgrade" an existing lazy power series implementation.

2. Implementation 
onventions

We have presented most of the algorithms in this paper in detail in the hope that

this will be helpful for a
tual implementations. For our spe
i�
ations, we have 
hosen an

obje
t oriented pseudo-language (see (Stroustrup, 1995) for some basi
 terminology for

su
h languages), with expli
it memory 
ontrol for the user (this will allow us to study in

detail the spa
e and time 
omplexities of the relaxed algorithms). Below, we will dis
uss

some general implementation issues and �x some notational 
onventions.

2.1. Zealous algorithms

Trun
ated power series will be represented by elements of the 
lass TPS(C). An instan
e

of this 
lass 
onsists of a pointer to an array of elements in C and the length n of the array;

it represents a trun
ated power series at order n, i.e. an element of C[[z℄℄=(z

n

)

�

=

C[z℄=(z

n

).

For notational 
onvenien
e, we will also denote by TPS(C; n) the \sub
lass" of instan
es

in TPS(C) with trun
ation order n.
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We will use the following shorthands for the most elementary operations on trun
ated

power series f = f

0

+ � � �+ f

n�1

z

n�1

:

� ℄f : the order n of f .

� C; z: impli
it 
onversion to instan
es of TPS(C; n).

� +;�: addition resp. subtra
tion.

� f

0

: derivative f

1

+ � � �+ (n� 1)f

n�1

z

n�2

.

�

R

f : integral f

0

z + � � �+

f

n�1

n

z

n

(for rings C whi
h 
ontain the rationals).

� f Æ z

p

: right 
omposition f

0

+ � � � + f

n�1

z

(n�1)p

+ 0z

(n�1)p+1

+ � � � + 0z

np�1

with

power of z.

� f mul z

k

: multipli
ation f

0

z

k

+ � � �+ f

n�1

z

n+k�1

with z

k

.

� f div z

k

: division f

k

+ � � �+ f

n�1

z

n�k�1

by z

k

.

� f

i���j

(j 6 n): the trun
ated series f

i

+ � � �+ f

j�1

z

j�i

.

� f

0���m

(m > n): the trun
ated series f

0

+ � � �+ f

n�1

z

n�1

+ 0z

n

+ � � �+ 0z

m�1

.

� f

i���j

+= g: sets f

i

:= f

i

+ g

0

; : : : ; f

j�1

:= f

j�1

+ g

j�i�1

.

We will not detail the implementation of these operations and assume that memory

management is taken 
are of. Noti
e that the operations all require linear time and

spa
e.

In Se
tion 3.1, we will re
all algorithms for the fast multipli
ation of dense polynomi-

als. Modulo trun
ation, this also yields a multipli
ation algorithm in TPS(C; n), as well

as a binary powering algorithm. In Se
tion 3.2.2, we give a fast division algorithm in

TPS(C; n). In the sequel we use the following abbreviations for these operations:

� ? : TPS(C; p)�TPS(C; q)! TPS(C; p+q�1) stands for polynomial multipli
ation.

Noti
e that we ex
eptionally 
onsider the elements of the TPS(C; n) as polynomials

in this 
ase. Equivalently, one may think of the 
oeÆ
ients in z

k

with k > n as

being zero.

� � : TPS(C; n) � TPS(C; n) ! TPS(C; n) stands for trun
ated multipli
ation.

Noti
e that f � g = (f ? g)

0���n

.

� = : TPS(C; n)� TPS(C; n)! TPS(C; n) stands for trun
ated division.

� �

p

: TPS(C; n)! TPS(C; n) stands for trun
ated binary powering.

Remark. In low level languages, operations on trun
ated power series 
an be imple-

mented more eÆ
iently by routines whi
h take dire
tly pointers to the destination and

argument segments on input as well as their lengths. This approa
h also avoids memory

allo
ations, ex
ept for temporary ones on the heap. Nevertheless, it should not be hard

to rewrite the algorithms from this paper in this style.

2.2. Lazy and relaxed algorithms

From the point of view of the user a lazy or relaxed power series f should be some obje
t

with a method whi
h yields the 
oeÆ
ients of f one by one. In obje
t oriented languages,

we may therefore implement a series as a pointer to an abstra
t \series representation


lass" Series Rep, whi
h is given by
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Class Series Rep(C)

' : TPS(C)

n : Integer

virtual next : Void! C

Here ' 
ontains the already 
omputed 
oeÆ
ients and n their number. The order of ' is

allowed to ex
eed n in order to anti
ipate future 
omputations . The virtual method next

is private and should 
ompute the next, n-th, 
oeÆ
ient of the series. The publi
 method

to 
ompute any k-th 
oeÆ
ient, whi
h is detailed below, ensures that the 
oeÆ
ients

'

0

; : : : ; '

k�1

are already available before 
alling next and that '

k

is updated after


alling next.

All representation 
lasses in this paper, like Series Rep will 
ontain a referen
e 
ounter,

whi
h is in
reased ea
h time an instan
e is 
opied and de
reased ea
h time a 
opy is

deleted. The instan
e is physi
ally removed, only when the referen
e 
ounter vanishes. We

will use p := new D Rep(a

1

; : : : ; a

l

) to 
reate a pointer p to a 
on
rete 
lass D Rep and

to 
all the 
orresponding 
onstru
tor with arguments a

1

; : : : ; a

l

. A member or member

fun
tion x of D Rep will be a

essed through p:x. We denote by null the symboli
 \null"

pointer.

Given a pointer f : Series(C) to an instan
e of Series Rep(C), let us now detail the

algorithm to 
ompute the k-th 
oeÆ
ient f

k

of f . We �rst look whether k < f:n. If

so, then we return f:'

k

. Otherwise, we in
rease the order of ' to k + 1 (if ne
essary),


ompute the 
oeÆ
ients f

f:n

; : : : ; f

k

by repeatedly 
alling f:next(), and return f:'

k

. We

also implement an algorithm to 
ompute f

i���j

= f

i

+ � � � + f

j�1

z

j�i�1

: TPS(C; j � i).

This algorithm �rst 
omputes f

j�1

and then returns f:'

i���j

.

Example. In order to implement a 
onstant series, we �rst de�ne a 
on
rete 
lass

Class Constant Series Rep(C) . Series Rep(C)


 : C

The symbol . stands for 
lass inheritan
e. The 
onstru
tor for Constant Series Rep(C)

takes a 
onstant 


0

: C on input and sets 
 := 


0

. The member fun
tion next returns 
 if

n = 0 and 0 otherwise. See Se
tion 4.1 for another easy and detailed example.

The following easily implemented operations on series will not be spe
i�ed in detail:

� Conversion from TPS(C) to Series(C), where we �ll up with zero 
oeÆ
ients.

� Addition and subtra
tion +;�.

� Di�erentiation and integration

0

;

R

.

� f mul z

k

; f div z

k

multipli
ation and division by z

k

.

3. Zealous algorithms

3.1. Multipli
ation

There are several well-known algorithms to multiply two polynomials f = f

0

+ � � � +

f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

of degrees < n with 
oeÆ
ients in an e�e
tive

ring C. The naive algorithm, based on the formula (fg)

k

=

P

i

f

i

g

k�i

, has 
omplexity

O(n

2

). Below, we re
all DAC-, FFT- and trun
ated multipli
ation.
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In the remainder of this paper, we assume that we have �xed on
e and for all a

multipli
ation method of time 
omplexity M(n), su
h that M(n)=n is an in
reasing

fun
tion of n and M(O(n)) = O(M(n)).

3.1.1. DAC-multipli
ation

Given polynomials f = f

0

+ � � � + f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

, we de�ne

their lower and higher parts by f

�

= f

0

+ � � �+f

dn=2e�1

z

dn=2e�1

resp. f

�

= f

dn=2e

z

dn=2e

+

� � �+ f

n�1

z

n�1

and similarly for g. Hen
e, f and g de
ompose as

f = f

�

+ f

�

z

dn=2e

;

g = g

�

+ g

�

z

dn=2e

;

The following identity is 
lassi
al (a similar, but slightly more 
ompli
ated identity was

�rst found by Karatsuba (Karatsuba and Ofman, 1962)):

fg = f

�

g

�

+ ((f

�

+ f

�

)(g

�

+ g

�

)� f

�

g

�

� f

�

g

�

)z

dn=2e

+ f

�

g

�

z

2dn=2e

:

(3.1)

Applying this formula re
ursively, ex
ept for small n < Threshold

C

(with Threshold

C

>

2), we obtain the DAC-multipli
ation algorithm below. Sin
e the multipli
ation of two

polynomials of degrees < n involves only three multipli
ations of polynomials of degrees

< dn=2e, the asymptoti
 time 
omplexity of this algorithm is O(n

log 3= log 2

).

Algorithm DAC multiply(f; g)

Input: Polynomials f = f

0

+ � � �+ f

n�1

z

n�1

and g = g

0

+ � � �+ g

n�1

z

n�1

in C[z℄.

Output: Their produ
t fg.

D1. [Base℄

if n < Threshold

C

then return

P

2n�2

i=0

�

P

min(n�1;i)

j=max(0;i+1�n)

f

j

g

i�j

�

z

i

D2. [Divide and 
onquer℄

lo := DAC multiply(f

�

; g

�

)

mid := DAC multiply(f

�

+ f

�

; g

�

+ g

�

)

hi := DAC multiply(f

�

; g

�

)

return lo+mid� z

dn=2e

+ hi� z

2dn=2e

3.1.2. FFT-multipli
ation

The fastest known multipli
ation algorithm is based on the dis
rete Fourier transform

(DFT). We re
all that the DFT transforms a sequen
e of 
oeÆ
ients a

0

; : : : ; a

n�1

in

C and an n-th root of unity ! in C (whi
h is assumed to exist) into the sequen
e of

evaluations of the polynomial a

0

+ a

1

z + � � � + a

n�1

z

n�1

at the n-th roots of unity

1; !; : : : ; !

n�1

. This transform has the important property that applying the DFT twi
e

w.r.t. ! and !

�1

= !

n�1

, we obtain n times the original sequen
e a

0

; : : : ; a

n�1

. Moreover,

if n is a power of two, then the DFT 
an be performed in almost linear time O(n logn)

by the following re
ursive algorithm (in pra
ti
e, when multipli
ation in C is fast, the

re
ursion should rather be transformed into a double loop):
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Algorithm DFT(a; !)

Input: An n-tuple (a

0

; : : : ; a

n�1

) and an n-th root of unity in C, where n = 2

p

;

Output: The n-tuple (â

0

; : : : ; â

n�1

) with â

j

=

P

n�1

i=0

a

i

!

ij

.

if n = 1 then return (a

0

)

(

^

b

0

; : : : ;

^

b

n=2�1

) := DFT((a

0

; a

2

; : : : ; a

n�2

); !

2

)

(
̂

0

; : : : ; 
̂

n=2�1

) := DFT((a

1

; a

3

; : : : ; a

n�1

); !

2

)

return (

^

b

0

+ 
̂

0

; : : : ;

^

b

n=2�1

+ 
̂

n=2�1

!

n=2�1

;

^

b

0

� 
̂

0

; : : : ;

^

b

n=2�1

� 
̂

n=2�1

!

n=2�1

)

Now assume that we want to multiply two polynomials A = a

0

+ � � �+ a

n�1

z

n�1

and

B = b

0

+ � � �+ b

n�1

z

n�1

with degAB < n = 2

p

. We �rst apply DFT to (a

0

; : : : ; a

n�1

)

resp. (b

0

; : : : ; b

n�1

) and !. Denoting by â

0

; : : : ; â

n�1

resp.

^

b

0

; : : : ;

^

b

n�1

the results, we

next apply DFT to (â

0

^

b

0

; : : : ; â

n�1

^

b

n�1

) and !

n�1

. This yields n times the sequen
e of


oeÆ
ients of AB. Assuming that C is 2-divisible (i.e. we have an algorithm to divide

the multiples of two in C by two), we 
an �nally retrieve AB from this sequen
e, sin
e n

is a power of two.

If C does not 
ontain an n-th root of unity, then it is still possible to use the fast Fourier

transform, using a tri
k due to S
h�onhage and Strassen (S
h�onhage and Strassen, 1971).

A
tually, assuming that n > FFT Threshold

C

is a suÆ
iently large power of two, we will

show how to multiply eÆ
iently in the \
y
lotomi
 polynomial ring" C[x℄=(x

n

+ 1); this

method will then be used to multiply polynomials A;B 2 C[z℄ for whi
h degAB < n.

Noti
e that x is a 2n-th root of unity in C[x℄=(x

n

+ 1).

Let n = 2

p

= md with m = 2

d(p+1)=2e

. Then any polynomial

n�1

X

i=0

a

i

x

i

in C[x℄=(x

n

+ 1) may be rewritten as a polynomial

d�1

X

j=0

 

m�1

X

i=0

a

di+j

y

i

!

x

j

:

where y = x

d

is an 2m-th root of unity. In other words, it suÆ
es to show how to multiply

polynomials of degrees 6 d, whose 
oeÆ
ients lie in the smaller 
y
lotomi
 polynomial

ring C[y℄=(y

m

+1). But we may use the DFT for this, sin
e C[y℄=(y

m

+1) 
ontains 2m-th

roots of unity and d 6 m. Noti
e that the DFT only involves additions and 
opying in C,

sin
e the multipli
ations by powers of y in C[y℄=(y

m

+1) involve only 
opying, additions

and subtra
tions. Finally, we may apply the method re
ursively in order to multiply

elements of C[y℄=(y

m

+ 1). This gives us the following general multipli
ation algorithm:

Algorithm FFT multiply(A;B)

Input: Polynomials A = a

0

+ � � � + a

n�1

x

n�1

and B = b

0

+ � � � + b

n�1

x

n�1

in

C[x℄=(x

n

+ 1), where n = 2

p

.

Output: Their produ
t AB.

F1. [Base℄

if n > FFT Threshold

C

then go to F2

C := DAC multiply(a

0

+ � � �+ a

n�1

z

n�1

; b

0

+ � � �+ b

n�1

z

n�1

),
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Denote C = 


0

+ � � �+ 


2n�1

z

2n�1

return (


0

� 


n

) + � � �+ (


n�1

� 


2n�1

)x

n�1

F2. [En
ode℄

m := 2

b(p+1)=2


; d := n=m; y := x

d

for j := 0 to d� 1 do

A

j

:=

P

m�1

i=0

a

di+j

y

i

B

j

:=

P

m�1

i=0

b

di+j

y

i

for j := d to 2d� 1 do A

j

:= B

j

:= 0

F3. [FFT℄

! := y

m=d

; ! := !

2d�1

(

^

A

0

; : : : ;

^

A

2d�1

) := DFT((A

0

; : : : ; A

2d�1

); !)

(

^

B

0

; : : : ;

^

B

2d�1

) := DFT((B

0

; : : : ; B

2d�1

); !)

for j := 0 to 2d� 1 do

^

C

j

:= FFT multiply(

^

A

j

;

^

B

j

)

(C

0

; : : : ; C

2d�1

) := DFT((

^

C

0

; : : : ;

^

C

2d�1

); !)

F4. [De
ode℄

return

C

0

+C

d

y

2d

+

C

1

+C

d+1

y

2d

x+ � � �+

C

d�1

+C

2d�1

y

2d

x

n�1

It 
an be shown that this algorithm has time 
omplexity O(n logn log logn) and spa
e


omplexity O(n). The algorithm is a simpli�ed version of the algorithm from (Cantor

and Kaltofen, 1991), whi
h also works when C is not 2-divisible (in this 
ase, one may

for instan
e 
ompute both 2

p

AB and 3

q

AB, using a similar, ternary FFT-multipli
ation

algorithm, and then apply the Chinese remainder theorem). We also refer to this paper

for proofs of the 
omplexity bounds.

3.1.3. Trun
ated multipli
ation

When multiplying formal power series f and g up to order n, we are usually only

interested in the �rst n 
oeÆ
ients of fg. In other words, although multiplying f

0

+ � � �+

f

n�1

z

n�1

and g

0

+ � � � + g

n�1

z

n�1

as polynomials and trun
ating the produ
t does the

job, it might be possible to �nd a faster algorithm, whi
h does not perform super
uous


omputations.

When we use the naive multipli
ation algorithm, we may indeed gain a fa
tor of two

by evaluating only the produ
ts (fg)

k

=

P

k

i=0

f

i

g

k�i

for k < n. We 
an also have a

trun
ated DAC-multipli
ation: �rst 
ompute f

�

g

�

using the usual algorithm and next

re
ursively 
ompute f

�

g

�

and f

�

g

�

modulo z

bn=2


. Finally, apply the formula

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

bn=2


℄z

dn=2e

+ [f

�

g

�

mod z

bn=2


℄z

dn=2e

:

Although this algorithm has the same asymptoti
 
omplexity (and the same 
onstant

fa
tor), we do gain for moderate values of n, sin
e fewer additions and subtra
tions

are needed. However, when using FFT-multipli
ation, the 
onstant in the asymptoti



omplexity be
omes worse for this method.

During the referee pro
ess of this paper, we have been made aware of a new algorithm

by Mulders to a

elerate trun
ated DAC-multipli
ation (Mulders, 2000). His algorithm
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has an asymptoti
 time 
omplexity �D(n), where

� = 1� e

�(log 2)

2

=(log 3=2)

� 0:694;

� =

�

log 3= log 2

1� 2(1� �)

log 3= log 2

� 0:808

and D(n) stands for the time 
omplexity of full DAC-multipli
ation. The idea is to 
hoose

m = d�ne (instead of m = dn=2e), and to trun
ate f

�

= f

0���m

, f

�

= f

m���n

and similarly

for g. Then we again have

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

n�m

℄z

m

+ [f

�

g

�

mod z

n�m

℄z

m

:

Although we lose a bit on the dense multipli
ation of f

�

with g

�

, the other two trun-


ated multipli
ations (for whi
h we re
ursively use the same algorithm) be
ome faster.

In pra
ti
e, it is re
ommended to take m as 
lose as possible to �n, while being of the

form m = a2

p

with a < FFT Threshold

C

and a; p 2 N.

3.2. Appli
ations of Newton's method

Many zealous algorithms for operations on formal power series are based on Newton's

method, whi
h doubles the number of 
orre
t 
oeÆ
ients at ea
h iteration. The method


an in parti
ular be used for division, reversion, exponentiation and the resolution of

ordinary di�erential equations.

3.2.1. Newton's method

A 
lassi
al problem in numeri
al analysis is to �nd single roots of an equation

f(x) = 0:

If we already have an approximate root x

0

, and if the fun
tion f is suÆ
iently regu-

lar, then better approximations 
an be found by Newton's method, whi
h 
onsists of

performing the iteration

x

n+1

= x

n

�

f(x

n

)

f

0

(x

n

)

:

Ultimately, the number of 
orre
t digits doubles at ea
h iterative step, whi
h makes

the method extremely eÆ
ient. It was �rst observed by Brent and Kung that the same

method 
an be used when x is a power series and f a fun
tional on the spa
e of power

series. In this 
ase, the number of 
orre
t terms of the approximate solution ultimately

doubles at ea
h iterative step.

3.2.2. Division

In this se
tion, we will give an algorithm to invert a power series f , su
h that f

0

is

invertible in C; this 
learly yields a division algorithm too. In order to invert f , we have

to solve the equation

1

g

� f = 0:
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If g is an approximate solution whose �rst n > 0 terms are 
orre
t, then the Newton

iteration

g := g �

1

g

� f

�

1

g

2

;

whi
h is rewritten more 
onveniently as

g := g �

fg � 1

z

n

gz

n

; (3.2)

yields 2n 
orre
t terms. Indeed, if g = f

�1

+O(z

n

), then we have fg = 1+O(z

n

), when
e

f(g�(fg�1)g) = 1�(fg�1)

2

= 1+O(z

2n

) and g�(fg�1)g = f

�1

(f(g�(fg�1)g)) =

f

�1

+ O(z

2n

). Furthermore, (fg � 1)g = ((fg � 1)=z

n

)gz

n

, sin
e the �rst n terms of

fg� 1 vanish. Using the iteration (3.2), we get the following inversion algorithm of time


omplexity O(M(n)):

Algorithm invert(f)

Input: f : TPS(C; n), su
h that f

0

is invertible in C.

Output: f

�1

: TPS(C; n)

if n = 1 then return (1=f

0

)

0���1

.

m := d

n

2

e

g := invert(f

0���m

)

0���n

return g � ((((f � g) div z

m

)� g

0���n�m

)mul z

m

)

3.2.3. Exponentiation and logarithm

Assume that C is a ring whi
h 
ontains the rational numbers and that f is a power

series, su
h that f

0

is invertible and log f

0

well de�ned in C. Then the inversion algorithm

also yields a straightforward way to 
ompute log f , sin
e

log f = log f

0

+

Z

f

0

f

;

where the integral is taken with integration 
onstant zero. Solving the equation

log g = f

using Newton's method, we also have the following algorithm for exponentiation, whi
h

again has time 
omplexity O(M(n)):

Algorithm exp(f)

Input: f : TPS(C; n), su
h that exp f

0

is de�ned and invertible in C.

Output: exp f : TPS(C; n)

if n = 1 then return (exp f

0

)

0���1

.

m := d

n

2

e

g := exp(f

0���m

)

0���n

return g � (log(g)� f)� g
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3.2.4. Reversion

If we have an algorithm 
ompose for the 
omposition of power series with time 
om-

plexity O(C(n)) (where C(n)=n is an in
reasing fun
tion), then Newton's method 
an

still be applied in order to solve the equation

f Æ g � z = 0:

This yields the following O(C(n)) reversion algorithm for f :

Algorithm revert(f)

Input: f : TPS(C; n) with f

0

= 0 and f

1

is invertible in C.

Output: f

inv

if n = 1 then return 0

0���1

if n = 2 then return (z=f

1

)

0���2

m := d

n

2

e

g := revert(f

0���m

)

0���n

N := 
ompose(f; g)� z

D := 
ompose(f

0

; g

0���n�1

)

return g � (((N div z)=D)mul z)

3.2.5. Resolution of ordinary differential equations

In this se
tion, we assume that C 
ontains the rational numbers. Let �(y

0

; : : : ; y

r

; z)

be a multivariate polynomial in C[y

0

; : : : ; y

r

; z℄. We wish to solve the ordinary di�erential

equation

�(f(z); f

0

(z); : : : ; f

(r)

(z); z) = 0; (3.3)

where we assume that the separant of � is invertible in C for the initial 
onditions:

��

�y

r

(f(0); : : : ; f

(r)

(0); 0) 2 C

�

: (3.4)

This 
ondition ensures that (3.3) admits a unique formal solution. Indeed, modulo one

di�erentiation of (3.3), we may assume without loss of generality that � is linear in y

r

:

� = �

0

(y

0

; : : : ; y

r�1

; z) + �

1

(y

0

; : : : ; y

r�1

; z)y

r

:

Now (3.4) means that �

1

(0; : : : ; 0) is invertible in C. Hen
e (3.3) may be solved formally

by repeated integration:

f = �

Z

r times

� � �

Z

�

0

(f; : : : ; f

(r�1)

; z)

�

1

(f; : : : ; f

(r�1)

; z)

; (3.5)

where the integration 
onstants are taken appropriately, so that they mat
h the initial


onditions.

Remark. Our assumption on the initial 
onditions is not satis�ed in 
ertain 
ases, su
h

as the linear di�erential equations

z

2

J

�

00

+ zJ

�

0

+ (z

2

� �

2

)J

�

= 0;
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satis�ed by the Bessel fun
tions, or equations like

z

2

f

0

+ f = z

with divergent power series solutions. Sometimes, our assumption on the initial 
onditions


an be satis�ed after a 
hange of variables of the form

f = f

0

+ f

1

z + � � �+ f

k

z

k

+ z

k

~

f; (3.6)

but, in general, Brent and Kung's method does not apply.

On the other hand, the di�erential equation 
an always be rewritten as a di�erential

equation in Æ = z

�

�z

. Assume that f is not a multiple solution of this equation. Then,

after a 
hange of variables (3.6) as above and multipli
ation by a suitable power of z, the

equation 
an be put in normal form

L(f) + zR(f) = 0; (3.7)

where L 2 C[Æ℄ is non zero and R(f) 2 C[[z℄℄[f; Æf; : : : ; Æ

r

f ℄. The linear di�erential

operator L with 
onstant 
oeÆ
ients operates in a homogeneous way: Lz

k

= �

k

z

k

, for


ertain �

k

2 C. If the �

k

are all invertible, then (3.7) yields a way to express the k-th


oeÆ
ient of the solution in terms of previous 
oeÆ
ients. Hen
e, we may apply the lazy

and relaxed resolution methods, whi
h will be des
ribed later in this paper.

The repeated integral (3.5) is useful for solving (3.3) by lazy or relaxed evaluation. In

this se
tion we show that (3.3) 
an also be solved using Newton's method. For this, we

assume that we have implemented an O(M(n)) algorithm subst, whi
h takes a polyno-

mial 	 2 C[y

0

; : : : ; y

r

; z℄ and a trun
ated power series f : TPS(C; n) on input and whi
h

returns the �rst n terms of 	(f; : : : ; f

(r)

; z) (where we take f

n

= � � � = f

n+r�1

= 0).

Now let n > 3r and assume that f is an approximate solution (at order n) to (3.3)

with

�(f; : : : ; f

(r)

; z) = O(z

n�r

):

Then the Newton iteration 
onsists of repla
ing

f := f � ';

where ' is the unique solution to the linear di�erential equation

8

>

>

<

>

>

:

L' = g;

L =

��

�y

0

(f(z); : : : ; f

(r)

(z); z) + � � �+

��

�y

r

(f(z); : : : ; f

(r)

(z); z)

�

r

�z

r

;

g = �(f; : : : ; f

(r)

; z);

(3.8)

with '

0

= � � � = '

r�1

= 0, whi
h is obtained by linearlizing �. Noti
e that the existen
e

and uniqueness of ' again follows from 
ondition (3.4). Noti
e also that ' = O(z

n�r

).

Therefore,

�(f � '; : : : ; (f � ')

(r)

; z)

=

X

k

0

;::: ;k

r

(�1)

k

0

+���+k

r

k

0

! � � � k

r

!

�

k

0

+���+k

r

�

�y

k

0

0

� � ��y

k

r

r

(f; : : : ; f

(r)

; z)'

k

0

� � � ('

(r)

)

k

r

= g � L'+O(z

2n�4r

)

= O(z

2n�4r

):
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Hen
e, we have a better approximation for the solution to (3.3), sin
e n > 3r ) 2n�4r >

n � r. Consequently, when repeating the Newton iteration, the sequen
e of su

essive

approximations tends to the unique solution to (3.3). Modulo an algorithm linear to

solve (3.8), this yields the following algorithm:

Algorithm ode(�; f; n)

Input: A polynomial � 2 C[y

0

; : : : ; y

r

; z℄, an approximation f : TPS(C; r + 1) to a

solution to (3.3), so that (3.4) is satis�ed, and an order n > r.

Output: A better approximation f : TPS(C; n) of the unique solution to (3.3), with

�(f; : : : ; f

(r)

; z) = O(z

n�r

).

O1. [Separate 
ases℄

m := d

n+3r

2

e

if n > m (when
e n > 3r) then

if r = 0 then go to step 3

if r 6= 0 then go to step 4

O2. [Compute �rst 
oeÆ
ients℄

for i := r + 1 to n� 1 do

for j := 0 to r do D

j

:= subst(

��

�y

j

; f)

0���i�r

S := D

0

� f

0

0���i�r

+ � � �+D

r�1

� f

(r)

0���i�r

+ subst(

��

�z

; f)

0���i�r

t := �S=D

r

f := f

0���i+1

+

i!

(i�r�1)!

t

i�r�1

z

i

return f

0���n

O3. [Newton iteration when r = 0℄

f := ode(�; f;m)

0���n

return f � subst(�; f)=subst(

��

�y

0

; f)

O4. [Newton iteration when r 6= 0℄

f := ode(�; f;m)

0���n

L := subst(

��

�y

0

; f) + � � �+ subst(

��

�y

r

; f)

�

r

�z

r

return f � linear(L; subst(�; f); n)

In order to solve (3.8) up till n terms, we �rst 
ompute a non trivial solution to the

homogeneous di�erential equation

Lh = 0:

This is done by solving the asso
iated Ri
atti equation. More pre
isely, we rewrite ea
h

h

(k)

as h times a polynomial R

k

(

^

h; : : : ;

^

h

k�1

) in the logarithmi
 derivative

^

h = h

0

=h of

h. This amounts to 
omputing the sequen
e

�

R

0

= 1;

R

k+1

= y

0

R

k

+

�R

k

�y

0

y

1

+ � � �+

�R

k

�y

k�1

y

k

;

(3.9)

with R

k

2 C[[y

0

; : : : ; y

k�1

℄℄ up till order r. We now 
ompute the �rst n terms of

^

h by a

re
ursive appli
ation of ode with equation

R = L

0

R

0

+ � � �+ L

r

R

r

2 C[[y

0

; : : : ; y

r�1

; z℄℄
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and initial 
onditions

^

h

0

= � � � =

^

h

r�1

= 0. This yields the �rst n terms of a solution h

to (3.8) with h

0

= 1 after exponentiation and integration h = exp

R

^

h.

Finally, we apply the method of variation of 
onstants and write ' =  h. Then (3.8)

transforms into L

0

( 

0

) = g, with

L

0

j

=

r

X

i=j+1

�

i

j + 1

�

L

i

h

(i�j�1)

:

The order of L

0

is r � 1 and L

0

r�1

(0) = L

r

(0)h

0

is invertible in C. Hen
e, we 
an solve

the equation L

0

� = g by a re
ursive appli
ation of linear. Integration  =

R

� yields  .

Algorithm linear(L; g; n)

Input: A linear di�erential operator L of order r with 
oeÆ
ients in TPS(C; n) and

su
h that L

r

(0) is invertible in C, a trun
ated power series g : TPS(C; n), and

an order n > r.

Output: The �rst n terms of the unique solution to L' = g, with '

0

= � � � = '

r

= 0.

L1. [Homogeneous equation℄

Compute R

0

; : : : ; R

r

using (3.9)

R := L

0

R

0

+ � � �+ L

r

R

r

^

h := ode(R; 0; n� 1)

h := exp(

R

^

h)

L2. [Variation of 
onstants℄

L

0

:=

r�1

X

j=0

2

4

r

X

i=j+1

�

i

j + 1

�

(L

i

)

0���n�1

� (h

(i�j�1)

)

0���n�1

3

5

�

j

�z

j

� := linear(L

0

; g; n� 1)

return h�

R

�

As to the time 
omplexities of ode and linear, we observe that ode 
alls linear with

the same r and linear 
alls ode and linear with r de
reased by one. Hen
e, the time


omplexity is exponential in r. The following time 
omplexity in n is easily proved by

indu
tion over r, using thatM(n)+M(d(n+3r)=2e)+M(d(d(n+3r)=2e+3r)=2e)+ � � � =

O(M(n)).

Theorem 3.1. Let � 2 C[y

0

; : : : ; y

r

; z℄ be a multivariate polynomial and 
onsider the

di�erential equation (3.3) with initial 
onditions f(0); : : : ; f

(r)

(0) that satisfy (3.4). Then

this equation admits a unique solution f 2 C[[z℄℄ and there exists an algorithm whi
h


omputes the �rst n 
oeÆ
ients of f in time O(M(n)). 2

Remark. The algorithm ode generalizes to the 
ase when � is a multivariate power

series instead of a polynomial. In this 
ase, we need assume that the algorithm subst

also applies to 	 = � and all its partial derivatives.
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3.3. Algebrai
 and holonomi
 power series

An algebrai
 fun
tion is a fun
tion f(z), whi
h satis�es a polynomial relation of the

form

P

d

(z)f(z)

d

+ � � �+ P

0

(z) = 0;

where P

0

; : : : ; P

d

2 C[z℄ are polynomials with P

d

6= 0. Su
h fun
tions are spe
ial 
ases of

holonomi
 fun
tions, whi
h are fun
tions f(z), that satisfy a linear di�erential equation

L

r

(z)f

(r)

(z) + � � �+ L

0

(z)f(z) = 0; (3.10)

where L

0

; : : : ; L

r

2 C[z℄ are polynomials with L

r

6= 0. An algebrai
 resp. holonomi


power series is an algebrai
 resp. holonomi
 fun
tion whi
h is also a power series in

C[[z℄℄.

Holonomi
 power series are interesting, be
ause their 
oeÆ
ients 
an be 
omputed

sequentially in linear time and spa
e. Indeed, the 
oeÆ
ients f

0

; f

1

; : : : of su
h power

series satisfy a linear polynomial re
urren
e relation

Q

q

(n)f

n+q

+ � � �+Q

0

(n)f

n

= 0; (3.11)

whereQ

0

; : : : ; Q

q

are polynomials in C[n℄. Here (3.11) is derived from (3.10) by extra
ting

the 
oeÆ
ient of z

n

from (3.10), while using the rules (zf)

n

= f

n�1

and (f

0

)

n

= nf

n+1

.

Furthermore, the 
lass of holonomi
 fun
tions enjoys many 
losure properties: it is

(algorithmi
ally) stable under addition, multipli
ation, right 
omposition with algebrai


fun
tions, di�erentiation and integration, Hadamard produ
t, et
. We refer to (Stanley,

1980; Lipshitz, 1989; Zeilberger, 1990; Stanley, 1999) for more information on this subje
t.

Holonomi
 fun
tions are also available in some 
omputer algebra systems (Salvy and

Zimmermann, 1994).

3.4. Composition

3.4.1. Right 
omposition with polynomials

Let f = f

0

+ � � �+ f

p�1

z

p�1

and g = g

1

z + � � � g

q�1

z

q�1

be polynomials, 
onsidered as

trun
ated power series in TPS(C). In order to eÆ
iently 
ompute f

0���n

Æg

0���n

: TPS(C; n)

for given n, we may use a divide and 
onquer method based on the formula

f Æ g = f

�

Æ g + (f

�

Æ g)g

bp=2


;

in whi
h f

�

= f

0���bp=2


and f

�

= f

bp=2
���p

denote the lower and upper parts of f .

Although all 
omputations will be done with trun
ated power series in our implemen-

tation, we will really 
ompute with polynomials as long as their degrees remain inferior

to n. Assuming that g

i

: TPS(C;min((q�1)i+1; n)) has been pre
omputed and stored in

a hashtable H for all i of the form bp=2

k


 or dp=2

k

e with k > 0, we obtain the following

algorithm:

Algorithm 
ompose pol(f;H; n)

Input: f : TPS(C; p), a hashtable H and an integer n;

H [i℄ 
ontains g

i

0���min((q�1)i+1;n)

for all i 2 bp=2

N

�


 [ dp=2

N

�

e.

Output: f

0���l

Æ g

0���l

, where l = min((p� 1)(q � 1) + 1; n).
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P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and 
onquer℄

l := min((p� 1)(q � 1) + 1; n)

h

�

:= 
ompose pol(f

0���bp=2


; H; n)

h

�

:= 
ompose pol(f

bp=2
���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2
℄)

0���l

Theorem 3.2. Let f : TPS(C; p) and g : TPS(C; q) be su
h that g

0

= 0 and let n > 0.

There exists an algorithm to 
ompute f

0���n

Æ g

0���n

in time O(

pq

n

M(n) logn) and spa
e

O(n log

pq

n

).

Proof. Sin
e the time and spa
e 
omplexities of the algorithm are in
reasing fun
tions

in p; q and n, we may assume without loss of generality that p; q and n are powers of

two, We may also assume that pq > n.

The pre
omputation of the powers of g takes a time O(log nM(n)). Denoting by

T (n; p; q) the time 
omplexity apart from the pre
omputation, we have T (n; 1; q) = O(1)

and for p > 1:

T (n; p; q) 6 2T (n;

p

2

; q) +O(M(min(pq; n))): (3.12)

This leads to the time 
omplexity bound:

T (n; p; q) 6 O(M(n) + 2M(n) + � � �+

pq

n

M(n) +

2pq

n

M(

n

2

) +

4pq

n

M(

n

4

) + � � �+

p

2

M(2q)) +O(p)

6 O(

pq

n

M(n)) +O(

pq

n

M(n) logn):

We need a spa
e O(min(q; n) +min(2q; n) + � � �+min(pq; n)) 6 O(n log q) in order to

store the powers of g. For the remaining spa
e S(n; p; q) needed by the algorithm, we

have S(n; 1; q) = O(1) and for p > 1:

S(n; p; q) 6 S(n;

p

2

; q) +O(min(

pq

2

; n)): (3.13)

This yields the spa
e 
omplexity bound:

S(n; p; q) 6 O(n log

pq

n

+

n

2

+ � � �+ q) +O(1)

6 O(n log

pq

n

):

2

3.4.2. Right 
omposition with algebrai
 power series

The algorithm 
ompose pol generalizes to the 
ase when g is an algebrai
 power

series with g

0

= 0, i.e.

P

d

g

d

+ � � �+ P

0

= 0; (3.14)

with P

0

; � � � ; P

d

2 C[z℄ and P

d

6= 0. We will denote by v the valuation of P

d

and by q the

maximum of the degrees of the P

i

plus one.

For 
ompleteness, we will treat the fully general 
ase in this se
tion. The presentation

may be greatly simpli�ed in the 
ase when v = 0 or when g is a rational fra
tion.
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The reader who does not wish to go into te
hni
al details may dire
tly pro
eed with

Se
tion 3.4.3, whi
h does not rely on the material presented here.

Algebrai
 fun
tions

Instead of 
omputing with (trun
ated) polynomials, we will now 
ompute with (trun-


ated) algebrai
 fun
tions in C[z; g℄, whi
h are 
onveniently represented by fra
tions

F =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

; (3.15)

where F

0

; � � � ; F

d�1

2 C[z℄ and k

F

2 N. The degree degF of F is de�ned to be degF =

max

06i<d

degF

i

+ i(q � 1). We also de�ne the multipli
ity �

F

of the pole P

d

in F as

�

F

= maxfijF

i

6= 0g if k

f

= 0 and �

F

= k

f

+ d� 1 otherwise.

The addition of two fra
tions like (3.15) is done as usual: we multiply one of the

numerators with a suitable power of P

d

in order to obtain a 
ommon denominator

(k

F+G

= max(k

F

; k

G

)) and we add up the numerators. Noti
e that we have

�

deg(F +G) 6 max(degF; degG);

�

F+G

6 max(�

F

; �

G

):

(3.16)

The asymptoti
 
ost of the addition F +G is

T

F+G

= O(dM(degF + degG+ degP

k

f

d

+ degP

k

g

d

)):

In order to multiply fra
tions like (3.15), we �rst pre
ompute g

d

; : : : ; g

2d�2

as fra
-

tions (3.15), using (3.14):

g

i

=

(g

i

)

d�1

g

d�1

+ � � �+ (g

i

)

0

P

i�(d�1)

d

: (3.17)

Noti
e that deg g

i

6 i(q � 1) for all i. Now in order to 
ompute the produ
t

F �G =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

�

G

d�1

g

d�1

+ � � �+G

0

P

k

G

d

;

we �rst rewrite the produ
t as

F �G =

1

P

k

F

+k

G

d

2d�2

X

i=0

0

�

X

j

F

j

G

i�j

1

A

g

i

:

Next, we substitute g

i

by the right hand side of (3.17) for d 6 i 6 2d� 2. Noti
e that

�

deg(F �G) 6 degF + degG;

�

F�G

6 �

F

+ �

G

:

(3.18)

The asymptoti
 
ost of the multipli
ation F �G is

T

F�G

= O(dM(degF + degG) + qd

2

(degF + degG));

sin
e the polynomials g

i

j

are �xed.

Let f = f

0

+ � � �+ f

p�1

z

p�1

be a polynomial. Then the bounds (3.16) and (3.18) yield

the following bounds for its right 
omposition f Æ g = f

0

+ � � �+ f

p�1

g

p�1

with g:

�

deg(f Æ g) 6 (p� 1)(q � 1) + 1;

�

fÆg

6 p� 1:

(3.19)

In parti
ular, k

fÆg

6 max(p� d; 0).
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The algorithm

In the trun
ated 
ontext, the polynomials F

i

in (3.15) are repla
ed by trun
ated

power series in TPS(C; n + k

F

v). This will enable us to extra
t the �rst n 
oeÆ
ients

of F , when 
onsidered as a power series. We will denote by Algebrai
 TPS(C; g) and

Algebrai
 TPS(C; g; n) the algebrai
 analogues of the 
lasses TPS(C) resp. TPS(C; n).

Now assume that we want to 
ompute the 
omposition of a polynomial f = f

0

+ � � �+

f

p�1

z

p�1

with the series g up till order n. Then we do the following

� We pre
ompute g

i

: Algebrai
 TPS(C; g;min(i(q � 1) + 1 �max(i + 1 � d; 0)v; n))

for all i of the form bp=2

k


 or dp=2

k

e with k > 0. Re
all that �

g

i
6 i for all i.

� We pre
ompute P

i

d

: Algebrai
 TPS(C; g;min(i(q � 1) + 1 �max(i + 1� d; 0)v; n))

for all i of the form bp=2

k


 or dp=2

k

e with k > 0.

� We apply the analogue 
ompose alg of 
ompose pol below.

� We 
onvert the result in Algebrai
 TPS(C; g; n) ba
k to a trun
ated series in

TPS(C; n). This 
an be done in time O(M(N)) using fast division and the linear

re
urren
e relation for the 
oeÆ
ients of g (see Se
tion 3.3).

Algorithm 
ompose alg(f;H; P; n)

Input: f : TPS(C; p), hashtables H;P and an integer n;

H [i℄ 
ontains (g

i

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�


[dp=2

N

�

e.

P [i℄ 
ontains (P

i

d

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�


[dp=2

N

�

e.

Output: h = f

0���n

Æ g 2 Algebrai
 TPS(C; g; l),

with l = min((p� 1)(q � 1) + 1�max(p� d; 0)v; n).

P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and 
onquer℄

l := min((p� 1)(q � 1) + 1�max(p� d; 0)v; n)

h

�

:= 
ompose alg(f

0���bp=2


; H; n)

h

�

:= 
ompose alg(f

bp=2
���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2
℄)

0���l

Remark. The hashtable P is used in the �nal addition, in order to rewrite the left hand

and right hand fra
tions, su
h that they have a 
ommon denominator.

Theorem 3.3. Let f : TPS(C; p), g as above and n > 0. Then there exists an algorithm

to 
ompute the �rst n 
oeÆ
ients of f Æg in time O(qd

2

p(q�v)

n

)M(n+pv) logn) and spa
e

O(d(pv + n log

p(q�v)

n

)).

Proof. The proof is analogous to the proof of theorem 3.2. In this 
ase, using that

k

h

�

; k

h

�

; k

H[p=2℄

= O(p);

deg h

�

; degh

�

; degH [p=2℄ = O(min(pq; pv));

the main inequalities (3.12) and (3.13) be
ome

T (n; p; q) 6 2T (n;

p

2

; q) +O(qd

2

M(min(pq; n+ pv)));

S(n; p; q) 6 S(n;

p

2

; q) +O(dmin(pq; n+ pv)):

2
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Remark. Noti
e that we may take v = 0 if g is a rational fun
tion, sin
e g has to be a

power series in this 
ase. Consequently, the time and spa
e 
omplexity bounds be
ome

O(d

2

q

2

M(n) logn) resp. O(dn log q) for p = n. The 
omposition algorithm may also be

simpli�ed in this parti
ular, but important 
ase.

3.4.3. General 
omposition for divisible rings C

If C is a divisible ring, then Brent and Kung's fast algorithm (Brent and Kung, 1978)


an be used in order to 
ompute the 
omposition f Æ g of formal power series f and g

up to order n. Their method relies on de
omposing g = g

�

+ g

�

= g

0���q

+ g

q���n

with

q = b

p

n= logn
 and using the Taylor series expansion at order r = dn=qe

f Æ g = f Æ g

�

+ (f

0

Æ g

�

)g

�

+ � � �+

1

(r�1)!

(f

(r�1)

Æ g

�

)(g

�

)

r�1

+O(z

n

):

(3.20)

Assuming that (g

0

�

)

0

is invertible in C, f

(i)

Æg

�


an then easily be 
omputed as a fun
tion

of f

(i�1)

Æ g

�

, sin
e

f

(i)

Æ g

�

= (f

(i�1)

Æ g

�

)

0

=g

0

�

:

Conversely, if (g

0

�

)

0

is not ne
essarily invertible in C, we may write

1

(i�1)!

f

(i�1)

Æ g

�

= f

i�1

+ i

�

Z

(

1

i!

f

(i)

Æ g

�

)g

0

�

�

:

This leads to the following algorithm:

Algorithm 
ompose(f; g)

Input: f; g 2 TPS(C; n) with g

0

= 0.

Output: f Æ g.

C1. [Polynomial Composition℄

q := b

p

n= logn


r := dn=qe

g

�

:= (g

0���q

)

0���n

g

�

:= g � g

�

Compute H [i℄ := (g

i

�

)

0���min((q�1)i+1;n)

for all i = bn=2

k


 and i = dn=2

k

e with k > 0

D := 
ompose pol(f

(r�1)

; H; n+ 1� r)=(r � 1)!

C2. [Taylor expansion℄

S := D

0���max(0;n+q�rq)

for i := r � 1 downto 1 do

D := (f

i�1

)

0���n+1�i

+

R

((iD)� (g

0

�

)

0���n�i

)

T := (S � (g

�

div z

q

)

0���max(0;n�iq)

)mul z

q

S := D

0���max(0;n+q�iq)

+ T

0���max(0;n+q�iq)

return S

Theorem 3.4. Let f and g be power series trun
ated at order n. Assuming that g

0

= 0,

there exists an algorithm to 
ompute the power series expansion of f Æ g up till order n

in time O(

p

n lognM(n)) and spa
e O(n logn).
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Proof. Step 1 takes a time O(

p

n lognM(n)) and spa
e O(n logn), by theorem 3.2.

Sin
e the loop in the se
ond step requires only r = O(

p

n logn) iterations, the se
ond

step requires a time O(

p

n lognM(n)) and spa
e O(n). 2

Remark. The above algorithm also applies if C is an overring of Z, su
h that the equation

nx = y 
an be solved e�e
tively in C for n 2 Z

�

and y 2 C (i.e. we 
an test whether the

equation admits a solution and, if so, 
ompute it). Indeed, in this 
ase, we 
an do the


omputations in the e�e
tive partial quotient ring of C in whi
h the non zero integers

are invertible.

3.4.4. General 
omposition for rings C of finite 
hara
teristi


Assume now that Z 
an no longer be embedded in C, i.e. the 
anoni
al ring homo-

morphism Z 2 C has a non trivial kernel rZ with r > 0. Bernstein re
ently gave a fast


omposition algorithm for su
h C (Bernstein, 1998). The idea is to 
onsider subsequently

the 
ases when r is prime, a prime power and general.

r = p is prime

We have (a+ b)

p

= a

p

+ b

p

for all a; b 2 C and g(z)

p

= g

p

0

+ g

p

1

z

p

+ g

p

2

z

2p

+ � � � = g

[p℄

(z

p

)

for power series g(z) = g

0

+ g

1

z+ g

2

z

2

+ � � � . Hen
e we may use the following formula to


ompute the 
omposition of two power series f and g:

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � � ) Æ g

[p℄

(z

p

)g

i

: (3.21)

Assuming that we have an algorithmHorner(P; h) to 
ompute P (h) by Horner's method

for P 2 TPS(C; n)[X ℄ and h 2 TPS(C; n), this leads to the following re
ursive algorithm

of time 
omplexity O((p= log p)M(n) logn) and linear spa
e 
omplexity (Bernstein, 1998):

Algorithm prime 
ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime 
hara
teristi
 p.

Output: f Æ g.

m := dn=pe

for i := 0 to p� 1 do

L := f

i

+ f

i+p

z + � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ g

p

1

z + � � �+ g

p

m�1

z

m�1

h

i

:= (prime 
ompose(L;R) Æ z

p

)

0���n

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g)

Remark. The algorithm 
an be optimized by using the algorithm 
ompose from the

previous se
tion for small n. Indeed, it suÆ
es that 1; 2; : : : ; dn=b

p

n= logn
e are invert-

ible in C.
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r = p

k

is a prime power

In this 
ase, the 
omposition algorithm is based on the fa
t that we still have Æ =

g(z)

p

� g

[p℄

(z

p

) 2 pC. Hen
e, (3.21) be
omes

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � � ) Æ (g

[p℄

(z

p

) + Æ)g

i

: (3.22)

This leads to the more general problem of 
omposing f with g+", where " is an in�nitesi-

mal formal parameter with "

k

= p"

k�1

= � � � = p

k�1

" = 0. The analogue relation of (3.22)

then again yields a re
ursive formula and we obtain the following algorithm of time 
om-

plexity O((k

3

p= log p)M(n) logn) and spa
e 
omplexity O(kn) (Bernstein, 1998):

Algorithm prime power 
ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime power 
hara
teristi
 p

k

.

Output: f Æ (g + ") : TPS(C["℄=("

k

; p"

k�1

; : : : ; p

k�1

); n).

m := dn=pe

' := (g + ")

p

� (g

p

0

+ � � �+ g

p

m

z

mp

)

0���n

for i := 0 to p� 1 do

L := f

i

+ � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ � � �+ g

p

m�1

z

m�1

 := (prime power 
ompose(L;R) Æ z

p

)

0���n

Write  =  

0

+  

1

"+ � � �+  

k�1

"

k�1

h

i

:= Horner( 

0

+ � � �+  

k�1

X

k�1

; '; n)

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g; n)

r = q

1

� � � q

l

is a non trivial produ
t of distin
t prime powers

This 
ase is a standard appli
ation of the Chinese remainder theorem. More pre
isely,

using the Chinese remainder theorem, we �rst 
ompute integers i

1

; : : : ; i

l

with

i

1

q

1

� � � q

l

q

1

+ � � �+ i

l

q

1

� � � q

l

q

l

= 1 mod q

1

� � � q

l

:

We next 
ompute the 
ompositions of the proje
tions of f and g in C=(q

j

)[[z℄℄. More

pre
isely, for ea
h j, elements in C=(q

j

) are redundantly represented by elements in C

(we do not require a zero test) and we use the previous algorithm. We thus obtain a

trun
ated series h

j

2 C[[z℄℄ with h

j

� g Æ f 2 q

j

C+O(z

n

). Then we have i

1

h

1

+ � � �+ i

l

h

l

is equal to f Æ g up to n terms.

Theorem 3.5. Let C be a ring of positive 
hara
teristi
 r > 0 and let f; g : TPS(C; n) be

su
h that g

0

= 0. Then n terms of f Æ g 
an be 
omputed in time O((r= log r)M(n) logn)

and spa
e O(n log r).

Proof. By what pre
edes and sin
e k

3

p= log p = O(p

k

=(k log p)), the theorem holds for

prime power 
hara
teristi
. In general, we have

q

1

log q

1

+ � � �+

q

l

log q

l

= O

�

r

log r

�
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and log q

1

+ � � � + log q

r

= log r, so we 
an perform the 
omposition modulo ea
h q

i

in the required time and spa
e. Gluing these partial results together using the Chinese

remainder theorem takes linear time and spa
e. 2

4. Relaxed multipli
ation

4.1. Naive relaxed multipli
ation

The lazy, or naive relaxed multipli
ation algorithm for formal power series f and g in z

just 
omputes the 
oeÆ
ient of z

n

in fg using the 
onvolution sum (fg)

n

=

P

n

i=0

f

i

g

n�i

.

In order to implement this method, we de�ne the 
lass

Class Produ
t1 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The 
onstru
tor takes two series on input whi
h are stored in f and g. We 
ompute the

n-th 
oeÆ
ient of fg as follows:

Method Produ
t1 Series Rep(C):next()

A
tion: The next 
oeÆ
ient (fg)

n

.

return

P

n

i=0

f

i

g

n�i

The a
tual fun
tion for multipli
ation is given by

Algorithm (f : Series(C))� (g : Series(C))

Input: Two series f and g.

Output: Their produ
t fg.

return new Produ
t1 Series Rep(C)(f; g)

Obviously, the naive multipli
ation algorithm has O(n

2

) resp. O(n) time and spa
e


omplexities. The 
omputation of the su

essive 
oeÆ
ients of fg by the naive algorithm

is illustrated in Figure 1: ea
h box 
orresponds to the 
ontribution of a produ
t f

i

g

j

to the sum (fg)

i+j

=

P

i+j

k=0

f

k

g

i+j�k

. The number of the box 
orresponds to the stage

when this 
ontribution is 
omputed. Indeed, the naive algorithm only 
omputes f

i

g

j

at

the moment that (fg)

i+j

is needed, that is, at stage i+ j.

4.2. Relaxation of DAC-multipli
ation

The relaxed multipli
ation algorithm we present in this se
tion is based on the obser-

vation that DAC-multipli
ation is essentially relaxed . Hereby we mean that, if we apply

the algorithm to 
ompute the produ
t of two power series f and g with symboli
 
oef-

�
ients, then the 
omputed formula for (fg)

i

only depends on the 
oeÆ
ients f

0

; : : : ; f

i

and g

0

; : : : ; g

i

. In order to transform this observation into an a
tual relaxed multipli
a-

tion algorithm, the main problem is to design suitable data stru
tures, whi
h 
orrespond

to partial exe
utions of the divide and 
onquer algorithm. Roughly speaking, the whole


omputation will be stored in memory, but information whi
h is no longer needed at a

given stage is freed again.
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Figure 1. Relaxed multipli
ation by the naive algorithm

4.2.1. Relaxed multipli
ation of polynomials

Let f = f

0

+f

1

z+� � �+f

N�1

z

N�1

and g = g

0

+g

1

z+� � �+g

N�1

z

N�1

be two polynomials

of degrees < N , represented as trun
ated series at order O(z

N

). In this se
tion, we show

how to 
ompute the 
oeÆ
ients of their produ
t fg in a relaxed way. For the appli
ation

we have in mind, we will suppose that N is a power of two. The representation 
lass

whi
h 
orresponds to the relaxed 
omputation of fg is given by

Class DAC Rep(C) . Series Rep(C)

N : Integer

f; g : Series(C)

lo;mid; hi : DAC(C)

The pointers lo;mid and hi 
orrespond to the relaxed 
omputations of f

�

g

�

, (f

�

+f

�

)(g

�

+

g

�

) and f

�

g

�

(with f

�

= f

0���N=2

; f

�

= f

N=2���n

; g

�

= g

0���N=2

and g

�

= g

N=2���N

). The


onstru
tor for DAC Rep(C) is given by

Constru
tor DAC Rep(C)(f; g;N)

Input: Two series
f
;
g
and an order TPS(C;

N
).

N := N , f := f , g := g

lo := mid := hi := null

' := 0

0���2N�1

The 
omputation of the 
oeÆ
ients now goes in three stages. At the �rst stage, when

0 6 n <

N

2

, we only 
ompute the produ
t f

�

g

�

; the pointer lo be
omes non null at

this stage. At the se
ond stage, when

n

2

6 n < N , we also start the 
omputations of

(f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

; the pointers mid and hi also be
ome non null at this stage.

At the third, and last stage, when n > N , the 
omputation of fg is 
ompleted and the

pointers lo;mid and hi are freed. For small N 6 Threshold

C

, where Threshold

C

is a

power of two, we 
ompute fg using the lazy multipli
ation algorithm.

Method DAC Rep(C):next()

Output: The next 
oeÆ
ient (f

0���N

? g

0���N

)

n

.
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D0. [Small N ℄

if N > Threshold

C

then go to D1

if n < N then return

P

n

i=0

f

i

g

n�i

else return

P

N�1

i=n�(N�1)

f

i

g

n�i

D1. [First stage (n <

N

2

)℄

if n >

N

2

then go to D2

if n = 0 then lo := new DAC Rep(f; g;

N

2

)

return lo

n

D2. [Se
ond stage (

N

2

6 n < N)℄

if n > N then go to D3

if n =

N

2

then

mid := new DAC Rep(f + (f div z

N

2

); g + (g div z

N

2

);

N

2

)

hi := new DAC Rep(f div z

N

2

; g div z

N

2

;

N

2

)

return lo

n

+mid

n�N=2

� lo

n�N=2

� hi

n�N=2

D3. [Third stage (N 6 n)℄

if n > 2N � 1 then return 0

if n > N then return '

n

'

N ���2N�1

:= hi

0���N�1

'

N ���

3N

2

�1

+= midN

2

���N�1

� loN

2

���N�1

� hiN

2

���N�1

lo := mid := hi := null

return '

n

4.2.2. Complexity analysis

Up to some extra operations related to the storage of partial auxiliary produ
ts, the

main 
ontrol stru
ture of the relaxed DAC-multipli
ation algorithm is the same as in the


lassi
al algorithm. Hen
e, their respe
tive time 
omplexities only di�er up to a 
onstant

fa
tor.

As to the memory storage S(N) needed by the relaxed algorithm, we 
laim that

S(N) 6 2S(N=2) +O(N): (4.1)

Indeed, as long as less than N=2 
oeÆ
ients of f and g are known, f

�

and g

�

are not

needed at all. As soon as N=2 
oeÆ
ients are known, f

�

and g

�

are entirely determined,

when
e the 
omputation of f

�

g

�

is 
ompleted, and the result takes O(N) memory stor-

age. Furthermore, f

�

+ f

�

and g

�

+ g

�

require another O(N) memory storage, while

the 
omputations of (f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

require 2S(N=2) memory storage, by

indu
tion. From (4.1), we dedu
e that

S(N) = O(N logN):

4.2.3. General relaxed DAC-multipli
ation

Let us �nally treat the 
ase, when we want to 
ompute fg up to any order, and

not merely up to order O(z

N

). In this 
ase, we use the algorithm from above between

su

essive powers of two. Ea
h time we 
ross a power of two, we let the old f and g play
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Figure 2. Relaxed multipli
ation by the divide and 
onquer algorithm

the rôles of f

�

and g

�

for the new f and g. More pre
isely, we introdu
e the 
lass

Class Produ
t2 Series Rep(C) . Series Rep(C)

f; g : Series(C)

h : DAC(C)

The 
onstru
tor takes two series on input, whi
h are stored in f and g; h is initialized

with new DAC Rep(C)(f; g;Threshold

C

). The member fun
tion next is now given by

Method Produ
t2 Series Rep(C):next(n)

Output: The next 
oeÆ
ient (fg)

n

.

if n > Threshold

C

and n 2 2

N

then h := new DAC Rep(C)(f; g; h; 2n)

return h

n

.

Here we use a se
ond 
onstru
tor for DAC Rep(C) in order to extend previous 
ompu-

tations:

Constru
tor DAC Rep(C)(f; g; g;N)

Input: Series
f
;
g
;
h

�

and an order TPS(C;
N
).

N := N , f := f , g := g

lo := h

�

;mid := hi := null

' := (h

�

)

0���2N�1

; n := N=2

Clearly, the time and spa
e 
omplexities of this algorithm are again O(n

log 3= log 2

) and

O(n logn). In Figure 2, we s
hemati
ally represented the 
omputation pro
ess of the

su

essive 
oeÆ
ients of fg by the relaxed multipli
ation algorithm.

4.3. Fast relaxed multipli
ation

Although relaxed DAC-multipli
ation is signi�
antly faster than the naive algorithm,

it still is not as fast as the fastest zealous multipli
ation algorithms based on the fast
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Fourier transform. In this se
tion, we give a fast relaxed multipli
ation algorithm, in

whi
h the fast Fourier transform may be exploited.

For ea
h i; j; p 2 N, let us denote

�

i;j;p

= (f

i2

p

�1

z

i2

p

�1

+ � � �+ f

(i+1)2

p

�1

z

(i+1)2

p

�1

)�

(g

j2

p

�1

z

j2

p

�1

+ � � �+ g

(j+1)2

p

�1

z

(j+1)2

p

�1

)

The fast multipli
ation algorithm is based on the observation that, as soon as the �rst

2

p+1

� 1 
oeÆ
ients of f and g are known, then the 
ontribution of �

1;1;p

to fg 
an be


omputed prematurely by any fast zealous multipli
ation algorithm. More generally, as

soon as the �rst n = k2

p

�1 
oeÆ
ients of f and g are known, with odd k > 3 and p > 1,

then we 
an 
ompute the 
ontributions of �

1;k�1;p

and �

k�1;1;p

.

4.3.1. Fast relaxed multipli
ation algorithm

The representation 
lass Produ
t3 Series Rep(C) and its 
onstru
tor are taken to be

the same as for Produ
t1 Series Rep(C):

Class Produ
t3 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The 
oeÆ
ients of fg are 
omputed as follows:

Method Produ
t3 Series Rep(C):next()

Output: The next 
oeÆ
ient (fg)

n

.

F1. [Enlarge '℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

F2. [A

umulate℄

k := 2(n+ 2); p := �1

while (k mod 2) = 0

k := k=2; p := p+ 1

'

k2

p

�2���(k+2)2

p

�3

+= f

2

p

�1���2

p+1

�1

? g

(k�1)2

p

�1���k2

p

�1

if k = 2 then return '

n

'

k2

p

�2���(k+2)2

p

�3

+= f

(k�1)2

p

�1���k2

p

�1

? g

2

p

�1���2

p+1

�1

return '

n

The 
omputation pro
ess is s
hemati
ally represented in Figure 3. From this �gure, it

is easily seen that the 
ontribution of ea
h f

i

g

j

to (fg)

i+j

is 
omputed exa
tly on
e and

before the 
oeÆ
ient (fg)

i+j

is output. This proves the 
orre
tness of our algorithm.

4.3.2. Complexity analysis

Theorem 4.1. There exists a relaxed multipli
ation algorithm for formal power series f

and g with 
oeÆ
ients in C, whi
h 
omputes the �rst n terms of fg in time O(M(n) logn)

and spa
e O(n).
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Figure 3. Fast relaxed multipli
ation

Proof. Sin
e the time 
omplexity of the algorithm from the previous se
tion is an

in
reasing fun
tion in n, it suÆ
es to 
onsider the 
ase when n = 2

p

� 1 for some p > 0.

Then looking at Figure 3, we observe that the algorithm performs 2(n+1)� 3 
onstant

multipli
ations, (n + 1) � 3 multipli
ations of polynomials with 2 terms,

1

2

(n + 1) � 3

multipli
ations of polynomials with 4 terms and so on. Hen
e, the overall time 
omplexity

is bounded by

2

p�1

X

k=0

n

2

k

M(2

k

) +O(n) = O(M(n) logn):

The spa
e 
omplexity is 
learly bounded by O(n). 2

4.4. Remarks and optimizations

Although the relaxed multipli
ation algorithms from Se
tions 4.2 and 4.3 are both

asymptoti
ally faster than lazy multipli
ation, they both have drawba
ks for 
ertain ap-

pli
ations: the relaxed DAC-multipli
ation algorithm is more 
umbersome to implement

(when
e a large overhead) and it has an additional logarithmi
 spa
e overhead. On the

other hand, fast relaxed multipli
ation has a good spa
e 
omplexity, is asymptoti
ally fast

and easy to implement, but the algorithm outperforms the relaxed divide and 
onquer

algorithm only for large values of n, espe
ially when multipli
ations in C are expensive,

so that the extra overhead needed by the divide and 
onquer strategy 
an be negle
ted.
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n 1 2 3 4 5 6 7 8 9 10 100 1000 10000

Naive 1 3 6 10 15 21 28 36 45 55 5050 500500 50005000

DAC 1 3 5 9 11 15 19 27 29 33 1251 52137 1844937

Fast-I 1 3 8 10 18 20 37 39 47 49 2938 103693 4458055

Fast-II 1 3 8 10 18 20 35 37 45 47 1602 27408 411963

Variant-I 1 3 5 8 14 16 22 24 33 35 1904 66515 2535836

Variant-II 1 3 5 8 14 16 22 24 33 35 1176 20311 300794

Table 3. The number of needed 
onstant multipli
ations at order n for di�erent

relaxed multipli
ation algorithms.

Finally, if we know beforehand that we wish to 
ompute only n 
oeÆ
ients of a power

series, then both methods have the drawba
k that they anti
ipate the 
omputation of

the next n 
oeÆ
ients.

Consequently, it is interesting to sear
h for algorithms whi
h over
ome these problems

and we will make some suggestions in this se
tion. In Table 3 we have 
ompared the

respe
tive 
omplexities of di�erent methods, by 
ounting the number of 
onstant mul-

tipli
ations they use as a fun
tion of n. For the fast relaxed algorithm and the variant

from Se
tion 4.4.1 below, we 
onsidered both the 
ases in whi
h we use

I. DAC-multipli
ation.

II. A linear algorithm with M(n) = 2n� 1

for zealous multipli
ation.

As a 
on
lusion, it seems that there is no overall best relaxed multipli
ation method.

The implementer should 
hoose the algorithm as a fun
tion of the appli
ation he has in

mind and in parti
ular as a fun
tion of the 
ost of 
onstant multipli
ations, the expansion

order n, the spa
e 
omplexity he is willing to pay, the desired degree of laziness and the

time he wishes to spend on his implementation. We refer to Se
tion 7 for a further

dis
ussion of this issue.

4.4.1. An alternative fast relaxed multipli
ation algorithm

It is possible to slightly improve the 
onstant fa
tor in the theoreti
al 
omplexity of

the algorithm from Se
tion 4.3.1, by using the tri
k (3.1) in order to 
ompute the 
ontri-

butions of �

1;k�1;p

and �

k�1;1;p

simultaneously. Unfortunately, this makes the algorithm

more 
omplex, sin
e this supposes that we have �

1;1;p

and �

k�1;k�1;p

in memory. Nev-

ertheless, working the idea out 
arefully leads to the slightly more eÆ
ient algorithm

below, whi
h uses approximately twi
e as mu
h memory. In this algorithm, the \diago-

nal produ
ts" �

i;i;p

are retrieved from the trun
ated series  .

In Figure 4 we illustrated the 
orresponding 
omputation pro
ess. In Table 3 we 
om-

pared its theoreti
al eÆ
ien
y with the algorithm from Se
tion 4.3.1. However, it should

be noti
ed that, in pra
ti
e, for 
ertain 
onstant rings C, the operands for whi
h we apply

the tri
k (3.1) usually have very di�erent sizes, so that the mean 
ost of multipli
ations

in C may be higher for the alternative algorithm.
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Class Produ
t4 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C)

Method Produ
t4 Series Rep(C):next()

Output: The next 
oeÆ
ient (fg)

n

.

V1. [Enlarge ' and  ℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

if ℄ < k then  :=  

0���k

V2. [A

umulate℄


 := f

n

g

n

'

2n

+= 


 

2n

+= 


if n+ 2 = 5� 2

p

(p 2 N) then a

umulate(2� 2

p

� 1; 3� 2

p

� 1; 2

p

; true)

k := 2(n+ 2); p := �1

while (k mod 2) = 0 and k 6= 4

k := k=2; p := p+ 1

if p > 0 then a

umulate((2k � 1)2

p�1

� 1; (2k � 2)2

p�1

� 1; 2

p�1

; true)

a

umulate(2

p

� 1; (k � 1)2

p

� 1; 2

p

; false)

return '

n

Method Produ
t4 Series Rep(C):a

umulate(i; j; k; f lag)

Input: Indi
es i; j; k and a 
ag flag.

A
tion: � = f

i���i+k

g

j���j+k

+ f

j���j+k

g

i���i+k

is added to '

i+j���i+j+2k�1

.

If flag holds, then � is also added to  

i+j���i+j+2k�1

.

� := (f

i���i+k

+ f

j���j+k

) ? (g

i���i+k

+ g

i���i+k

)�  

2i���2i+2k�1

�  

2j���2j+2k�1

'

i+j���i+j+2k�1

+= �

if flag then  

i+j���i+j+2k�1

+= �

4.4.2. Trun
ation

Assume that we want to 
ompute the �rst n terms of a power series and that we know

that we do not need any more terms. Then the relaxed algorithms from the previous

se
tions have the disadvantage that they do more 
omputations than needed, sin
e the


omputations of the next n 
oeÆ
ients are already anti
ipated. There are two approa
hes

to this problem.

In the �rst approa
h, we implement a 
lass of \trun
ated produ
t series". Su
h a series

has a �eld � whi
h 
ontains the trun
ation order and no 
omputations beyond this order

are allowed and anti
ipated. Furthermore, su
h a series 
ontains an additional method to

in
rease the trun
ation order and whi
h anti
ipates part of the forth
oming 
omputations
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Figure 4. A variant of fast relaxed multipli
ation

if needed. When applied to fast relaxed multipli
ation, we have illustrated in Figure 5

the trun
ated 
omputation at order 12.

In the se
ond approa
h, we do not have an additional method to in
rease �. Instead, we

adopt the 
onvention that, as soon as we wish to 
ompute the n-th term of the produ
t

series, then we in
rease � to n if ne
essary. This approa
h has the advantage that the user

interfa
e does not 
hange. However, one should be aware that a sequential 
omputation

of the �rst n terms of the produ
t will have the same 
omplexity as in the 
ase of naive

lazy multipli
ation. Therefore, if the user knows beforehand that he needs n terms, then

he should �rst 
ompute the last term, before retrieving the others.

We �nally noti
e that Mulders' algorithm for trun
ated DAC-multipli
ation, as de-

s
ribed at the end of Se
tion 3.1.3 is essentially relaxed. Consequently, a similar 
onstant

speed-up 
an be a
hieved in the relaxed setting.

4.4.3. Inlining

For appli
ations in numeri
al analysis, it is interesting to 
onsider the 
ase when C

is a \ring" of 
oating point numbers of low, bounded pre
ision and when the expan-

sion order is small. Then one would like to use trun
ated relaxed DAC-multipli
ation,

sin
e this method has a good 
omplexity for small orders. However, the overhead of the

method be
omes mu
h too high in this 
ase, due to re
ursive fun
tion 
alls and memory

allo
ations. Nevertheless, the overhead 
an signi�
antly be redu
ed by \unrolling" the
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Figure 5. Trun
ated fast relaxed multipli
ation at order 13

whole pro
ess. This means that a bu�er is allo
ated at the start for all premature and

temporary results and that the 
omputations at ea
h stage are performed \inline".

Let us give an example of how to do program this for order 8. In pra
ti
e, the program

should rather be generated automati
ally as a fun
tion of the (maximal) order. The

produ
t 
lass is given by

Class Produ
t5 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C; 5)

The 
onstru
tor takes the two multipli
ands on input and stores them in f and g. We

also set ' := 0

0���8

,  := 0

0���5

.

Method Produ
t5 Series Rep(C):next()

Output: The next 
oeÆ
ient (fg)

n

assuming that n < 8.

I*. [Separate 
ases℄

if n = 0 then go to I0

.

.

.

if n = 7 then go to I7

error \n too high"

I0. return f

0

g

0

I1. '

2

:= f

1

g

1

return (f

0

+ f

1

)(g

0

+ g

1

)� '

0

� '

2
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I2.  

0

:= '

2

'

4

:= f

2

g

2

 

1

:= f

0

+ f

2

 

2

:= g

0

+ g

2

return '

2

+  

1

 

2

� '

0

� '

4

I3. '

6

:= f

3

g

3

'

5

:= (f

2

+ f

3

)(g

2

+ g

3

)� '

4

� '

6

 

3

:= f

1

+ f

3

 

4

:= f

2

+ f

4

'

4

:=  

3

 

4

�  

0

� '

6

return ( 

1

+  

3

)( 

2

+  

4

)� '

1

� '

5

I4.  

0

:= f

0

g

4

 

1

:= f

4

g

0

return '

4

+  

0

+  

1

I5.  

2

:= f

1

g

5

 

3

:= f

5

g

1

return '

5

+ (f

0

+ f

1

)(g

4

+ g

5

) + (f

4

+ f

5

)(g

0

+ g

1

)�  

0

�  

1

�  

2

�  

3

I6. return '

6

+  

2

+  

3

+ f

0

g

6

+ f

2

g

4

+ f

4

g

2

+ f

6

g

0

I7. return f

0

g

7

+ f

1

g

6

+ f

2

g

5

+ f

3

g

4

+ f

4

g

3

+ f

5

g

2

+ f

6

g

1

+ f

7

g

0

Although the size of inline programs tends to grow rapidly as a fun
tion of the order,

they should remain a

eptable due to the fa
t that we only 
onsider small orders. In the


ase when multipli
ation in C is really fast with respe
t to addition (for instan
e, when

using \ma
hine doubles"), it is possible to adapt the strategy, so that the tri
k (3.1) is

only applied for 2

p

� 2

p

multipli
ations with suÆ
iently large p. Numeri
al experiments

by A. Norman tend to show that inline relaxed multipli
ation be
omes more eÆ
ient for

orders > 32.

4.5. Appli
ations

4.5.1. Impli
it series

The main appli
ation of the relaxed multipli
ation algorithm is the eÆ
ient expansion

of power series solutions to 
ertain fun
tional equations, mainly ordinary and partial

di�erential equations. Therefore, it is 
onvenient to introdu
e the 
lass Impli
it Series(C),

whose instan
es are pointers to the representation 
lass

Class Impli
it Series Rep(C) . Series Rep(C)

I : TPS(C)

eq : Series(C)

Here I 
ontains the initial 
onditions (℄I in number) and eq the impli
it equation whi
h

yields the remaining 
oeÆ
ients. The 
onstru
tor sets I := 0

0���0

and eq := null. The

n-th 
oeÆ
ient is 
omputed as follows:



Relax, but don't be too lazy 35

Method Impli
it Series Rep(C):next()

Output: The next, n-th 
oeÆ
ient of the series.

if eq = null then error \equation not set"

if n < ℄I then return I

n

else return eq

n

Remark. We noti
e that in low level languages, impli
it series have to be treated with


are from a memory management point of view. When using a referen
e 
ounting te
h-

nique for the 
opying of series, one needs to reset eq to null after using the impli
it series;

otherwise, 
y
li
 dependen
ies might fool the referen
e 
ounter. In high level 
omputer

algebra systems this problem usually does not o

ur, be
ause the garbage 
olle
tor is

suÆ
iently powerful to re
over non used memory automati
ally.

4.5.2. Ordinary differential equations

The use of the 
lass Impli
it Series(C) is well illustrated by an example. Consider the

system of ordinary di�erential equations

�

f

0

= fg;

g

0

= f + g;

with initial 
onditions f(0) = g(0) = 1. Then the following pie
e of 
ode 
omputes the

n-th 
oeÆ
ient of f :

f := new Impli
it Series(C)

g := new Impli
it Series(C)

f:I := 1

0���1

g:I := 1

0���1

f:eq :=

R

f � g

g:eq :=

R

f + g


 := f

n

f:eq := null

g:eq := null

In a similar fashion, relaxed multipli
ation 
an for instan
e be used to solve systems of

algebrai
 di�erential equations, by rewriting the equations in integral form like in (3.5).

Although we lose a fa
tor logn in the asymptoti
 
omplexity with respe
t to Brent and

Kung's zealous algorithm, the relaxed approa
h has two advantages:

� We may dire
tly treat systems of o.d.e.'s.

� The 
onstant fa
tor in the asymptoti
 
omplexity depends linearly on the size of

the equation, when rewritten in its integral form.

As to the se
ond advantage, we noti
e that Brent and Kung's algorithm is exponential in

the order r of the equation. Therefore, our algorithm is more eÆ
ient in pra
ti
e ex
ept

for parti
ularly low orders (typi
ally r = 1 or r = 2, but even in this 
ase, Tables 4 and 5

below provide interesting ben
hmarks).
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4.5.3. Other fun
tional equations

The relaxed multipli
ation algorithm 
an also be used to solve more general fun
tional

equations, su
h as

s(z) = 1 + z

s(z)

3

+ 2s(z

3

)

3

: (4.2)

The generating fun
tion s(z) whi
h satis�es this equation enumerates the number of

stereoisomeres of al
ohols of the form C

n

H

2n+1

OH (P�olya, 1937). Theorem 4.1 implies

that the asymptoti
 
omplexity to 
ompute the �rst n 
oeÆ
ients of s(z) is O(n log

2

n),

whi
h is mu
h better than the previously best known bound O(n

2

). Many other di�er-

ential di�eren
e equations arising in 
ombinatori
s and the analysis of algorithms are

similar to 4.2 (Flajolet and Sedgewi
k, 1996); in parti
ular, we mention binary splitting

algorithms and di�erential q-di�eren
e equations. In Se
tion 5, we will 
onsider even

more general equations.

4.5.4. Partial differential equations

Fast relaxed multipli
ation 
an also be used to solve non linear partial di�erential equa-

tions, by 
onsidering d-dimensional power series as power series with (d�1)-dimensional

power series as 
oeÆ
ients. Consider for instan
e the equation

�f

�y

=

�

�f

�x

�

2

+

�

�

2

f

�x

2

�

2

;

f(x; 0) = e

x

:

We 
an 
ompute the 
oeÆ
ient of x

n

y

m

in f(x; y) using the following pie
e of 
ode:

f := new Impli
it Series(Series(C))

f:I := exp(x)

f:eq :=

R

y

((�

x

f)

2

+ (�

x

�

x

f)

2

)


 := (f

m

)

n

f:eq := null

Here x : Series(C),

R

y

=

R

and �

x

is implemented trivially. Now we noti
e that the


omputation of x

n

y

m

involves expansion of f

m

up till n + 1 terms, f

m�1

up till n +

3 terms and so on until f

0

, whi
h is expanded up till n + 2m + 1 terms. Using fast

relaxed multipli
ation in y, the 
omplexity of this 
omputation is therefore bounded by

O(M((n +m)m) logm). A
tually, this almost linear theoreti
al 
omplexity is a general

situation and the following theorem is proved similarly:

Theorem 4.2. Let the 
lasses A

d

be de�ned indu
tively by

� A

0

= C.

� A

d

is the 
lass of power series f 2 C[z

1

; : : : ; z

d

℄, whi
h satisfy an algebrai
 di�er-

ential equation of the form

P

0

�

 

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;
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with initial 
onditions in A

d�1

, and su
h that the separant in z

d

S

d

=

�P

�

�

r

f

�z

r

d

0

�

 

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;

(where r is highest su
h that

�

r

f

�z

r

d

o

urs in P ) evaluates to an invertible series in

C[[z

1

; : : : ; z

d�1

℄℄ when setting z

d

= 0.

Given a series f in A

d

and integers n

1

; : : : ; n

d

> 0, the 
oeÆ
ients of z

k

1

1

� � � z

k

d

d

in f

with k

1

< n

1

; : : : ; k

n

< n

d


an be evaluated in time O(M((n

1

+ � � � + n

d

) � � � (n

d�1

+

n

d

)n

d

) log(n

1

+ � � �+ n

d

)) and spa
e O(n

1

� � �n

d

). 2

4.6. Ben
hmarks

We have implemented the zealous multipli
ation algorithm and several relaxed multi-

pli
ation algorithms in C++, using integer, rational and 
oating point arithmeti
 from

GMP (the GNU multipre
ision library). Our ben
hmarks were obtained on a PC running

under Linux, with a 166MHz AMD pro
essor and 64Mb of memory. In our tables, all

timings are done in se
onds. We aborted the 
omputations after one hour; the maxi-

mal number of 
oeÆ
ients whi
h 
ould be 
omputed in this time are shown in the last


olumns of the tables.

We 
ompared the following multipli
ation algorithms:

� Zealous: The purely zealous algorithms from Se
tion 3.

� Naive: The naive lazy algorithm from Se
tion 4.1.

� DAC: The relaxed DAC-multipli
ation algorithm from Se
tion 4.2.

� Fast: Fast relaxed multipli
ation from Se
tion 4.3.

� Variant: The variant of fast relaxed multipli
ation from Se
tion 4.4.1.

� Trun
ated: Fast trun
ated relaxed multipli
ation, as sket
hed in Se
tion 4.4.2.

In Table 4, we 
onsidered the expansion of exp(z exp z), using high pre
ision 
oat-

ing point numbers, so that multipli
ation in C has a high, but �xed 
ost. Not surpris-

ingly, all relaxed algorithms do asymptoti
ally better than lazy multipli
ation (ex
ept

for DAC-multipli
ation, whi
h starts swapping for high orders). The threshold for FFT-

multipli
ation being high, we observe an O(n

3=2

) asymptoti
 
omplexity. In the future,

when GMP will support FFT-multipli
ation, even higher gains should be a
hievable (see

Se
tion 6.1). We also noti
ed another advantage of fast relaxed multipli
ation: when

suÆ
ient memory is not available, little time is spent on swapping, sin
e most of the


omputations are done on large blo
ks of 
onse
utive 
oeÆ
ients in memory.

In Table 5, we have 
omputed the expansion of exp(z exp z), using rational 
oeÆ
ients.

Although the naive algorithm turns out to be the fastest in this 
ase, the results are

\fooled" by the fa
t that rational number arithmeti
 is not implemented optimally in

GMP. Indeed, although DAC-multipli
ation is used for integers, the g
d-algorithm has a

quadrati
 
omplexity... Therefore, most time is spent on 
omputing g
d's. Noti
e also that

both in tables 4 and 5, the zealous algorithm is slower than the fast relaxed algorithms,

despite its better asymptoti
 
omplexity.

In Table 6, we 
onsidered the expansion of the solution to equation (4.2), using integer
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Multipli
ation 10 20 50 100 200 500 1000 2000 1h

Zealous 0:161 0:985 7:202 27:017 92:36 361:19 1135:4 3403 2135

Naive 0:048 0:282 2:533 11:474 48:86 317:00 1283:8 1670

DAC 0:079 0:309 1:428 4:384 13:19 61:35 1887:4 1025

Fast 0:061 0:331 2:162 7:583 25:10 96:20 307:2 959 4095

Variant 0:077 0:347 1:874 5:938 18:34 67:27 193:8 494 �

Trun
ated 0:047 0:274 1:838 6:782 21:70 98:21 307:5 947 4408

Table 4. Time in se
onds to expand exp(z exp z) at various orders, using di�erent

algorithms and 10000 bits 
oating point 
oeÆ
ients.

Multipli
ation 10 20 50 100 200 500 1h

Zealous 0:052 0:187 1:294 6:916 50:09 1085:87 686

Naive 0:025 0:072 0:417 2:194 16:62 446:34 845

DAC 0:029 0:101 0:641 3:614 30:45 918:78 758

Fast 0:038 0:125 0:800 4:190 30:96 430:92 767

Variant 0:047 0:155 0:995 5:658 48:78 888:92 703

Trun
ated 0:026 0:082 0:485 2:308 15:52 342:05 944

Table 5. Time in se
onds to expand exp(z exp z) at various orders, using di�erent

algorithms and rational 
oeÆ
ients.


oeÆ
ients modulo the prime number 1234577. In this 
ase, multipli
ation in C has a �xed

low 
ost. The threshold for FFT-multipli
ation is between 2048 and 4096 
oeÆ
ients,

whi
h explains a better asymptoti
 performan
e of the fast relaxed algorithms than

O(n

3=2

). Although our implementation of FFT-multipli
ation may still be improved, it

be
omes 
lear that important gains are already a
hieved.

In Table 7, we again 
onsidered the expansion of the solution to equation (4.2), but

using integer 
oeÆ
ients. In this 
ase, the sizes of the 
oeÆ
ients in C grow linearly

with the expansion order, whi
h explains the rapid growth of the 
omputation times. For

suggestions about additional speedups, we refer to Se
tions 6.1 and 6.3.

5. Relaxed 
omposition

A dependen
y analysis of the 
omposition algorithms from Se
tion 3.4 shows that

they are, or are almost essentially relaxed, just like DAC-multipli
ation. Therefore, they

admit relaxed analogues with the same asymptoti
 time 
omplexities (when using a

relaxed multipli
ation algorithm). We will spe
ify these analogues in more detail in this

se
tion.

Multipli
ation 500 1000 2000 5000 10000 20000 50000 100000 200000 1h

Naive 0:948 2:897 9:541 52:09 198:46 786:5 43312

DAC 0:992 2:603 6:860 24:70 70:24 204:4 873 2624 121561

Fast 0:863 2:101 5:407 20:93 56:25 147:4 547 1355 3370 217087

Variant 0:918 2:055 4:997 16:28 42:10 108:7 411 1014 2480 275967

Trun
ated 0:766 2:022 5:151 19:03 52:60 145:3 539 1392 3529 203767

Table 6. Time in se
onds to 
ompute the number of stereoisomeres of C

n

H

2n+1

OH

modulo 1234577 for various n, using di�erent algorithms.



Relax, but don't be too lazy 39

Multipli
ation 10 20 50 100 200 500 1000 2000 5000 1h

Naive 0:012 0:026 0:087 0:249 0:850 5:485 32:56 297:57 4018

DAC 0:013 0:032 0:113 0:308 0:922 5:635 30:72 235:50 3583

Fast 0:015 0:037 0:131 0:375 1:185 4:853 21:33 134:54 2611 5759

Variant 0:017 0:043 0:151 0:407 1:221 5:558 29:59 215:59 3519 5119

Trun
ated 0:012 0:028 0:098 0:276 0:871 4:496 19:95 129:23 2295 5862

Table 7. Time in se
onds to 
ompute the number of stereoisomeres of C

n

H

2n+1

OH for

various n, using di�erent algorithms (and integer 
oeÆ
ients).

5.1. Fast relaxed 
omposition with polynomials

In this se
tion, we spe
ify the relaxed version of the algorithm from Se
tion 3.4.1.

A
tually, we will 
ompute partial 
ompositions f

i���i+p

Æ g using the algorithm from Se
-

tion 3.4.1 and \glue" these partial 
omputations together into a global algorithm as we

did in Se
tion 4.2.3 for DAC-multipli
ation.

5.1.1. Partial series

For 
onvenien
e, we �rst introdu
e the 
lass

Class Partial Series Rep(C) . Series Rep(C)

eq : Series(C)

N : Integer

This 
lass implements series, whose �rst N 
oeÆ
ients are given by eq and whose other


oeÆ
ients vanish. Moreover, as soon as the �rst N 
oeÆ
ients have been 
omputed, eq

is released.

More pre
isely, the 
onstru
tor of Partial Series Rep(C) takes a series and an integer

on input, whi
h are assigned to eq and N . We also implement a fun
tion

partial : Series(C)� Integer! Series(C);

whi
h takes eq and N on input and returns new Partial Series Rep(C)(eq;N). The 
o-

eÆ
ients of a partial series are 
omputed using the method below. The �rst line of the

program is needed for memory allo
ation purposes.

Method Partial Series Rep(C):next()

Output: The next 
oeÆ
ient of the partial series.

if n is a power of two then ' := '

0���max(2n;℄')

if n = N then eq := null

if n > N then return 0

return eq

n

Remark. Re
all that ' := '

0���max(2n;℄')

is �lled up with zeros if 2n > ℄'. In other

words, this statement is used to reserve additional memory for 
oeÆ
ients of '.

5.1.2. Partial right 
omposition with polynomials

In what follows, p will always be a power of two and g is as in Se
tion 3.4.1. The

algorithm partial 
ompose pol below 
omputes the partial 
omposition of f

i���i+p

with
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g. We assume that the powers g; g

2

; g

4

; : : : ; g

p=2

have been 
omputed elsewhere and

stored in a hashtable H .

Algorithm partial 
ompose pol(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

su
h that H [i℄ 
ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right 
omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial 
ompose pol(f; i; p=2; q;H)

h

�

:= partial 
ompose pol(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

It is also 
onvenient to have the following variant of partial 
ompose pol in order

to extend previous 
omputations:

Algorithm partial 
ompose pol(h

�

; p; q;H)

Input: A previous partial 
omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right 
omposition of f

0���p

with g.

h

�

:= partial 
ompose pol(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

5.1.3. Right 
omposition with polynomials

The representation 
lass Compose Polynomial Rep(C) 
orresponds to the total 
ompo-

sition of f with a polynomial g:

Class Compose Polynomial Rep(C)

f; h : Series(C)

H : Hash Table(Integer; Series(C))

q : Integer

The 
onstru
tor takes f; g : Series(C) and an integer q as arguments and initializes

f := f;H [1℄ := g; q := q and h := partial 
ompose pol(f; 0; 1; q;H); the other entries

of H are unde�ned at initialization.

In order to 
ompute the 
oeÆ
ients of f Æ g, we use the partial 
omposition algorithm,

but we double the order p ea
h time when n be
omes a power of two.

Method Compose Polynomial Rep(C):next()

Output: The next 
oeÆ
ient (f Æ g)

n

.
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if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h := partial 
ompose pol(h; 2n; q;H)

return h

n

5.1.4. Complexity analysis

Theorem 5.1. There exists a relaxed right 
omposition algorithm for formal power se-

ries f by polynomials g, whi
h 
omputes n terms of f Æ g in time O(qM

�

(n) logn) and

spa
e O(nq log q).

Proof. We may assume without loss of generality that n is a power of two. Then the

estimation for the time 
omplexity is 
lear, sin
e we perform the same 
onstant operations

as in the zealous 
ase.

In order to determine the spa
e 
omplexity, we have to estimate the spa
e whi
h is

o

upied by the instan
es h

i;p

of Partial Series Rep(C), whi
h 
orrespond to the 
ompo-

sitions f

i���i+p

Æ g (here p is a power of two and i a multiple of p). These instan
es 
an

be organized in a binary tree with root h

0;n

and su
h that the 
hildren of h

i;p

are h

i;p=2

and h

i+p=2;p=2

(for p > 1).

We distinguish the following types of instan
es h = h

i;p

:

I. A
tive instan
es: h:eq 6= null and h:n > 0.

II. Latent instan
es: h:eq 6= null but h:n = 0.

III. Completed instan
es: h:eq = null.

We observe that ea
h latent instan
e o

upies O(1) memory spa
e. In total, they therefore

o

upy O(n) memory spa
e. Ea
h remaining instan
e o

upies O(min(pq; n)) memory.

Furthermore, the parent of a 
ompleted instan
e is ne
essarily a
tive, so that the 
om-

pleted instan
es do not o

upy more than twi
e as mu
h memory as the a
tive ones.

Now for given pjn, 
onsider the instan
es h

0;p

; : : : ; h

n�p;p

. Ea
h instan
e h

i;p


on-

tributes to the 
oeÆ
ients of f Æ g between i and i + (p � 1)(q � 1) + 1. Hen
e, if the

instan
e h

i;p

is a
tive at stage k, then i 6 k < i + pq. The number of su
h instan
es

is therefore bounded by q. Hen
e, the total amount of memory o

upied by the a
tive

instan
es is bounded by

O

0

�

X

pjn

qmin(n; pq)

1

A

= O(nq log q);

where we remind that n is a power of two. 2

5.2. Fast relaxed 
omposition with algebrai
 fun
tions

5.2.1. The 
lass Algebrai
 Series(C)

Let g be as in Se
tion 3.4.2. The algorithm for relaxed right 
omposition with polyno-

mials is easily adapted to the 
ase of right 
omposition with g, by introdu
ing a suitable

relaxed analogue Algebrai
 Series(g;C) of the 
lass Algebrai
 TPS(g;C) from Se
tion 3.4.2.
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An instan
e of Algebrai
 Series(g;C) 
onsists of d series F

0

; : : : ; F

d�1

and an integer

k

F

. The following fun
tions are easily implemented:

� An binary powering algorithm to 
ompute and remember P

k

F

d

in a hashtable P

C

.

� An addition algorithm for Algebrai
 Series(g;C).

� A multipli
ation algorithm for Algebrai
 Series(g;C).

� The analogue of the algorithm partial from Se
tion 5.1.1 for Algebrai
 Series(g;C).

� A fun
tion 
onvert whi
h 
onverts an instan
e of Algebrai
 Series(g;C) ba
k to a

series in Series(C).

5.2.2. Partial right 
omposition

The analogues of the algorithms partial 
ompose alg from Se
tion 5.1.2 are given

by

Algorithm partial 
ompose alg(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

su
h that H [i℄ 
ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right 
omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial 
ompose alg(f; i; p=2; q;H)

h

�

:= partial 
ompose alg(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

Algorithm partial 
ompose alg(h

�

; p; q;H)

Input: A previous partial 
omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right 
omposition of f

0���p

with g.

h

�

:= partial 
ompose alg(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

5.2.3. Right 
omposition with algebrai
 fun
tions

The analogue of the 
lass Compose Polynomial Rep(C) is given by

Class Compose Algebrai
 Rep(g;C)

f; h : Series(C)

h

alg

: Algebrai
 Series(g;C)

H : Hash Table(Integer;Algebrai
 Series(g;C))

q : Integer

The 
onstru
tor takes f and an integer q as arguments and initializes f := f;H [1℄ :=

g; q := q, h

alg

:= partial 
ompose alg(f; 0; 1; q;H) and h := 
onvert(h

alg

); the other

entries of H are unde�ned at initialization.
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Method Compose Algebrai
 Rep(g;C):next()

Output: The next 
oeÆ
ient (f Æ g)

n

.

if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h

alg

:= partial 
ompose alg(h

alg

; 2n; q;H)

h := 
onvert(h

alg

)

return h

n

The following theorem is proved in a similar way as theorem 5.1:

Theorem 5.2. Let g be as in Se
tion 3.4.2. There exists a relaxed right 
omposition

algorithm for formal power series f by g, whi
h 
omputes n terms of f Æ g in time

O(qd

2

(q � v)M

�

((1 + v)n)) and spa
e O(qdn(v + log(q � v)))). 2

5.3. Fast relaxed 
omposition when C is a divisible ring

Assume that C is a divisible ring. The representation 
lass Compose Rep(C) below


orresponds to the 
omposition of two arbitrary power series f; g : Series(C).

Class Compose Rep(C) . Series Rep(C)

f; g; h : Series(C)

The 
onstru
tor initializes f and g with the arguments and h := null.

The \relaxation" of Brent and Kung's algorithm from Se
tion 3.4.3 gives rise to a

new problem: we would like to use the relaxed algorithm for right 
omposition with

polynomials in order to 
ompute fÆg

�

in (3.20). But as n in
reases, the value of g

�


hanges

very often, and ea
h time this happens, we have to start over the relaxed 
omputation

of f Æ g

�

.

Therefore, we should neither 
hange g

�

to often, so that we make eÆ
ient use of the

polynomial right 
omposition algorithm, nor too little, so that the power series expansion

of f Æ (g

�

+ g

�

) 
an still be done qui
kly. A good 
ompromise (from the asymptoti



omplexity point of view) is to let q = 2

p+1

be the largest power of two with p4

p�1

6 n.

Method Compose Rep(C):next()

Output: The next 
oeÆ
ient of (f Æ g)

n

.

C1. [n small℄

if n = 0 then return f

0

if n = 1 then return f

1

g

1

if n = 2 then return f

2

g

2

1

+ f

1

g

2

if n = 3 then return (f

3

g

2

1

+ 2f

2

g

2

)g

1

+ f

1

g

3

C2. [Compute q and r℄

p := maxfp 2 Njp4

p�1

6 ng

if n 6= 4 and p4

p�1

6 n� 1 then return h

n

n

0

:= (p+ 1)4

p
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q := 2

p+1

r := dn

0

=qe

while r > n do q := 2q; r := dn

0

=qe

C3. [Adjust h℄

g

�

:= g

0���q

g

�

:= g � g

�

D := new Compose Polynomial Rep(f

(r�1)

; g

�

)

h := D := D=(r � 1)!

for i := r � 1 downto 1 do

D := f

i�1

+

R

((iD)� g

0

�

)

h := D + ((h� (g

�

div z

q

))mul z

q

)

return h

n

Theorem 5.3. There exists a relaxed 
omposition algorithm for formal power series f; g,

whi
h 
omputes n terms of f Æ g in time O(M

�

(n)

p

n logn) and spa
e O(n

p

n logn).

Proof. For n between two su

essive 
hanges of q, the time and spa
e 
omplexities of

the 
omputation of f Æ g

�

are O(M

�

(n)

p

n logn) resp. O(n

p

n logn), by theorem 5.1.

The Taylor expansion of f Æ g 
ontains O(

p

n logn) terms. Hen
e, the 
omplexity of

its evaluation (whi
h requires only additions, derivations, multipli
ations and divisions,

whi
h are all performed in time O(M

�

(n))) is again O(M

�

(n)

p

n logn). The Taylor

expansion requires O(n

p

n logn) spa
e.

Now observe that q 
hanges at most on
e for n between a given number n

0

and 2n

0

.

Hen
e, for general values of n, the time 
omplexity is bounded by O(M

�

(n)

p

n logn +

M

�

(n=2)

p

(n logn)=2+ � � �+M

�

(1)) = O(M

�

(n)

p

n logn) and the spa
e 
omplexity by

O(n

p

n logn). 2

Remark. In Se
tion 4.4.2, we have shown how to gain a 
onstant fa
tor on the time and

spa
e 
omplexities for relaxed multipli
ation if an a priori bound for the expansion order

has been spe
i�ed. A similar optimization 
an be 
arried out here: if the maximal order

is known beforehand, then we may 
hoose q and r as in Se
tion 3.4.3, thereby avoiding


ertain re
omputations.

5.4. Fast relaxed 
omposition for rings C of finite 
hara
teristi


The formulas (3.21) and (3.22), 
ombined with the Chinese remainder theorem, yield

straightforward relaxed 
omposition algorithms when C has �nite 
hara
teristi
. We will

just treat the 
ase when the 
hara
teristi
 p of C is prime; the general 
ase is longer, but

not essentially more diÆ
ult.

The following fun
tions are easily implemented

� 
ompose p : Series(C)! Series(C); f 7! f Æ z

p

.

� power p : Series(C)! Series(C); f 7! f

p

0

+ f

p

1

z + f

p

2

z

2

+ � � � .

� progression p : Series(C)� Integer! Series(C); (f; i) 7! f

i

+f

i+p

z+f

i+2p

z

2

+ � � � .

Now the 
lass Compose Rep(C) 
orresponds to the 
omposition of f and g:
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Class Compose prime Rep(C) . Series Rep(C)

f; g; h : Series(C)

The 
onstru
tor initializes f and g with the arguments and h := null.

Method Compose prime Rep(C):next()

Output: The next 
oeÆ
ient of (f Æ g)

n

.

C1. [Easy 
ase℄

if n = 0 then return f

0

if n > 1 then return h

n

C2. [Set up equation℄

h := 0

for i := p� 1 downto 0 do

t := 
ompose p(
ompose(progression p(f; i);power p(g)))

h := ((h� (g div z))mul z) + t

return h

n

Theorem 5.4. Assume that C has prime 
hara
teristi
 p. Then there exists a relaxed


omposition algorithm for formal power series f; g, whi
h 
omputes n terms of f Æ g in

time O((p= log p)M

�

(n) logn) and spa
e O((p= log p)n logn).

Proof. The time and spa
e 
omplexities T (n) resp. S(n) satisfy

T (n) = pT (n=p) +O(pM

�

(n));

S(n) = pS(n=p) +O(pn):

The 
omplexity bounds follow from these relation. 2

As in the zealous 
ase, the above algorithm 
an be optimized by using the lazy ver-

sion of Brent and Kung's algorithm for small values of n. For rings C of more general


hara
teristi
, the relaxed analogues of Bernstein's result and theorem 3.5:

Theorem 5.5.

a. Assume that C has prime power 
hara
teristi
 p

k

. Then there exists a relaxed 
om-

position algorithm for formal power series f; g, whi
h 
omputes n terms of f Æ g in

time O((k

3

p= log p)M

�

(n) logn) and spa
e O((kp= log p)n logn).

b. Assume that C has general 
hara
teristi
 r. Then there exists a relaxed 
omposition

algorithm for formal power series f; g, whi
h 
omputes n terms of f Æ g in time

O((r= log r)M

�

(n) logn) and spa
e O((r= log r)n logn). 2

5.5. Appli
ations

5.5.1. Finite differen
e equations

One of the most interesting appli
ations of theorem 5.2 is that all linear or non linear

�nite di�eren
e equations at in�nity (assuming that they have been put in some normal
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form) 
an be solved in essentially linear spa
e and time. Consider for instan
e the equation

f(x) =

1

x

(1 + f(x+ 1) + f

0

(x)

2

); (5.1)

whi
h admits a unique power series solution in 1=x:

f(x) =

1

x

+

1

x

2

�

1

x

4

�

3

x

6

+O

�

1

x

7

�

Putting x = 1=z and f(x) = f(1=z) = g(z), the equation (5.1) be
omes

g(z) = z

�

1 + g

�

z

1 + z

�

� z

4

g

0

(z)

2

�

: (5.2)

Using the initial 
ondition g(0) = 0, the �rst n terms of g(z) 
an be 
omputed in time

O(n log

3

n log logn) by theorem 5.2, when using FFT-multipli
ation.

5.5.2. Combinatori
s

In 
ombinatori
s, one also sometimes en
ounters fun
tional equations, whi
h involve

right 
omposition with polynomials or algebrai
 fun
tions. An example of su
h an equa-

tion is

f(z) = z + f(z

2

+ z

3

):

The generating fun
tion f 
ounts the number of so 
alled 2-3-trees (Odlyzko, 1982). The


oeÆ
ients 
an again be 
omputed in essentially linear time.

5.5.3. General fun
tional equations

Theorem 5.3 
an be used to solve any kind of fun
tional equation involving di�eren-

tiation and 
omposition up till n terms in time O(n

3=2

log

5=2

n log logn). An example of

su
h an equation is given by

f(z) = z + f(zf(z) + z

2

f

0

(z)) + z

4

exp(zf

00

(z)):

Noti
e that power series reversion is another example.

5.6. Ben
hmarks

Using the same 
onventions and multipli
ation algorithms as in Se
tion 4.6, we have

tested four 
omposition algorithms:

� Naive: The naive relaxed 
omposition algorithm, using Horner's rule.

� Brent&Kung: The relaxed version of Brent and Kung's algorithm.

� Fast: The almost linear algorithms in 
ase of right 
omposition with polynomials

or algebrai
 fun
tions.

� Bernstein: The relaxed version of Bernstein's algorithm, for 
oeÆ
ient rings of 
har-

a
teristi
 p > 0.

We also implemented trun
ated versions of these algorithms, whi
h were used ea
h time

we used trun
ated relaxed multipli
ation.
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Composition Multipli
ation 100 200 500 1000 2000 5000 10000 20000 1h

Naive Naive 0:537 3:213 43:80 337:1 2647:2 2216

Fast 1:113 6:187 69:15 459:5 3152:5 2093

Trun
ated 0:592 2:857 28:53 169:0 1022:7 3119

Brent&Kung Naive 0:561 2:065 23:68 96:4 871:1 4148

Fast 1:067 3:549 34:90 120:0 960:2 4188

Trun
ated 0:809 2:650 23:18 75:0 573:8 2905 5628

Fast Naive 0:406 1:448 8:21 34:2 144:9 1111 8560

Fast 0:713 2:151 8:13 25:8 83:8 499 1611 16385

Trun
ated 0:445 1:366 5:89 19:2 62:9 333 1070 3341 20253

Table 8. Time in se
onds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer 
oeÆ
ients modulo 1234577.

p Multipli
ation 100 200 500 1000 2000 5000 10000 20000 50000 1h

3 Naive 0:182 0:557 2:535 8:704 31:72 187:4 738 2923 22198

Fast 0:326 0:894 3:444 10:597 34:23 176:7 617 2214 25809

Trun
ated 0:231 0:565 1:955 5:287 14:76 56:8 162 489 3254 50000

11 Naive 0:264 0:855 4:275 15:876 60:77 370:4 1470 15668

Fast 0:431 1:400 5:901 19:281 66:00 358:4 1287 17025

Trun
ated 0:279 0:819 2:940 8:351 24:86 96:1 287 868 31946

37 Naive 0:483 1:678 9:988 39:336 158:56 994:5 9492

Fast 0:867 2:876 13:866 48:200 173:21 983:8 9990

Trun
ated 0:501 1:412 6:181 18:791 58:95 226:0 682 2132 24601

Table 9. Time in se
onds to expand the solution to (5.2) at various orders, using the

relaxed version of Bernstein's algorithm and integer 
oeÆ
ients modulo p.

In Table 8, we have 
onsidered the expansion of the solution to equation (5.2), where we

took the ring of integers modulo a large number p as our 
oeÆ
ient ring. A
tually, these

timings do not depend on p, when
e they 
an be 
ompared to those from Table 9, where p

is a small prime number, and where we use the relaxed version of Bernstein's 
omposition

algorithm. In Table 10, we 
onsidered the same equation, using integer 
oeÆ
ients.

6. Suggestions for spe
i�
 
oeÆ
ient rings

In the previous se
tions, we have given asymptoti
ally fast algorithms for the manip-

ulation of formal power series over a \generi
 ring" C. In pra
ti
e, C is usually the ring

Composition Multipli
ation 10 20 50 100 200 500 1000 2000 1h

Naive Naive 0:018 0:055 0:433 3:129 24:942 456:09 618

Fast 0:024 0:104 0:979 6:495 47:541 1037:63 514

Trun
ated 0:018 0:066 0:547 3:307 22:258 344:23 596

Brent&Kung Naive 0:026 0:077 0:848 2:881 12:805 195:72 830

Fast 0:039 0:135 1:764 5:781 23:679 298:51 894

Trun
ated 0:028 0:091 1:342 4:747 18:764 220:00 800

Fast Naive 0:031 0:095 0:431 1:782 7:636 55:15 359:41 3487 2012

Fast 0:057 0:202 0:955 3:575 13:124 59:69 274:84 1722 2049

Trun
ated 0:033 0:116 0:572 2:206 8:439 47:24 229:90 1572 2307

Table 10. Time in se
onds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer 
oeÆ
ients.
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of integers, rational numbers, 
oating point numbers, et
. or 
onstru
ted from one these,

by 
onsidering polynomial rings, rings of formal power series, or quotients.

On the one hand, this makes it possible to exploit the spe
ial nature of C in order to gain

additional 
onstant fa
tors on the 
omplexities of the relaxed algorithms. These fa
tors

may be 
onsiderable, but they rely on a 
lever use of the FFT-transform, as explained

in Se
tion 6.1. In parti
ular, it is time 
onsuming to write good implementations.

On the other hand, for most of the 
onstant �elds used in pra
ti
e, the size of the

n-th 
oeÆ
ient of a series tends to grow with n. Analogously, in numeri
al analysis, the

pre
ision of the n-th 
oeÆ
ient of a series tends to de
rease with n. Unfortunately, the

relaxed algorithms, more than the naive ones, tend to add 
oeÆ
ients of di�erent sizes

resp. pre
isions, whi
h leads to a loss of eÆ
ien
y or numeri
al instability. This issue will

be treated in more detail in Se
tions 6.2 and 6.3 and some approa
hes will be suggested.

This se
tion is mainly in
luded to give some hints about how to adapt the theoreti
al

algorithms from the previous se
tions to parti
ular, frequently used 
onstant rings C. Our

presentation will be informal and our suggestions have still to be tried out in pra
ti
e.

6.1. Generalizing the fast Fourier transform

In most of the a
tual 
omputer algebra systems, polynomials, ve
tors, matri
es, et
.

over a base ring C are implemented in a generi
 way. Unfortunately, this approa
h makes

it hard to fully exploit the fast Fourier transformation.

Consider for instan
e polynomials A and B with large integer 
oeÆ
ients, so that

the 
oeÆ
ients are multiplied using the FFT. Then in order to 
ompute AB, we may

�rst transform the 
oeÆ
ients of A and B, next multiply the transformed polynomials

and �nally transform ba
k. In this approa
h we only have to 
ompute the FFT of ea
h


oeÆ
ient of A and B on
e, so that we gain with respe
t to the generi
 polynomial multi-

pli
ation algorithm. Moreover, this optimization 
an be used re
ursively for multivariate

polynomials over the integers, and ea
h time we in
rease the number of variables, we

gain a 
onstant fa
tor with respe
t to the generi
 approa
h.

This example shows that we have to rethink the basi
 arithmeti
 operations for the

most elementary generi
 
omputer algebra types, in order to obtain maximal eÆ
ien
y for

large input sizes. For this purpose, let us reformulate FFT-multipli
ation in an abstra
t

way for elements A and B in a ring C.

� We �rst have to \transform" the ring C into

b

C

A;B

.

� We next 
ompute the fast Fourier transforms

b

A;

b

B :

b

C

A;B

of A and B.

� We multiply

b

A and

b

B in

b

C

A;B

, yielding

b

C.

� We transform

b

C ba
k into the produ
t C of A and B.

The \transformed ring"

b

C

A;B

is depends on 
ertain 
hara
teristi
s of A and B, su
h as

size or degree. In the algorithm from Se
tion 3.1.2, we would have

\

C[x℄=(x

n

+ 1)

A;B

=

C[y℄=(y

m

+1). The multipli
ation is represented s
hemati
ally by the following diagram:

A;B : C

FFT

����!

b

A;

b

B :

b

C

A;B

?

?

y

�

C

?

?

y

�

b

C

A;B

AB : C

FFT

�1

 ����

b

A

b

B :

b

C

A;B
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It is not hard to see how su
h an abstra
t FFT-transform might be implemented for

elementary 
omputer algebra types su
h as integers, 
oating point numbers, polynomials,

matri
es, et
. However, there are three di�erent approa
hes in the 
ase of dense polyno-

mials, whi
h are detailed below. The 
hoi
e of the fastest approa
h may depend on the

system. A 
alibration fun
tion should be implemented to �nd the optimal one for a given

input size.

6.1.1. Usual multipli
ation with transformed 
oeffi
ients

Let C be a 
onstant ring for whi
h an abstra
t FFT-transform has been implemented

and 
onsider the ring C[x℄ of dense polynomials over C. Given su
h a polynomial A =

A

d

x

d

+ � � �+A

0

, we may transform it using

b

A =




A

d

x

d

+ � � �+




A

0

:

d

C[x℄ =

b

C[x℄

and use a generi
 multipli
ation algorithm in

b

C[x℄. Of 
ourse, the pre
ise ring

b

C depends

on the sizes of the polynomials one wishes to multiply.

For small degrees, this approa
h yields the best results. For instan
e, the 
ost of mul-

tiplying two polynomials of degree 1 is stri
tly less than three 
onstant multipli
ations

(when the 
oeÆ
ients have approximately the same sizes). For other small degrees n, two

polynomials 
an be multiplied using 2n+1 
onstant operations using Toom-Cook's algo-

rithm (Toom, 1963b; Cook, 1966; Knuth, 1997). However, the overhead of this algorithm

grows rapidly, whi
h makes this approa
h less interesting for higher degrees.

6.1.2. Redu
tion to the base ring

For rings C of 
hara
teristi
 zero, another approa
h is to take

b

A =

\

A(2

N

) :

d

C[x℄ =

b

C;

for a suÆ
iently large N . For example, in base 10, this 
orresponds to multiplying poly-

nomials as follows:

(101x+ 213)� (219x+ 173)

FFT

����! 101000212� 219000173

?

?

y

?

?

y

FFT-multiply

22119x

2

+ 64120+ 36849

FFT

�1

 ���� 22119064120036849

If A and B are polynomials of degree n, whose 
oeÆ
ients are very large and of ap-

proximately the same size s, then the sizes of A(2

N

) and B(2

N

) are both approximately

(2n+1)s. Hen
e, AB 
an be 
omputed in roughly the same time as 2n+1 
oeÆ
ient mul-

tipli
ations. Moreover, 
ontrary to the method from the previous se
tion, the additional

overhead is low, even for large n.

Another advantage of the present method is that it \smoothes" the graph with the


omputation time as a fun
tion of the input size. Indeed, when using FFT-multipli
ation,

ea
h time that extra roots of unity are needed (i.e. when doubling the input size), a

sudden in
rease in the 
omputation time is observed. The present method redu
es this

phenomenon.

Remark. Noti
e the interesting philosophy behind the method: usually, 
omplex prob-
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lems (su
h as multiplying polynomials) are redu
ed to many small simple problems (mul-

tipli
ation of 
oeÆ
ients). Here, we rather redu
e the 
omplex problem to a huge, but

simple problem, and we make use of the fa
t that we have an asymptoti
ally eÆ
ient

method for the huge simple problem.

6.1.3. Multivariate fast Fourier transforms

Yet another method is based on the observation that, in order to multiply polynomials

in

b

C[x℄, we may use the fa
t that the ring

b

C already has many 2

N

-th roots of unity.

Hen
e, after a �rst transformation A

d

x

d

+ � � �+A

0

!




A

d

x

d

+ � � �+




A

0

as in Se
tion 6.1.1,

FFT-multipli
ation be
omes interesting mu
h earlier than for a generi
 polynomial ring.

Although the multipli
ation s
heme based on this method is slightly slower for small

degrees (for instan
e, we need 4 \
onstant multipli
ations" in order to multiply two

�rst degree polynomials), the method is virtually linear from then on. Espe
ially when

multipli
ation in

b

C be
omes expensive with respe
t to the fast Fourier transformation,

this method may be an interesting alternative for moderate degrees n.

Remark. We also suggest to use this method for integer multipli
ation itself. Indeed,

S
h�onhage-Strassen's algorithm (S
h�onhage and Strassen, 1971) redu
es the multipli
a-

tion problem for integers modulo 2

2

N

+ 1 to the problem of multiplying polynomials of

degrees 6 n in Z=(2

2

n

+1)Z[x℄, where n � N=2. However, for large N (that is N ' 20 on

a
tual ma
hines), the modular multipli
ation step of numbers modulo 2

2

n

+ 1 be
omes

far more expensive than the transformation step. For su
h N , we therefore suggest to

use polynomials in Z=(2

2

n

+1)Z[x; y℄ of degrees 6 n in x and y instead, where n � N=3.

6.2. On the numeri
al instability of relaxed algorithms

In this se
tion, we study the numeri
al stability of the di�erent relaxed multipli
a-

tion algorithms for power series with 
oating point 
oeÆ
ients. For this purpose, it is

important two distinguish two types of appli
ations.

For appli
ations to numeri
al analysis, su
h as the analyti
 
ontinuation of holomorphi


fun
tions, the 
oeÆ
ients are usually known with a high pre
ision, that is, a pre
ision

whi
h is linearly dependent on the required expansion order. This enables us to evaluate

the series 
lose to the origin up till a number of digits whi
h is linearly dependent on the

expansion order. For su
h appli
ations, a sublinear or even a small linear pre
ision loss

will not 
hange the asymptoti
 
omplexity of the evaluation of the series up till n digits.

For other appli
ations, su
h as the random generation of 
ombinatorial stru
tures (Fla-

jolet et al., 1994; Denise et al., 1998; Denise and Zimmermann, 1999), we are interested

in the 
oeÆ
ients themselves and we require a given, small number of digits after the

de
imal point. On the one hand, the fa
t that we want many terms using a low pre
ision

makes this appli
ation vulnerable for numeri
al instability. On the other hand, the 
o-

eÆ
ients of the series are often all positive with ni
e asymptoti
 properties in this 
ase.

Under additional hypotheses, we may therefore hope to estimate the pre
ision loss.

6.2.1. Sour
es of numeri
al instability

There are two main sour
es of numeri
al instability when multiplying formal power

series. The �rst sour
e is \massive 
an
ellation" of 
oeÆ
ients, whi
h indu
es the radius
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of 
onvergen
e of the produ
t to be stri
tly larger than those of its fa
tors. An example

is given by

tan z � 
os z = sin z:

This sour
e is intrinsi
 and no parti
ular numeri
al multipli
ation method will be able

to avoid it.

The se
ond sour
e of numeri
al instability is en
ountered, when 
oeÆ
ients of di�erent

magnitudes are added up in order to speed up the produ
t 
omputation. Consider for

instan
e the 
omputation of

P = (1:000 � 10

0

+ 1:000 � 10

�5

z)� (1:000 � 10

0

+ 1:000 � 10

�5

z)

using DAC-multipli
ation:

1:000 � 10

0

= (1:000 � 10

0

)� (1:000 � 10

0

)

1:000 � 10

�10

= (1:000 � 10

�5

)� (1:000 � 10

�5

)

1:000 � 10

0

= (1:000 � 10

0

+ 1:000 � 10

�5

)� (1:000 � 10

0

+ 1:000 � 10

�5

):

We obtain

P = 1:000 � 10

0

+ 0:000 � 10

0

z + 1:000 � 10

�10

z

2

:

Hen
e, the addition 1:000 � 10

0

+ 1:000 � 10

�5

is responsible for the pre
ision loss.

6.2.2. In
reasing the numeri
al stability

In the frequent 
ase when we multiply 
onvergent power series f and g, we 
an often

avoid this problem by \normalizing" blo
ks f

i���i

0

and g

j���j

0

(with l = i

0

� i = j

0

� j)

of su

essive 
oeÆ
ients before multiplying them. Indeed, in the 
onvergent 
ase, the

exponents of the 
oeÆ
ients f

i

; : : : ; f

i

0

�1

resp. g

j

; : : : ; g

j

0

�1

usually approximately form

an arithmeti
 progression, i.e. log jf

k

j � log jf

i

j+�(k� i), for some � and all i 6 k < i

0

.

Hen
e, by looking at these exponents, we determine the \least approximate minimal

radius of 
onvergen
e" ~r of f and g: for 
ertain 
onstants F and G we have

f

k

6 F=~r

k

(i 6 k < i

0

);

g

k

6 G=~r

k

(j 6 k < j

0

);

where the inequalities are (approximate) equalities for at least one k and l, and for at

least two k or l. Now we 
ompute

h

0

+ � � �+ h

2l�1

= (f

i

+ � � �+ f

i

0

�1

~r

l�1

z

l�1

)� (g

j

+ � � �+ g

j

0

�1

~r

l�1

z

l�1

)

using any fast multipli
ation algorithm for polynomials. Then

f

i���i

0

g

j���j

0

= h

0

+ � � �+

h

2l�1

~r

2l�1

z

2l�1

:

This way of 
omputing f

i���i

0

g

j���j

0

in
reases the numeri
al stability. For instan
e, in the

example from the previous se
tion, we get ~r = 1:000 � 10

5

and

h = 1:000 � 10

0

+ 2:000 � 10

0

z + 1:000 � 10

0

z

2

;

fg = 1:000 � 10

0

+ 2:000 � 10

�5

z + 1:000 � 10

0

z

�10

:
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Remark. Considering a �nite number of 
oeÆ
ients f

i���i

0

, the \approximate radius of


onvergen
e" of a series f may for instan
e be 
omputed in linear time, by \traversing"

the 
onvex envelope of the logarithms of these 
oeÆ
ients and retaining the longest

segment. A slower, but more stable method is obtained by maximizing the quantity

i

0

�1

X

k=i

Cjf

k

=~r

k

j

among all C > 0 and ~r > 0 with

i

0

�1

max

k=i

Cjf

k

=~r

k

j = 1:

It would be interesting to �nd a fast and stable 
ompromise between these two extremes.

6.2.3. Series with positive 
oeffi
ients and error estimations

In the 
ase when all series we 
onsider have positive 
oeÆ
ients, whi
h is frequently the


ase in 
ombinatori
s and the analysis of algorithms, it is often possible to obtain pre
ise

error estimations for the various relaxed algorithms for multipli
ation and 
omposition.

Let B be the number of signi�
ant bits with whi
h we 
ompute. In what follows, when

approximating a real number ~x by a 
oating point number x =M �2

E

(with

1

2

6M < 1),

we will denote by Æ

x

the \normalized relative error" we 
ommit, so that

~x� Æ

x

2

E�B

6 x 6 ~x+ Æ

x

2

E�B

:

For small errors (that is Æ

x

6 2

B=2

), we then have

Æ

x+y

6 max(Æ

x

; Æ

y

) + 2; (6.1)

Æ

xy

6 Æ

x

+ Æ

y

+ 2; (6.2)

for positive 
oating point numbers x and y.

Naive lazy algorithms

Let us �rst 
onsider the 
ase of a system of di�erential equations, whi
h has been put

into integral form

0

B

�

f

1

(z)

.

.

.

f

r

(z)

1

C

A

=

Z

0

B

�

P

1

(f

1

; : : : ; f

r

)

.

.

.

P

r

(f

1

; : : : ; f

r

)

1

C

A

; (6.3)

where P

1

; : : : ; P

r

are polynomials with positive 
oeÆ
ients. Then we 
an expand the

solutions using the lazy power series te
hnique. Let f

i;n

denote the n-th 
oeÆ
ient of f

i

.

Then the equations (6.1) and (6.2) yield

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+O(n); (6.4)

for ea
h i, sin
e 
oeÆ
ients of the P

i

and the initial 
onditions f

i;0

have bounded nor-

malized relative errors. Consequently, putting E

n

= max

16i6r

Æ

f

i;n

, we have

E

n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

E

j

+O(n): (6.5)
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It follows that E

n

= O(n

2

). This shows that number of erroneous bits in f

i;n

grows only

logarithmi
ally with n.

For fun
tional equations whi
h involve 
omposition, we get similar bounds. For in-

stan
e, if we 
ompute (f Æ (zg))

n

using Horner's rule:

(f Æ (zg))

n

= f

0

+ zg(f

1

+ zg(f

2

+ � � �+ zg(f

n

) � � �));

we obtain

Æ

(fÆ(zg))

n

6 max

i+j

1

+���+j

k

=n

Æ

f

i

Æ

g

j

1

+ � � �+ Æ

g

j

k

+O(n

2

):

Hen
e, (6.4) would now be
ome

Æ

f

i;n

6 max

P

n

j;k

=n�1

X

j;k

Æ

f

j;n

j;k

+O(n

2

);

and we would rather get E

n

= O(n

3

), whi
h still ensures a logarithmi
 growth of the

number of erroneous bits in the result. For the fast relaxed 
omposition algorithms, a

similar growth of the error 
an be proved, sin
e the symboli
 appli
ation of the algorithm

yields the n-th 
oeÆ
ient of f Æ g as an expression in f

0

; : : : ; f

n

; g

1

; : : : ; g

n

and positive

rational numbers, using sums and produ
ts only.

Fast relaxed multipli
ation

Let f and g be 
onvergent power series with positive 
oeÆ
ients. Denoting by r

f

and

r

g

the 
onvergen
e radii of f and g, we de�ne

"

f

(n) =

1

n

log

2

f

n

+ log

2

r

f

;

"

g

(n) =

1

n

log

2

g

n

+ log

2

r

g

:

Let us make the \
onvexity hypothesis" that the sequen
es "

f

(n) and "

g

(n) are 
onvex or


on
ave for suÆ
iently large n (all four 
ombinations being possible). This is in parti
ular

the 
ase if the 
oeÆ
ients f

n

and g

n

admit asymptoti
 equivalents in a Hardy �elds, su
h

as

f

n

� C(log n)

�

n

�

r

�n

f

:

We will study the numeri
al stability of the fast relaxed multipli
ation algorithm, assum-

ing that we use the normalization pro
edure from Se
tion 6.2.2.

Let us �rst assume that r

f

= r

g

and 
onsider the multipli
ation f

i���i

0

� g

j���j

0

with

the notations from Se
tion 6.2.2. The 
onvexity hypothesis implies that the exponents

of the normalized 
oeÆ
ients are dominated by O(j"

f

(i

0

)j + j"

g

(j

0

)j). Consequently, we

lose O(j"

f

(i

0

)j + j"

g

(j

0

)j) extra bits of pre
ision in the multipli
ation f

i���i

0

� g

j���j

0

with

respe
t to the naive method. This leads to the error estimation

Æ

(fg)

n

6 max

i+j=n

Æ

f

i

+ Æ

g

j

+ 2

O(j"

f

(n)j+j"

g

(n)j)

+O(n)

for the 
oeÆ
ients of the produ
t fg. This estimation remains valid in the 
ase when r

f

<

r

g

(or r

f

> r

g

), be
ause the extra pre
ision loss in the multipli
ations is 
ompensated by

the exponential de
rease of the 
oeÆ
ients of g with respe
t to those of f (see also the

next paragraph).

Now re
onsider the system of di�erential equations (6.3). Assume that the 
onvexity

hypothesis is veri�ed for all series g en
ountered in the relaxed expansion pro
ess and let
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"(n) be the sum of the 
orresponding j"

g

(n)j. Then the equations (6.4) be
ome

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+ 2

"(n)

+O(n) (6.6)

and we obtain

E

n

= O(2

"(n)

+ n

2

): (6.7)

Indeed " is ultimately monotoni
 (by the 
onvexity hypothesis), so that either 2

"(n)

=

O(n), or 2

"(n)

in
reases towards in�nity.

Intuitively speaking, (6.7) means that the pre
ision loss is proportional to the asymp-

toti
 behavior near the most violent dominant singularity en
ountered in the expansion

pro
ess. In parti
ular, if all these singularities are algebrai
 (su
h as in the example (4.2)),

then the pre
ision loss remains logarithmi
. This result generalizes to the 
ase of more

general fun
tional equations, as in the 
ase of naive multipli
ation. Finally, a similar

growth of the error may be expe
ted in the general 
ase when the 
oeÆ
ients are no

longer positive. Indeed, the main obstru
tion to su
h a behavior is massive 
an
ellation

of 
oeÆ
ients, whi
h o

urs only in very spe
i�
 situations.

Unequal radii of 
onvergen
e

Assume that we want to multiply two series f and g with unequal radii r

f

< r

g

of


onvergen
e, whi
h satisfy the 
onvexity hypothesis. Then f

n

=g

n

de
reases exponentially.

We will indi
ate how to use this observation in order to obtain a multipli
ation algorithm

for f with g of time 
omplexity O(n).

During the expansion pro
ess of f (resp. g), we heuristi
ally 
ompute its approximate


onvergen
e radius ~r

f

, based on the knowledge of the �rst n 
oeÆ
ients. This may for

instan
e be done eÆ
iently by updating ~r

f

, ea
h time that n be
omes a power of two,

by applying a similar algorithm as in Se
tion 6.2.2 on the 
oeÆ
ients f

n=2

; : : : ; f

n�1

.

Simultaneously, at ea
h stage n, we update a bound C

f

(resp. C

g

), su
h that f

i

6 C

f

~r

�i

f

for all i < n. By the 
onvexity hypothesis, ~r

f

will tend to the 
onvergen
e radius r

f

of f

for large n.

When 
omputing the n-th 
oeÆ
ient of fg (say by the naive algorithm for simpli
ity),

we now sum f

n�i

g

i

for i running from 0 to n, where we stop the summation pro
ess as

soon as

X

j>i

f

n�j

g

j

6 C

f

C

g

~r

n

f

(~r

f

=~r

g

)

i

1� (~r

f

=~r

g

)

is smaller than 2

�B

(f

n

g

0

+ � � �+ f

n�(i�1)

g

i�1

). Assuming the 
onvexity hypothesis, the

summation pro
ess stops for i = O(1), when n tends to in�nity. Consequently, we ob-

tain a linear time algorithm. Modulo some 
are, the tri
k may be adapted to relaxed

multipli
ation.

6.3. Power series in several variables

6.3.1. Representation of power series in several variables

In prin
iple, multivariate power series 
an be implemented re
ursively as univariate

power series with multivariate power series 
oeÆ
ients. Unfortunately, this way of doing
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has two disadvantages. First, the generalized fast Fourier transformation from Se
tion 6.1


an not be fully exploited. Se
ondly, the trun
ation orders of the 
oeÆ
ients of, say, a

bivariate power series are not ne
essarily 
onstant. For instan
e, given f =

P

j

f

j

z

j

2

and

f

j

=

P

i

f

j;i

z

i

1

for ea
h j, we may need 10 terms of f

5

and only 5 of f

10

. This may lead to

a phenomenon whi
h is analogous to the \pre
ision loss" phenomenon from Se
tion 6.2.1:

adding numbers with di�erent orders of growth is equally harmful as adding power series

with di�erent trun
ation orders.

By analogy with ordinary multivariate polynomials, one may also be tempted to 
on-

sider sparse multivariate power series. Of 
ourse, most natural operations on power se-

ries like inversion or exponentiation do not preserve sparseness. Nevertheless, during

the referee pro
ess of this paper, we be
ame aware of the existen
e of asymptoti
ally

fast algorithms for multiplying sparse multivariate polynomials (Canny et al., 1989). In

Se
tion 6.3.5, we will show that these ideas also have appli
ations in our setting.

Multivariate power series f(z

1

; : : : ; z

d

) 
an be trun
ated in many ways. For appli
a-

tions in numeri
al analysis, we are usually interested in evaluating f . Hen
e, we need the


oeÆ
ients f

n

1

;::: ;n

d

with

�

1

n

1

+ � � �+ �

d

n

d

< N;

where N is proportional to the required pre
ision and �

1

; : : : ; �

d

> 0 depend on the

evaluation point and the domain of 
onvergen
e of f . For appli
ations in 
ombinatori
s

and the analysis of algorithms, we are often interested in 
ertain spe
i�
 
oeÆ
ients of

f only. Nevertheless, the 
omputation of su
h a 
oeÆ
ient f

n

1

;::: ;n

d

usually amounts to

the 
omputation of all \previous" 
oeÆ
ients f

k

1

;::: ;k

d

with k

1

6 n

1

; : : : ; k

d

6 n

d

.

We therefore suggest to implement multivariate power series by an abstra
t 
lass

Multivariate Series(C) whose representation 
lass is given by

Class Multivariate Series Rep(C)

' : Multivariate TPS(C)

I : Multivariate Dense Set

virtual 
ompute : Array(Integer)! C

Here

� Instan
es of Multivariate Dense Set are subsets of N

d

with \a dense 
avor": in our


ase, I will always be the initial segment of already 
omputed 
oeÆ
ients. I.e. if

(n

1

; : : : ; n

d

) 2 I and 0 6 m

1

6 n

1

; : : : ; 0 6 m

d

6 n

d

, then (m

1

; : : : ;m

d

) 2 I .

� Instan
es of Multivariate TPS(C) are \multivariate trun
ated power series". The

analogue of ℄' is an instan
e � � I of Multivariate Dense Set, 
alled the domain of

'. Then ' asso
iates a 
oeÆ
ient in C to ea
h element of �.

� The (private) method 
ompute 
omputes the (n

1

; : : : ; n

d

)-th 
oeÆ
ient of the

series, while assuming that all previous 
oeÆ
ients have already been 
omputed.

As in the univariate 
ase, the 
orresponding publi
 method makes sure that all

previous 
oeÆ
ients are 
omputed.

Remark. As we will see in Se
tion 6.3.4, it is 
onvenient not to assume that instan
es

of Multivariate Dense Set are ne
essarily initial segments.
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6.3.2. Trun
ated multipli
ation

The zealous multivariate trun
ated multipli
ation problem 
an be stated as follows:

given two multivariate trun
ated series f; g : Multivariate TPS(C) and a dense subset

H : Multivariate Dense Set of N

d

, how to 
ompute the restri
tion h = f �

H

g of f � g to

H eÆ
iently? That is, how to 
ompute the 
oeÆ
ients (f � g)

n

, with n 2 H?

Let F and G denote the domains of f and g. The naive approa
h 
onsists of 
omputing

h using the formula

h =

X

(n;m)2F�

H

G

f

n

g

m

;

where

F �

H

G = f(n;m) 2 F �Gjn+m 2 Hg:

For most domains F;G and H , the time 
omplexity of this 
omputation is bounded by

O(jF �

H

Gj), where jF �

H

Gj denotes the 
ardinality of F �

H

G. The worst 
ase time


omplexity of a suÆ
iently 
lever implementation of the naive algorithm is bounded by

O(min(jF j jGj; jF j jH j; jGj jH j) + jH j):

The \fully dense" approa
h 
onsists of 
hanging f and g into f and g by inserting zero

terms, so that the enlarged domains F and G of f and g are blo
ks of the form

(a

1

� � � b

1

)� � � � � (a

d

� � � b

d

):

Here i � � � j denotes fi; : : : ; j�1g. Next, we apply an asymptoti
ally fast dense algorithm

as des
ribed in Se
tion 6.1 for the multipli
ation f � g and we trun
ate the result.

Unfortunately, the fully dense approa
h is extremely ineÆ
ient for 
ertain domains

F;G and H in the multivariate 
ase, be
ause the ratio

� =

jF j jGj

jF �

H

Gj

(6.8)

may be
ome more important than the gain we obtain by using FFT-multipli
ation. Con-

sider for instan
e the important spe
ial 
ase when

F = G = H = f(n

1

; : : : ; n

d

) 2 N

d

jn

1

+ � � �+ n

d

6 Ng;

for some N > 0. Let �

d;N

denote the ratio (6.8) for given d and N . For large N , it 
an

be 
he
ked that �

d;N

tends to a 
onstant �

d

given by

�

2

= 24;

�

3

= 1080;

�

d

�

4

d

d!

2

2

p

�d

; for d!1:

Hen
e, even for d = 2, we lose a very important fa
tor with respe
t to the naive algorithm,

for small values of N .

6.3.3. A 
ompromise between naive and fully dense multipli
ation

In this se
tion, we sket
h a trun
ated multivariate multipli
ation algorithm, whi
h is a


ompromise between the naive and the fully dense algorithms from the previous se
tion.



Relax, but don't be too lazy 57

Our algorithm will never be more than a �xed small 
onstant fa
tor slower than the naive

algorithm, but it will fully exploit FFT-multipli
ation if F;G and H are blo
ks.

Our algorithm will be re
ursive on the dimension d. We de
ompose the trun
ated series

f and g as follows:

f = fz

q

d

d

= (f

0

+ � � �+ f

k�1

z

(k�1)p

d

d

)z

q

d

d

;

g = gz

r

d

d

= (g

0

+ � � �+ g

l�1

z

(l�1)p

d

d

)z

r

d

d

;

where p

d

> 1; q

d

and r

d

will be 
hosen heuristi
ally and where f and g are series in

z

1

; : : : ; z

d�1

; z

d

= z

p

d

d

, whose 
oeÆ
ients are polynomials of degrees < p

d

in z

d

.

Assuming that we have 
omputed p

d

; q

d

and r

d

, our trun
ated multipli
ation algorithm

now 
onsists of the following steps, whi
h will be detailed below.

1. Compute f and g with domains F and G.

2. Compute the \
losure" H of H .

3. Compute the trun
ated produ
t h = f �

H

g using

h

n

=

X

{+|=n

f

{

�

H

n

g

|

;

where H

n

= f(n

1

; : : : ; n

d�1

) 2 N

d�1

j(n

1

; : : : ; n

d�1

; n) 2 Hg.

4. Re
over the produ
t h = f �

H

g from h.

Step 1 is easy. For instan
e, the domain of f is determined by (n

1

; : : : ; n

d�1

; n

d

) 2 F , if

and only if there exists an n

d

with p

d

n

d

6 n

d

� q

d

< p

d

n

d

+ p

d

and (n

1

; : : : ; n

d

) 2 F .

As to H , we take (n

1

; : : : ; n

d�1

; n

d

) 2 H if and only if there exists an n

d

with p

d

n

d

6

n

d

�q

d

�r

d

< p

d

n

d

+2p

d

�1 and (n

1

; : : : ; n

d

) 2 H . Indeed, the degrees of the 
oeÆ
ients

of h in z

d

are stri
tly bounded by 2p

d

� 1 and not merely by p

d

. In order to re
over

h

n

1

;::: ;n

d

, we therefore should add up (h

n

1

;::: ;n

d�1

;
n

d

)

i

and (h

n

1

;::: ;n

d�1

;
n

d

�1

)

i+p

d

, where

n

d

and 0 6 i < p

d

satisfy n

d

� q

d

� r

d

= p

d

n

d

+ i.

Let us now show how to 
ompute p

d

and q

d

. We assume that given p

d

, we have

an algorithm whi
h rapidly estimates the running time of the multipli
ation algorithm.

The 
omputation of su
h an estimation will take mu
h time if p

d

is small and little

time when p

d

is large. The idea is now to take 
ompare the estimated running times

for de
reasing values of p

d

and to stop the sear
h of an optimal p

d

as soon as smaller

values of p

d

yield larger estimated running times. More pre
isely, we start with p

d

=

min(spanF; spanG; spanH), where

spanS = max

(n

1

;::: ;n

d

)2S

n

d

� min

(n

1

;::: ;n

d

)2S

n

d

+ 1 > 0

Next, we de
rease p

d

by fa
tors of two (p

d

:= dp

d

=2e). Finally, q

d

and r

d

are 
hosen su
h

that spanF ; spanG and spanH are as small as possible.

6.3.4. Relaxed multipli
ation of multivariate power series

Let us now sket
h the multivariate analogue of the fast trun
ated relaxed multipli
ation

algorithm from Se
tion 4.4.2. Let f and g denote the series we want to multiply and

let h their produ
t. We will �rst assume that we have �xed upper bounds F;G;H :

Multivariate Dense Set for the 
oeÆ
ients of f; g and h that we want to 
ompute. These

upper bounds 
oin
ide with the domains of f:'; g:' and h:'.
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We observe that, essentially, the fast univariate relaxed algorithm from Se
tion 4.3.1

is based on a partition

N

2

=

a

n2N

S

n

=

a

n2N

a

�2A

n

S

n;�

; (6.9)

where the S

n;�

are square blo
ks of the form (i � � � i+ l)� (j � � � j + l):

S

1

= (0 � � � 1)� (0 � � � 1);

S

2

= (0 � � � 1)� (1 � � � 2)q (1 � � � 2)� (0 � � � 1);

S

3

= (0 � � � 1)� (2 � � � 3)q (2 � � � 3)� (0 � � � 1)q

(1 � � � 3)� (1 � � � 3);

S

4

= (0 � � � 1)� (3 � � � 4)q (3 � � � 4)� (0 � � � 1);

S

5

= (0 � � � 1)� (4 � � � 5)q (4 � � � 5)� (0 � � � 1)q

(1 � � � 3)� (3 � � � 5)q (3 � � � 5)� (1 � � � 3);

.

.

.

Now at the n-th stage, the algorithm 
onsists of 
omputing the 
ontribution

X

�2A

n

X

(i;j)2S

n;�

f

i

g

j

z

i+j

of all blo
ks S

n;�

to fg.

In the multivariate 
ase, we do a similar thing: we partition (N

d

)

2

by

(N

d

)

2

=

a

(n

1

;::: ;n

d

)2N

d

S

(n

1

;::: ;n

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

(n

1

;::: ;n

d

)

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

n

1

�����A

n

d

'(S

n

1

;�

1

� � � � � S

n

d

;�

d

);

where ' is the natural isomorphism from (N

2

)

d

onto (N

d

)

2

. Then ea
h S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

is the produ
t of two d-dimensional blo
ks

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

= B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

� C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

:

When we ask for the (n

1

; : : : ; n

d

)-th 
oeÆ
ient of h, the multivariate trun
ated relaxed

multipli
ation algorithm now 
omputes all trun
ated produ
ts

(B

(n

1

;::: ;n

d

)\F );(�

1

;::: ;�

d

)

�

H

(C

(n

1

;::: ;n

d

)\G);(�

1

;::: ;�

d

)

by the zealous algorithm from the previous se
tion and adds these 
ontributions to h:'.

Until now, we assumed that F;G and H remained �xed throughout the exe
ution, as

is often the 
ase in pra
ti
e. Sometimes however, these domains have to be in
reased
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dynami
ally, say into

^

F ,

^

G and

^

H . Whenever this happens, it suÆ
es to add all produ
ts

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

FnF )) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\G);

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F ) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

GnG)) and

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F ) �

^

H
nH

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

G)

to h:', where (n

1

; : : : ; n

d

) runs over all already 
omputed 
oeÆ
ients in h:I . Noti
e

that

^

FnF ,

^

GnG and

^

HnH are not ne
essarily initial segments; this explains why it is


onvenient to allow the instan
es of Multivariate Dense Set to be general subsets of N

d

.

6.3.5. Fast trun
ated multipli
ation of multivariate power series

Let us again 
onsider the 
ase when we want to �nd all 
oeÆ
ients h

n

1

;::: ;n

d

of a power

series h = fg in d variables with

�

1

k

1

+ � � �+ �

d

k

d

< n;

where �

1

; : : : ; �

d

> 0 and n > 0. Without loss of generality, we may assume that

minf�

1

; : : : ; �

n

g = 1 and we 
all

deg

�

P = maxf�

1

k

1

+ � � �+ �

d

k

d

jP

k

1

;::: ;k

d

6= 0g

the total�-degree of a polynomial P 2 C[z

1

; : : : ; z

d

℄. As we stressed before, this parti
ular


ase is frequently en
ountered when we want to evaluate multivariate power series. Our

aim is to design an algorithm whi
h remains fast when both d and n be
ome moderately

large, su
h as d � 5 and n � 10. Throughout this se
tion, we assume that Z� C.

In (Canny et al., 1989), a fast algorithm has been given for the multipli
ation of sparse

multivariate polynomials. The key-ingredients of this algorithm are evaluation in prime

powers and interpolation:

Theorem 6.1. Let P (z

1

; : : : ; z

d

) = 


1

M

1

+ � � �+ 


t

M

t

be a polynomial, whi
h is a linear


ombination of t monomials. Let p

1

; : : : ; p

d

be distin
t prime numbers. Then

a. The P (p

i

1

; : : : ; p

i

d

) may be evaluated for i 2 f0; : : : ; t� 1g in time O(M(t) log t).

b. The polynomial P 
an be re
overed from the P (p

i

1

; : : : ; p

i

d

) with i 2 f0; : : : ; t � 1g

in time O(M(t) log t).

Remark. In the theorem it is impli
itly assumed that the evaluationsM

i

(p

i

1

; : : : ; p

i

d

) for

i 2 f1; : : : ; tg 
an be performed in time O(M(t) log t). This is usually the 
ase, if the

degrees of the M

i

are not to high w.r.t. t.

From the theorem it follows that if P and Q are polynomials, whi
h are linear 
ombi-

nations of monomials in �nite sets A resp. B, then the produ
t PQ 
an be 
omputed in

time O(M(t) log t), where t = jABj is the 
ardinal of the set AB of all possible produ
ts

of elements in A with elements in B. In parti
ular, if t

�

n

denotes the maximal num-

ber of terms in a polynomial of total �-degree < n, then the produ
t of two arbitrary

polynomials P and Q 
an be 
omputed in time O(M(t

�

deg

�

PQ

) log t

�

deg

�

PQ

).

We will now simplify and generalize an algorithm from (Le
erf and S
host, 2001).

Assume that we want to multiply two trun
ated multivariate power series f and g of
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total �-degrees < n. Multiplying these series as polynomials and trun
ating afterwards

has a bad 
omplexity, whi
h involves a fa
tor 2

d

. Therefore, we rather de
ompose the set

S

�

n

of all monomials of total degree < n in sli
es

S

�

n

= S

0

q � � � q S

n�1

;

where

S

i

= S

�

i+1

nS

�

i

for ea
h i. This leads to the de
omposition

f = f

0

+ � � �+ f

n�1

of f , where

f

i

=

X

z

k

1

1

:::z

k

d

d

2S

i

f

k

1

;::: ;k

d

z

k

1

1

: : : z

k

d

d

for ea
h i. We have similar de
ompositions for g and fg. Sin
e S

i

S

j

� S

i+j

q S

i+j+1

for

all i and j, we have

t

def

= jS

0

S

n

[ S

1

S

n�1

[ � � � [ S

n

S

0

j 6 jS

n�1

[ S

n

j:

Sin
e 1 2 f�

1

; : : : ; �

n

g, we also have jS

i

j 6 jS

j

j whenever i 6 j. Therefore, jS

0

S

i

[

S

1

S

i�1

[ � � � [ S

i

S

0

j 6 t for all i < n.

The multipli
ation algorithm now goes as follows:

1 Compute a

i;j

= f

i

(p

j

1

; : : : ; p

j

d

) and b

i;j

= g

i

(p

j

1

; : : : ; p

j

d

) for all i < n and j < t.

2 Denote a

j

(z) = a

0;j

+ : : :+ a

n�1;j

z

n�1

and b

j

(z) = b

0;j

+ : : :+ b

n�1;j

z

n�1

for ea
h

j < t. Compute the trun
ated power series produ
ts 


j

(z) = a

j

(z)b

j

(z) at order n

and denote 


j

(z) = 


0;j

+ : : :+ 


n�1;j

z

n�1

for ea
h j < t.

3 For ea
h i < n, 
ompute polynomials (h

�

)

i

and (h

�

)

i

, whi
h are linear 
ombinations

of monomials in S

i

resp. S

i+1

, su
h that 


i;j

= ((h

�

)

i

+ (h

�

)

i

)(p

j

1

; : : : ; p

j

d

) for all

j < t. Return (h

�

)

0

+ [(h

�

)

0

+ (h

�

)

1

℄ + � � �+ [(h

�

)

n�2

+ (h

�

)

n�1

℄.

The �rst step 
an be a

omplished in time O(nM(t) log t) by theorem 6.1(a). The se
ond

step 
an be done in time O(tM(n)), by using a standard fast multipli
ation algorithm.

The �nal interpolation step 
an again be a

omplished in time O(nM(t) log t) by the-

orem 6.1(b). Indeed, in this step, (h

�

)

i

+ (h

�

)

i

is a
tually a linear 
ombination of at

most t monomials in S

0

S

i

[S

1

S

i�1

[� � �[S

i

S

0

. Pla
ing ourselves in the non-pathologi
al


ase when nt = O(dt

�

n

) and n = O(t) (we re
all that t

�

n

= jS

�

n

j), this leads to an

O(dM(t

�

n

) log t

�

n

) time 
omplexity bound for our trun
ated multipli
ation algorithm.

Remark. A
tually, (Le
erf and S
host, 2001) deals with the spe
ial 
ase when �

1

=

� � � = �

d

= 1. Their work yields a time 
omplexity bound of the form O(M(t

�

n

) log

2

t

�

n

).

Noti
e that S

i

S

j

= S

i+j

for all i and j in this 
ase, when
e t = jS

n�1

j.

The trun
ated multipli
ation algorithm 
an be adapted to the relaxed setting, if we

assume that the 
omputation of terms of �-degree � of the fa
tors f and g only requires

the 
omputation of terms of �-degrees< � of the produ
t fg. This is done by generalizing

the above algorithm to the 
omputation of produ
ts of the form (f

i

+: : :+f

i+l�1

)(g

j

+: : :+

g

j+l�1

). Working this out 
arefully leads to a trun
ated relaxed multipli
ation algorithm

of 
omplexity O(dM(t

�

n

) log

2

t

�

n

).
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Remark. In pra
ti
e, theorem 6.1 be
omes only eÆ
ient for very large t. Furthermore,

the evaluation in high powers of the p

j

may lead to expression growth in the 
oeÆ
ient

ring C. When 
omputing over Z (for instan
e), it is therefore re
ommended to repla
e

the 
omputations in Z[z

1

; : : : ; z

d

℄ by 
omputations in a polynomial ring of the form

F

q

[x; z

1

; : : : ; z

d

℄. Here q is a not too large prime number (say q � 2

32

or q � 2

64

) and

we have rewritten the integer 
oeÆ
ients of the original polynomials as polynomials in

x �

p

q=t with 
oeÆ
ients in f1�dx=2e; : : : ; bx=2
g. The evaluation and interpolation is

now done at points of the form (p

i

0

; : : : ; p

i

d

), for suitable p

1

; : : : ; p

d

2 F

q

su
h that there

are no non-trivial identities p

k

0

0

� � � p

k

d

d

= 1 for small jk

0

j; : : : ; jk

d

j.

7. Con
lusion

In this paper, we have shown that all 
lassi
al fast zealous algorithms for manipulating

formal power series admit relaxed analogues of the same asymptoti
 
omplexity up to a

fa
tor O(log n). Theoreti
ally speaking, this allows us to expand power series solutions

to (partial) di�erential equations with almost linear time 
omplexities and solutions to

di�erential-
omposition equations with an almost O(n

3=2

) 
omplexity.

We have also pointed out that it is hard to 
on
eive implementations in a
tual 
omputer

algebra systems, whi
h adequately re
e
t these asymptoti
 time 
omplexities. This is

mainly due to the absen
e of fast arithmeti
 in su
h systems, su
h as DAC- and FFT-

multipli
ation. An interesting, but perverse 
onsequen
e of the la
k of su
h arithmeti
,

is that 
omparisons between 
ertain algorithms on the basis of ben
hmarks may be

misleading (e.g. see our remarks about Table 5).

Another diÆ
ulty for a
tual implementations is that there seems not to be a best

overall relaxed multipli
ation algorithm (see Se
tion 4.4). Nevertheless, for appli
ations

where the expansion order is known in advan
e, i.e. when 
omputations need not be

resumed, the fast trun
ated relaxed algorithm (see Se
tions 4.4.2 and 6.3.4) often turns

out to be the fastest. In general, we expe
t that the best performan
e is obtained by a

hybrid algorithm, whi
h sele
ts between di�erent expansion methods as a fun
tion of the

origin of the series (general, algebrai
, holonomi
, et
.), the 
onstant �eld, the expansion

order and the possibility to resume 
omputations. Of 
ourse, su
h a hybrid algorithm is

also the longest one to implement.

Despite the above drawba
ks of the relaxed approa
h, our ben
hmarks show that for

large expansion orders, we systemati
ally gain with respe
t to the lazy approa
h. In


ertain 
ases (see tables 8, 9 and 10) these gains be
ome very important and may ex
eed

a fa
tor of 100. In the future, these fa
tors are expe
ted to in
rease more and more,

sin
e pro
essor speed and memory 
apa
ity tend to in
rease proportionally and powerful

implementations of the FFT-transform might eventually show up. We also noti
e that the

relaxed algorithms tend to be faster than Brent and Kung's algorithm for exponentiation

and the resolution of di�erential equations (see Table 4).

Having summarized the advantages and disadvantages of the relaxed approa
h, we will


on
lude this se
tion by a dis
ussion of its �tness for di�erent types of appli
ations, with

some suggestions for those who want to implement a power series library into a 
omputer

algebra system, and some �nal general remarks.

7.1. Appli
ations

Symboli
 
omputation.

The pertinen
e of the relaxed approa
h for general appli
ations in symboli
 
omputation

depends strongly on the problem. On the one hand, multipli
ation of large symboli
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expressions will tend to be slow (whi
h favors the relaxed approa
h). On the other hand,

often only few terms are required (whi
h favors the lazy approa
h).

Combinatori
s and the analysis of algorithms.

In 
ombinatori
s, the analysis of algorithms and for the random generation of 
ombi-

natorial obje
ts, one usually needs to expand generating fun
tions up to a high order.

Therefore, this is an ideal appli
ation for relaxed power series (Flajolet et al., 1990). In

this 
ontext, multivariate power series 
orrespond to the study of parameters in enumer-

ation problems or the analysis of a 
ertain algorithm (Soria, 1990).

Numeri
al analysis.

In numeri
al analysis, power series are mainly 
omputed in order to be evaluated. The

required number of terms usually depends linearly on the required pre
ision of the eval-

uation. Usually, in absen
e of numeri
al instability only a few terms suÆ
e and 
on-

stant multipli
ations will be very eÆ
ient. Therefore, only small speed-ups 
an possibly

a
hieved using the relaxed approa
h, at the pri
e of massive inlining.

On the other hand, near singularities, analyti
 
ontinuation algorithms may be
ome

numeri
ally unstable and higher pre
isions and expansion orders might be required. The

numeri
al resolution of partial di�erential equations is another possible appli
ation of

the relaxed approa
h.

7.2. Suggestions for implementors

The 
hoi
e of whi
h algorithms to implement in a power series pa
kage should mainly

depend on the appli
ations one has in mind and the time one is willing to spend. Roughly

speaking, we would like to distinguish three 
hoi
es:

A simple qui
kly implemented pa
kage.

If you have little time and are not interested in appli
ations where high expansions orders

are needed (su
h as 
ombinatori
s and the analysis of algorithms), you are probably best

o� with a qui
kly implemented lazy power series pa
kage.

Boosting your simple pa
kage.

If you have some more time and you want to boost the performan
e of a lazy power series

pa
kage for large expansion orders, then you may repla
e your multipli
ation pro
edure

with the algorithm from Se
tion 4.3.1. You may also implement one or more relaxed


omposition algorithm from Se
tion 5 and a holonomi
 fun
tion pa
kage. On the other

hand, it seems not ne
essary to implement the fast zealous algorithms from Se
tion 3,

sin
e the relaxed algorithms are almost as fast and o�er the possibility of solving virtually

all fun
tional equations.

Developing an optimal pa
kage.

If you really want optimal speed and/or generi
ity, then we suggest �rst to implement

a pa
kage for really fast dense arithmeti
 based on the FFT-transform (as des
ribed

in Se
tion 6.1). Next, we suggest you to 
arefully implement hybrid relaxed trun
ated

multipli
ation and 
omposition algorithms, whi
h are both eÆ
ient for small sizes (due

to massive inlining) and larger sizes (due to the asymptoti
ally fast zealous arithmeti
).
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7.3. Final remarks

Other infinite stru
tures.

In prin
iple, the relaxed approa
h may be applied to other valuation rings with fast

zealous arithmeti
, su
h as the p-adi
 numbers (Bernardin, 1998).

Generalized series and transseries.

The lazy approa
h also applies in the 
ase of power series with generalized exponents

(Salvy, 1991). In general, the relaxed approa
h does not lead to faster algorithms, be
ause

of the la
k of fast arithmeti
 for polynomials with generalized exponents. Nevertheless,

if the exponents are grid-based (i.e. they belong to a set of the form a+ b

1

N + � � �+ b

n

N,

where a 2 R and b

1

; : : : ; b

n

2 R

+

�

), then we are essentially handling power series in several

variables, so we 
an gain on the 
omplexity. For appli
ations, see (Ri
hardson et al., 1996;

van der Hoeven, 1997a).

Computing spe
ifi
 terms.

For 
ertain very parti
ular power series, it is possible to 
ompute given 
oeÆ
ients with-

out 
omputing the previous ones, usually by using Lagrange's inversion formula (Brent

and Kung, 1978).

Modular arithmeti
.

In 
omputer algebra, modular arithmeti
 is often used to speed up 
omputations with

integers. For our appli
ation, modular algorithms may be interesting for parallelization

purposes and in order to redu
e the memory requirements if we are merely interested in

a parti
ular 
oeÆ
ient of the series. Noti
e that modular arithmeti
 enters in the general

s
heme for fast arithmeti
 as des
ribed in Se
tion 6.1.

Parallelism.

Ex
ept for the zealous algorithms from Se
tion 3, lazy and relaxed algorithms have the

disadvantage of being essentially sequential. Nevertheless, the fast relaxed multipli
ation

algorithm is 
loser to being parallel, sin
e the zealous multipli
ations might be done

in parallel modulo a proper syn
hronization. We also noti
e that it is often possible to

parallelize the ring operations for C.

Mixing zealous and relaxed multipli
ation.

Consider the multipli
ation h = f � g of two relaxed power series. Sometimes, the ar-

guments f and g do not depend on h. In this 
ase, a zealous algorithm may be used for

the multipli
ation. It 
an also happen that f depends on h, but not g. In this 
ase, it is

possible to improve the 
onstant fa
tor for the relaxed multipli
ation by 
hoosing a more

appropriate partition of N

2

instead of (6.9).
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Other operations on formal power series.

Some other operation on formal power series may be 
onsidered, su
h as

f(z) 7!

X

k>1

�(k)

k

log

1

1� f(z

k

)

;

whi
h 
orresponds to taking 
y
les of 
ombinatorial stru
tures (Flajolet and Soria, 1991).

Other interesting operations are fun
tional iteration (Brent and Traub, 1980) and 
om-

position of multivariate power series (Brent and Kung, 1977). It seems that the relaxed

approa
h applies to these and other operations, although this should be 
he
ked in greater

detail.
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