
J. Symboli
 Computation (2002) 11, 1{000

Relax, but don't be too lazy

Joris van der Hoeven

Dept. de Math�ematiques (bât. 425)

Universit�e Paris-Sud

91405 Orsay Cedex, Fran
e

Email: Joris.VANDERHOEVEN�math.u-psud.fr

(Re
eived 11 April 2002)

Assume that we wish to expand the produ
t h = fg of two formal power series

f and g. Classi
ally, there are two types of algorithms to do this: zealous algorithms

�rst expand f and g up to order n, multiply the results and trun
ate at order n. Lazy

algorithms on the
ontrary
ompute the
oeÆ
ients of f; g and h gradually and they

perform no more
omputations than stri
tly ne
essary at ea
h stage. In parti
ular, at

the moment we
ompute the
oeÆ
ient h

i

of z

i

in h, only f

0

; : : : ; f

i

and g

0

; : : : ; g

i

are

known.

Lazy algorithms have the advantage that the
oeÆ
ients of f and g may a
tually

depend on \previous"
oeÆ
ients of h, as long as they are
omputed before they are

needed in the multipli
ation. I.e. the
oeÆ
ients f

i

and g

i

may depend on h

0

; : : : ; h

i�1

.

For this reason, lazy algorithms are extremely useful when solving fun
tional equations

in rings of formal power series. However, lazy algorithms have the disadvantage that the

lassi
al asymptoti
ally fast multipli
ation algorithms on polynomials | su
h as the

divide and
onquer algorithm and fast Fourier multipli
ation |
an not be used.

In a previous paper, we therefore introdu
ed relaxed algorithms, whi
h share the

property
on
erning the resolution of fun
tional equations with lazy algorithms, but

perform slightly more
omputations than lazy algorithms during the
omputation of

a given
oeÆ
ient of h. These extra
omputations anti
ipate the
omputations of the

next
oeÆ
ients of h and dramati
ally improve the asymptoti
 time
omplexities of su
h

algorithms.

In this paper, we survey several
lassi
al and new zealous algorithms for manipulating

formal power series, in
luding algorithms for multipli
ation, division, resolution of dif-

ferential equations,
omposition and reversion. Next, we give various relaxed algorithms

for these operations. All algorithms are spe
i�ed in great detail and we prove theo-

reti
al time and spa
e
omplexity bounds. Most algorithms have been experimentally

implemented in C++ and we provide ben
hmarks. We
on
lude by some suggestions for

future developments and a dis
ussion of the �tness of the lazy and relaxed approa
hes

for spe
i�
 appli
ations.

The paper is intended both for those who are interested in the most re
ent algorithms

for the manipulation of formal power series and for those who want to a
tually implement

a power series library into a
omputer algebra system.

1. Introdu
tion

Let C be an e�e
tive ring, whi
h means that we have algorithms for addition, subtra
-

tion and multipli
ation. In this paper, we des
ribe several fast algorithms for manipulat-

0747{7171/90/000000 + 00 $03.00/0

 2002 A
ademi
 Press Limited

2 Joris van der Hoeven

ing formal univariate power series in the ring C[[z℄℄. In prin
iple, it is not ne
essary to

assume that C is
ommutative or an integral domain. Nevertheless, for
ertain algorithms

we need to assume that C
ontains the rational numbers, or more modestly, that C is

divisible. Here C is said to be divisible, if we have a division algorithm for elements x in

C by integers n, whi
h raises an ex
eption if x is not divisible by n.

Be
ause of the in�nite nature of formal power series, we will always be
on
erned with

the
omputation of the �rst n
oeÆ
ients of a given power series. The time and spa
e

omplexities of our algorithms will be measured in terms of the number of ring operations

in C and the number of elements in C stored in memory. Only in the
ase of �nite rings,

these
omplexity measures
oin
ide with bitwise
omplexities.

1.1. The different approa
hes

Assume that we want to
ompute the �rst n
oeÆ
ients of the produ
t h = fg of two

power series f and g. We will distinguish three approa
hes in order to do this; the �rst

and the se
ond are
lassi
al, while the third one was (brie
y) introdu
ed in (van der

Hoeven, 1997b). For simpli
ity, we dis
uss the approa
hes in the
ase of multipli
ation,

but they apply to any operation on formal power series and in this paper, we will also

onsider
omposition, reversion, et
.

1.1.1. The zealous approa
h

This approa
h
onsists of expanding f and g up to order n, to multiply the results and

trun
ate the produ
t

(f

0

+ � � �+ f

n�1

z

n�1

)(g

0

+ � � �+ g

n�1

z

n�1

)

at order n. This yields the �rst n
oeÆ
ients of h.

The advantage of the zealous approa
h is that we may
ompute the
oeÆ
ients h

0

; : : : ;

h

n�1

together as a fun
tion of f

0

; : : : ; f

n�1

and g

0

; : : : ; g

n�1

. Therefore, many fast al-

gorithms on (trun
ated) polynomials
an be used, su
h as divide and
onquer and fast

Fourier multipli
ation (shortly: DAC- and FFT-multipli
ation). In the
ases of
omposi-

tion, reversion and resolution of di�erential equations, Brent and Kung's algorithms may

be used. We will brie
y re
all some of these
lassi
al zealous algorithms in Se
tion 3 and

a few new ones will be added.

1.1.2. The lazy approa
h

Another approa
h is to
ompute the
oeÆ
ients of h one by one and to do no more work

than stri
tly ne
essary at ea
h stage. In parti
ular, at stage i (i.e. for the
omputation

of h

i

), we
ompute only those
oeÆ
ients of f and g whi
h are really needed | that is

f

0

; : : : ; f

i

and g

0

; : : : ; g

i

.

Lazy algorithms have the advantage that the
oeÆ
ients f and g may a
tually depend

on \previous"
oeÆ
ients of h, as long as they are
omputed before they are needed in the

multipli
ation algorithm. In other words, f

i

and g

i

may depend on h

0

; : : : ; h

i�1

. For this

reason, lazy algorithms are extremely useful for the resolution of fun
tional equations.

For instan
e,
onsider the formula

e

'

=

Z

'

0

e

'

Relax, but don't be too lazy 3

for exponentiating a formal power series ' with '

0

= 0. When evaluating the produ
t

fg lazily, where f = '

0

and g = e

'

, this formula yields a method to
ompute e

'

.

A se
ond advantage of the lazy approa
h is that the
omputation pro
ess
an be

resumed in order to
ompute more than n
oeÆ
ients of h. In the
ase of the zealous

approa
h all
oeÆ
ients would have to be re
omputed.

A third advantage of the lazy approa
h is that it naturally applies to the problems of

omputing the valuation and the �rst non zero
oeÆ
ient of a power series.

1.1.3. The relaxed approa
h

Lazy algorithms have the disadvantage that the
lassi
al asymptoti
ally fast algorithms

on polynomials, su
h DAC- and FFT-multipli
ation,
an no longer be used. This is

what motivated us in the introdu
tion of a slightly di�erent, relaxed approa
h (van der

Hoeven, 1997b).

Relaxed algorithms share with lazy algorithms the fa
t that the
oeÆ
ients of h are

omputed gradually and that at ea
h stage we only
ompute those
oeÆ
ients of f and g

whi
h are needed for the
omputation of the next
oeÆ
ient of h. In parti
ular, relaxed

algorithms
an be used in a similar manner as lazy algorithms in order to solve fun
tional

equations.

The di�eren
e between the lazy and the relaxed approa
hes is that at the
omputation

of a given
oeÆ
ient of h lazy algorithms only perform \the stri
tly ne
essary operations",

while relaxed algorithms \anti
ipate the
omputation of the next
oeÆ
ients". Let us

illustrate this by an example.

Assume that we want to
ompute the �rst three
oeÆ
ients of the produ
t of two

power series f = f

0

+ f

1

z+ f

2

z

2

+ � � � and g = g

0

+ g

1

z+ g

2

z

2

+ � � � . When using a lazy

algorithm, we do the following:

0. We
ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We
ompute f

1

; g

1

and (fg)

1

= f

0

g

1

+ f

1

g

0

.

2. We
ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Of
ourse, the values of f

0

and g

0

are stored somewhere, so that they do not have to

be reevaluated at stage 1 and similarly for f

1

and g

1

at stage 2. When using a relaxed

algorithm, we would rather do the following:

0. We
ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We
ompute f

1

; g

1

and (fg)

1

= (f

0

+ g

0

)(f

1

+ g

1

)� f

0

g

0

� f

1

g

1

.

2. We
ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Here we used a tri
k in order to evaluate (f

0

+f

1

z)(g

0

+g

1

z) using 3 multipli
ations only.

Indeed, the three multipli
ations f

0

g

0

; (f

0

+g

0

)(f

1

+g

1

); f

1

g

1

yield (f

0

+f

1

z)(g

0

+g

1

z) =

f

0

g

0

+ ((f

0

+ g

0

)(f

1

+ g

1

) � f

0

g

0

� f

1

g

1

)z + f

1

g

1

z

2

. Although we perform some extra

additions at stage 1, we anti
ipate the
omputation of f

1

g

1

at stage 2. Consequently, we

only perform 5 multipli
ations in total, against 6 for the lazy approa
h.

1.2. Outline of the paper

In Se
tion 3, we mainly re
all
lassi
al zealous algorithms for manipulating formal

power series. The
orresponding
omplexity results are summarized in Table 1. In the

4 Joris van der Hoeven

Algorithm Time
omplexity Spa
e
omplexity

DAC-multipli
ation M(n) = O(n

log 3= log 2

) O(n)

FFT-multipli
ation M(n) = O(n log n) O(n)

Division O(M(n)) O(n)

Solving impli
it equations and o.d.e.'s O(M(n)) O(n)

Algebrai
 and holonomi
 fun
tions O(n) O(n)

Right
omposition with polynomials O(M(n) log n) O(n)

Right
omposition with algebrai
 fun
tions O(M(n) log n) O(n)

Composition and reversion (divisible ring C) O(M(n)

p

n log n) O(n logn)

Composition and reversion (�nite ring C) O(M(n) log n) O(n)

Table 1. Time and spa
e
omplexities of zealous algorithms.

table, M(n) denotes the time
omplexity for fast multipli
ation (see Se
tion 3.1); basi

referen
es for fast integer and polynomial multipli
ation algorithms are (Knuth, 1997;

Nussbaumer, 1981) and (Karatsuba and Ofman, 1962; Toom, 1963b; Cooley and Tukey,

1965; Cook, 1966; S
h�onhage and Strassen, 1971; Cantor and Kaltofen, 1991; Heideman

et al., 1984). Most of the remaining results are due to Brent and Kung (Brent and

Kung, 1975; Brent and Kung, 1978). The result about general
omposition in �nite

hara
teristi
 is due to Bernstein (Bernstein, 1998).

Although most algorithms from Se
tion 3 are
lassi
al, we have given several variants

whi
h we
ould not �nd in the standard literature:

� In Se
tion 3.1.2 we give a simple fast multipli
ation algorithm for polynomials

using the FFT-transform. This algorithm is an analogue of S
h�onhage-Strassen's

algorithm and simpli�es Cantor and Kaltofen's algorithm for the frequent
ase when

2 does not divide zero in C.

� In Se
tion 3.2.5, we spe
ify and prove Brent and Kung's algorithm for the resolution

of o.d.e.'s for general orders. In the original papers, only �rst and se
ond order

equations were
onsidered and the latter only by means of examples.

� In Se
tion 3.4.2, we observe that Brent and Kung's method for right
omposition

with polynomials generalizes to right
omposition with rational and algebrai
 fun
-

tions; in the relaxed
ase, this observation will be useful for solving
ertain di�eren
e

equations.

In Se
tion 4, we propose several relaxed multipli
ation algorithms. We �rst observe

that the divide and
onquer algorithm
an easily be transformed into a relaxed algo-

rithm with the same time
omplexity but a logarithmi
 spa
e overhead. We next give

an asymptoti
ally better algorithm, whi
h also has the best possible spa
e
omplexity.

However, this algorithm may be slower for small input sizes, whi
h makes it diÆ
ult to

hoose a best overall strategy (see Se
tion 4.4). Some examples of problems to whi
h

relaxed multipli
ation
an be applied are given in Se
tion 4.5.

In Se
tion 5, we give algorithms for relaxed
omposition. A
tually, Brent and Kung's

and Bernstein's algorithms
an easily be adapted to this
ase, while preserving the same

time
omplexity (modulo repla
ing a zealous multipli
ation algorithm by a relaxed one).

An overview of our
omplexity results for relaxed algorithms is given in Table 2, where

Relax, but don't be too lazy 5

Algorithm Time
omplexity Spa
e
omplexity

Relaxed DAC-multipli
ation M

�

(n) = O(n

log 3= log 2

) O(n logn)

Fast relaxed multipli
ation M

�

(n) = O(M(n) log n) O(n)

Division O(M

�

(n)) O(n)

Algebrai
 and holonomi
 fun
tions O(n) O(n)

Right
omposition with rational fun
tions O(M

�

(n) log n) O(n)

Right
omposition with algebrai
 fun
tions O(M

�

(n) log n) O(n)

Composition and reversion (divisible ring C) O(M

�

(n)

p

n log n) O(n

p

n log n)

Composition and reversion (�nite ring C) O(M

�

(n) log n) O(n logn)

Table 2. Time and spa
e
omplexities of relaxed algorithms.

M

�

(n) stands for the time
omplexity of relaxed multipli
ation. The spa
e
omplexities

assume that we use a relaxed multipli
ation with linear time
omplexity; when using

relaxed DAC-multipli
ation, these
omplexities should be multiplied by logn (ex
ept in

algebrai
 and holonomi

ases).

In Se
tion 6 we suggest how to improve the performan
e of the algorithms for par-

ti
ular
oeÆ
ient rings. In Se
tion 6.1, we outline how to take more advantage of the

FFT-transform. In Se
tion 6.2, we study the numeri
al stability of our algorithms. In

Se
tion 6.3, we dis
uss the issue of multivariate power series. Several approa
hes will be

proposed in an informal style and the development of a more detailed theory remains a

hallenge.

Most of the algorithms in this paper have been implemented in an experimental C++-

pa
kage and we have in
luded several tables with ben
hmarks. In the last Se
tion 7, we

draw some �nal
on
lusions and dis
uss the relevan
e of the di�erent algorithms presented

in this paper for spe
i�
 appli
ations su
h as symboli

omputation,
ombinatori
s, the

analysis of algorithms and numeri
al analysis. We also give some suggestions for those

who want to implement a power series library in a
omputer algebra system and for those

who want to \upgrade" an existing lazy power series implementation.

2. Implementation
onventions

We have presented most of the algorithms in this paper in detail in the hope that

this will be helpful for a
tual implementations. For our spe
i�
ations, we have
hosen an

obje
t oriented pseudo-language (see (Stroustrup, 1995) for some basi
 terminology for

su
h languages), with expli
it memory
ontrol for the user (this will allow us to study in

detail the spa
e and time
omplexities of the relaxed algorithms). Below, we will dis
uss

some general implementation issues and �x some notational
onventions.

2.1. Zealous algorithms

Trun
ated power series will be represented by elements of the
lass TPS(C). An instan
e

of this
lass
onsists of a pointer to an array of elements in C and the length n of the array;

it represents a trun
ated power series at order n, i.e. an element of C[[z℄℄=(z

n

)

�

=

C[z℄=(z

n

).

For notational
onvenien
e, we will also denote by TPS(C; n) the \sub
lass" of instan
es

in TPS(C) with trun
ation order n.

6 Joris van der Hoeven

We will use the following shorthands for the most elementary operations on trun
ated

power series f = f

0

+ � � �+ f

n�1

z

n�1

:

� ℄f : the order n of f .

� C; z: impli
it
onversion to instan
es of TPS(C; n).

� +;�: addition resp. subtra
tion.

� f

0

: derivative f

1

+ � � �+ (n� 1)f

n�1

z

n�2

.

�

R

f : integral f

0

z + � � �+

f

n�1

n

z

n

(for rings C whi
h
ontain the rationals).

� f Æ z

p

: right
omposition f

0

+ � � � + f

n�1

z

(n�1)p

+ 0z

(n�1)p+1

+ � � � + 0z

np�1

with

power of z.

� f mul z

k

: multipli
ation f

0

z

k

+ � � �+ f

n�1

z

n+k�1

with z

k

.

� f div z

k

: division f

k

+ � � �+ f

n�1

z

n�k�1

by z

k

.

� f

i���j

(j 6 n): the trun
ated series f

i

+ � � �+ f

j�1

z

j�i

.

� f

0���m

(m > n): the trun
ated series f

0

+ � � �+ f

n�1

z

n�1

+ 0z

n

+ � � �+ 0z

m�1

.

� f

i���j

+= g: sets f

i

:= f

i

+ g

0

; : : : ; f

j�1

:= f

j�1

+ g

j�i�1

.

We will not detail the implementation of these operations and assume that memory

management is taken
are of. Noti
e that the operations all require linear time and

spa
e.

In Se
tion 3.1, we will re
all algorithms for the fast multipli
ation of dense polynomi-

als. Modulo trun
ation, this also yields a multipli
ation algorithm in TPS(C; n), as well

as a binary powering algorithm. In Se
tion 3.2.2, we give a fast division algorithm in

TPS(C; n). In the sequel we use the following abbreviations for these operations:

� ? : TPS(C; p)�TPS(C; q)! TPS(C; p+q�1) stands for polynomial multipli
ation.

Noti
e that we ex
eptionally
onsider the elements of the TPS(C; n) as polynomials

in this
ase. Equivalently, one may think of the
oeÆ
ients in z

k

with k > n as

being zero.

� � : TPS(C; n) � TPS(C; n) ! TPS(C; n) stands for trun
ated multipli
ation.

Noti
e that f � g = (f ? g)

0���n

.

� = : TPS(C; n)� TPS(C; n)! TPS(C; n) stands for trun
ated division.

� �

p

: TPS(C; n)! TPS(C; n) stands for trun
ated binary powering.

Remark. In low level languages, operations on trun
ated power series
an be imple-

mented more eÆ
iently by routines whi
h take dire
tly pointers to the destination and

argument segments on input as well as their lengths. This approa
h also avoids memory

allo
ations, ex
ept for temporary ones on the heap. Nevertheless, it should not be hard

to rewrite the algorithms from this paper in this style.

2.2. Lazy and relaxed algorithms

From the point of view of the user a lazy or relaxed power series f should be some obje
t

with a method whi
h yields the
oeÆ
ients of f one by one. In obje
t oriented languages,

we may therefore implement a series as a pointer to an abstra
t \series representation

lass" Series Rep, whi
h is given by

Relax, but don't be too lazy 7

Class Series Rep(C)

' : TPS(C)

n : Integer

virtual next : Void! C

Here '
ontains the already
omputed
oeÆ
ients and n their number. The order of ' is

allowed to ex
eed n in order to anti
ipate future
omputations . The virtual method next

is private and should
ompute the next, n-th,
oeÆ
ient of the series. The publi
 method

to
ompute any k-th
oeÆ
ient, whi
h is detailed below, ensures that the
oeÆ
ients

'

0

; : : : ; '

k�1

are already available before
alling next and that '

k

is updated after

alling next.

All representation
lasses in this paper, like Series Rep will
ontain a referen
e
ounter,

whi
h is in
reased ea
h time an instan
e is
opied and de
reased ea
h time a
opy is

deleted. The instan
e is physi
ally removed, only when the referen
e
ounter vanishes. We

will use p := new D Rep(a

1

; : : : ; a

l

) to
reate a pointer p to a
on
rete
lass D Rep and

to
all the
orresponding
onstru
tor with arguments a

1

; : : : ; a

l

. A member or member

fun
tion x of D Rep will be a

essed through p:x. We denote by null the symboli
 \null"

pointer.

Given a pointer f : Series(C) to an instan
e of Series Rep(C), let us now detail the

algorithm to
ompute the k-th
oeÆ
ient f

k

of f . We �rst look whether k < f:n. If

so, then we return f:'

k

. Otherwise, we in
rease the order of ' to k + 1 (if ne
essary),

ompute the
oeÆ
ients f

f:n

; : : : ; f

k

by repeatedly
alling f:next(), and return f:'

k

. We

also implement an algorithm to
ompute f

i���j

= f

i

+ � � � + f

j�1

z

j�i�1

: TPS(C; j � i).

This algorithm �rst
omputes f

j�1

and then returns f:'

i���j

.

Example. In order to implement a
onstant series, we �rst de�ne a
on
rete
lass

Class Constant Series Rep(C) . Series Rep(C)

 : C

The symbol . stands for
lass inheritan
e. The
onstru
tor for Constant Series Rep(C)

takes a
onstant

0

: C on input and sets
 :=

0

. The member fun
tion next returns
 if

n = 0 and 0 otherwise. See Se
tion 4.1 for another easy and detailed example.

The following easily implemented operations on series will not be spe
i�ed in detail:

� Conversion from TPS(C) to Series(C), where we �ll up with zero
oeÆ
ients.

� Addition and subtra
tion +;�.

� Di�erentiation and integration

0

;

R

.

� f mul z

k

; f div z

k

multipli
ation and division by z

k

.

3. Zealous algorithms

3.1. Multipli
ation

There are several well-known algorithms to multiply two polynomials f = f

0

+ � � � +

f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

of degrees < n with
oeÆ
ients in an e�e
tive

ring C. The naive algorithm, based on the formula (fg)

k

=

P

i

f

i

g

k�i

, has
omplexity

O(n

2

). Below, we re
all DAC-, FFT- and trun
ated multipli
ation.

8 Joris van der Hoeven

In the remainder of this paper, we assume that we have �xed on
e and for all a

multipli
ation method of time
omplexity M(n), su
h that M(n)=n is an in
reasing

fun
tion of n and M(O(n)) = O(M(n)).

3.1.1. DAC-multipli
ation

Given polynomials f = f

0

+ � � � + f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

, we de�ne

their lower and higher parts by f

�

= f

0

+ � � �+f

dn=2e�1

z

dn=2e�1

resp. f

�

= f

dn=2e

z

dn=2e

+

� � �+ f

n�1

z

n�1

and similarly for g. Hen
e, f and g de
ompose as

f = f

�

+ f

�

z

dn=2e

;

g = g

�

+ g

�

z

dn=2e

;

The following identity is
lassi
al (a similar, but slightly more
ompli
ated identity was

�rst found by Karatsuba (Karatsuba and Ofman, 1962)):

fg = f

�

g

�

+ ((f

�

+ f

�

)(g

�

+ g

�

)� f

�

g

�

� f

�

g

�

)z

dn=2e

+ f

�

g

�

z

2dn=2e

:

(3.1)

Applying this formula re
ursively, ex
ept for small n < Threshold

C

(with Threshold

C

>

2), we obtain the DAC-multipli
ation algorithm below. Sin
e the multipli
ation of two

polynomials of degrees < n involves only three multipli
ations of polynomials of degrees

< dn=2e, the asymptoti
 time
omplexity of this algorithm is O(n

log 3= log 2

).

Algorithm DAC multiply(f; g)

Input: Polynomials f = f

0

+ � � �+ f

n�1

z

n�1

and g = g

0

+ � � �+ g

n�1

z

n�1

in C[z℄.

Output: Their produ
t fg.

D1. [Base℄

if n < Threshold

C

then return

P

2n�2

i=0

�

P

min(n�1;i)

j=max(0;i+1�n)

f

j

g

i�j

�

z

i

D2. [Divide and
onquer℄

lo := DAC multiply(f

�

; g

�

)

mid := DAC multiply(f

�

+ f

�

; g

�

+ g

�

)

hi := DAC multiply(f

�

; g

�

)

return lo+mid� z

dn=2e

+ hi� z

2dn=2e

3.1.2. FFT-multipli
ation

The fastest known multipli
ation algorithm is based on the dis
rete Fourier transform

(DFT). We re
all that the DFT transforms a sequen
e of
oeÆ
ients a

0

; : : : ; a

n�1

in

C and an n-th root of unity ! in C (whi
h is assumed to exist) into the sequen
e of

evaluations of the polynomial a

0

+ a

1

z + � � � + a

n�1

z

n�1

at the n-th roots of unity

1; !; : : : ; !

n�1

. This transform has the important property that applying the DFT twi
e

w.r.t. ! and !

�1

= !

n�1

, we obtain n times the original sequen
e a

0

; : : : ; a

n�1

. Moreover,

if n is a power of two, then the DFT
an be performed in almost linear time O(n logn)

by the following re
ursive algorithm (in pra
ti
e, when multipli
ation in C is fast, the

re
ursion should rather be transformed into a double loop):

Relax, but don't be too lazy 9

Algorithm DFT(a; !)

Input: An n-tuple (a

0

; : : : ; a

n�1

) and an n-th root of unity in C, where n = 2

p

;

Output: The n-tuple (â

0

; : : : ; â

n�1

) with â

j

=

P

n�1

i=0

a

i

!

ij

.

if n = 1 then return (a

0

)

(

^

b

0

; : : : ;

^

b

n=2�1

) := DFT((a

0

; a

2

; : : : ; a

n�2

); !

2

)

(
̂

0

; : : : ;
̂

n=2�1

) := DFT((a

1

; a

3

; : : : ; a

n�1

); !

2

)

return (

^

b

0

+
̂

0

; : : : ;

^

b

n=2�1

+
̂

n=2�1

!

n=2�1

;

^

b

0

�
̂

0

; : : : ;

^

b

n=2�1

�
̂

n=2�1

!

n=2�1

)

Now assume that we want to multiply two polynomials A = a

0

+ � � �+ a

n�1

z

n�1

and

B = b

0

+ � � �+ b

n�1

z

n�1

with degAB < n = 2

p

. We �rst apply DFT to (a

0

; : : : ; a

n�1

)

resp. (b

0

; : : : ; b

n�1

) and !. Denoting by â

0

; : : : ; â

n�1

resp.

^

b

0

; : : : ;

^

b

n�1

the results, we

next apply DFT to (â

0

^

b

0

; : : : ; â

n�1

^

b

n�1

) and !

n�1

. This yields n times the sequen
e of

oeÆ
ients of AB. Assuming that C is 2-divisible (i.e. we have an algorithm to divide

the multiples of two in C by two), we
an �nally retrieve AB from this sequen
e, sin
e n

is a power of two.

If C does not
ontain an n-th root of unity, then it is still possible to use the fast Fourier

transform, using a tri
k due to S
h�onhage and Strassen (S
h�onhage and Strassen, 1971).

A
tually, assuming that n > FFT Threshold

C

is a suÆ
iently large power of two, we will

show how to multiply eÆ
iently in the \
y
lotomi
 polynomial ring" C[x℄=(x

n

+ 1); this

method will then be used to multiply polynomials A;B 2 C[z℄ for whi
h degAB < n.

Noti
e that x is a 2n-th root of unity in C[x℄=(x

n

+ 1).

Let n = 2

p

= md with m = 2

d(p+1)=2e

. Then any polynomial

n�1

X

i=0

a

i

x

i

in C[x℄=(x

n

+ 1) may be rewritten as a polynomial

d�1

X

j=0

m�1

X

i=0

a

di+j

y

i

!

x

j

:

where y = x

d

is an 2m-th root of unity. In other words, it suÆ
es to show how to multiply

polynomials of degrees 6 d, whose
oeÆ
ients lie in the smaller
y
lotomi
 polynomial

ring C[y℄=(y

m

+1). But we may use the DFT for this, sin
e C[y℄=(y

m

+1)
ontains 2m-th

roots of unity and d 6 m. Noti
e that the DFT only involves additions and
opying in C,

sin
e the multipli
ations by powers of y in C[y℄=(y

m

+1) involve only
opying, additions

and subtra
tions. Finally, we may apply the method re
ursively in order to multiply

elements of C[y℄=(y

m

+ 1). This gives us the following general multipli
ation algorithm:

Algorithm FFT multiply(A;B)

Input: Polynomials A = a

0

+ � � � + a

n�1

x

n�1

and B = b

0

+ � � � + b

n�1

x

n�1

in

C[x℄=(x

n

+ 1), where n = 2

p

.

Output: Their produ
t AB.

F1. [Base℄

if n > FFT Threshold

C

then go to F2

C := DAC multiply(a

0

+ � � �+ a

n�1

z

n�1

; b

0

+ � � �+ b

n�1

z

n�1

),

10 Joris van der Hoeven

Denote C =

0

+ � � �+

2n�1

z

2n�1

return (

0

�

n

) + � � �+ (

n�1

�

2n�1

)x

n�1

F2. [En
ode℄

m := 2

b(p+1)=2

; d := n=m; y := x

d

for j := 0 to d� 1 do

A

j

:=

P

m�1

i=0

a

di+j

y

i

B

j

:=

P

m�1

i=0

b

di+j

y

i

for j := d to 2d� 1 do A

j

:= B

j

:= 0

F3. [FFT℄

! := y

m=d

; ! := !

2d�1

(

^

A

0

; : : : ;

^

A

2d�1

) := DFT((A

0

; : : : ; A

2d�1

); !)

(

^

B

0

; : : : ;

^

B

2d�1

) := DFT((B

0

; : : : ; B

2d�1

); !)

for j := 0 to 2d� 1 do

^

C

j

:= FFT multiply(

^

A

j

;

^

B

j

)

(C

0

; : : : ; C

2d�1

) := DFT((

^

C

0

; : : : ;

^

C

2d�1

); !)

F4. [De
ode℄

return

C

0

+C

d

y

2d

+

C

1

+C

d+1

y

2d

x+ � � �+

C

d�1

+C

2d�1

y

2d

x

n�1

It
an be shown that this algorithm has time
omplexity O(n logn log logn) and spa
e

omplexity O(n). The algorithm is a simpli�ed version of the algorithm from (Cantor

and Kaltofen, 1991), whi
h also works when C is not 2-divisible (in this
ase, one may

for instan
e
ompute both 2

p

AB and 3

q

AB, using a similar, ternary FFT-multipli
ation

algorithm, and then apply the Chinese remainder theorem). We also refer to this paper

for proofs of the
omplexity bounds.

3.1.3. Trun
ated multipli
ation

When multiplying formal power series f and g up to order n, we are usually only

interested in the �rst n
oeÆ
ients of fg. In other words, although multiplying f

0

+ � � �+

f

n�1

z

n�1

and g

0

+ � � � + g

n�1

z

n�1

as polynomials and trun
ating the produ
t does the

job, it might be possible to �nd a faster algorithm, whi
h does not perform super
uous

omputations.

When we use the naive multipli
ation algorithm, we may indeed gain a fa
tor of two

by evaluating only the produ
ts (fg)

k

=

P

k

i=0

f

i

g

k�i

for k < n. We
an also have a

trun
ated DAC-multipli
ation: �rst
ompute f

�

g

�

using the usual algorithm and next

re
ursively
ompute f

�

g

�

and f

�

g

�

modulo z

bn=2

. Finally, apply the formula

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

bn=2

℄z

dn=2e

+ [f

�

g

�

mod z

bn=2

℄z

dn=2e

:

Although this algorithm has the same asymptoti

omplexity (and the same
onstant

fa
tor), we do gain for moderate values of n, sin
e fewer additions and subtra
tions

are needed. However, when using FFT-multipli
ation, the
onstant in the asymptoti

omplexity be
omes worse for this method.

During the referee pro
ess of this paper, we have been made aware of a new algorithm

by Mulders to a

elerate trun
ated DAC-multipli
ation (Mulders, 2000). His algorithm

Relax, but don't be too lazy 11

has an asymptoti
 time
omplexity �D(n), where

� = 1� e

�(log 2)

2

=(log 3=2)

� 0:694;

� =

�

log 3= log 2

1� 2(1� �)

log 3= log 2

� 0:808

and D(n) stands for the time
omplexity of full DAC-multipli
ation. The idea is to
hoose

m = d�ne (instead of m = dn=2e), and to trun
ate f

�

= f

0���m

, f

�

= f

m���n

and similarly

for g. Then we again have

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

n�m

℄z

m

+ [f

�

g

�

mod z

n�m

℄z

m

:

Although we lose a bit on the dense multipli
ation of f

�

with g

�

, the other two trun-

ated multipli
ations (for whi
h we re
ursively use the same algorithm) be
ome faster.

In pra
ti
e, it is re
ommended to take m as
lose as possible to �n, while being of the

form m = a2

p

with a < FFT Threshold

C

and a; p 2 N.

3.2. Appli
ations of Newton's method

Many zealous algorithms for operations on formal power series are based on Newton's

method, whi
h doubles the number of
orre
t
oeÆ
ients at ea
h iteration. The method

an in parti
ular be used for division, reversion, exponentiation and the resolution of

ordinary di�erential equations.

3.2.1. Newton's method

A
lassi
al problem in numeri
al analysis is to �nd single roots of an equation

f(x) = 0:

If we already have an approximate root x

0

, and if the fun
tion f is suÆ
iently regu-

lar, then better approximations
an be found by Newton's method, whi
h
onsists of

performing the iteration

x

n+1

= x

n

�

f(x

n

)

f

0

(x

n

)

:

Ultimately, the number of
orre
t digits doubles at ea
h iterative step, whi
h makes

the method extremely eÆ
ient. It was �rst observed by Brent and Kung that the same

method
an be used when x is a power series and f a fun
tional on the spa
e of power

series. In this
ase, the number of
orre
t terms of the approximate solution ultimately

doubles at ea
h iterative step.

3.2.2. Division

In this se
tion, we will give an algorithm to invert a power series f , su
h that f

0

is

invertible in C; this
learly yields a division algorithm too. In order to invert f , we have

to solve the equation

1

g

� f = 0:

12 Joris van der Hoeven

If g is an approximate solution whose �rst n > 0 terms are
orre
t, then the Newton

iteration

g := g �

1

g

� f

�

1

g

2

;

whi
h is rewritten more
onveniently as

g := g �

fg � 1

z

n

gz

n

; (3.2)

yields 2n
orre
t terms. Indeed, if g = f

�1

+O(z

n

), then we have fg = 1+O(z

n

), when
e

f(g�(fg�1)g) = 1�(fg�1)

2

= 1+O(z

2n

) and g�(fg�1)g = f

�1

(f(g�(fg�1)g)) =

f

�1

+ O(z

2n

). Furthermore, (fg � 1)g = ((fg � 1)=z

n

)gz

n

, sin
e the �rst n terms of

fg� 1 vanish. Using the iteration (3.2), we get the following inversion algorithm of time

omplexity O(M(n)):

Algorithm invert(f)

Input: f : TPS(C; n), su
h that f

0

is invertible in C.

Output: f

�1

: TPS(C; n)

if n = 1 then return (1=f

0

)

0���1

.

m := d

n

2

e

g := invert(f

0���m

)

0���n

return g � ((((f � g) div z

m

)� g

0���n�m

)mul z

m

)

3.2.3. Exponentiation and logarithm

Assume that C is a ring whi
h
ontains the rational numbers and that f is a power

series, su
h that f

0

is invertible and log f

0

well de�ned in C. Then the inversion algorithm

also yields a straightforward way to
ompute log f , sin
e

log f = log f

0

+

Z

f

0

f

;

where the integral is taken with integration
onstant zero. Solving the equation

log g = f

using Newton's method, we also have the following algorithm for exponentiation, whi
h

again has time
omplexity O(M(n)):

Algorithm exp(f)

Input: f : TPS(C; n), su
h that exp f

0

is de�ned and invertible in C.

Output: exp f : TPS(C; n)

if n = 1 then return (exp f

0

)

0���1

.

m := d

n

2

e

g := exp(f

0���m

)

0���n

return g � (log(g)� f)� g

Relax, but don't be too lazy 13

3.2.4. Reversion

If we have an algorithm
ompose for the
omposition of power series with time
om-

plexity O(C(n)) (where C(n)=n is an in
reasing fun
tion), then Newton's method
an

still be applied in order to solve the equation

f Æ g � z = 0:

This yields the following O(C(n)) reversion algorithm for f :

Algorithm revert(f)

Input: f : TPS(C; n) with f

0

= 0 and f

1

is invertible in C.

Output: f

inv

if n = 1 then return 0

0���1

if n = 2 then return (z=f

1

)

0���2

m := d

n

2

e

g := revert(f

0���m

)

0���n

N :=
ompose(f; g)� z

D :=
ompose(f

0

; g

0���n�1

)

return g � (((N div z)=D)mul z)

3.2.5. Resolution of ordinary differential equations

In this se
tion, we assume that C
ontains the rational numbers. Let �(y

0

; : : : ; y

r

; z)

be a multivariate polynomial in C[y

0

; : : : ; y

r

; z℄. We wish to solve the ordinary di�erential

equation

�(f(z); f

0

(z); : : : ; f

(r)

(z); z) = 0; (3.3)

where we assume that the separant of � is invertible in C for the initial
onditions:

��

�y

r

(f(0); : : : ; f

(r)

(0); 0) 2 C

�

: (3.4)

This
ondition ensures that (3.3) admits a unique formal solution. Indeed, modulo one

di�erentiation of (3.3), we may assume without loss of generality that � is linear in y

r

:

� = �

0

(y

0

; : : : ; y

r�1

; z) + �

1

(y

0

; : : : ; y

r�1

; z)y

r

:

Now (3.4) means that �

1

(0; : : : ; 0) is invertible in C. Hen
e (3.3) may be solved formally

by repeated integration:

f = �

Z

r times

� � �

Z

�

0

(f; : : : ; f

(r�1)

; z)

�

1

(f; : : : ; f

(r�1)

; z)

; (3.5)

where the integration
onstants are taken appropriately, so that they mat
h the initial

onditions.

Remark. Our assumption on the initial
onditions is not satis�ed in
ertain
ases, su
h

as the linear di�erential equations

z

2

J

�

00

+ zJ

�

0

+ (z

2

� �

2

)J

�

= 0;

14 Joris van der Hoeven

satis�ed by the Bessel fun
tions, or equations like

z

2

f

0

+ f = z

with divergent power series solutions. Sometimes, our assumption on the initial
onditions

an be satis�ed after a
hange of variables of the form

f = f

0

+ f

1

z + � � �+ f

k

z

k

+ z

k

~

f; (3.6)

but, in general, Brent and Kung's method does not apply.

On the other hand, the di�erential equation
an always be rewritten as a di�erential

equation in Æ = z

�

�z

. Assume that f is not a multiple solution of this equation. Then,

after a
hange of variables (3.6) as above and multipli
ation by a suitable power of z, the

equation
an be put in normal form

L(f) + zR(f) = 0; (3.7)

where L 2 C[Æ℄ is non zero and R(f) 2 C[[z℄℄[f; Æf; : : : ; Æ

r

f ℄. The linear di�erential

operator L with
onstant
oeÆ
ients operates in a homogeneous way: Lz

k

= �

k

z

k

, for

ertain �

k

2 C. If the �

k

are all invertible, then (3.7) yields a way to express the k-th

oeÆ
ient of the solution in terms of previous
oeÆ
ients. Hen
e, we may apply the lazy

and relaxed resolution methods, whi
h will be des
ribed later in this paper.

The repeated integral (3.5) is useful for solving (3.3) by lazy or relaxed evaluation. In

this se
tion we show that (3.3)
an also be solved using Newton's method. For this, we

assume that we have implemented an O(M(n)) algorithm subst, whi
h takes a polyno-

mial 	 2 C[y

0

; : : : ; y

r

; z℄ and a trun
ated power series f : TPS(C; n) on input and whi
h

returns the �rst n terms of 	(f; : : : ; f

(r)

; z) (where we take f

n

= � � � = f

n+r�1

= 0).

Now let n > 3r and assume that f is an approximate solution (at order n) to (3.3)

with

�(f; : : : ; f

(r)

; z) = O(z

n�r

):

Then the Newton iteration
onsists of repla
ing

f := f � ';

where ' is the unique solution to the linear di�erential equation

8

>

>

<

>

>

:

L' = g;

L =

��

�y

0

(f(z); : : : ; f

(r)

(z); z) + � � �+

��

�y

r

(f(z); : : : ; f

(r)

(z); z)

�

r

�z

r

;

g = �(f; : : : ; f

(r)

; z);

(3.8)

with '

0

= � � � = '

r�1

= 0, whi
h is obtained by linearlizing �. Noti
e that the existen
e

and uniqueness of ' again follows from
ondition (3.4). Noti
e also that ' = O(z

n�r

).

Therefore,

�(f � '; : : : ; (f � ')

(r)

; z)

=

X

k

0

;::: ;k

r

(�1)

k

0

+���+k

r

k

0

! � � � k

r

!

�

k

0

+���+k

r

�

�y

k

0

0

� � ��y

k

r

r

(f; : : : ; f

(r)

; z)'

k

0

� � � ('

(r)

)

k

r

= g � L'+O(z

2n�4r

)

= O(z

2n�4r

):

Relax, but don't be too lazy 15

Hen
e, we have a better approximation for the solution to (3.3), sin
e n > 3r) 2n�4r >

n � r. Consequently, when repeating the Newton iteration, the sequen
e of su

essive

approximations tends to the unique solution to (3.3). Modulo an algorithm linear to

solve (3.8), this yields the following algorithm:

Algorithm ode(�; f; n)

Input: A polynomial � 2 C[y

0

; : : : ; y

r

; z℄, an approximation f : TPS(C; r + 1) to a

solution to (3.3), so that (3.4) is satis�ed, and an order n > r.

Output: A better approximation f : TPS(C; n) of the unique solution to (3.3), with

�(f; : : : ; f

(r)

; z) = O(z

n�r

).

O1. [Separate
ases℄

m := d

n+3r

2

e

if n > m (when
e n > 3r) then

if r = 0 then go to step 3

if r 6= 0 then go to step 4

O2. [Compute �rst
oeÆ
ients℄

for i := r + 1 to n� 1 do

for j := 0 to r do D

j

:= subst(

��

�y

j

; f)

0���i�r

S := D

0

� f

0

0���i�r

+ � � �+D

r�1

� f

(r)

0���i�r

+ subst(

��

�z

; f)

0���i�r

t := �S=D

r

f := f

0���i+1

+

i!

(i�r�1)!

t

i�r�1

z

i

return f

0���n

O3. [Newton iteration when r = 0℄

f := ode(�; f;m)

0���n

return f � subst(�; f)=subst(

��

�y

0

; f)

O4. [Newton iteration when r 6= 0℄

f := ode(�; f;m)

0���n

L := subst(

��

�y

0

; f) + � � �+ subst(

��

�y

r

; f)

�

r

�z

r

return f � linear(L; subst(�; f); n)

In order to solve (3.8) up till n terms, we �rst
ompute a non trivial solution to the

homogeneous di�erential equation

Lh = 0:

This is done by solving the asso
iated Ri
atti equation. More pre
isely, we rewrite ea
h

h

(k)

as h times a polynomial R

k

(

^

h; : : : ;

^

h

k�1

) in the logarithmi
 derivative

^

h = h

0

=h of

h. This amounts to
omputing the sequen
e

�

R

0

= 1;

R

k+1

= y

0

R

k

+

�R

k

�y

0

y

1

+ � � �+

�R

k

�y

k�1

y

k

;

(3.9)

with R

k

2 C[[y

0

; : : : ; y

k�1

℄℄ up till order r. We now
ompute the �rst n terms of

^

h by a

re
ursive appli
ation of ode with equation

R = L

0

R

0

+ � � �+ L

r

R

r

2 C[[y

0

; : : : ; y

r�1

; z℄℄

16 Joris van der Hoeven

and initial
onditions

^

h

0

= � � � =

^

h

r�1

= 0. This yields the �rst n terms of a solution h

to (3.8) with h

0

= 1 after exponentiation and integration h = exp

R

^

h.

Finally, we apply the method of variation of
onstants and write ' = h. Then (3.8)

transforms into L

0

(

0

) = g, with

L

0

j

=

r

X

i=j+1

�

i

j + 1

�

L

i

h

(i�j�1)

:

The order of L

0

is r � 1 and L

0

r�1

(0) = L

r

(0)h

0

is invertible in C. Hen
e, we
an solve

the equation L

0

� = g by a re
ursive appli
ation of linear. Integration =

R

� yields .

Algorithm linear(L; g; n)

Input: A linear di�erential operator L of order r with
oeÆ
ients in TPS(C; n) and

su
h that L

r

(0) is invertible in C, a trun
ated power series g : TPS(C; n), and

an order n > r.

Output: The �rst n terms of the unique solution to L' = g, with '

0

= � � � = '

r

= 0.

L1. [Homogeneous equation℄

Compute R

0

; : : : ; R

r

using (3.9)

R := L

0

R

0

+ � � �+ L

r

R

r

^

h := ode(R; 0; n� 1)

h := exp(

R

^

h)

L2. [Variation of
onstants℄

L

0

:=

r�1

X

j=0

2

4

r

X

i=j+1

�

i

j + 1

�

(L

i

)

0���n�1

� (h

(i�j�1)

)

0���n�1

3

5

�

j

�z

j

� := linear(L

0

; g; n� 1)

return h�

R

�

As to the time
omplexities of ode and linear, we observe that ode
alls linear with

the same r and linear
alls ode and linear with r de
reased by one. Hen
e, the time

omplexity is exponential in r. The following time
omplexity in n is easily proved by

indu
tion over r, using thatM(n)+M(d(n+3r)=2e)+M(d(d(n+3r)=2e+3r)=2e)+ � � � =

O(M(n)).

Theorem 3.1. Let � 2 C[y

0

; : : : ; y

r

; z℄ be a multivariate polynomial and
onsider the

di�erential equation (3.3) with initial
onditions f(0); : : : ; f

(r)

(0) that satisfy (3.4). Then

this equation admits a unique solution f 2 C[[z℄℄ and there exists an algorithm whi
h

omputes the �rst n
oeÆ
ients of f in time O(M(n)). 2

Remark. The algorithm ode generalizes to the
ase when � is a multivariate power

series instead of a polynomial. In this
ase, we need assume that the algorithm subst

also applies to 	 = � and all its partial derivatives.

Relax, but don't be too lazy 17

3.3. Algebrai
 and holonomi
 power series

An algebrai
 fun
tion is a fun
tion f(z), whi
h satis�es a polynomial relation of the

form

P

d

(z)f(z)

d

+ � � �+ P

0

(z) = 0;

where P

0

; : : : ; P

d

2 C[z℄ are polynomials with P

d

6= 0. Su
h fun
tions are spe
ial
ases of

holonomi
 fun
tions, whi
h are fun
tions f(z), that satisfy a linear di�erential equation

L

r

(z)f

(r)

(z) + � � �+ L

0

(z)f(z) = 0; (3.10)

where L

0

; : : : ; L

r

2 C[z℄ are polynomials with L

r

6= 0. An algebrai
 resp. holonomi

power series is an algebrai
 resp. holonomi
 fun
tion whi
h is also a power series in

C[[z℄℄.

Holonomi
 power series are interesting, be
ause their
oeÆ
ients
an be
omputed

sequentially in linear time and spa
e. Indeed, the
oeÆ
ients f

0

; f

1

; : : : of su
h power

series satisfy a linear polynomial re
urren
e relation

Q

q

(n)f

n+q

+ � � �+Q

0

(n)f

n

= 0; (3.11)

whereQ

0

; : : : ; Q

q

are polynomials in C[n℄. Here (3.11) is derived from (3.10) by extra
ting

the
oeÆ
ient of z

n

from (3.10), while using the rules (zf)

n

= f

n�1

and (f

0

)

n

= nf

n+1

.

Furthermore, the
lass of holonomi
 fun
tions enjoys many
losure properties: it is

(algorithmi
ally) stable under addition, multipli
ation, right
omposition with algebrai

fun
tions, di�erentiation and integration, Hadamard produ
t, et
. We refer to (Stanley,

1980; Lipshitz, 1989; Zeilberger, 1990; Stanley, 1999) for more information on this subje
t.

Holonomi
 fun
tions are also available in some
omputer algebra systems (Salvy and

Zimmermann, 1994).

3.4. Composition

3.4.1. Right
omposition with polynomials

Let f = f

0

+ � � �+ f

p�1

z

p�1

and g = g

1

z + � � � g

q�1

z

q�1

be polynomials,
onsidered as

trun
ated power series in TPS(C). In order to eÆ
iently
ompute f

0���n

Æg

0���n

: TPS(C; n)

for given n, we may use a divide and
onquer method based on the formula

f Æ g = f

�

Æ g + (f

�

Æ g)g

bp=2

;

in whi
h f

�

= f

0���bp=2

and f

�

= f

bp=2
���p

denote the lower and upper parts of f .

Although all
omputations will be done with trun
ated power series in our implemen-

tation, we will really
ompute with polynomials as long as their degrees remain inferior

to n. Assuming that g

i

: TPS(C;min((q�1)i+1; n)) has been pre
omputed and stored in

a hashtable H for all i of the form bp=2

k

 or dp=2

k

e with k > 0, we obtain the following

algorithm:

Algorithm
ompose pol(f;H; n)

Input: f : TPS(C; p), a hashtable H and an integer n;

H [i℄
ontains g

i

0���min((q�1)i+1;n)

for all i 2 bp=2

N

�

 [dp=2

N

�

e.

Output: f

0���l

Æ g

0���l

, where l = min((p� 1)(q � 1) + 1; n).

18 Joris van der Hoeven

P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and
onquer℄

l := min((p� 1)(q � 1) + 1; n)

h

�

:=
ompose pol(f

0���bp=2

; H; n)

h

�

:=
ompose pol(f

bp=2
���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2
℄)

0���l

Theorem 3.2. Let f : TPS(C; p) and g : TPS(C; q) be su
h that g

0

= 0 and let n > 0.

There exists an algorithm to
ompute f

0���n

Æ g

0���n

in time O(

pq

n

M(n) logn) and spa
e

O(n log

pq

n

).

Proof. Sin
e the time and spa
e
omplexities of the algorithm are in
reasing fun
tions

in p; q and n, we may assume without loss of generality that p; q and n are powers of

two, We may also assume that pq > n.

The pre
omputation of the powers of g takes a time O(log nM(n)). Denoting by

T (n; p; q) the time
omplexity apart from the pre
omputation, we have T (n; 1; q) = O(1)

and for p > 1:

T (n; p; q) 6 2T (n;

p

2

; q) +O(M(min(pq; n))): (3.12)

This leads to the time
omplexity bound:

T (n; p; q) 6 O(M(n) + 2M(n) + � � �+

pq

n

M(n) +

2pq

n

M(

n

2

) +

4pq

n

M(

n

4

) + � � �+

p

2

M(2q)) +O(p)

6 O(

pq

n

M(n)) +O(

pq

n

M(n) logn):

We need a spa
e O(min(q; n) +min(2q; n) + � � �+min(pq; n)) 6 O(n log q) in order to

store the powers of g. For the remaining spa
e S(n; p; q) needed by the algorithm, we

have S(n; 1; q) = O(1) and for p > 1:

S(n; p; q) 6 S(n;

p

2

; q) +O(min(

pq

2

; n)): (3.13)

This yields the spa
e
omplexity bound:

S(n; p; q) 6 O(n log

pq

n

+

n

2

+ � � �+ q) +O(1)

6 O(n log

pq

n

):

2

3.4.2. Right
omposition with algebrai
 power series

The algorithm
ompose pol generalizes to the
ase when g is an algebrai
 power

series with g

0

= 0, i.e.

P

d

g

d

+ � � �+ P

0

= 0; (3.14)

with P

0

; � � � ; P

d

2 C[z℄ and P

d

6= 0. We will denote by v the valuation of P

d

and by q the

maximum of the degrees of the P

i

plus one.

For
ompleteness, we will treat the fully general
ase in this se
tion. The presentation

may be greatly simpli�ed in the
ase when v = 0 or when g is a rational fra
tion.

Relax, but don't be too lazy 19

The reader who does not wish to go into te
hni
al details may dire
tly pro
eed with

Se
tion 3.4.3, whi
h does not rely on the material presented here.

Algebrai
 fun
tions

Instead of
omputing with (trun
ated) polynomials, we will now
ompute with (trun-

ated) algebrai
 fun
tions in C[z; g℄, whi
h are
onveniently represented by fra
tions

F =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

; (3.15)

where F

0

; � � � ; F

d�1

2 C[z℄ and k

F

2 N. The degree degF of F is de�ned to be degF =

max

06i<d

degF

i

+ i(q � 1). We also de�ne the multipli
ity �

F

of the pole P

d

in F as

�

F

= maxfijF

i

6= 0g if k

f

= 0 and �

F

= k

f

+ d� 1 otherwise.

The addition of two fra
tions like (3.15) is done as usual: we multiply one of the

numerators with a suitable power of P

d

in order to obtain a
ommon denominator

(k

F+G

= max(k

F

; k

G

)) and we add up the numerators. Noti
e that we have

�

deg(F +G) 6 max(degF; degG);

�

F+G

6 max(�

F

; �

G

):

(3.16)

The asymptoti

ost of the addition F +G is

T

F+G

= O(dM(degF + degG+ degP

k

f

d

+ degP

k

g

d

)):

In order to multiply fra
tions like (3.15), we �rst pre
ompute g

d

; : : : ; g

2d�2

as fra
-

tions (3.15), using (3.14):

g

i

=

(g

i

)

d�1

g

d�1

+ � � �+ (g

i

)

0

P

i�(d�1)

d

: (3.17)

Noti
e that deg g

i

6 i(q � 1) for all i. Now in order to
ompute the produ
t

F �G =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

�

G

d�1

g

d�1

+ � � �+G

0

P

k

G

d

;

we �rst rewrite the produ
t as

F �G =

1

P

k

F

+k

G

d

2d�2

X

i=0

0

�

X

j

F

j

G

i�j

1

A

g

i

:

Next, we substitute g

i

by the right hand side of (3.17) for d 6 i 6 2d� 2. Noti
e that

�

deg(F �G) 6 degF + degG;

�

F�G

6 �

F

+ �

G

:

(3.18)

The asymptoti

ost of the multipli
ation F �G is

T

F�G

= O(dM(degF + degG) + qd

2

(degF + degG));

sin
e the polynomials g

i

j

are �xed.

Let f = f

0

+ � � �+ f

p�1

z

p�1

be a polynomial. Then the bounds (3.16) and (3.18) yield

the following bounds for its right
omposition f Æ g = f

0

+ � � �+ f

p�1

g

p�1

with g:

�

deg(f Æ g) 6 (p� 1)(q � 1) + 1;

�

fÆg

6 p� 1:

(3.19)

In parti
ular, k

fÆg

6 max(p� d; 0).

20 Joris van der Hoeven

The algorithm

In the trun
ated
ontext, the polynomials F

i

in (3.15) are repla
ed by trun
ated

power series in TPS(C; n + k

F

v). This will enable us to extra
t the �rst n
oeÆ
ients

of F , when
onsidered as a power series. We will denote by Algebrai
 TPS(C; g) and

Algebrai
 TPS(C; g; n) the algebrai
 analogues of the
lasses TPS(C) resp. TPS(C; n).

Now assume that we want to
ompute the
omposition of a polynomial f = f

0

+ � � �+

f

p�1

z

p�1

with the series g up till order n. Then we do the following

� We pre
ompute g

i

: Algebrai
 TPS(C; g;min(i(q � 1) + 1 �max(i + 1 � d; 0)v; n))

for all i of the form bp=2

k

 or dp=2

k

e with k > 0. Re
all that �

g

i
6 i for all i.

� We pre
ompute P

i

d

: Algebrai
 TPS(C; g;min(i(q � 1) + 1 �max(i + 1� d; 0)v; n))

for all i of the form bp=2

k

 or dp=2

k

e with k > 0.

� We apply the analogue
ompose alg of
ompose pol below.

� We
onvert the result in Algebrai
 TPS(C; g; n) ba
k to a trun
ated series in

TPS(C; n). This
an be done in time O(M(N)) using fast division and the linear

re
urren
e relation for the
oeÆ
ients of g (see Se
tion 3.3).

Algorithm
ompose alg(f;H; P; n)

Input: f : TPS(C; p), hashtables H;P and an integer n;

H [i℄
ontains (g

i

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�

[dp=2

N

�

e.

P [i℄
ontains (P

i

d

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�

[dp=2

N

�

e.

Output: h = f

0���n

Æ g 2 Algebrai
 TPS(C; g; l),

with l = min((p� 1)(q � 1) + 1�max(p� d; 0)v; n).

P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and
onquer℄

l := min((p� 1)(q � 1) + 1�max(p� d; 0)v; n)

h

�

:=
ompose alg(f

0���bp=2

; H; n)

h

�

:=
ompose alg(f

bp=2
���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2
℄)

0���l

Remark. The hashtable P is used in the �nal addition, in order to rewrite the left hand

and right hand fra
tions, su
h that they have a
ommon denominator.

Theorem 3.3. Let f : TPS(C; p), g as above and n > 0. Then there exists an algorithm

to
ompute the �rst n
oeÆ
ients of f Æg in time O(qd

2

p(q�v)

n

)M(n+pv) logn) and spa
e

O(d(pv + n log

p(q�v)

n

)).

Proof. The proof is analogous to the proof of theorem 3.2. In this
ase, using that

k

h

�

; k

h

�

; k

H[p=2℄

= O(p);

deg h

�

; degh

�

; degH [p=2℄ = O(min(pq; pv));

the main inequalities (3.12) and (3.13) be
ome

T (n; p; q) 6 2T (n;

p

2

; q) +O(qd

2

M(min(pq; n+ pv)));

S(n; p; q) 6 S(n;

p

2

; q) +O(dmin(pq; n+ pv)):

2

Relax, but don't be too lazy 21

Remark. Noti
e that we may take v = 0 if g is a rational fun
tion, sin
e g has to be a

power series in this
ase. Consequently, the time and spa
e
omplexity bounds be
ome

O(d

2

q

2

M(n) logn) resp. O(dn log q) for p = n. The
omposition algorithm may also be

simpli�ed in this parti
ular, but important
ase.

3.4.3. General
omposition for divisible rings C

If C is a divisible ring, then Brent and Kung's fast algorithm (Brent and Kung, 1978)

an be used in order to
ompute the
omposition f Æ g of formal power series f and g

up to order n. Their method relies on de
omposing g = g

�

+ g

�

= g

0���q

+ g

q���n

with

q = b

p

n= logn
 and using the Taylor series expansion at order r = dn=qe

f Æ g = f Æ g

�

+ (f

0

Æ g

�

)g

�

+ � � �+

1

(r�1)!

(f

(r�1)

Æ g

�

)(g

�

)

r�1

+O(z

n

):

(3.20)

Assuming that (g

0

�

)

0

is invertible in C, f

(i)

Æg

�

an then easily be
omputed as a fun
tion

of f

(i�1)

Æ g

�

, sin
e

f

(i)

Æ g

�

= (f

(i�1)

Æ g

�

)

0

=g

0

�

:

Conversely, if (g

0

�

)

0

is not ne
essarily invertible in C, we may write

1

(i�1)!

f

(i�1)

Æ g

�

= f

i�1

+ i

�

Z

(

1

i!

f

(i)

Æ g

�

)g

0

�

�

:

This leads to the following algorithm:

Algorithm
ompose(f; g)

Input: f; g 2 TPS(C; n) with g

0

= 0.

Output: f Æ g.

C1. [Polynomial Composition℄

q := b

p

n= logn

r := dn=qe

g

�

:= (g

0���q

)

0���n

g

�

:= g � g

�

Compute H [i℄ := (g

i

�

)

0���min((q�1)i+1;n)

for all i = bn=2

k

 and i = dn=2

k

e with k > 0

D :=
ompose pol(f

(r�1)

; H; n+ 1� r)=(r � 1)!

C2. [Taylor expansion℄

S := D

0���max(0;n+q�rq)

for i := r � 1 downto 1 do

D := (f

i�1

)

0���n+1�i

+

R

((iD)� (g

0

�

)

0���n�i

)

T := (S � (g

�

div z

q

)

0���max(0;n�iq)

)mul z

q

S := D

0���max(0;n+q�iq)

+ T

0���max(0;n+q�iq)

return S

Theorem 3.4. Let f and g be power series trun
ated at order n. Assuming that g

0

= 0,

there exists an algorithm to
ompute the power series expansion of f Æ g up till order n

in time O(

p

n lognM(n)) and spa
e O(n logn).

22 Joris van der Hoeven

Proof. Step 1 takes a time O(

p

n lognM(n)) and spa
e O(n logn), by theorem 3.2.

Sin
e the loop in the se
ond step requires only r = O(

p

n logn) iterations, the se
ond

step requires a time O(

p

n lognM(n)) and spa
e O(n). 2

Remark. The above algorithm also applies if C is an overring of Z, su
h that the equation

nx = y
an be solved e�e
tively in C for n 2 Z

�

and y 2 C (i.e. we
an test whether the

equation admits a solution and, if so,
ompute it). Indeed, in this
ase, we
an do the

omputations in the e�e
tive partial quotient ring of C in whi
h the non zero integers

are invertible.

3.4.4. General
omposition for rings C of finite
hara
teristi

Assume now that Z
an no longer be embedded in C, i.e. the
anoni
al ring homo-

morphism Z 2 C has a non trivial kernel rZ with r > 0. Bernstein re
ently gave a fast

omposition algorithm for su
h C (Bernstein, 1998). The idea is to
onsider subsequently

the
ases when r is prime, a prime power and general.

r = p is prime

We have (a+ b)

p

= a

p

+ b

p

for all a; b 2 C and g(z)

p

= g

p

0

+ g

p

1

z

p

+ g

p

2

z

2p

+ � � � = g

[p℄

(z

p

)

for power series g(z) = g

0

+ g

1

z+ g

2

z

2

+ � � � . Hen
e we may use the following formula to

ompute the
omposition of two power series f and g:

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � �) Æ g

[p℄

(z

p

)g

i

: (3.21)

Assuming that we have an algorithmHorner(P; h) to
ompute P (h) by Horner's method

for P 2 TPS(C; n)[X ℄ and h 2 TPS(C; n), this leads to the following re
ursive algorithm

of time
omplexity O((p= log p)M(n) logn) and linear spa
e
omplexity (Bernstein, 1998):

Algorithm prime
ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime
hara
teristi
 p.

Output: f Æ g.

m := dn=pe

for i := 0 to p� 1 do

L := f

i

+ f

i+p

z + � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ g

p

1

z + � � �+ g

p

m�1

z

m�1

h

i

:= (prime
ompose(L;R) Æ z

p

)

0���n

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g)

Remark. The algorithm
an be optimized by using the algorithm
ompose from the

previous se
tion for small n. Indeed, it suÆ
es that 1; 2; : : : ; dn=b

p

n= logn
e are invert-

ible in C.

Relax, but don't be too lazy 23

r = p

k

is a prime power

In this
ase, the
omposition algorithm is based on the fa
t that we still have Æ =

g(z)

p

� g

[p℄

(z

p

) 2 pC. Hen
e, (3.21) be
omes

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � �) Æ (g

[p℄

(z

p

) + Æ)g

i

: (3.22)

This leads to the more general problem of
omposing f with g+", where " is an in�nitesi-

mal formal parameter with "

k

= p"

k�1

= � � � = p

k�1

" = 0. The analogue relation of (3.22)

then again yields a re
ursive formula and we obtain the following algorithm of time
om-

plexity O((k

3

p= log p)M(n) logn) and spa
e
omplexity O(kn) (Bernstein, 1998):

Algorithm prime power
ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime power
hara
teristi
 p

k

.

Output: f Æ (g + ") : TPS(C["℄=("

k

; p"

k�1

; : : : ; p

k�1

); n).

m := dn=pe

' := (g + ")

p

� (g

p

0

+ � � �+ g

p

m

z

mp

)

0���n

for i := 0 to p� 1 do

L := f

i

+ � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ � � �+ g

p

m�1

z

m�1

 := (prime power
ompose(L;R) Æ z

p

)

0���n

Write =

0

+

1

"+ � � �+

k�1

"

k�1

h

i

:= Horner(

0

+ � � �+

k�1

X

k�1

; '; n)

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g; n)

r = q

1

� � � q

l

is a non trivial produ
t of distin
t prime powers

This
ase is a standard appli
ation of the Chinese remainder theorem. More pre
isely,

using the Chinese remainder theorem, we �rst
ompute integers i

1

; : : : ; i

l

with

i

1

q

1

� � � q

l

q

1

+ � � �+ i

l

q

1

� � � q

l

q

l

= 1 mod q

1

� � � q

l

:

We next
ompute the
ompositions of the proje
tions of f and g in C=(q

j

)[[z℄℄. More

pre
isely, for ea
h j, elements in C=(q

j

) are redundantly represented by elements in C

(we do not require a zero test) and we use the previous algorithm. We thus obtain a

trun
ated series h

j

2 C[[z℄℄ with h

j

� g Æ f 2 q

j

C+O(z

n

). Then we have i

1

h

1

+ � � �+ i

l

h

l

is equal to f Æ g up to n terms.

Theorem 3.5. Let C be a ring of positive
hara
teristi
 r > 0 and let f; g : TPS(C; n) be

su
h that g

0

= 0. Then n terms of f Æ g
an be
omputed in time O((r= log r)M(n) logn)

and spa
e O(n log r).

Proof. By what pre
edes and sin
e k

3

p= log p = O(p

k

=(k log p)), the theorem holds for

prime power
hara
teristi
. In general, we have

q

1

log q

1

+ � � �+

q

l

log q

l

= O

�

r

log r

�

24 Joris van der Hoeven

and log q

1

+ � � � + log q

r

= log r, so we
an perform the
omposition modulo ea
h q

i

in the required time and spa
e. Gluing these partial results together using the Chinese

remainder theorem takes linear time and spa
e. 2

4. Relaxed multipli
ation

4.1. Naive relaxed multipli
ation

The lazy, or naive relaxed multipli
ation algorithm for formal power series f and g in z

just
omputes the
oeÆ
ient of z

n

in fg using the
onvolution sum (fg)

n

=

P

n

i=0

f

i

g

n�i

.

In order to implement this method, we de�ne the
lass

Class Produ
t1 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The
onstru
tor takes two series on input whi
h are stored in f and g. We
ompute the

n-th
oeÆ
ient of fg as follows:

Method Produ
t1 Series Rep(C):next()

A
tion: The next
oeÆ
ient (fg)

n

.

return

P

n

i=0

f

i

g

n�i

The a
tual fun
tion for multipli
ation is given by

Algorithm (f : Series(C))� (g : Series(C))

Input: Two series f and g.

Output: Their produ
t fg.

return new Produ
t1 Series Rep(C)(f; g)

Obviously, the naive multipli
ation algorithm has O(n

2

) resp. O(n) time and spa
e

omplexities. The
omputation of the su

essive
oeÆ
ients of fg by the naive algorithm

is illustrated in Figure 1: ea
h box
orresponds to the
ontribution of a produ
t f

i

g

j

to the sum (fg)

i+j

=

P

i+j

k=0

f

k

g

i+j�k

. The number of the box
orresponds to the stage

when this
ontribution is
omputed. Indeed, the naive algorithm only
omputes f

i

g

j

at

the moment that (fg)

i+j

is needed, that is, at stage i+ j.

4.2. Relaxation of DAC-multipli
ation

The relaxed multipli
ation algorithm we present in this se
tion is based on the obser-

vation that DAC-multipli
ation is essentially relaxed . Hereby we mean that, if we apply

the algorithm to
ompute the produ
t of two power series f and g with symboli

oef-

�
ients, then the
omputed formula for (fg)

i

only depends on the
oeÆ
ients f

0

; : : : ; f

i

and g

0

; : : : ; g

i

. In order to transform this observation into an a
tual relaxed multipli
a-

tion algorithm, the main problem is to design suitable data stru
tures, whi
h
orrespond

to partial exe
utions of the divide and
onquer algorithm. Roughly speaking, the whole

omputation will be stored in memory, but information whi
h is no longer needed at a

given stage is freed again.

Relax, but don't be too lazy 25

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g

7

7 8 9 10 11 12 13 14 � � �

g

6

6 7 8 9 10 11 12 13 � � �

g

5

5 6 7 8 9 10 11 12 � � �

g

4

4 5 6 7 8 9 10 11 � � �

g

3

3 4 5 6 7 8 9 10 � � �

g

2

2 3 4 5 6 7 8 9 � � �

g

1

1 2 3 4 5 6 7 8 � � �

g

0

0 1 2 3 4 5 6 7 � � �

� f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

� � �

Figure 1. Relaxed multipli
ation by the naive algorithm

4.2.1. Relaxed multipli
ation of polynomials

Let f = f

0

+f

1

z+� � �+f

N�1

z

N�1

and g = g

0

+g

1

z+� � �+g

N�1

z

N�1

be two polynomials

of degrees < N , represented as trun
ated series at order O(z

N

). In this se
tion, we show

how to
ompute the
oeÆ
ients of their produ
t fg in a relaxed way. For the appli
ation

we have in mind, we will suppose that N is a power of two. The representation
lass

whi
h
orresponds to the relaxed
omputation of fg is given by

Class DAC Rep(C) . Series Rep(C)

N : Integer

f; g : Series(C)

lo;mid; hi : DAC(C)

The pointers lo;mid and hi
orrespond to the relaxed
omputations of f

�

g

�

, (f

�

+f

�

)(g

�

+

g

�

) and f

�

g

�

(with f

�

= f

0���N=2

; f

�

= f

N=2���n

; g

�

= g

0���N=2

and g

�

= g

N=2���N

). The

onstru
tor for DAC Rep(C) is given by

Constru
tor DAC Rep(C)(f; g;N)

Input: Two series
f
;
g
and an order TPS(C;

N
).

N := N , f := f , g := g

lo := mid := hi := null

' := 0

0���2N�1

The
omputation of the
oeÆ
ients now goes in three stages. At the �rst stage, when

0 6 n <

N

2

, we only
ompute the produ
t f

�

g

�

; the pointer lo be
omes non null at

this stage. At the se
ond stage, when

n

2

6 n < N , we also start the
omputations of

(f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

; the pointers mid and hi also be
ome non null at this stage.

At the third, and last stage, when n > N , the
omputation of fg is
ompleted and the

pointers lo;mid and hi are freed. For small N 6 Threshold

C

, where Threshold

C

is a

power of two, we
ompute fg using the lazy multipli
ation algorithm.

Method DAC Rep(C):next()

Output: The next
oeÆ
ient (f

0���N

? g

0���N

)

n

.

26 Joris van der Hoeven

D0. [Small N ℄

if N > Threshold

C

then go to D1

if n < N then return

P

n

i=0

f

i

g

n�i

else return

P

N�1

i=n�(N�1)

f

i

g

n�i

D1. [First stage (n <

N

2

)℄

if n >

N

2

then go to D2

if n = 0 then lo := new DAC Rep(f; g;

N

2

)

return lo

n

D2. [Se
ond stage (

N

2

6 n < N)℄

if n > N then go to D3

if n =

N

2

then

mid := new DAC Rep(f + (f div z

N

2

); g + (g div z

N

2

);

N

2

)

hi := new DAC Rep(f div z

N

2

; g div z

N

2

;

N

2

)

return lo

n

+mid

n�N=2

� lo

n�N=2

� hi

n�N=2

D3. [Third stage (N 6 n)℄

if n > 2N � 1 then return 0

if n > N then return '

n

'

N ���2N�1

:= hi

0���N�1

'

N ���

3N

2

�1

+= midN

2

���N�1

� loN

2

���N�1

� hiN

2

���N�1

lo := mid := hi := null

return '

n

4.2.2. Complexity analysis

Up to some extra operations related to the storage of partial auxiliary produ
ts, the

main
ontrol stru
ture of the relaxed DAC-multipli
ation algorithm is the same as in the

lassi
al algorithm. Hen
e, their respe
tive time
omplexities only di�er up to a
onstant

fa
tor.

As to the memory storage S(N) needed by the relaxed algorithm, we
laim that

S(N) 6 2S(N=2) +O(N): (4.1)

Indeed, as long as less than N=2
oeÆ
ients of f and g are known, f

�

and g

�

are not

needed at all. As soon as N=2
oeÆ
ients are known, f

�

and g

�

are entirely determined,

when
e the
omputation of f

�

g

�

is
ompleted, and the result takes O(N) memory stor-

age. Furthermore, f

�

+ f

�

and g

�

+ g

�

require another O(N) memory storage, while

the
omputations of (f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

require 2S(N=2) memory storage, by

indu
tion. From (4.1), we dedu
e that

S(N) = O(N logN):

4.2.3. General relaxed DAC-multipli
ation

Let us �nally treat the
ase, when we want to
ompute fg up to any order, and

not merely up to order O(z

N

). In this
ase, we use the algorithm from above between

su

essive powers of two. Ea
h time we
ross a power of two, we let the old f and g play

Relax, but don't be too lazy 27

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g

7

7 7 7 7 7 7 7 7 � � �

g

6

6 7 6 7 6 7 6 7 � � �

g

5

5 5 7 7 5 5 7 7 � � �

g

4

4 5 6 7 4 5 6 7 � � �

g

3

3 3 3 3 7 7 7 7 � � �

g

2

2 3 2 3 6 7 6 7 � � �

g

1

1 1 3 3 5 5 7 7 � � �

g

0

0 1 2 3 4 5 6 7 � � �

� f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

� � �

Figure 2. Relaxed multipli
ation by the divide and
onquer algorithm

the rôles of f

�

and g

�

for the new f and g. More pre
isely, we introdu
e the
lass

Class Produ
t2 Series Rep(C) . Series Rep(C)

f; g : Series(C)

h : DAC(C)

The
onstru
tor takes two series on input, whi
h are stored in f and g; h is initialized

with new DAC Rep(C)(f; g;Threshold

C

). The member fun
tion next is now given by

Method Produ
t2 Series Rep(C):next(n)

Output: The next
oeÆ
ient (fg)

n

.

if n > Threshold

C

and n 2 2

N

then h := new DAC Rep(C)(f; g; h; 2n)

return h

n

.

Here we use a se
ond
onstru
tor for DAC Rep(C) in order to extend previous
ompu-

tations:

Constru
tor DAC Rep(C)(f; g; g;N)

Input: Series
f
;
g
;
h

�

and an order TPS(C;
N
).

N := N , f := f , g := g

lo := h

�

;mid := hi := null

' := (h

�

)

0���2N�1

; n := N=2

Clearly, the time and spa
e
omplexities of this algorithm are again O(n

log 3= log 2

) and

O(n logn). In Figure 2, we s
hemati
ally represented the
omputation pro
ess of the

su

essive
oeÆ
ients of fg by the relaxed multipli
ation algorithm.

4.3. Fast relaxed multipli
ation

Although relaxed DAC-multipli
ation is signi�
antly faster than the naive algorithm,

it still is not as fast as the fastest zealous multipli
ation algorithms based on the fast

28 Joris van der Hoeven

Fourier transform. In this se
tion, we give a fast relaxed multipli
ation algorithm, in

whi
h the fast Fourier transform may be exploited.

For ea
h i; j; p 2 N, let us denote

�

i;j;p

= (f

i2

p

�1

z

i2

p

�1

+ � � �+ f

(i+1)2

p

�1

z

(i+1)2

p

�1

)�

(g

j2

p

�1

z

j2

p

�1

+ � � �+ g

(j+1)2

p

�1

z

(j+1)2

p

�1

)

The fast multipli
ation algorithm is based on the observation that, as soon as the �rst

2

p+1

� 1
oeÆ
ients of f and g are known, then the
ontribution of �

1;1;p

to fg
an be

omputed prematurely by any fast zealous multipli
ation algorithm. More generally, as

soon as the �rst n = k2

p

�1
oeÆ
ients of f and g are known, with odd k > 3 and p > 1,

then we
an
ompute the
ontributions of �

1;k�1;p

and �

k�1;1;p

.

4.3.1. Fast relaxed multipli
ation algorithm

The representation
lass Produ
t3 Series Rep(C) and its
onstru
tor are taken to be

the same as for Produ
t1 Series Rep(C):

Class Produ
t3 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The
oeÆ
ients of fg are
omputed as follows:

Method Produ
t3 Series Rep(C):next()

Output: The next
oeÆ
ient (fg)

n

.

F1. [Enlarge '℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

F2. [A

umulate℄

k := 2(n+ 2); p := �1

while (k mod 2) = 0

k := k=2; p := p+ 1

'

k2

p

�2���(k+2)2

p

�3

+= f

2

p

�1���2

p+1

�1

? g

(k�1)2

p

�1���k2

p

�1

if k = 2 then return '

n

'

k2

p

�2���(k+2)2

p

�3

+= f

(k�1)2

p

�1���k2

p

�1

? g

2

p

�1���2

p+1

�1

return '

n

The
omputation pro
ess is s
hemati
ally represented in Figure 3. From this �gure, it

is easily seen that the
ontribution of ea
h f

i

g

j

to (fg)

i+j

is
omputed exa
tly on
e and

before the
oeÆ
ient (fg)

i+j

is output. This proves the
orre
tness of our algorithm.

4.3.2. Complexity analysis

Theorem 4.1. There exists a relaxed multipli
ation algorithm for formal power series f

and g with
oeÆ
ients in C, whi
h
omputes the �rst n terms of fg in time O(M(n) logn)

and spa
e O(n).

Relax, but don't be too lazy 29

14

4

0 1

1

2

2

3 4 5 6 7 8 9 10 11 12 13 14

3

4

5

6

7

8

9

10

11

12

13

14

2 6 8 10 12 14

4

6

8

10

12

106 14

10

14

14

Figure 3. Fast relaxed multipli
ation

Proof. Sin
e the time
omplexity of the algorithm from the previous se
tion is an

in
reasing fun
tion in n, it suÆ
es to
onsider the
ase when n = 2

p

� 1 for some p > 0.

Then looking at Figure 3, we observe that the algorithm performs 2(n+1)� 3
onstant

multipli
ations, (n + 1) � 3 multipli
ations of polynomials with 2 terms,

1

2

(n + 1) � 3

multipli
ations of polynomials with 4 terms and so on. Hen
e, the overall time
omplexity

is bounded by

2

p�1

X

k=0

n

2

k

M(2

k

) +O(n) = O(M(n) logn):

The spa
e
omplexity is
learly bounded by O(n). 2

4.4. Remarks and optimizations

Although the relaxed multipli
ation algorithms from Se
tions 4.2 and 4.3 are both

asymptoti
ally faster than lazy multipli
ation, they both have drawba
ks for
ertain ap-

pli
ations: the relaxed DAC-multipli
ation algorithm is more
umbersome to implement

(when
e a large overhead) and it has an additional logarithmi
 spa
e overhead. On the

other hand, fast relaxed multipli
ation has a good spa
e
omplexity, is asymptoti
ally fast

and easy to implement, but the algorithm outperforms the relaxed divide and
onquer

algorithm only for large values of n, espe
ially when multipli
ations in C are expensive,

so that the extra overhead needed by the divide and
onquer strategy
an be negle
ted.

30 Joris van der Hoeven

n 1 2 3 4 5 6 7 8 9 10 100 1000 10000

Naive 1 3 6 10 15 21 28 36 45 55 5050 500500 50005000

DAC 1 3 5 9 11 15 19 27 29 33 1251 52137 1844937

Fast-I 1 3 8 10 18 20 37 39 47 49 2938 103693 4458055

Fast-II 1 3 8 10 18 20 35 37 45 47 1602 27408 411963

Variant-I 1 3 5 8 14 16 22 24 33 35 1904 66515 2535836

Variant-II 1 3 5 8 14 16 22 24 33 35 1176 20311 300794

Table 3. The number of needed
onstant multipli
ations at order n for di�erent

relaxed multipli
ation algorithms.

Finally, if we know beforehand that we wish to
ompute only n
oeÆ
ients of a power

series, then both methods have the drawba
k that they anti
ipate the
omputation of

the next n
oeÆ
ients.

Consequently, it is interesting to sear
h for algorithms whi
h over
ome these problems

and we will make some suggestions in this se
tion. In Table 3 we have
ompared the

respe
tive
omplexities of di�erent methods, by
ounting the number of
onstant mul-

tipli
ations they use as a fun
tion of n. For the fast relaxed algorithm and the variant

from Se
tion 4.4.1 below, we
onsidered both the
ases in whi
h we use

I. DAC-multipli
ation.

II. A linear algorithm with M(n) = 2n� 1

for zealous multipli
ation.

As a
on
lusion, it seems that there is no overall best relaxed multipli
ation method.

The implementer should
hoose the algorithm as a fun
tion of the appli
ation he has in

mind and in parti
ular as a fun
tion of the
ost of
onstant multipli
ations, the expansion

order n, the spa
e
omplexity he is willing to pay, the desired degree of laziness and the

time he wishes to spend on his implementation. We refer to Se
tion 7 for a further

dis
ussion of this issue.

4.4.1. An alternative fast relaxed multipli
ation algorithm

It is possible to slightly improve the
onstant fa
tor in the theoreti
al
omplexity of

the algorithm from Se
tion 4.3.1, by using the tri
k (3.1) in order to
ompute the
ontri-

butions of �

1;k�1;p

and �

k�1;1;p

simultaneously. Unfortunately, this makes the algorithm

more
omplex, sin
e this supposes that we have �

1;1;p

and �

k�1;k�1;p

in memory. Nev-

ertheless, working the idea out
arefully leads to the slightly more eÆ
ient algorithm

below, whi
h uses approximately twi
e as mu
h memory. In this algorithm, the \diago-

nal produ
ts" �

i;i;p

are retrieved from the trun
ated series .

In Figure 4 we illustrated the
orresponding
omputation pro
ess. In Table 3 we
om-

pared its theoreti
al eÆ
ien
y with the algorithm from Se
tion 4.3.1. However, it should

be noti
ed that, in pra
ti
e, for
ertain
onstant rings C, the operands for whi
h we apply

the tri
k (3.1) usually have very di�erent sizes, so that the mean
ost of multipli
ations

in C may be higher for the alternative algorithm.

Relax, but don't be too lazy 31

Class Produ
t4 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C)

Method Produ
t4 Series Rep(C):next()

Output: The next
oeÆ
ient (fg)

n

.

V1. [Enlarge ' and ℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

if ℄ < k then :=

0���k

V2. [A

umulate℄

 := f

n

g

n

'

2n

+=

2n

+=

if n+ 2 = 5� 2

p

(p 2 N) then a

umulate(2� 2

p

� 1; 3� 2

p

� 1; 2

p

; true)

k := 2(n+ 2); p := �1

while (k mod 2) = 0 and k 6= 4

k := k=2; p := p+ 1

if p > 0 then a

umulate((2k � 1)2

p�1

� 1; (2k � 2)2

p�1

� 1; 2

p�1

; true)

a

umulate(2

p

� 1; (k � 1)2

p

� 1; 2

p

; false)

return '

n

Method Produ
t4 Series Rep(C):a

umulate(i; j; k; f lag)

Input: Indi
es i; j; k and a
ag flag.

A
tion: � = f

i���i+k

g

j���j+k

+ f

j���j+k

g

i���i+k

is added to '

i+j���i+j+2k�1

.

If flag holds, then � is also added to

i+j���i+j+2k�1

.

� := (f

i���i+k

+ f

j���j+k

) ? (g

i���i+k

+ g

i���i+k

)�

2i���2i+2k�1

�

2j���2j+2k�1

'

i+j���i+j+2k�1

+= �

if flag then

i+j���i+j+2k�1

+= �

4.4.2. Trun
ation

Assume that we want to
ompute the �rst n terms of a power series and that we know

that we do not need any more terms. Then the relaxed algorithms from the previous

se
tions have the disadvantage that they do more
omputations than needed, sin
e the

omputations of the next n
oeÆ
ients are already anti
ipated. There are two approa
hes

to this problem.

In the �rst approa
h, we implement a
lass of \trun
ated produ
t series". Su
h a series

has a �eld � whi
h
ontains the trun
ation order and no
omputations beyond this order

are allowed and anti
ipated. Furthermore, su
h a series
ontains an additional method to

in
rease the trun
ation order and whi
h anti
ipates part of the forth
oming
omputations

32 Joris van der Hoeven

14

4

0 1

1

2

2

3 4 5 6 8 9 10 11 12 13 14

3

4

5

6

7

8

9

10

11

12

13

14

6 8 10 12 14

4

6

8

10

12

10 14

10

14

1

2

3

3

3

44

4

5 6

66

10

10

7

7

9 10

1010

8

88

8

8

18

18

14

14

11 12

1212

13 14

1414

Figure 4. A variant of fast relaxed multipli
ation

if needed. When applied to fast relaxed multipli
ation, we have illustrated in Figure 5

the trun
ated
omputation at order 12.

In the se
ond approa
h, we do not have an additional method to in
rease �. Instead, we

adopt the
onvention that, as soon as we wish to
ompute the n-th term of the produ
t

series, then we in
rease � to n if ne
essary. This approa
h has the advantage that the user

interfa
e does not
hange. However, one should be aware that a sequential
omputation

of the �rst n terms of the produ
t will have the same
omplexity as in the
ase of naive

lazy multipli
ation. Therefore, if the user knows beforehand that he needs n terms, then

he should �rst
ompute the last term, before retrieving the others.

We �nally noti
e that Mulders' algorithm for trun
ated DAC-multipli
ation, as de-

s
ribed at the end of Se
tion 3.1.3 is essentially relaxed. Consequently, a similar
onstant

speed-up
an be a
hieved in the relaxed setting.

4.4.3. Inlining

For appli
ations in numeri
al analysis, it is interesting to
onsider the
ase when C

is a \ring" of
oating point numbers of low, bounded pre
ision and when the expan-

sion order is small. Then one would like to use trun
ated relaxed DAC-multipli
ation,

sin
e this method has a good
omplexity for small orders. However, the overhead of the

method be
omes mu
h too high in this
ase, due to re
ursive fun
tion
alls and memory

allo
ations. Nevertheless, the overhead
an signi�
antly be redu
ed by \unrolling" the

Relax, but don't be too lazy 33

4

0 1

1

2

2

3 4 5 6 7 8 9 10 11 12

3

4

5

6

7

8

9

10

11

12

2 6 8

4

6

8 10

10

12
10

6

10

12

Figure 5. Trun
ated fast relaxed multipli
ation at order 13

whole pro
ess. This means that a bu�er is allo
ated at the start for all premature and

temporary results and that the
omputations at ea
h stage are performed \inline".

Let us give an example of how to do program this for order 8. In pra
ti
e, the program

should rather be generated automati
ally as a fun
tion of the (maximal) order. The

produ
t
lass is given by

Class Produ
t5 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C; 5)

The
onstru
tor takes the two multipli
ands on input and stores them in f and g. We

also set ' := 0

0���8

, := 0

0���5

.

Method Produ
t5 Series Rep(C):next()

Output: The next
oeÆ
ient (fg)

n

assuming that n < 8.

I*. [Separate
ases℄

if n = 0 then go to I0

.

.

.

if n = 7 then go to I7

error \n too high"

I0. return f

0

g

0

I1. '

2

:= f

1

g

1

return (f

0

+ f

1

)(g

0

+ g

1

)� '

0

� '

2

34 Joris van der Hoeven

I2.

0

:= '

2

'

4

:= f

2

g

2

1

:= f

0

+ f

2

2

:= g

0

+ g

2

return '

2

+

1

2

� '

0

� '

4

I3. '

6

:= f

3

g

3

'

5

:= (f

2

+ f

3

)(g

2

+ g

3

)� '

4

� '

6

3

:= f

1

+ f

3

4

:= f

2

+ f

4

'

4

:=

3

4

�

0

� '

6

return (

1

+

3

)(

2

+

4

)� '

1

� '

5

I4.

0

:= f

0

g

4

1

:= f

4

g

0

return '

4

+

0

+

1

I5.

2

:= f

1

g

5

3

:= f

5

g

1

return '

5

+ (f

0

+ f

1

)(g

4

+ g

5

) + (f

4

+ f

5

)(g

0

+ g

1

)�

0

�

1

�

2

�

3

I6. return '

6

+

2

+

3

+ f

0

g

6

+ f

2

g

4

+ f

4

g

2

+ f

6

g

0

I7. return f

0

g

7

+ f

1

g

6

+ f

2

g

5

+ f

3

g

4

+ f

4

g

3

+ f

5

g

2

+ f

6

g

1

+ f

7

g

0

Although the size of inline programs tends to grow rapidly as a fun
tion of the order,

they should remain a

eptable due to the fa
t that we only
onsider small orders. In the

ase when multipli
ation in C is really fast with respe
t to addition (for instan
e, when

using \ma
hine doubles"), it is possible to adapt the strategy, so that the tri
k (3.1) is

only applied for 2

p

� 2

p

multipli
ations with suÆ
iently large p. Numeri
al experiments

by A. Norman tend to show that inline relaxed multipli
ation be
omes more eÆ
ient for

orders > 32.

4.5. Appli
ations

4.5.1. Impli
it series

The main appli
ation of the relaxed multipli
ation algorithm is the eÆ
ient expansion

of power series solutions to
ertain fun
tional equations, mainly ordinary and partial

di�erential equations. Therefore, it is
onvenient to introdu
e the
lass Impli
it Series(C),

whose instan
es are pointers to the representation
lass

Class Impli
it Series Rep(C) . Series Rep(C)

I : TPS(C)

eq : Series(C)

Here I
ontains the initial
onditions (℄I in number) and eq the impli
it equation whi
h

yields the remaining
oeÆ
ients. The
onstru
tor sets I := 0

0���0

and eq := null. The

n-th
oeÆ
ient is
omputed as follows:

Relax, but don't be too lazy 35

Method Impli
it Series Rep(C):next()

Output: The next, n-th
oeÆ
ient of the series.

if eq = null then error \equation not set"

if n < ℄I then return I

n

else return eq

n

Remark. We noti
e that in low level languages, impli
it series have to be treated with

are from a memory management point of view. When using a referen
e
ounting te
h-

nique for the
opying of series, one needs to reset eq to null after using the impli
it series;

otherwise,
y
li
 dependen
ies might fool the referen
e
ounter. In high level
omputer

algebra systems this problem usually does not o

ur, be
ause the garbage
olle
tor is

suÆ
iently powerful to re
over non used memory automati
ally.

4.5.2. Ordinary differential equations

The use of the
lass Impli
it Series(C) is well illustrated by an example. Consider the

system of ordinary di�erential equations

�

f

0

= fg;

g

0

= f + g;

with initial
onditions f(0) = g(0) = 1. Then the following pie
e of
ode
omputes the

n-th
oeÆ
ient of f :

f := new Impli
it Series(C)

g := new Impli
it Series(C)

f:I := 1

0���1

g:I := 1

0���1

f:eq :=

R

f � g

g:eq :=

R

f + g

 := f

n

f:eq := null

g:eq := null

In a similar fashion, relaxed multipli
ation
an for instan
e be used to solve systems of

algebrai
 di�erential equations, by rewriting the equations in integral form like in (3.5).

Although we lose a fa
tor logn in the asymptoti

omplexity with respe
t to Brent and

Kung's zealous algorithm, the relaxed approa
h has two advantages:

� We may dire
tly treat systems of o.d.e.'s.

� The
onstant fa
tor in the asymptoti

omplexity depends linearly on the size of

the equation, when rewritten in its integral form.

As to the se
ond advantage, we noti
e that Brent and Kung's algorithm is exponential in

the order r of the equation. Therefore, our algorithm is more eÆ
ient in pra
ti
e ex
ept

for parti
ularly low orders (typi
ally r = 1 or r = 2, but even in this
ase, Tables 4 and 5

below provide interesting ben
hmarks).

36 Joris van der Hoeven

4.5.3. Other fun
tional equations

The relaxed multipli
ation algorithm
an also be used to solve more general fun
tional

equations, su
h as

s(z) = 1 + z

s(z)

3

+ 2s(z

3

)

3

: (4.2)

The generating fun
tion s(z) whi
h satis�es this equation enumerates the number of

stereoisomeres of al
ohols of the form C

n

H

2n+1

OH (P�olya, 1937). Theorem 4.1 implies

that the asymptoti

omplexity to
ompute the �rst n
oeÆ
ients of s(z) is O(n log

2

n),

whi
h is mu
h better than the previously best known bound O(n

2

). Many other di�er-

ential di�eren
e equations arising in
ombinatori
s and the analysis of algorithms are

similar to 4.2 (Flajolet and Sedgewi
k, 1996); in parti
ular, we mention binary splitting

algorithms and di�erential q-di�eren
e equations. In Se
tion 5, we will
onsider even

more general equations.

4.5.4. Partial differential equations

Fast relaxed multipli
ation
an also be used to solve non linear partial di�erential equa-

tions, by
onsidering d-dimensional power series as power series with (d�1)-dimensional

power series as
oeÆ
ients. Consider for instan
e the equation

�f

�y

=

�

�f

�x

�

2

+

�

�

2

f

�x

2

�

2

;

f(x; 0) = e

x

:

We
an
ompute the
oeÆ
ient of x

n

y

m

in f(x; y) using the following pie
e of
ode:

f := new Impli
it Series(Series(C))

f:I := exp(x)

f:eq :=

R

y

((�

x

f)

2

+ (�

x

�

x

f)

2

)

 := (f

m

)

n

f:eq := null

Here x : Series(C),

R

y

=

R

and �

x

is implemented trivially. Now we noti
e that the

omputation of x

n

y

m

involves expansion of f

m

up till n + 1 terms, f

m�1

up till n +

3 terms and so on until f

0

, whi
h is expanded up till n + 2m + 1 terms. Using fast

relaxed multipli
ation in y, the
omplexity of this
omputation is therefore bounded by

O(M((n +m)m) logm). A
tually, this almost linear theoreti
al
omplexity is a general

situation and the following theorem is proved similarly:

Theorem 4.2. Let the
lasses A

d

be de�ned indu
tively by

� A

0

= C.

� A

d

is the
lass of power series f 2 C[z

1

; : : : ; z

d

℄, whi
h satisfy an algebrai
 di�er-

ential equation of the form

P

0

�

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;

Relax, but don't be too lazy 37

with initial
onditions in A

d�1

, and su
h that the separant in z

d

S

d

=

�P

�

�

r

f

�z

r

d

0

�

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;

(where r is highest su
h that

�

r

f

�z

r

d

o

urs in P) evaluates to an invertible series in

C[[z

1

; : : : ; z

d�1

℄℄ when setting z

d

= 0.

Given a series f in A

d

and integers n

1

; : : : ; n

d

> 0, the
oeÆ
ients of z

k

1

1

� � � z

k

d

d

in f

with k

1

< n

1

; : : : ; k

n

< n

d

an be evaluated in time O(M((n

1

+ � � � + n

d

) � � � (n

d�1

+

n

d

)n

d

) log(n

1

+ � � �+ n

d

)) and spa
e O(n

1

� � �n

d

). 2

4.6. Ben
hmarks

We have implemented the zealous multipli
ation algorithm and several relaxed multi-

pli
ation algorithms in C++, using integer, rational and
oating point arithmeti
 from

GMP (the GNU multipre
ision library). Our ben
hmarks were obtained on a PC running

under Linux, with a 166MHz AMD pro
essor and 64Mb of memory. In our tables, all

timings are done in se
onds. We aborted the
omputations after one hour; the maxi-

mal number of
oeÆ
ients whi
h
ould be
omputed in this time are shown in the last

olumns of the tables.

We
ompared the following multipli
ation algorithms:

� Zealous: The purely zealous algorithms from Se
tion 3.

� Naive: The naive lazy algorithm from Se
tion 4.1.

� DAC: The relaxed DAC-multipli
ation algorithm from Se
tion 4.2.

� Fast: Fast relaxed multipli
ation from Se
tion 4.3.

� Variant: The variant of fast relaxed multipli
ation from Se
tion 4.4.1.

� Trun
ated: Fast trun
ated relaxed multipli
ation, as sket
hed in Se
tion 4.4.2.

In Table 4, we
onsidered the expansion of exp(z exp z), using high pre
ision
oat-

ing point numbers, so that multipli
ation in C has a high, but �xed
ost. Not surpris-

ingly, all relaxed algorithms do asymptoti
ally better than lazy multipli
ation (ex
ept

for DAC-multipli
ation, whi
h starts swapping for high orders). The threshold for FFT-

multipli
ation being high, we observe an O(n

3=2

) asymptoti

omplexity. In the future,

when GMP will support FFT-multipli
ation, even higher gains should be a
hievable (see

Se
tion 6.1). We also noti
ed another advantage of fast relaxed multipli
ation: when

suÆ
ient memory is not available, little time is spent on swapping, sin
e most of the

omputations are done on large blo
ks of
onse
utive
oeÆ
ients in memory.

In Table 5, we have
omputed the expansion of exp(z exp z), using rational
oeÆ
ients.

Although the naive algorithm turns out to be the fastest in this
ase, the results are

\fooled" by the fa
t that rational number arithmeti
 is not implemented optimally in

GMP. Indeed, although DAC-multipli
ation is used for integers, the g
d-algorithm has a

quadrati

omplexity... Therefore, most time is spent on
omputing g
d's. Noti
e also that

both in tables 4 and 5, the zealous algorithm is slower than the fast relaxed algorithms,

despite its better asymptoti

omplexity.

In Table 6, we
onsidered the expansion of the solution to equation (4.2), using integer

38 Joris van der Hoeven

Multipli
ation 10 20 50 100 200 500 1000 2000 1h

Zealous 0:161 0:985 7:202 27:017 92:36 361:19 1135:4 3403 2135

Naive 0:048 0:282 2:533 11:474 48:86 317:00 1283:8 1670

DAC 0:079 0:309 1:428 4:384 13:19 61:35 1887:4 1025

Fast 0:061 0:331 2:162 7:583 25:10 96:20 307:2 959 4095

Variant 0:077 0:347 1:874 5:938 18:34 67:27 193:8 494 �

Trun
ated 0:047 0:274 1:838 6:782 21:70 98:21 307:5 947 4408

Table 4. Time in se
onds to expand exp(z exp z) at various orders, using di�erent

algorithms and 10000 bits
oating point
oeÆ
ients.

Multipli
ation 10 20 50 100 200 500 1h

Zealous 0:052 0:187 1:294 6:916 50:09 1085:87 686

Naive 0:025 0:072 0:417 2:194 16:62 446:34 845

DAC 0:029 0:101 0:641 3:614 30:45 918:78 758

Fast 0:038 0:125 0:800 4:190 30:96 430:92 767

Variant 0:047 0:155 0:995 5:658 48:78 888:92 703

Trun
ated 0:026 0:082 0:485 2:308 15:52 342:05 944

Table 5. Time in se
onds to expand exp(z exp z) at various orders, using di�erent

algorithms and rational
oeÆ
ients.

oeÆ
ients modulo the prime number 1234577. In this
ase, multipli
ation in C has a �xed

low
ost. The threshold for FFT-multipli
ation is between 2048 and 4096
oeÆ
ients,

whi
h explains a better asymptoti
 performan
e of the fast relaxed algorithms than

O(n

3=2

). Although our implementation of FFT-multipli
ation may still be improved, it

be
omes
lear that important gains are already a
hieved.

In Table 7, we again
onsidered the expansion of the solution to equation (4.2), but

using integer
oeÆ
ients. In this
ase, the sizes of the
oeÆ
ients in C grow linearly

with the expansion order, whi
h explains the rapid growth of the
omputation times. For

suggestions about additional speedups, we refer to Se
tions 6.1 and 6.3.

5. Relaxed
omposition

A dependen
y analysis of the
omposition algorithms from Se
tion 3.4 shows that

they are, or are almost essentially relaxed, just like DAC-multipli
ation. Therefore, they

admit relaxed analogues with the same asymptoti
 time
omplexities (when using a

relaxed multipli
ation algorithm). We will spe
ify these analogues in more detail in this

se
tion.

Multipli
ation 500 1000 2000 5000 10000 20000 50000 100000 200000 1h

Naive 0:948 2:897 9:541 52:09 198:46 786:5 43312

DAC 0:992 2:603 6:860 24:70 70:24 204:4 873 2624 121561

Fast 0:863 2:101 5:407 20:93 56:25 147:4 547 1355 3370 217087

Variant 0:918 2:055 4:997 16:28 42:10 108:7 411 1014 2480 275967

Trun
ated 0:766 2:022 5:151 19:03 52:60 145:3 539 1392 3529 203767

Table 6. Time in se
onds to
ompute the number of stereoisomeres of C

n

H

2n+1

OH

modulo 1234577 for various n, using di�erent algorithms.

Relax, but don't be too lazy 39

Multipli
ation 10 20 50 100 200 500 1000 2000 5000 1h

Naive 0:012 0:026 0:087 0:249 0:850 5:485 32:56 297:57 4018

DAC 0:013 0:032 0:113 0:308 0:922 5:635 30:72 235:50 3583

Fast 0:015 0:037 0:131 0:375 1:185 4:853 21:33 134:54 2611 5759

Variant 0:017 0:043 0:151 0:407 1:221 5:558 29:59 215:59 3519 5119

Trun
ated 0:012 0:028 0:098 0:276 0:871 4:496 19:95 129:23 2295 5862

Table 7. Time in se
onds to
ompute the number of stereoisomeres of C

n

H

2n+1

OH for

various n, using di�erent algorithms (and integer
oeÆ
ients).

5.1. Fast relaxed
omposition with polynomials

In this se
tion, we spe
ify the relaxed version of the algorithm from Se
tion 3.4.1.

A
tually, we will
ompute partial
ompositions f

i���i+p

Æ g using the algorithm from Se
-

tion 3.4.1 and \glue" these partial
omputations together into a global algorithm as we

did in Se
tion 4.2.3 for DAC-multipli
ation.

5.1.1. Partial series

For
onvenien
e, we �rst introdu
e the
lass

Class Partial Series Rep(C) . Series Rep(C)

eq : Series(C)

N : Integer

This
lass implements series, whose �rst N
oeÆ
ients are given by eq and whose other

oeÆ
ients vanish. Moreover, as soon as the �rst N
oeÆ
ients have been
omputed, eq

is released.

More pre
isely, the
onstru
tor of Partial Series Rep(C) takes a series and an integer

on input, whi
h are assigned to eq and N . We also implement a fun
tion

partial : Series(C)� Integer! Series(C);

whi
h takes eq and N on input and returns new Partial Series Rep(C)(eq;N). The
o-

eÆ
ients of a partial series are
omputed using the method below. The �rst line of the

program is needed for memory allo
ation purposes.

Method Partial Series Rep(C):next()

Output: The next
oeÆ
ient of the partial series.

if n is a power of two then ' := '

0���max(2n;℄')

if n = N then eq := null

if n > N then return 0

return eq

n

Remark. Re
all that ' := '

0���max(2n;℄')

is �lled up with zeros if 2n > ℄'. In other

words, this statement is used to reserve additional memory for
oeÆ
ients of '.

5.1.2. Partial right
omposition with polynomials

In what follows, p will always be a power of two and g is as in Se
tion 3.4.1. The

algorithm partial
ompose pol below
omputes the partial
omposition of f

i���i+p

with

40 Joris van der Hoeven

g. We assume that the powers g; g

2

; g

4

; : : : ; g

p=2

have been
omputed elsewhere and

stored in a hashtable H .

Algorithm partial
ompose pol(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

su
h that H [i℄
ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right
omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial
ompose pol(f; i; p=2; q;H)

h

�

:= partial
ompose pol(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

It is also
onvenient to have the following variant of partial
ompose pol in order

to extend previous
omputations:

Algorithm partial
ompose pol(h

�

; p; q;H)

Input: A previous partial
omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right
omposition of f

0���p

with g.

h

�

:= partial
ompose pol(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

5.1.3. Right
omposition with polynomials

The representation
lass Compose Polynomial Rep(C)
orresponds to the total
ompo-

sition of f with a polynomial g:

Class Compose Polynomial Rep(C)

f; h : Series(C)

H : Hash Table(Integer; Series(C))

q : Integer

The
onstru
tor takes f; g : Series(C) and an integer q as arguments and initializes

f := f;H [1℄ := g; q := q and h := partial
ompose pol(f; 0; 1; q;H); the other entries

of H are unde�ned at initialization.

In order to
ompute the
oeÆ
ients of f Æ g, we use the partial
omposition algorithm,

but we double the order p ea
h time when n be
omes a power of two.

Method Compose Polynomial Rep(C):next()

Output: The next
oeÆ
ient (f Æ g)

n

.

Relax, but don't be too lazy 41

if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h := partial
ompose pol(h; 2n; q;H)

return h

n

5.1.4. Complexity analysis

Theorem 5.1. There exists a relaxed right
omposition algorithm for formal power se-

ries f by polynomials g, whi
h
omputes n terms of f Æ g in time O(qM

�

(n) logn) and

spa
e O(nq log q).

Proof. We may assume without loss of generality that n is a power of two. Then the

estimation for the time
omplexity is
lear, sin
e we perform the same
onstant operations

as in the zealous
ase.

In order to determine the spa
e
omplexity, we have to estimate the spa
e whi
h is

o

upied by the instan
es h

i;p

of Partial Series Rep(C), whi
h
orrespond to the
ompo-

sitions f

i���i+p

Æ g (here p is a power of two and i a multiple of p). These instan
es
an

be organized in a binary tree with root h

0;n

and su
h that the
hildren of h

i;p

are h

i;p=2

and h

i+p=2;p=2

(for p > 1).

We distinguish the following types of instan
es h = h

i;p

:

I. A
tive instan
es: h:eq 6= null and h:n > 0.

II. Latent instan
es: h:eq 6= null but h:n = 0.

III. Completed instan
es: h:eq = null.

We observe that ea
h latent instan
e o

upies O(1) memory spa
e. In total, they therefore

o

upy O(n) memory spa
e. Ea
h remaining instan
e o

upies O(min(pq; n)) memory.

Furthermore, the parent of a
ompleted instan
e is ne
essarily a
tive, so that the
om-

pleted instan
es do not o

upy more than twi
e as mu
h memory as the a
tive ones.

Now for given pjn,
onsider the instan
es h

0;p

; : : : ; h

n�p;p

. Ea
h instan
e h

i;p

on-

tributes to the
oeÆ
ients of f Æ g between i and i + (p � 1)(q � 1) + 1. Hen
e, if the

instan
e h

i;p

is a
tive at stage k, then i 6 k < i + pq. The number of su
h instan
es

is therefore bounded by q. Hen
e, the total amount of memory o

upied by the a
tive

instan
es is bounded by

O

0

�

X

pjn

qmin(n; pq)

1

A

= O(nq log q);

where we remind that n is a power of two. 2

5.2. Fast relaxed
omposition with algebrai
 fun
tions

5.2.1. The
lass Algebrai
 Series(C)

Let g be as in Se
tion 3.4.2. The algorithm for relaxed right
omposition with polyno-

mials is easily adapted to the
ase of right
omposition with g, by introdu
ing a suitable

relaxed analogue Algebrai
 Series(g;C) of the
lass Algebrai
 TPS(g;C) from Se
tion 3.4.2.

42 Joris van der Hoeven

An instan
e of Algebrai
 Series(g;C)
onsists of d series F

0

; : : : ; F

d�1

and an integer

k

F

. The following fun
tions are easily implemented:

� An binary powering algorithm to
ompute and remember P

k

F

d

in a hashtable P

C

.

� An addition algorithm for Algebrai
 Series(g;C).

� A multipli
ation algorithm for Algebrai
 Series(g;C).

� The analogue of the algorithm partial from Se
tion 5.1.1 for Algebrai
 Series(g;C).

� A fun
tion
onvert whi
h
onverts an instan
e of Algebrai
 Series(g;C) ba
k to a

series in Series(C).

5.2.2. Partial right
omposition

The analogues of the algorithms partial
ompose alg from Se
tion 5.1.2 are given

by

Algorithm partial
ompose alg(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

su
h that H [i℄
ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right
omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial
ompose alg(f; i; p=2; q;H)

h

�

:= partial
ompose alg(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

Algorithm partial
ompose alg(h

�

; p; q;H)

Input: A previous partial
omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right
omposition of f

0���p

with g.

h

�

:= partial
ompose alg(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

5.2.3. Right
omposition with algebrai
 fun
tions

The analogue of the
lass Compose Polynomial Rep(C) is given by

Class Compose Algebrai
 Rep(g;C)

f; h : Series(C)

h

alg

: Algebrai
 Series(g;C)

H : Hash Table(Integer;Algebrai
 Series(g;C))

q : Integer

The
onstru
tor takes f and an integer q as arguments and initializes f := f;H [1℄ :=

g; q := q, h

alg

:= partial
ompose alg(f; 0; 1; q;H) and h :=
onvert(h

alg

); the other

entries of H are unde�ned at initialization.

Relax, but don't be too lazy 43

Method Compose Algebrai
 Rep(g;C):next()

Output: The next
oeÆ
ient (f Æ g)

n

.

if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h

alg

:= partial
ompose alg(h

alg

; 2n; q;H)

h :=
onvert(h

alg

)

return h

n

The following theorem is proved in a similar way as theorem 5.1:

Theorem 5.2. Let g be as in Se
tion 3.4.2. There exists a relaxed right
omposition

algorithm for formal power series f by g, whi
h
omputes n terms of f Æ g in time

O(qd

2

(q � v)M

�

((1 + v)n)) and spa
e O(qdn(v + log(q � v)))). 2

5.3. Fast relaxed
omposition when C is a divisible ring

Assume that C is a divisible ring. The representation
lass Compose Rep(C) below

orresponds to the
omposition of two arbitrary power series f; g : Series(C).

Class Compose Rep(C) . Series Rep(C)

f; g; h : Series(C)

The
onstru
tor initializes f and g with the arguments and h := null.

The \relaxation" of Brent and Kung's algorithm from Se
tion 3.4.3 gives rise to a

new problem: we would like to use the relaxed algorithm for right
omposition with

polynomials in order to
ompute fÆg

�

in (3.20). But as n in
reases, the value of g

�

hanges

very often, and ea
h time this happens, we have to start over the relaxed
omputation

of f Æ g

�

.

Therefore, we should neither
hange g

�

to often, so that we make eÆ
ient use of the

polynomial right
omposition algorithm, nor too little, so that the power series expansion

of f Æ (g

�

+ g

�

)
an still be done qui
kly. A good
ompromise (from the asymptoti

omplexity point of view) is to let q = 2

p+1

be the largest power of two with p4

p�1

6 n.

Method Compose Rep(C):next()

Output: The next
oeÆ
ient of (f Æ g)

n

.

C1. [n small℄

if n = 0 then return f

0

if n = 1 then return f

1

g

1

if n = 2 then return f

2

g

2

1

+ f

1

g

2

if n = 3 then return (f

3

g

2

1

+ 2f

2

g

2

)g

1

+ f

1

g

3

C2. [Compute q and r℄

p := maxfp 2 Njp4

p�1

6 ng

if n 6= 4 and p4

p�1

6 n� 1 then return h

n

n

0

:= (p+ 1)4

p

44 Joris van der Hoeven

q := 2

p+1

r := dn

0

=qe

while r > n do q := 2q; r := dn

0

=qe

C3. [Adjust h℄

g

�

:= g

0���q

g

�

:= g � g

�

D := new Compose Polynomial Rep(f

(r�1)

; g

�

)

h := D := D=(r � 1)!

for i := r � 1 downto 1 do

D := f

i�1

+

R

((iD)� g

0

�

)

h := D + ((h� (g

�

div z

q

))mul z

q

)

return h

n

Theorem 5.3. There exists a relaxed
omposition algorithm for formal power series f; g,

whi
h
omputes n terms of f Æ g in time O(M

�

(n)

p

n logn) and spa
e O(n

p

n logn).

Proof. For n between two su

essive
hanges of q, the time and spa
e
omplexities of

the
omputation of f Æ g

�

are O(M

�

(n)

p

n logn) resp. O(n

p

n logn), by theorem 5.1.

The Taylor expansion of f Æ g
ontains O(

p

n logn) terms. Hen
e, the
omplexity of

its evaluation (whi
h requires only additions, derivations, multipli
ations and divisions,

whi
h are all performed in time O(M

�

(n))) is again O(M

�

(n)

p

n logn). The Taylor

expansion requires O(n

p

n logn) spa
e.

Now observe that q
hanges at most on
e for n between a given number n

0

and 2n

0

.

Hen
e, for general values of n, the time
omplexity is bounded by O(M

�

(n)

p

n logn +

M

�

(n=2)

p

(n logn)=2+ � � �+M

�

(1)) = O(M

�

(n)

p

n logn) and the spa
e
omplexity by

O(n

p

n logn). 2

Remark. In Se
tion 4.4.2, we have shown how to gain a
onstant fa
tor on the time and

spa
e
omplexities for relaxed multipli
ation if an a priori bound for the expansion order

has been spe
i�ed. A similar optimization
an be
arried out here: if the maximal order

is known beforehand, then we may
hoose q and r as in Se
tion 3.4.3, thereby avoiding

ertain re
omputations.

5.4. Fast relaxed
omposition for rings C of finite
hara
teristi

The formulas (3.21) and (3.22),
ombined with the Chinese remainder theorem, yield

straightforward relaxed
omposition algorithms when C has �nite
hara
teristi
. We will

just treat the
ase when the
hara
teristi
 p of C is prime; the general
ase is longer, but

not essentially more diÆ
ult.

The following fun
tions are easily implemented

�
ompose p : Series(C)! Series(C); f 7! f Æ z

p

.

� power p : Series(C)! Series(C); f 7! f

p

0

+ f

p

1

z + f

p

2

z

2

+ � � � .

� progression p : Series(C)� Integer! Series(C); (f; i) 7! f

i

+f

i+p

z+f

i+2p

z

2

+ � � � .

Now the
lass Compose Rep(C)
orresponds to the
omposition of f and g:

Relax, but don't be too lazy 45

Class Compose prime Rep(C) . Series Rep(C)

f; g; h : Series(C)

The
onstru
tor initializes f and g with the arguments and h := null.

Method Compose prime Rep(C):next()

Output: The next
oeÆ
ient of (f Æ g)

n

.

C1. [Easy
ase℄

if n = 0 then return f

0

if n > 1 then return h

n

C2. [Set up equation℄

h := 0

for i := p� 1 downto 0 do

t :=
ompose p(
ompose(progression p(f; i);power p(g)))

h := ((h� (g div z))mul z) + t

return h

n

Theorem 5.4. Assume that C has prime
hara
teristi
 p. Then there exists a relaxed

omposition algorithm for formal power series f; g, whi
h
omputes n terms of f Æ g in

time O((p= log p)M

�

(n) logn) and spa
e O((p= log p)n logn).

Proof. The time and spa
e
omplexities T (n) resp. S(n) satisfy

T (n) = pT (n=p) +O(pM

�

(n));

S(n) = pS(n=p) +O(pn):

The
omplexity bounds follow from these relation. 2

As in the zealous
ase, the above algorithm
an be optimized by using the lazy ver-

sion of Brent and Kung's algorithm for small values of n. For rings C of more general

hara
teristi
, the relaxed analogues of Bernstein's result and theorem 3.5:

Theorem 5.5.

a. Assume that C has prime power
hara
teristi
 p

k

. Then there exists a relaxed
om-

position algorithm for formal power series f; g, whi
h
omputes n terms of f Æ g in

time O((k

3

p= log p)M

�

(n) logn) and spa
e O((kp= log p)n logn).

b. Assume that C has general
hara
teristi
 r. Then there exists a relaxed
omposition

algorithm for formal power series f; g, whi
h
omputes n terms of f Æ g in time

O((r= log r)M

�

(n) logn) and spa
e O((r= log r)n logn). 2

5.5. Appli
ations

5.5.1. Finite differen
e equations

One of the most interesting appli
ations of theorem 5.2 is that all linear or non linear

�nite di�eren
e equations at in�nity (assuming that they have been put in some normal

46 Joris van der Hoeven

form)
an be solved in essentially linear spa
e and time. Consider for instan
e the equation

f(x) =

1

x

(1 + f(x+ 1) + f

0

(x)

2

); (5.1)

whi
h admits a unique power series solution in 1=x:

f(x) =

1

x

+

1

x

2

�

1

x

4

�

3

x

6

+O

�

1

x

7

�

Putting x = 1=z and f(x) = f(1=z) = g(z), the equation (5.1) be
omes

g(z) = z

�

1 + g

�

z

1 + z

�

� z

4

g

0

(z)

2

�

: (5.2)

Using the initial
ondition g(0) = 0, the �rst n terms of g(z)
an be
omputed in time

O(n log

3

n log logn) by theorem 5.2, when using FFT-multipli
ation.

5.5.2. Combinatori
s

In
ombinatori
s, one also sometimes en
ounters fun
tional equations, whi
h involve

right
omposition with polynomials or algebrai
 fun
tions. An example of su
h an equa-

tion is

f(z) = z + f(z

2

+ z

3

):

The generating fun
tion f
ounts the number of so
alled 2-3-trees (Odlyzko, 1982). The

oeÆ
ients
an again be
omputed in essentially linear time.

5.5.3. General fun
tional equations

Theorem 5.3
an be used to solve any kind of fun
tional equation involving di�eren-

tiation and
omposition up till n terms in time O(n

3=2

log

5=2

n log logn). An example of

su
h an equation is given by

f(z) = z + f(zf(z) + z

2

f

0

(z)) + z

4

exp(zf

00

(z)):

Noti
e that power series reversion is another example.

5.6. Ben
hmarks

Using the same
onventions and multipli
ation algorithms as in Se
tion 4.6, we have

tested four
omposition algorithms:

� Naive: The naive relaxed
omposition algorithm, using Horner's rule.

� Brent&Kung: The relaxed version of Brent and Kung's algorithm.

� Fast: The almost linear algorithms in
ase of right
omposition with polynomials

or algebrai
 fun
tions.

� Bernstein: The relaxed version of Bernstein's algorithm, for
oeÆ
ient rings of
har-

a
teristi
 p > 0.

We also implemented trun
ated versions of these algorithms, whi
h were used ea
h time

we used trun
ated relaxed multipli
ation.

Relax, but don't be too lazy 47

Composition Multipli
ation 100 200 500 1000 2000 5000 10000 20000 1h

Naive Naive 0:537 3:213 43:80 337:1 2647:2 2216

Fast 1:113 6:187 69:15 459:5 3152:5 2093

Trun
ated 0:592 2:857 28:53 169:0 1022:7 3119

Brent&Kung Naive 0:561 2:065 23:68 96:4 871:1 4148

Fast 1:067 3:549 34:90 120:0 960:2 4188

Trun
ated 0:809 2:650 23:18 75:0 573:8 2905 5628

Fast Naive 0:406 1:448 8:21 34:2 144:9 1111 8560

Fast 0:713 2:151 8:13 25:8 83:8 499 1611 16385

Trun
ated 0:445 1:366 5:89 19:2 62:9 333 1070 3341 20253

Table 8. Time in se
onds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer
oeÆ
ients modulo 1234577.

p Multipli
ation 100 200 500 1000 2000 5000 10000 20000 50000 1h

3 Naive 0:182 0:557 2:535 8:704 31:72 187:4 738 2923 22198

Fast 0:326 0:894 3:444 10:597 34:23 176:7 617 2214 25809

Trun
ated 0:231 0:565 1:955 5:287 14:76 56:8 162 489 3254 50000

11 Naive 0:264 0:855 4:275 15:876 60:77 370:4 1470 15668

Fast 0:431 1:400 5:901 19:281 66:00 358:4 1287 17025

Trun
ated 0:279 0:819 2:940 8:351 24:86 96:1 287 868 31946

37 Naive 0:483 1:678 9:988 39:336 158:56 994:5 9492

Fast 0:867 2:876 13:866 48:200 173:21 983:8 9990

Trun
ated 0:501 1:412 6:181 18:791 58:95 226:0 682 2132 24601

Table 9. Time in se
onds to expand the solution to (5.2) at various orders, using the

relaxed version of Bernstein's algorithm and integer
oeÆ
ients modulo p.

In Table 8, we have
onsidered the expansion of the solution to equation (5.2), where we

took the ring of integers modulo a large number p as our
oeÆ
ient ring. A
tually, these

timings do not depend on p, when
e they
an be
ompared to those from Table 9, where p

is a small prime number, and where we use the relaxed version of Bernstein's
omposition

algorithm. In Table 10, we
onsidered the same equation, using integer
oeÆ
ients.

6. Suggestions for spe
i�

oeÆ
ient rings

In the previous se
tions, we have given asymptoti
ally fast algorithms for the manip-

ulation of formal power series over a \generi
 ring" C. In pra
ti
e, C is usually the ring

Composition Multipli
ation 10 20 50 100 200 500 1000 2000 1h

Naive Naive 0:018 0:055 0:433 3:129 24:942 456:09 618

Fast 0:024 0:104 0:979 6:495 47:541 1037:63 514

Trun
ated 0:018 0:066 0:547 3:307 22:258 344:23 596

Brent&Kung Naive 0:026 0:077 0:848 2:881 12:805 195:72 830

Fast 0:039 0:135 1:764 5:781 23:679 298:51 894

Trun
ated 0:028 0:091 1:342 4:747 18:764 220:00 800

Fast Naive 0:031 0:095 0:431 1:782 7:636 55:15 359:41 3487 2012

Fast 0:057 0:202 0:955 3:575 13:124 59:69 274:84 1722 2049

Trun
ated 0:033 0:116 0:572 2:206 8:439 47:24 229:90 1572 2307

Table 10. Time in se
onds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer
oeÆ
ients.

48 Joris van der Hoeven

of integers, rational numbers,
oating point numbers, et
. or
onstru
ted from one these,

by
onsidering polynomial rings, rings of formal power series, or quotients.

On the one hand, this makes it possible to exploit the spe
ial nature of C in order to gain

additional
onstant fa
tors on the
omplexities of the relaxed algorithms. These fa
tors

may be
onsiderable, but they rely on a
lever use of the FFT-transform, as explained

in Se
tion 6.1. In parti
ular, it is time
onsuming to write good implementations.

On the other hand, for most of the
onstant �elds used in pra
ti
e, the size of the

n-th
oeÆ
ient of a series tends to grow with n. Analogously, in numeri
al analysis, the

pre
ision of the n-th
oeÆ
ient of a series tends to de
rease with n. Unfortunately, the

relaxed algorithms, more than the naive ones, tend to add
oeÆ
ients of di�erent sizes

resp. pre
isions, whi
h leads to a loss of eÆ
ien
y or numeri
al instability. This issue will

be treated in more detail in Se
tions 6.2 and 6.3 and some approa
hes will be suggested.

This se
tion is mainly in
luded to give some hints about how to adapt the theoreti
al

algorithms from the previous se
tions to parti
ular, frequently used
onstant rings C. Our

presentation will be informal and our suggestions have still to be tried out in pra
ti
e.

6.1. Generalizing the fast Fourier transform

In most of the a
tual
omputer algebra systems, polynomials, ve
tors, matri
es, et
.

over a base ring C are implemented in a generi
 way. Unfortunately, this approa
h makes

it hard to fully exploit the fast Fourier transformation.

Consider for instan
e polynomials A and B with large integer
oeÆ
ients, so that

the
oeÆ
ients are multiplied using the FFT. Then in order to
ompute AB, we may

�rst transform the
oeÆ
ients of A and B, next multiply the transformed polynomials

and �nally transform ba
k. In this approa
h we only have to
ompute the FFT of ea
h

oeÆ
ient of A and B on
e, so that we gain with respe
t to the generi
 polynomial multi-

pli
ation algorithm. Moreover, this optimization
an be used re
ursively for multivariate

polynomials over the integers, and ea
h time we in
rease the number of variables, we

gain a
onstant fa
tor with respe
t to the generi
 approa
h.

This example shows that we have to rethink the basi
 arithmeti
 operations for the

most elementary generi

omputer algebra types, in order to obtain maximal eÆ
ien
y for

large input sizes. For this purpose, let us reformulate FFT-multipli
ation in an abstra
t

way for elements A and B in a ring C.

� We �rst have to \transform" the ring C into

b

C

A;B

.

� We next
ompute the fast Fourier transforms

b

A;

b

B :

b

C

A;B

of A and B.

� We multiply

b

A and

b

B in

b

C

A;B

, yielding

b

C.

� We transform

b

C ba
k into the produ
t C of A and B.

The \transformed ring"

b

C

A;B

is depends on
ertain
hara
teristi
s of A and B, su
h as

size or degree. In the algorithm from Se
tion 3.1.2, we would have

\

C[x℄=(x

n

+ 1)

A;B

=

C[y℄=(y

m

+1). The multipli
ation is represented s
hemati
ally by the following diagram:

A;B : C

FFT

����!

b

A;

b

B :

b

C

A;B

?

?

y

�

C

?

?

y

�

b

C

A;B

AB : C

FFT

�1

 ����

b

A

b

B :

b

C

A;B

Relax, but don't be too lazy 49

It is not hard to see how su
h an abstra
t FFT-transform might be implemented for

elementary
omputer algebra types su
h as integers,
oating point numbers, polynomials,

matri
es, et
. However, there are three di�erent approa
hes in the
ase of dense polyno-

mials, whi
h are detailed below. The
hoi
e of the fastest approa
h may depend on the

system. A
alibration fun
tion should be implemented to �nd the optimal one for a given

input size.

6.1.1. Usual multipli
ation with transformed
oeffi
ients

Let C be a
onstant ring for whi
h an abstra
t FFT-transform has been implemented

and
onsider the ring C[x℄ of dense polynomials over C. Given su
h a polynomial A =

A

d

x

d

+ � � �+A

0

, we may transform it using

b

A =

A

d

x

d

+ � � �+

A

0

:

d

C[x℄ =

b

C[x℄

and use a generi
 multipli
ation algorithm in

b

C[x℄. Of
ourse, the pre
ise ring

b

C depends

on the sizes of the polynomials one wishes to multiply.

For small degrees, this approa
h yields the best results. For instan
e, the
ost of mul-

tiplying two polynomials of degree 1 is stri
tly less than three
onstant multipli
ations

(when the
oeÆ
ients have approximately the same sizes). For other small degrees n, two

polynomials
an be multiplied using 2n+1
onstant operations using Toom-Cook's algo-

rithm (Toom, 1963b; Cook, 1966; Knuth, 1997). However, the overhead of this algorithm

grows rapidly, whi
h makes this approa
h less interesting for higher degrees.

6.1.2. Redu
tion to the base ring

For rings C of
hara
teristi
 zero, another approa
h is to take

b

A =

\

A(2

N

) :

d

C[x℄ =

b

C;

for a suÆ
iently large N . For example, in base 10, this
orresponds to multiplying poly-

nomials as follows:

(101x+ 213)� (219x+ 173)

FFT

����! 101000212� 219000173

?

?

y

?

?

y

FFT-multiply

22119x

2

+ 64120+ 36849

FFT

�1

 ���� 22119064120036849

If A and B are polynomials of degree n, whose
oeÆ
ients are very large and of ap-

proximately the same size s, then the sizes of A(2

N

) and B(2

N

) are both approximately

(2n+1)s. Hen
e, AB
an be
omputed in roughly the same time as 2n+1
oeÆ
ient mul-

tipli
ations. Moreover,
ontrary to the method from the previous se
tion, the additional

overhead is low, even for large n.

Another advantage of the present method is that it \smoothes" the graph with the

omputation time as a fun
tion of the input size. Indeed, when using FFT-multipli
ation,

ea
h time that extra roots of unity are needed (i.e. when doubling the input size), a

sudden in
rease in the
omputation time is observed. The present method redu
es this

phenomenon.

Remark. Noti
e the interesting philosophy behind the method: usually,
omplex prob-

50 Joris van der Hoeven

lems (su
h as multiplying polynomials) are redu
ed to many small simple problems (mul-

tipli
ation of
oeÆ
ients). Here, we rather redu
e the
omplex problem to a huge, but

simple problem, and we make use of the fa
t that we have an asymptoti
ally eÆ
ient

method for the huge simple problem.

6.1.3. Multivariate fast Fourier transforms

Yet another method is based on the observation that, in order to multiply polynomials

in

b

C[x℄, we may use the fa
t that the ring

b

C already has many 2

N

-th roots of unity.

Hen
e, after a �rst transformation A

d

x

d

+ � � �+A

0

!

A

d

x

d

+ � � �+

A

0

as in Se
tion 6.1.1,

FFT-multipli
ation be
omes interesting mu
h earlier than for a generi
 polynomial ring.

Although the multipli
ation s
heme based on this method is slightly slower for small

degrees (for instan
e, we need 4 \
onstant multipli
ations" in order to multiply two

�rst degree polynomials), the method is virtually linear from then on. Espe
ially when

multipli
ation in

b

C be
omes expensive with respe
t to the fast Fourier transformation,

this method may be an interesting alternative for moderate degrees n.

Remark. We also suggest to use this method for integer multipli
ation itself. Indeed,

S
h�onhage-Strassen's algorithm (S
h�onhage and Strassen, 1971) redu
es the multipli
a-

tion problem for integers modulo 2

2

N

+ 1 to the problem of multiplying polynomials of

degrees 6 n in Z=(2

2

n

+1)Z[x℄, where n � N=2. However, for large N (that is N ' 20 on

a
tual ma
hines), the modular multipli
ation step of numbers modulo 2

2

n

+ 1 be
omes

far more expensive than the transformation step. For su
h N , we therefore suggest to

use polynomials in Z=(2

2

n

+1)Z[x; y℄ of degrees 6 n in x and y instead, where n � N=3.

6.2. On the numeri
al instability of relaxed algorithms

In this se
tion, we study the numeri
al stability of the di�erent relaxed multipli
a-

tion algorithms for power series with
oating point
oeÆ
ients. For this purpose, it is

important two distinguish two types of appli
ations.

For appli
ations to numeri
al analysis, su
h as the analyti

ontinuation of holomorphi

fun
tions, the
oeÆ
ients are usually known with a high pre
ision, that is, a pre
ision

whi
h is linearly dependent on the required expansion order. This enables us to evaluate

the series
lose to the origin up till a number of digits whi
h is linearly dependent on the

expansion order. For su
h appli
ations, a sublinear or even a small linear pre
ision loss

will not
hange the asymptoti

omplexity of the evaluation of the series up till n digits.

For other appli
ations, su
h as the random generation of
ombinatorial stru
tures (Fla-

jolet et al., 1994; Denise et al., 1998; Denise and Zimmermann, 1999), we are interested

in the
oeÆ
ients themselves and we require a given, small number of digits after the

de
imal point. On the one hand, the fa
t that we want many terms using a low pre
ision

makes this appli
ation vulnerable for numeri
al instability. On the other hand, the
o-

eÆ
ients of the series are often all positive with ni
e asymptoti
 properties in this
ase.

Under additional hypotheses, we may therefore hope to estimate the pre
ision loss.

6.2.1. Sour
es of numeri
al instability

There are two main sour
es of numeri
al instability when multiplying formal power

series. The �rst sour
e is \massive
an
ellation" of
oeÆ
ients, whi
h indu
es the radius

Relax, but don't be too lazy 51

of
onvergen
e of the produ
t to be stri
tly larger than those of its fa
tors. An example

is given by

tan z �
os z = sin z:

This sour
e is intrinsi
 and no parti
ular numeri
al multipli
ation method will be able

to avoid it.

The se
ond sour
e of numeri
al instability is en
ountered, when
oeÆ
ients of di�erent

magnitudes are added up in order to speed up the produ
t
omputation. Consider for

instan
e the
omputation of

P = (1:000 � 10

0

+ 1:000 � 10

�5

z)� (1:000 � 10

0

+ 1:000 � 10

�5

z)

using DAC-multipli
ation:

1:000 � 10

0

= (1:000 � 10

0

)� (1:000 � 10

0

)

1:000 � 10

�10

= (1:000 � 10

�5

)� (1:000 � 10

�5

)

1:000 � 10

0

= (1:000 � 10

0

+ 1:000 � 10

�5

)� (1:000 � 10

0

+ 1:000 � 10

�5

):

We obtain

P = 1:000 � 10

0

+ 0:000 � 10

0

z + 1:000 � 10

�10

z

2

:

Hen
e, the addition 1:000 � 10

0

+ 1:000 � 10

�5

is responsible for the pre
ision loss.

6.2.2. In
reasing the numeri
al stability

In the frequent
ase when we multiply
onvergent power series f and g, we
an often

avoid this problem by \normalizing" blo
ks f

i���i

0

and g

j���j

0

(with l = i

0

� i = j

0

� j)

of su

essive
oeÆ
ients before multiplying them. Indeed, in the
onvergent
ase, the

exponents of the
oeÆ
ients f

i

; : : : ; f

i

0

�1

resp. g

j

; : : : ; g

j

0

�1

usually approximately form

an arithmeti
 progression, i.e. log jf

k

j � log jf

i

j+�(k� i), for some � and all i 6 k < i

0

.

Hen
e, by looking at these exponents, we determine the \least approximate minimal

radius of
onvergen
e" ~r of f and g: for
ertain
onstants F and G we have

f

k

6 F=~r

k

(i 6 k < i

0

);

g

k

6 G=~r

k

(j 6 k < j

0

);

where the inequalities are (approximate) equalities for at least one k and l, and for at

least two k or l. Now we
ompute

h

0

+ � � �+ h

2l�1

= (f

i

+ � � �+ f

i

0

�1

~r

l�1

z

l�1

)� (g

j

+ � � �+ g

j

0

�1

~r

l�1

z

l�1

)

using any fast multipli
ation algorithm for polynomials. Then

f

i���i

0

g

j���j

0

= h

0

+ � � �+

h

2l�1

~r

2l�1

z

2l�1

:

This way of
omputing f

i���i

0

g

j���j

0

in
reases the numeri
al stability. For instan
e, in the

example from the previous se
tion, we get ~r = 1:000 � 10

5

and

h = 1:000 � 10

0

+ 2:000 � 10

0

z + 1:000 � 10

0

z

2

;

fg = 1:000 � 10

0

+ 2:000 � 10

�5

z + 1:000 � 10

0

z

�10

:

52 Joris van der Hoeven

Remark. Considering a �nite number of
oeÆ
ients f

i���i

0

, the \approximate radius of

onvergen
e" of a series f may for instan
e be
omputed in linear time, by \traversing"

the
onvex envelope of the logarithms of these
oeÆ
ients and retaining the longest

segment. A slower, but more stable method is obtained by maximizing the quantity

i

0

�1

X

k=i

Cjf

k

=~r

k

j

among all C > 0 and ~r > 0 with

i

0

�1

max

k=i

Cjf

k

=~r

k

j = 1:

It would be interesting to �nd a fast and stable
ompromise between these two extremes.

6.2.3. Series with positive
oeffi
ients and error estimations

In the
ase when all series we
onsider have positive
oeÆ
ients, whi
h is frequently the

ase in
ombinatori
s and the analysis of algorithms, it is often possible to obtain pre
ise

error estimations for the various relaxed algorithms for multipli
ation and
omposition.

Let B be the number of signi�
ant bits with whi
h we
ompute. In what follows, when

approximating a real number ~x by a
oating point number x =M �2

E

(with

1

2

6M < 1),

we will denote by Æ

x

the \normalized relative error" we
ommit, so that

~x� Æ

x

2

E�B

6 x 6 ~x+ Æ

x

2

E�B

:

For small errors (that is Æ

x

6 2

B=2

), we then have

Æ

x+y

6 max(Æ

x

; Æ

y

) + 2; (6.1)

Æ

xy

6 Æ

x

+ Æ

y

+ 2; (6.2)

for positive
oating point numbers x and y.

Naive lazy algorithms

Let us �rst
onsider the
ase of a system of di�erential equations, whi
h has been put

into integral form

0

B

�

f

1

(z)

.

.

.

f

r

(z)

1

C

A

=

Z

0

B

�

P

1

(f

1

; : : : ; f

r

)

.

.

.

P

r

(f

1

; : : : ; f

r

)

1

C

A

; (6.3)

where P

1

; : : : ; P

r

are polynomials with positive
oeÆ
ients. Then we
an expand the

solutions using the lazy power series te
hnique. Let f

i;n

denote the n-th
oeÆ
ient of f

i

.

Then the equations (6.1) and (6.2) yield

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+O(n); (6.4)

for ea
h i, sin
e
oeÆ
ients of the P

i

and the initial
onditions f

i;0

have bounded nor-

malized relative errors. Consequently, putting E

n

= max

16i6r

Æ

f

i;n

, we have

E

n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

E

j

+O(n): (6.5)

Relax, but don't be too lazy 53

It follows that E

n

= O(n

2

). This shows that number of erroneous bits in f

i;n

grows only

logarithmi
ally with n.

For fun
tional equations whi
h involve
omposition, we get similar bounds. For in-

stan
e, if we
ompute (f Æ (zg))

n

using Horner's rule:

(f Æ (zg))

n

= f

0

+ zg(f

1

+ zg(f

2

+ � � �+ zg(f

n

) � � �));

we obtain

Æ

(fÆ(zg))

n

6 max

i+j

1

+���+j

k

=n

Æ

f

i

Æ

g

j

1

+ � � �+ Æ

g

j

k

+O(n

2

):

Hen
e, (6.4) would now be
ome

Æ

f

i;n

6 max

P

n

j;k

=n�1

X

j;k

Æ

f

j;n

j;k

+O(n

2

);

and we would rather get E

n

= O(n

3

), whi
h still ensures a logarithmi
 growth of the

number of erroneous bits in the result. For the fast relaxed
omposition algorithms, a

similar growth of the error
an be proved, sin
e the symboli
 appli
ation of the algorithm

yields the n-th
oeÆ
ient of f Æ g as an expression in f

0

; : : : ; f

n

; g

1

; : : : ; g

n

and positive

rational numbers, using sums and produ
ts only.

Fast relaxed multipli
ation

Let f and g be
onvergent power series with positive
oeÆ
ients. Denoting by r

f

and

r

g

the
onvergen
e radii of f and g, we de�ne

"

f

(n) =

1

n

log

2

f

n

+ log

2

r

f

;

"

g

(n) =

1

n

log

2

g

n

+ log

2

r

g

:

Let us make the \
onvexity hypothesis" that the sequen
es "

f

(n) and "

g

(n) are
onvex or

on
ave for suÆ
iently large n (all four
ombinations being possible). This is in parti
ular

the
ase if the
oeÆ
ients f

n

and g

n

admit asymptoti
 equivalents in a Hardy �elds, su
h

as

f

n

� C(log n)

�

n

�

r

�n

f

:

We will study the numeri
al stability of the fast relaxed multipli
ation algorithm, assum-

ing that we use the normalization pro
edure from Se
tion 6.2.2.

Let us �rst assume that r

f

= r

g

and
onsider the multipli
ation f

i���i

0

� g

j���j

0

with

the notations from Se
tion 6.2.2. The
onvexity hypothesis implies that the exponents

of the normalized
oeÆ
ients are dominated by O(j"

f

(i

0

)j + j"

g

(j

0

)j). Consequently, we

lose O(j"

f

(i

0

)j + j"

g

(j

0

)j) extra bits of pre
ision in the multipli
ation f

i���i

0

� g

j���j

0

with

respe
t to the naive method. This leads to the error estimation

Æ

(fg)

n

6 max

i+j=n

Æ

f

i

+ Æ

g

j

+ 2

O(j"

f

(n)j+j"

g

(n)j)

+O(n)

for the
oeÆ
ients of the produ
t fg. This estimation remains valid in the
ase when r

f

<

r

g

(or r

f

> r

g

), be
ause the extra pre
ision loss in the multipli
ations is
ompensated by

the exponential de
rease of the
oeÆ
ients of g with respe
t to those of f (see also the

next paragraph).

Now re
onsider the system of di�erential equations (6.3). Assume that the
onvexity

hypothesis is veri�ed for all series g en
ountered in the relaxed expansion pro
ess and let

54 Joris van der Hoeven

"(n) be the sum of the
orresponding j"

g

(n)j. Then the equations (6.4) be
ome

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+ 2

"(n)

+O(n) (6.6)

and we obtain

E

n

= O(2

"(n)

+ n

2

): (6.7)

Indeed " is ultimately monotoni
 (by the
onvexity hypothesis), so that either 2

"(n)

=

O(n), or 2

"(n)

in
reases towards in�nity.

Intuitively speaking, (6.7) means that the pre
ision loss is proportional to the asymp-

toti
 behavior near the most violent dominant singularity en
ountered in the expansion

pro
ess. In parti
ular, if all these singularities are algebrai
 (su
h as in the example (4.2)),

then the pre
ision loss remains logarithmi
. This result generalizes to the
ase of more

general fun
tional equations, as in the
ase of naive multipli
ation. Finally, a similar

growth of the error may be expe
ted in the general
ase when the
oeÆ
ients are no

longer positive. Indeed, the main obstru
tion to su
h a behavior is massive
an
ellation

of
oeÆ
ients, whi
h o

urs only in very spe
i�
 situations.

Unequal radii of
onvergen
e

Assume that we want to multiply two series f and g with unequal radii r

f

< r

g

of

onvergen
e, whi
h satisfy the
onvexity hypothesis. Then f

n

=g

n

de
reases exponentially.

We will indi
ate how to use this observation in order to obtain a multipli
ation algorithm

for f with g of time
omplexity O(n).

During the expansion pro
ess of f (resp. g), we heuristi
ally
ompute its approximate

onvergen
e radius ~r

f

, based on the knowledge of the �rst n
oeÆ
ients. This may for

instan
e be done eÆ
iently by updating ~r

f

, ea
h time that n be
omes a power of two,

by applying a similar algorithm as in Se
tion 6.2.2 on the
oeÆ
ients f

n=2

; : : : ; f

n�1

.

Simultaneously, at ea
h stage n, we update a bound C

f

(resp. C

g

), su
h that f

i

6 C

f

~r

�i

f

for all i < n. By the
onvexity hypothesis, ~r

f

will tend to the
onvergen
e radius r

f

of f

for large n.

When
omputing the n-th
oeÆ
ient of fg (say by the naive algorithm for simpli
ity),

we now sum f

n�i

g

i

for i running from 0 to n, where we stop the summation pro
ess as

soon as

X

j>i

f

n�j

g

j

6 C

f

C

g

~r

n

f

(~r

f

=~r

g

)

i

1� (~r

f

=~r

g

)

is smaller than 2

�B

(f

n

g

0

+ � � �+ f

n�(i�1)

g

i�1

). Assuming the
onvexity hypothesis, the

summation pro
ess stops for i = O(1), when n tends to in�nity. Consequently, we ob-

tain a linear time algorithm. Modulo some
are, the tri
k may be adapted to relaxed

multipli
ation.

6.3. Power series in several variables

6.3.1. Representation of power series in several variables

In prin
iple, multivariate power series
an be implemented re
ursively as univariate

power series with multivariate power series
oeÆ
ients. Unfortunately, this way of doing

Relax, but don't be too lazy 55

has two disadvantages. First, the generalized fast Fourier transformation from Se
tion 6.1

an not be fully exploited. Se
ondly, the trun
ation orders of the
oeÆ
ients of, say, a

bivariate power series are not ne
essarily
onstant. For instan
e, given f =

P

j

f

j

z

j

2

and

f

j

=

P

i

f

j;i

z

i

1

for ea
h j, we may need 10 terms of f

5

and only 5 of f

10

. This may lead to

a phenomenon whi
h is analogous to the \pre
ision loss" phenomenon from Se
tion 6.2.1:

adding numbers with di�erent orders of growth is equally harmful as adding power series

with di�erent trun
ation orders.

By analogy with ordinary multivariate polynomials, one may also be tempted to
on-

sider sparse multivariate power series. Of
ourse, most natural operations on power se-

ries like inversion or exponentiation do not preserve sparseness. Nevertheless, during

the referee pro
ess of this paper, we be
ame aware of the existen
e of asymptoti
ally

fast algorithms for multiplying sparse multivariate polynomials (Canny et al., 1989). In

Se
tion 6.3.5, we will show that these ideas also have appli
ations in our setting.

Multivariate power series f(z

1

; : : : ; z

d

)
an be trun
ated in many ways. For appli
a-

tions in numeri
al analysis, we are usually interested in evaluating f . Hen
e, we need the

oeÆ
ients f

n

1

;::: ;n

d

with

�

1

n

1

+ � � �+ �

d

n

d

< N;

where N is proportional to the required pre
ision and �

1

; : : : ; �

d

> 0 depend on the

evaluation point and the domain of
onvergen
e of f . For appli
ations in
ombinatori
s

and the analysis of algorithms, we are often interested in
ertain spe
i�

oeÆ
ients of

f only. Nevertheless, the
omputation of su
h a
oeÆ
ient f

n

1

;::: ;n

d

usually amounts to

the
omputation of all \previous"
oeÆ
ients f

k

1

;::: ;k

d

with k

1

6 n

1

; : : : ; k

d

6 n

d

.

We therefore suggest to implement multivariate power series by an abstra
t
lass

Multivariate Series(C) whose representation
lass is given by

Class Multivariate Series Rep(C)

' : Multivariate TPS(C)

I : Multivariate Dense Set

virtual
ompute : Array(Integer)! C

Here

� Instan
es of Multivariate Dense Set are subsets of N

d

with \a dense
avor": in our

ase, I will always be the initial segment of already
omputed
oeÆ
ients. I.e. if

(n

1

; : : : ; n

d

) 2 I and 0 6 m

1

6 n

1

; : : : ; 0 6 m

d

6 n

d

, then (m

1

; : : : ;m

d

) 2 I .

� Instan
es of Multivariate TPS(C) are \multivariate trun
ated power series". The

analogue of ℄' is an instan
e � � I of Multivariate Dense Set,
alled the domain of

'. Then ' asso
iates a
oeÆ
ient in C to ea
h element of �.

� The (private) method
ompute
omputes the (n

1

; : : : ; n

d

)-th
oeÆ
ient of the

series, while assuming that all previous
oeÆ
ients have already been
omputed.

As in the univariate
ase, the
orresponding publi
 method makes sure that all

previous
oeÆ
ients are
omputed.

Remark. As we will see in Se
tion 6.3.4, it is
onvenient not to assume that instan
es

of Multivariate Dense Set are ne
essarily initial segments.

56 Joris van der Hoeven

6.3.2. Trun
ated multipli
ation

The zealous multivariate trun
ated multipli
ation problem
an be stated as follows:

given two multivariate trun
ated series f; g : Multivariate TPS(C) and a dense subset

H : Multivariate Dense Set of N

d

, how to
ompute the restri
tion h = f �

H

g of f � g to

H eÆ
iently? That is, how to
ompute the
oeÆ
ients (f � g)

n

, with n 2 H?

Let F and G denote the domains of f and g. The naive approa
h
onsists of
omputing

h using the formula

h =

X

(n;m)2F�

H

G

f

n

g

m

;

where

F �

H

G = f(n;m) 2 F �Gjn+m 2 Hg:

For most domains F;G and H , the time
omplexity of this
omputation is bounded by

O(jF �

H

Gj), where jF �

H

Gj denotes the
ardinality of F �

H

G. The worst
ase time

omplexity of a suÆ
iently
lever implementation of the naive algorithm is bounded by

O(min(jF j jGj; jF j jH j; jGj jH j) + jH j):

The \fully dense" approa
h
onsists of
hanging f and g into f and g by inserting zero

terms, so that the enlarged domains F and G of f and g are blo
ks of the form

(a

1

� � � b

1

)� � � � � (a

d

� � � b

d

):

Here i � � � j denotes fi; : : : ; j�1g. Next, we apply an asymptoti
ally fast dense algorithm

as des
ribed in Se
tion 6.1 for the multipli
ation f � g and we trun
ate the result.

Unfortunately, the fully dense approa
h is extremely ineÆ
ient for
ertain domains

F;G and H in the multivariate
ase, be
ause the ratio

� =

jF j jGj

jF �

H

Gj

(6.8)

may be
ome more important than the gain we obtain by using FFT-multipli
ation. Con-

sider for instan
e the important spe
ial
ase when

F = G = H = f(n

1

; : : : ; n

d

) 2 N

d

jn

1

+ � � �+ n

d

6 Ng;

for some N > 0. Let �

d;N

denote the ratio (6.8) for given d and N . For large N , it
an

be
he
ked that �

d;N

tends to a
onstant �

d

given by

�

2

= 24;

�

3

= 1080;

�

d

�

4

d

d!

2

2

p

�d

; for d!1:

Hen
e, even for d = 2, we lose a very important fa
tor with respe
t to the naive algorithm,

for small values of N .

6.3.3. A
ompromise between naive and fully dense multipli
ation

In this se
tion, we sket
h a trun
ated multivariate multipli
ation algorithm, whi
h is a

ompromise between the naive and the fully dense algorithms from the previous se
tion.

Relax, but don't be too lazy 57

Our algorithm will never be more than a �xed small
onstant fa
tor slower than the naive

algorithm, but it will fully exploit FFT-multipli
ation if F;G and H are blo
ks.

Our algorithm will be re
ursive on the dimension d. We de
ompose the trun
ated series

f and g as follows:

f = fz

q

d

d

= (f

0

+ � � �+ f

k�1

z

(k�1)p

d

d

)z

q

d

d

;

g = gz

r

d

d

= (g

0

+ � � �+ g

l�1

z

(l�1)p

d

d

)z

r

d

d

;

where p

d

> 1; q

d

and r

d

will be
hosen heuristi
ally and where f and g are series in

z

1

; : : : ; z

d�1

; z

d

= z

p

d

d

, whose
oeÆ
ients are polynomials of degrees < p

d

in z

d

.

Assuming that we have
omputed p

d

; q

d

and r

d

, our trun
ated multipli
ation algorithm

now
onsists of the following steps, whi
h will be detailed below.

1. Compute f and g with domains F and G.

2. Compute the \
losure" H of H .

3. Compute the trun
ated produ
t h = f �

H

g using

h

n

=

X

{+|=n

f

{

�

H

n

g

|

;

where H

n

= f(n

1

; : : : ; n

d�1

) 2 N

d�1

j(n

1

; : : : ; n

d�1

; n) 2 Hg.

4. Re
over the produ
t h = f �

H

g from h.

Step 1 is easy. For instan
e, the domain of f is determined by (n

1

; : : : ; n

d�1

; n

d

) 2 F , if

and only if there exists an n

d

with p

d

n

d

6 n

d

� q

d

< p

d

n

d

+ p

d

and (n

1

; : : : ; n

d

) 2 F .

As to H , we take (n

1

; : : : ; n

d�1

; n

d

) 2 H if and only if there exists an n

d

with p

d

n

d

6

n

d

�q

d

�r

d

< p

d

n

d

+2p

d

�1 and (n

1

; : : : ; n

d

) 2 H . Indeed, the degrees of the
oeÆ
ients

of h in z

d

are stri
tly bounded by 2p

d

� 1 and not merely by p

d

. In order to re
over

h

n

1

;::: ;n

d

, we therefore should add up (h

n

1

;::: ;n

d�1

;
n

d

)

i

and (h

n

1

;::: ;n

d�1

;
n

d

�1

)

i+p

d

, where

n

d

and 0 6 i < p

d

satisfy n

d

� q

d

� r

d

= p

d

n

d

+ i.

Let us now show how to
ompute p

d

and q

d

. We assume that given p

d

, we have

an algorithm whi
h rapidly estimates the running time of the multipli
ation algorithm.

The
omputation of su
h an estimation will take mu
h time if p

d

is small and little

time when p

d

is large. The idea is now to take
ompare the estimated running times

for de
reasing values of p

d

and to stop the sear
h of an optimal p

d

as soon as smaller

values of p

d

yield larger estimated running times. More pre
isely, we start with p

d

=

min(spanF; spanG; spanH), where

spanS = max

(n

1

;::: ;n

d

)2S

n

d

� min

(n

1

;::: ;n

d

)2S

n

d

+ 1 > 0

Next, we de
rease p

d

by fa
tors of two (p

d

:= dp

d

=2e). Finally, q

d

and r

d

are
hosen su
h

that spanF ; spanG and spanH are as small as possible.

6.3.4. Relaxed multipli
ation of multivariate power series

Let us now sket
h the multivariate analogue of the fast trun
ated relaxed multipli
ation

algorithm from Se
tion 4.4.2. Let f and g denote the series we want to multiply and

let h their produ
t. We will �rst assume that we have �xed upper bounds F;G;H :

Multivariate Dense Set for the
oeÆ
ients of f; g and h that we want to
ompute. These

upper bounds
oin
ide with the domains of f:'; g:' and h:'.

58 Joris van der Hoeven

We observe that, essentially, the fast univariate relaxed algorithm from Se
tion 4.3.1

is based on a partition

N

2

=

a

n2N

S

n

=

a

n2N

a

�2A

n

S

n;�

; (6.9)

where the S

n;�

are square blo
ks of the form (i � � � i+ l)� (j � � � j + l):

S

1

= (0 � � � 1)� (0 � � � 1);

S

2

= (0 � � � 1)� (1 � � � 2)q (1 � � � 2)� (0 � � � 1);

S

3

= (0 � � � 1)� (2 � � � 3)q (2 � � � 3)� (0 � � � 1)q

(1 � � � 3)� (1 � � � 3);

S

4

= (0 � � � 1)� (3 � � � 4)q (3 � � � 4)� (0 � � � 1);

S

5

= (0 � � � 1)� (4 � � � 5)q (4 � � � 5)� (0 � � � 1)q

(1 � � � 3)� (3 � � � 5)q (3 � � � 5)� (1 � � � 3);

.

.

.

Now at the n-th stage, the algorithm
onsists of
omputing the
ontribution

X

�2A

n

X

(i;j)2S

n;�

f

i

g

j

z

i+j

of all blo
ks S

n;�

to fg.

In the multivariate
ase, we do a similar thing: we partition (N

d

)

2

by

(N

d

)

2

=

a

(n

1

;::: ;n

d

)2N

d

S

(n

1

;::: ;n

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

(n

1

;::: ;n

d

)

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

n

1

�����A

n

d

'(S

n

1

;�

1

� � � � � S

n

d

;�

d

);

where ' is the natural isomorphism from (N

2

)

d

onto (N

d

)

2

. Then ea
h S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

is the produ
t of two d-dimensional blo
ks

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

= B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

� C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

:

When we ask for the (n

1

; : : : ; n

d

)-th
oeÆ
ient of h, the multivariate trun
ated relaxed

multipli
ation algorithm now
omputes all trun
ated produ
ts

(B

(n

1

;::: ;n

d

)\F);(�

1

;::: ;�

d

)

�

H

(C

(n

1

;::: ;n

d

)\G);(�

1

;::: ;�

d

)

by the zealous algorithm from the previous se
tion and adds these
ontributions to h:'.

Until now, we assumed that F;G and H remained �xed throughout the exe
ution, as

is often the
ase in pra
ti
e. Sometimes however, these domains have to be in
reased

Relax, but don't be too lazy 59

dynami
ally, say into

^

F ,

^

G and

^

H . Whenever this happens, it suÆ
es to add all produ
ts

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

FnF)) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\G);

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

GnG)) and

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F) �

^

H
nH

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

G)

to h:', where (n

1

; : : : ; n

d

) runs over all already
omputed
oeÆ
ients in h:I . Noti
e

that

^

FnF ,

^

GnG and

^

HnH are not ne
essarily initial segments; this explains why it is

onvenient to allow the instan
es of Multivariate Dense Set to be general subsets of N

d

.

6.3.5. Fast trun
ated multipli
ation of multivariate power series

Let us again
onsider the
ase when we want to �nd all
oeÆ
ients h

n

1

;::: ;n

d

of a power

series h = fg in d variables with

�

1

k

1

+ � � �+ �

d

k

d

< n;

where �

1

; : : : ; �

d

> 0 and n > 0. Without loss of generality, we may assume that

minf�

1

; : : : ; �

n

g = 1 and we
all

deg

�

P = maxf�

1

k

1

+ � � �+ �

d

k

d

jP

k

1

;::: ;k

d

6= 0g

the total�-degree of a polynomial P 2 C[z

1

; : : : ; z

d

℄. As we stressed before, this parti
ular

ase is frequently en
ountered when we want to evaluate multivariate power series. Our

aim is to design an algorithm whi
h remains fast when both d and n be
ome moderately

large, su
h as d � 5 and n � 10. Throughout this se
tion, we assume that Z� C.

In (Canny et al., 1989), a fast algorithm has been given for the multipli
ation of sparse

multivariate polynomials. The key-ingredients of this algorithm are evaluation in prime

powers and interpolation:

Theorem 6.1. Let P (z

1

; : : : ; z

d

) =

1

M

1

+ � � �+

t

M

t

be a polynomial, whi
h is a linear

ombination of t monomials. Let p

1

; : : : ; p

d

be distin
t prime numbers. Then

a. The P (p

i

1

; : : : ; p

i

d

) may be evaluated for i 2 f0; : : : ; t� 1g in time O(M(t) log t).

b. The polynomial P
an be re
overed from the P (p

i

1

; : : : ; p

i

d

) with i 2 f0; : : : ; t � 1g

in time O(M(t) log t).

Remark. In the theorem it is impli
itly assumed that the evaluationsM

i

(p

i

1

; : : : ; p

i

d

) for

i 2 f1; : : : ; tg
an be performed in time O(M(t) log t). This is usually the
ase, if the

degrees of the M

i

are not to high w.r.t. t.

From the theorem it follows that if P and Q are polynomials, whi
h are linear
ombi-

nations of monomials in �nite sets A resp. B, then the produ
t PQ
an be
omputed in

time O(M(t) log t), where t = jABj is the
ardinal of the set AB of all possible produ
ts

of elements in A with elements in B. In parti
ular, if t

�

n

denotes the maximal num-

ber of terms in a polynomial of total �-degree < n, then the produ
t of two arbitrary

polynomials P and Q
an be
omputed in time O(M(t

�

deg

�

PQ

) log t

�

deg

�

PQ

).

We will now simplify and generalize an algorithm from (Le
erf and S
host, 2001).

Assume that we want to multiply two trun
ated multivariate power series f and g of

60 Joris van der Hoeven

total �-degrees < n. Multiplying these series as polynomials and trun
ating afterwards

has a bad
omplexity, whi
h involves a fa
tor 2

d

. Therefore, we rather de
ompose the set

S

�

n

of all monomials of total degree < n in sli
es

S

�

n

= S

0

q � � � q S

n�1

;

where

S

i

= S

�

i+1

nS

�

i

for ea
h i. This leads to the de
omposition

f = f

0

+ � � �+ f

n�1

of f , where

f

i

=

X

z

k

1

1

:::z

k

d

d

2S

i

f

k

1

;::: ;k

d

z

k

1

1

: : : z

k

d

d

for ea
h i. We have similar de
ompositions for g and fg. Sin
e S

i

S

j

� S

i+j

q S

i+j+1

for

all i and j, we have

t

def

= jS

0

S

n

[S

1

S

n�1

[� � � [S

n

S

0

j 6 jS

n�1

[S

n

j:

Sin
e 1 2 f�

1

; : : : ; �

n

g, we also have jS

i

j 6 jS

j

j whenever i 6 j. Therefore, jS

0

S

i

[

S

1

S

i�1

[� � � [S

i

S

0

j 6 t for all i < n.

The multipli
ation algorithm now goes as follows:

1 Compute a

i;j

= f

i

(p

j

1

; : : : ; p

j

d

) and b

i;j

= g

i

(p

j

1

; : : : ; p

j

d

) for all i < n and j < t.

2 Denote a

j

(z) = a

0;j

+ : : :+ a

n�1;j

z

n�1

and b

j

(z) = b

0;j

+ : : :+ b

n�1;j

z

n�1

for ea
h

j < t. Compute the trun
ated power series produ
ts

j

(z) = a

j

(z)b

j

(z) at order n

and denote

j

(z) =

0;j

+ : : :+

n�1;j

z

n�1

for ea
h j < t.

3 For ea
h i < n,
ompute polynomials (h

�

)

i

and (h

�

)

i

, whi
h are linear
ombinations

of monomials in S

i

resp. S

i+1

, su
h that

i;j

= ((h

�

)

i

+ (h

�

)

i

)(p

j

1

; : : : ; p

j

d

) for all

j < t. Return (h

�

)

0

+ [(h

�

)

0

+ (h

�

)

1

℄ + � � �+ [(h

�

)

n�2

+ (h

�

)

n�1

℄.

The �rst step
an be a

omplished in time O(nM(t) log t) by theorem 6.1(a). The se
ond

step
an be done in time O(tM(n)), by using a standard fast multipli
ation algorithm.

The �nal interpolation step
an again be a

omplished in time O(nM(t) log t) by the-

orem 6.1(b). Indeed, in this step, (h

�

)

i

+ (h

�

)

i

is a
tually a linear
ombination of at

most t monomials in S

0

S

i

[S

1

S

i�1

[� � �[S

i

S

0

. Pla
ing ourselves in the non-pathologi
al

ase when nt = O(dt

�

n

) and n = O(t) (we re
all that t

�

n

= jS

�

n

j), this leads to an

O(dM(t

�

n

) log t

�

n

) time
omplexity bound for our trun
ated multipli
ation algorithm.

Remark. A
tually, (Le
erf and S
host, 2001) deals with the spe
ial
ase when �

1

=

� � � = �

d

= 1. Their work yields a time
omplexity bound of the form O(M(t

�

n

) log

2

t

�

n

).

Noti
e that S

i

S

j

= S

i+j

for all i and j in this
ase, when
e t = jS

n�1

j.

The trun
ated multipli
ation algorithm
an be adapted to the relaxed setting, if we

assume that the
omputation of terms of �-degree � of the fa
tors f and g only requires

the
omputation of terms of �-degrees< � of the produ
t fg. This is done by generalizing

the above algorithm to the
omputation of produ
ts of the form (f

i

+: : :+f

i+l�1

)(g

j

+: : :+

g

j+l�1

). Working this out
arefully leads to a trun
ated relaxed multipli
ation algorithm

of
omplexity O(dM(t

�

n

) log

2

t

�

n

).

Relax, but don't be too lazy 61

Remark. In pra
ti
e, theorem 6.1 be
omes only eÆ
ient for very large t. Furthermore,

the evaluation in high powers of the p

j

may lead to expression growth in the
oeÆ
ient

ring C. When
omputing over Z (for instan
e), it is therefore re
ommended to repla
e

the
omputations in Z[z

1

; : : : ; z

d

℄ by
omputations in a polynomial ring of the form

F

q

[x; z

1

; : : : ; z

d

℄. Here q is a not too large prime number (say q � 2

32

or q � 2

64

) and

we have rewritten the integer
oeÆ
ients of the original polynomials as polynomials in

x �

p

q=t with
oeÆ
ients in f1�dx=2e; : : : ; bx=2
g. The evaluation and interpolation is

now done at points of the form (p

i

0

; : : : ; p

i

d

), for suitable p

1

; : : : ; p

d

2 F

q

su
h that there

are no non-trivial identities p

k

0

0

� � � p

k

d

d

= 1 for small jk

0

j; : : : ; jk

d

j.

7. Con
lusion

In this paper, we have shown that all
lassi
al fast zealous algorithms for manipulating

formal power series admit relaxed analogues of the same asymptoti

omplexity up to a

fa
tor O(log n). Theoreti
ally speaking, this allows us to expand power series solutions

to (partial) di�erential equations with almost linear time
omplexities and solutions to

di�erential-
omposition equations with an almost O(n

3=2

)
omplexity.

We have also pointed out that it is hard to
on
eive implementations in a
tual
omputer

algebra systems, whi
h adequately re
e
t these asymptoti
 time
omplexities. This is

mainly due to the absen
e of fast arithmeti
 in su
h systems, su
h as DAC- and FFT-

multipli
ation. An interesting, but perverse
onsequen
e of the la
k of su
h arithmeti
,

is that
omparisons between
ertain algorithms on the basis of ben
hmarks may be

misleading (e.g. see our remarks about Table 5).

Another diÆ
ulty for a
tual implementations is that there seems not to be a best

overall relaxed multipli
ation algorithm (see Se
tion 4.4). Nevertheless, for appli
ations

where the expansion order is known in advan
e, i.e. when
omputations need not be

resumed, the fast trun
ated relaxed algorithm (see Se
tions 4.4.2 and 6.3.4) often turns

out to be the fastest. In general, we expe
t that the best performan
e is obtained by a

hybrid algorithm, whi
h sele
ts between di�erent expansion methods as a fun
tion of the

origin of the series (general, algebrai
, holonomi
, et
.), the
onstant �eld, the expansion

order and the possibility to resume
omputations. Of
ourse, su
h a hybrid algorithm is

also the longest one to implement.

Despite the above drawba
ks of the relaxed approa
h, our ben
hmarks show that for

large expansion orders, we systemati
ally gain with respe
t to the lazy approa
h. In

ertain
ases (see tables 8, 9 and 10) these gains be
ome very important and may ex
eed

a fa
tor of 100. In the future, these fa
tors are expe
ted to in
rease more and more,

sin
e pro
essor speed and memory
apa
ity tend to in
rease proportionally and powerful

implementations of the FFT-transform might eventually show up. We also noti
e that the

relaxed algorithms tend to be faster than Brent and Kung's algorithm for exponentiation

and the resolution of di�erential equations (see Table 4).

Having summarized the advantages and disadvantages of the relaxed approa
h, we will

on
lude this se
tion by a dis
ussion of its �tness for di�erent types of appli
ations, with

some suggestions for those who want to implement a power series library into a
omputer

algebra system, and some �nal general remarks.

7.1. Appli
ations

Symboli

omputation.

The pertinen
e of the relaxed approa
h for general appli
ations in symboli

omputation

depends strongly on the problem. On the one hand, multipli
ation of large symboli

62 Joris van der Hoeven

expressions will tend to be slow (whi
h favors the relaxed approa
h). On the other hand,

often only few terms are required (whi
h favors the lazy approa
h).

Combinatori
s and the analysis of algorithms.

In
ombinatori
s, the analysis of algorithms and for the random generation of
ombi-

natorial obje
ts, one usually needs to expand generating fun
tions up to a high order.

Therefore, this is an ideal appli
ation for relaxed power series (Flajolet et al., 1990). In

this
ontext, multivariate power series
orrespond to the study of parameters in enumer-

ation problems or the analysis of a
ertain algorithm (Soria, 1990).

Numeri
al analysis.

In numeri
al analysis, power series are mainly
omputed in order to be evaluated. The

required number of terms usually depends linearly on the required pre
ision of the eval-

uation. Usually, in absen
e of numeri
al instability only a few terms suÆ
e and
on-

stant multipli
ations will be very eÆ
ient. Therefore, only small speed-ups
an possibly

a
hieved using the relaxed approa
h, at the pri
e of massive inlining.

On the other hand, near singularities, analyti

ontinuation algorithms may be
ome

numeri
ally unstable and higher pre
isions and expansion orders might be required. The

numeri
al resolution of partial di�erential equations is another possible appli
ation of

the relaxed approa
h.

7.2. Suggestions for implementors

The
hoi
e of whi
h algorithms to implement in a power series pa
kage should mainly

depend on the appli
ations one has in mind and the time one is willing to spend. Roughly

speaking, we would like to distinguish three
hoi
es:

A simple qui
kly implemented pa
kage.

If you have little time and are not interested in appli
ations where high expansions orders

are needed (su
h as
ombinatori
s and the analysis of algorithms), you are probably best

o� with a qui
kly implemented lazy power series pa
kage.

Boosting your simple pa
kage.

If you have some more time and you want to boost the performan
e of a lazy power series

pa
kage for large expansion orders, then you may repla
e your multipli
ation pro
edure

with the algorithm from Se
tion 4.3.1. You may also implement one or more relaxed

omposition algorithm from Se
tion 5 and a holonomi
 fun
tion pa
kage. On the other

hand, it seems not ne
essary to implement the fast zealous algorithms from Se
tion 3,

sin
e the relaxed algorithms are almost as fast and o�er the possibility of solving virtually

all fun
tional equations.

Developing an optimal pa
kage.

If you really want optimal speed and/or generi
ity, then we suggest �rst to implement

a pa
kage for really fast dense arithmeti
 based on the FFT-transform (as des
ribed

in Se
tion 6.1). Next, we suggest you to
arefully implement hybrid relaxed trun
ated

multipli
ation and
omposition algorithms, whi
h are both eÆ
ient for small sizes (due

to massive inlining) and larger sizes (due to the asymptoti
ally fast zealous arithmeti
).

Relax, but don't be too lazy 63

7.3. Final remarks

Other infinite stru
tures.

In prin
iple, the relaxed approa
h may be applied to other valuation rings with fast

zealous arithmeti
, su
h as the p-adi
 numbers (Bernardin, 1998).

Generalized series and transseries.

The lazy approa
h also applies in the
ase of power series with generalized exponents

(Salvy, 1991). In general, the relaxed approa
h does not lead to faster algorithms, be
ause

of the la
k of fast arithmeti
 for polynomials with generalized exponents. Nevertheless,

if the exponents are grid-based (i.e. they belong to a set of the form a+ b

1

N + � � �+ b

n

N,

where a 2 R and b

1

; : : : ; b

n

2 R

+

�

), then we are essentially handling power series in several

variables, so we
an gain on the
omplexity. For appli
ations, see (Ri
hardson et al., 1996;

van der Hoeven, 1997a).

Computing spe
ifi
 terms.

For
ertain very parti
ular power series, it is possible to
ompute given
oeÆ
ients with-

out
omputing the previous ones, usually by using Lagrange's inversion formula (Brent

and Kung, 1978).

Modular arithmeti
.

In
omputer algebra, modular arithmeti
 is often used to speed up
omputations with

integers. For our appli
ation, modular algorithms may be interesting for parallelization

purposes and in order to redu
e the memory requirements if we are merely interested in

a parti
ular
oeÆ
ient of the series. Noti
e that modular arithmeti
 enters in the general

s
heme for fast arithmeti
 as des
ribed in Se
tion 6.1.

Parallelism.

Ex
ept for the zealous algorithms from Se
tion 3, lazy and relaxed algorithms have the

disadvantage of being essentially sequential. Nevertheless, the fast relaxed multipli
ation

algorithm is
loser to being parallel, sin
e the zealous multipli
ations might be done

in parallel modulo a proper syn
hronization. We also noti
e that it is often possible to

parallelize the ring operations for C.

Mixing zealous and relaxed multipli
ation.

Consider the multipli
ation h = f � g of two relaxed power series. Sometimes, the ar-

guments f and g do not depend on h. In this
ase, a zealous algorithm may be used for

the multipli
ation. It
an also happen that f depends on h, but not g. In this
ase, it is

possible to improve the
onstant fa
tor for the relaxed multipli
ation by
hoosing a more

appropriate partition of N

2

instead of (6.9).

64 Joris van der Hoeven

Other operations on formal power series.

Some other operation on formal power series may be
onsidered, su
h as

f(z) 7!

X

k>1

�(k)

k

log

1

1� f(z

k

)

;

whi
h
orresponds to taking
y
les of
ombinatorial stru
tures (Flajolet and Soria, 1991).

Other interesting operations are fun
tional iteration (Brent and Traub, 1980) and
om-

position of multivariate power series (Brent and Kung, 1977). It seems that the relaxed

approa
h applies to these and other operations, although this should be
he
ked in greater

detail.

A
knowledgment. The author expresses his thanks to D. Saunders for suggesting the

name \laid-ba
k power series" and he apologizes for his enthusiasm in sear
hing for an

equivalent name.

Referen
es

Bernardin, L. (1998). On bivariate Hensel lifting and its parallelization. In Gloor, O., editor, Pro
.

ISSAC '98, pages 96{100, Rosto
k, Germany.

Bernstein, D. (1998). Composing power series over a �nite ring in essentially linear time. J.S.C.,

26(3):339{341.

Brent, R., Kung, H. (1975). O((n log n)

3=2

) algorithms for
omposition and reversion of power series.

In Traub, J., editor, Analyti
 Computational Complexity. Pro
. of a symposium on analyti

om-

putational
omplexity held by Carnegie-Mellon University.

Brent, R., Kung, H. (1977). Fast algorithms for
omposition and reversion of multivariate power series.

In Pro
. Conf. Th. Comp. S
., pages 149{158, Waterloo, Ontario, Canada. University of Waterloo.

Brent, R., Kung, H. (1978). Fast algorithms for manipulating formal power series. Journal of the ACM,

25:581{595.

Brent, R., Traub, J. (1980). On the
omplexity of
omposition and generalized
omposition of power

series. SIAM J. Computing, 9:54{66.

Canny, J., Kaltofen, E., Lakshman, Y. (1989). Solving systems of non-linear polynomial equations faster.

In Pro
. ISSAC '89, pages 121{128, Portland, Oregon, A.C.M., New York. ACM Press.

Cantor, D., Kaltofen, E. (1991). On fast multipli
ation of polynomials over arbitrary algebras. A
ta

Informati
a, 28:693{701.

Chudnovsky, D., Chudnovsky, G. (1990). Computer algebra in the servi
e of mathemati
al physi
s and

number theory (
omputers in mathemati
s, stanford,
a, 1986). In Le
t. Notes in Pure and Applied

Math., volume 125, pages 109{232, New-York. Dekker.

Cook, S. (1966). On the minimum
omputation time of fun
tions. PhD thesis, Harvard University.

Cooley, J., Tukey, J. (1965). An algorithm for the ma
hine
al
ulation of
omplex Fourier series. Math.

Computat., 19:297{301.

Denise, A., Dutour, I., Zimmermann, P. (1998). Cs: a MuPAD pa
kage for
ounting and randomly

generating
ombinatorial stru
tures. In Pro
eedings of FPSAC'98, pages 195{204. Sofware Demon-

stration.

Denise, A., Zimmermann, P. (1999). Uniform random generation of de
omposable stru
tures using

oating-point arithmeti
. Theoreti
al Computer S
ien
e, 218(2):219{232.

Flajolet, P., Salvy, B., Zimmermann, P. (1990). Automati
 average-
ase analysis of algorithms. T.C.S.,

79(1):37{109.

Flajolet, P., Sedgewi
k, R. (1996). An introdu
tion to the analysis of algorithms. Addison Wesley,

Reading, Massa
husetts.

Flajolet, P., Soria, M. (1991). The
y
le
onstru
tion. SIAM Journal on Dis
rete Mathemati
s, 4:48{60.

Flajolet, P., Zimmerman, P., Van Cutsem, B. (1994). A
al
ulus for the random generation of labelled

ombinatorial stru
tures. Theoreti
al Computer S
ien
e, 132(1-2):1{35.

Heideman, M., Johnson, D., Burrus, C. (1984). Gauss and the history of the �t. IEEE A
ousti
s, Spee
h

and Signal Pro
essing Magazine, 1:14{21.

Karatsuba, A., Ofman, J. (1962). Umno�enie mnogoznaqnyh qisel na avtomatah. Doklady Akad.

Nauk SSSR, 7:293{294. English translation in (Karatsuba and Ofman, 1963).

Karatsuba, A., Ofman, J. (1963). Multipli
ation of multidigit numbers on automata. Soviet Physi
s

Doklady, 7:595{596.

Relax, but don't be too lazy 65

Knuth, D. (1997). The Art of Computer Programming, volume 2: Seminumeri
al Algorithms. Addison-

Wesley, 3-rd edition.

Kung, H., Traub, J. (1978). All algebrai
 fun
tions
an be
omputed fast. Journal of the ACM, 25(2):245{

260.

Le
erf, G., S
host, E. (2001). Fast multivariate power series multipli
ation in
hara
teristi
 zero. Te
h-

ni
al Report 2001-1, GAGE,

�

E
ole polyte
hnique, 91228 Palaiseau, Fran
e.

Lipshitz, L. (1989). D-�nite power series. Journal of Algebra, 122:353{373.

Mulders, T. (2000). On short multipli
ation and division. AAECC, 11(1):69{88.

Norman, A. (1975). Computing with formal power series. ACM Trans. of Math. Software, 1(4):346{356.

Norman, A., Fit
h, J. (1997). Cabal: Polynomial and power series algebra on a parallel
omputer. In

Hitz, M., Kaltofen, E., editors, Pro
. PASCO '97, pages 196{203, Maui, Hawaii.

Nussbaumer, H. (1981). Fast Fourier Transforms and Convolution Algorithms. Springer-Verlag.

Odlyzko, A. (1982). Periodi
 os
illations of
oeÆ
ients of power series that satisfy fun
tional equations.

Adv. in Math., 44:180{205.

P�olya, G. (1937). Kombinatoris
he Anzahlbestimmungen f�ur Gruppen, Graphen und
hemis
he

Verbindungen. A
ta Mathemati
a, 68:145{254.

Ri
hardson, D., Salvy, B., Sha
kell, J., van der Hoeven, J. (1996). Expansions of exp-log fun
tions. In

Lakhsman, Y., editor, Pro
. ISSAC '96, pages 309{313, Z�uri
h, Switzerland.

Salvy, B. (1991). Asymptotique automatique et fon
tions g�en�eratri
es. PhD thesis,

�

E
ole Polyte
hnique,

Fran
e.

Salvy, B., Zimmermann, P. (1994). Gfun: a Maple pa
kage for the manipulation of generating and

holonomi
 fun
tions in one variable. ACM Trans. on Math. Software, 20(2):163{177.

S
h�onhage, A., Strassen, V. (1971). S
hnelle Multiplikation grosser Zahlen. Computing 7, 7:281{292.

Sieveking, M. (1972). An algorithm for division of power series. Computing, 10:153{156.

Soria, M. (1990). M�ethodes d'analyse pour les
onstru
tions
ombinatoires et les algorithmes. PhD

thesis, Univ. Paris-Sud, Orsay, Fran
e.

Stanley, R. (1980). Di�erentially �nite power series. European J. Combin., 1:175{188. MR # 81m:05012.

Stanley, R. P. (1999). Enumerative
ombinatori
s, volume 2. Cambridge University Press.

Stroustrup, B. (1995). The C++ programming language. Addison-Wesley, 2-nd edition.

Toom, A. (1963a). The
omplexity of a s
heme of fun
tional elements realizing the multipli
ation of

integers. Soviet Mathemati
s, 4(2):714{716.

Toom, A. (1963b). O slo�nosti shemy iz funk
ionalnyh lementov, realiziru�we� umno�e-

nie
elyh qisel. Doklady Akad. Nauk SSSR, 150:496{498. English translation in (Toom, 1963a).

van der Hoeven, J. (1997a). Automati
 asymptoti
s. PhD thesis,

�

E
ole polyte
hnique, Fran
e.

van der Hoeven, J. (1997b). Lazy multipli
ation of formal power series. In K�u
hlin, W. W., editor, Pro
.

ISSAC '97, pages 17{20, Maui, Hawaii.

von Zurgathen, J., Gerhard, J. (1999). Modern Computer Algebra. Cambridge University Press.

Zeilberger, D. (1990). A holonomi
 systems approa
h to spe
ial fun
tions identities. Journal of Comp.

and Appl. Math., 32:321{368.

