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Assume that we wish to expand the produt h = fg of two formal power series

f and g. Classially, there are two types of algorithms to do this: zealous algorithms

�rst expand f and g up to order n, multiply the results and trunate at order n. Lazy

algorithms on the ontrary ompute the oeÆients of f; g and h gradually and they

perform no more omputations than stritly neessary at eah stage. In partiular, at

the moment we ompute the oeÆient h

i

of z

i

in h, only f

0

; : : : ; f

i

and g

0

; : : : ; g

i

are

known.

Lazy algorithms have the advantage that the oeÆients of f and g may atually

depend on \previous" oeÆients of h, as long as they are omputed before they are

needed in the multipliation. I.e. the oeÆients f

i

and g

i

may depend on h

0

; : : : ; h

i�1

.

For this reason, lazy algorithms are extremely useful when solving funtional equations

in rings of formal power series. However, lazy algorithms have the disadvantage that the

lassial asymptotially fast multipliation algorithms on polynomials | suh as the

divide and onquer algorithm and fast Fourier multipliation | an not be used.

In a previous paper, we therefore introdued relaxed algorithms, whih share the

property onerning the resolution of funtional equations with lazy algorithms, but

perform slightly more omputations than lazy algorithms during the omputation of

a given oeÆient of h. These extra omputations antiipate the omputations of the

next oeÆients of h and dramatially improve the asymptoti time omplexities of suh

algorithms.

In this paper, we survey several lassial and new zealous algorithms for manipulating

formal power series, inluding algorithms for multipliation, division, resolution of dif-

ferential equations, omposition and reversion. Next, we give various relaxed algorithms

for these operations. All algorithms are spei�ed in great detail and we prove theo-

retial time and spae omplexity bounds. Most algorithms have been experimentally

implemented in C++ and we provide benhmarks. We onlude by some suggestions for

future developments and a disussion of the �tness of the lazy and relaxed approahes

for spei� appliations.

The paper is intended both for those who are interested in the most reent algorithms

for the manipulation of formal power series and for those who want to atually implement

a power series library into a omputer algebra system.

1. Introdution

Let C be an e�etive ring, whih means that we have algorithms for addition, subtra-

tion and multipliation. In this paper, we desribe several fast algorithms for manipulat-
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2 Joris van der Hoeven

ing formal univariate power series in the ring C[[z℄℄. In priniple, it is not neessary to

assume that C is ommutative or an integral domain. Nevertheless, for ertain algorithms

we need to assume that C ontains the rational numbers, or more modestly, that C is

divisible. Here C is said to be divisible, if we have a division algorithm for elements x in

C by integers n, whih raises an exeption if x is not divisible by n.

Beause of the in�nite nature of formal power series, we will always be onerned with

the omputation of the �rst n oeÆients of a given power series. The time and spae

omplexities of our algorithms will be measured in terms of the number of ring operations

in C and the number of elements in C stored in memory. Only in the ase of �nite rings,

these omplexity measures oinide with bitwise omplexities.

1.1. The different approahes

Assume that we want to ompute the �rst n oeÆients of the produt h = fg of two

power series f and g. We will distinguish three approahes in order to do this; the �rst

and the seond are lassial, while the third one was (briey) introdued in (van der

Hoeven, 1997b). For simpliity, we disuss the approahes in the ase of multipliation,

but they apply to any operation on formal power series and in this paper, we will also

onsider omposition, reversion, et.

1.1.1. The zealous approah

This approah onsists of expanding f and g up to order n, to multiply the results and

trunate the produt

(f

0

+ � � �+ f

n�1

z

n�1

)(g

0

+ � � �+ g

n�1

z

n�1

)

at order n. This yields the �rst n oeÆients of h.

The advantage of the zealous approah is that we may ompute the oeÆients h

0

; : : : ;

h

n�1

together as a funtion of f

0

; : : : ; f

n�1

and g

0

; : : : ; g

n�1

. Therefore, many fast al-

gorithms on (trunated) polynomials an be used, suh as divide and onquer and fast

Fourier multipliation (shortly: DAC- and FFT-multipliation). In the ases of omposi-

tion, reversion and resolution of di�erential equations, Brent and Kung's algorithms may

be used. We will briey reall some of these lassial zealous algorithms in Setion 3 and

a few new ones will be added.

1.1.2. The lazy approah

Another approah is to ompute the oeÆients of h one by one and to do no more work

than stritly neessary at eah stage. In partiular, at stage i (i.e. for the omputation

of h

i

), we ompute only those oeÆients of f and g whih are really needed | that is

f

0

; : : : ; f

i

and g

0

; : : : ; g

i

.

Lazy algorithms have the advantage that the oeÆients f and g may atually depend

on \previous" oeÆients of h, as long as they are omputed before they are needed in the

multipliation algorithm. In other words, f

i

and g

i

may depend on h

0

; : : : ; h

i�1

. For this

reason, lazy algorithms are extremely useful for the resolution of funtional equations.

For instane, onsider the formula

e

'

=

Z

'

0

e

'
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for exponentiating a formal power series ' with '

0

= 0. When evaluating the produt

fg lazily, where f = '

0

and g = e

'

, this formula yields a method to ompute e

'

.

A seond advantage of the lazy approah is that the omputation proess an be

resumed in order to ompute more than n oeÆients of h. In the ase of the zealous

approah all oeÆients would have to be reomputed.

A third advantage of the lazy approah is that it naturally applies to the problems of

omputing the valuation and the �rst non zero oeÆient of a power series.

1.1.3. The relaxed approah

Lazy algorithms have the disadvantage that the lassial asymptotially fast algorithms

on polynomials, suh DAC- and FFT-multipliation, an no longer be used. This is

what motivated us in the introdution of a slightly di�erent, relaxed approah (van der

Hoeven, 1997b).

Relaxed algorithms share with lazy algorithms the fat that the oeÆients of h are

omputed gradually and that at eah stage we only ompute those oeÆients of f and g

whih are needed for the omputation of the next oeÆient of h. In partiular, relaxed

algorithms an be used in a similar manner as lazy algorithms in order to solve funtional

equations.

The di�erene between the lazy and the relaxed approahes is that at the omputation

of a given oeÆient of h lazy algorithms only perform \the stritly neessary operations",

while relaxed algorithms \antiipate the omputation of the next oeÆients". Let us

illustrate this by an example.

Assume that we want to ompute the �rst three oeÆients of the produt of two

power series f = f

0

+ f

1

z+ f

2

z

2

+ � � � and g = g

0

+ g

1

z+ g

2

z

2

+ � � � . When using a lazy

algorithm, we do the following:

0. We ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We ompute f

1

; g

1

and (fg)

1

= f

0

g

1

+ f

1

g

0

.

2. We ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Of ourse, the values of f

0

and g

0

are stored somewhere, so that they do not have to

be reevaluated at stage 1 and similarly for f

1

and g

1

at stage 2. When using a relaxed

algorithm, we would rather do the following:

0. We ompute f

0

; g

0

and (fg)

0

= f

0

g

0

.

1. We ompute f

1

; g

1

and (fg)

1

= (f

0

+ g

0

)(f

1

+ g

1

)� f

0

g

0

� f

1

g

1

.

2. We ompute f

2

; g

2

and (fg)

2

= f

0

g

2

+ f

1

g

1

+ f

2

g

0

.

Here we used a trik in order to evaluate (f

0

+f

1

z)(g

0

+g

1

z) using 3 multipliations only.

Indeed, the three multipliations f

0

g

0

; (f

0

+g

0

)(f

1

+g

1

); f

1

g

1

yield (f

0

+f

1

z)(g

0

+g

1

z) =

f

0

g

0

+ ((f

0

+ g

0

)(f

1

+ g

1

) � f

0

g

0

� f

1

g

1

)z + f

1

g

1

z

2

. Although we perform some extra

additions at stage 1, we antiipate the omputation of f

1

g

1

at stage 2. Consequently, we

only perform 5 multipliations in total, against 6 for the lazy approah.

1.2. Outline of the paper

In Setion 3, we mainly reall lassial zealous algorithms for manipulating formal

power series. The orresponding omplexity results are summarized in Table 1. In the
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Algorithm Time omplexity Spae omplexity

DAC-multipliation M(n) = O(n

log 3= log 2

) O(n)

FFT-multipliation M(n) = O(n log n) O(n)

Division O(M(n)) O(n)

Solving impliit equations and o.d.e.'s O(M(n)) O(n)

Algebrai and holonomi funtions O(n) O(n)

Right omposition with polynomials O(M(n) log n) O(n)

Right omposition with algebrai funtions O(M(n) log n) O(n)

Composition and reversion (divisible ring C) O(M(n)

p

n log n) O(n logn)

Composition and reversion (�nite ring C) O(M(n) log n) O(n)

Table 1. Time and spae omplexities of zealous algorithms.

table, M(n) denotes the time omplexity for fast multipliation (see Setion 3.1); basi

referenes for fast integer and polynomial multipliation algorithms are (Knuth, 1997;

Nussbaumer, 1981) and (Karatsuba and Ofman, 1962; Toom, 1963b; Cooley and Tukey,

1965; Cook, 1966; Sh�onhage and Strassen, 1971; Cantor and Kaltofen, 1991; Heideman

et al., 1984). Most of the remaining results are due to Brent and Kung (Brent and

Kung, 1975; Brent and Kung, 1978). The result about general omposition in �nite

harateristi is due to Bernstein (Bernstein, 1998).

Although most algorithms from Setion 3 are lassial, we have given several variants

whih we ould not �nd in the standard literature:

� In Setion 3.1.2 we give a simple fast multipliation algorithm for polynomials

using the FFT-transform. This algorithm is an analogue of Sh�onhage-Strassen's

algorithm and simpli�es Cantor and Kaltofen's algorithm for the frequent ase when

2 does not divide zero in C.

� In Setion 3.2.5, we speify and prove Brent and Kung's algorithm for the resolution

of o.d.e.'s for general orders. In the original papers, only �rst and seond order

equations were onsidered and the latter only by means of examples.

� In Setion 3.4.2, we observe that Brent and Kung's method for right omposition

with polynomials generalizes to right omposition with rational and algebrai fun-

tions; in the relaxed ase, this observation will be useful for solving ertain di�erene

equations.

In Setion 4, we propose several relaxed multipliation algorithms. We �rst observe

that the divide and onquer algorithm an easily be transformed into a relaxed algo-

rithm with the same time omplexity but a logarithmi spae overhead. We next give

an asymptotially better algorithm, whih also has the best possible spae omplexity.

However, this algorithm may be slower for small input sizes, whih makes it diÆult to

hoose a best overall strategy (see Setion 4.4). Some examples of problems to whih

relaxed multipliation an be applied are given in Setion 4.5.

In Setion 5, we give algorithms for relaxed omposition. Atually, Brent and Kung's

and Bernstein's algorithms an easily be adapted to this ase, while preserving the same

time omplexity (modulo replaing a zealous multipliation algorithm by a relaxed one).

An overview of our omplexity results for relaxed algorithms is given in Table 2, where
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Algorithm Time omplexity Spae omplexity

Relaxed DAC-multipliation M

�

(n) = O(n

log 3= log 2

) O(n logn)

Fast relaxed multipliation M

�

(n) = O(M(n) log n) O(n)

Division O(M

�

(n)) O(n)

Algebrai and holonomi funtions O(n) O(n)

Right omposition with rational funtions O(M

�

(n) log n) O(n)

Right omposition with algebrai funtions O(M

�

(n) log n) O(n)

Composition and reversion (divisible ring C) O(M

�

(n)

p

n log n) O(n

p

n log n)

Composition and reversion (�nite ring C) O(M

�

(n) log n) O(n logn)

Table 2. Time and spae omplexities of relaxed algorithms.

M

�

(n) stands for the time omplexity of relaxed multipliation. The spae omplexities

assume that we use a relaxed multipliation with linear time omplexity; when using

relaxed DAC-multipliation, these omplexities should be multiplied by logn (exept in

algebrai and holonomi ases).

In Setion 6 we suggest how to improve the performane of the algorithms for par-

tiular oeÆient rings. In Setion 6.1, we outline how to take more advantage of the

FFT-transform. In Setion 6.2, we study the numerial stability of our algorithms. In

Setion 6.3, we disuss the issue of multivariate power series. Several approahes will be

proposed in an informal style and the development of a more detailed theory remains a

hallenge.

Most of the algorithms in this paper have been implemented in an experimental C++-

pakage and we have inluded several tables with benhmarks. In the last Setion 7, we

draw some �nal onlusions and disuss the relevane of the di�erent algorithms presented

in this paper for spei� appliations suh as symboli omputation, ombinatoris, the

analysis of algorithms and numerial analysis. We also give some suggestions for those

who want to implement a power series library in a omputer algebra system and for those

who want to \upgrade" an existing lazy power series implementation.

2. Implementation onventions

We have presented most of the algorithms in this paper in detail in the hope that

this will be helpful for atual implementations. For our spei�ations, we have hosen an

objet oriented pseudo-language (see (Stroustrup, 1995) for some basi terminology for

suh languages), with expliit memory ontrol for the user (this will allow us to study in

detail the spae and time omplexities of the relaxed algorithms). Below, we will disuss

some general implementation issues and �x some notational onventions.

2.1. Zealous algorithms

Trunated power series will be represented by elements of the lass TPS(C). An instane

of this lass onsists of a pointer to an array of elements in C and the length n of the array;

it represents a trunated power series at order n, i.e. an element of C[[z℄℄=(z

n

)

�

=

C[z℄=(z

n

).

For notational onveniene, we will also denote by TPS(C; n) the \sublass" of instanes

in TPS(C) with trunation order n.
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We will use the following shorthands for the most elementary operations on trunated

power series f = f

0

+ � � �+ f

n�1

z

n�1

:

� ℄f : the order n of f .

� C; z: impliit onversion to instanes of TPS(C; n).

� +;�: addition resp. subtration.

� f

0

: derivative f

1

+ � � �+ (n� 1)f

n�1

z

n�2

.

�

R

f : integral f

0

z + � � �+

f

n�1

n

z

n

(for rings C whih ontain the rationals).

� f Æ z

p

: right omposition f

0

+ � � � + f

n�1

z

(n�1)p

+ 0z

(n�1)p+1

+ � � � + 0z

np�1

with

power of z.

� f mul z

k

: multipliation f

0

z

k

+ � � �+ f

n�1

z

n+k�1

with z

k

.

� f div z

k

: division f

k

+ � � �+ f

n�1

z

n�k�1

by z

k

.

� f

i���j

(j 6 n): the trunated series f

i

+ � � �+ f

j�1

z

j�i

.

� f

0���m

(m > n): the trunated series f

0

+ � � �+ f

n�1

z

n�1

+ 0z

n

+ � � �+ 0z

m�1

.

� f

i���j

+= g: sets f

i

:= f

i

+ g

0

; : : : ; f

j�1

:= f

j�1

+ g

j�i�1

.

We will not detail the implementation of these operations and assume that memory

management is taken are of. Notie that the operations all require linear time and

spae.

In Setion 3.1, we will reall algorithms for the fast multipliation of dense polynomi-

als. Modulo trunation, this also yields a multipliation algorithm in TPS(C; n), as well

as a binary powering algorithm. In Setion 3.2.2, we give a fast division algorithm in

TPS(C; n). In the sequel we use the following abbreviations for these operations:

� ? : TPS(C; p)�TPS(C; q)! TPS(C; p+q�1) stands for polynomial multipliation.

Notie that we exeptionally onsider the elements of the TPS(C; n) as polynomials

in this ase. Equivalently, one may think of the oeÆients in z

k

with k > n as

being zero.

� � : TPS(C; n) � TPS(C; n) ! TPS(C; n) stands for trunated multipliation.

Notie that f � g = (f ? g)

0���n

.

� = : TPS(C; n)� TPS(C; n)! TPS(C; n) stands for trunated division.

� �

p

: TPS(C; n)! TPS(C; n) stands for trunated binary powering.

Remark. In low level languages, operations on trunated power series an be imple-

mented more eÆiently by routines whih take diretly pointers to the destination and

argument segments on input as well as their lengths. This approah also avoids memory

alloations, exept for temporary ones on the heap. Nevertheless, it should not be hard

to rewrite the algorithms from this paper in this style.

2.2. Lazy and relaxed algorithms

From the point of view of the user a lazy or relaxed power series f should be some objet

with a method whih yields the oeÆients of f one by one. In objet oriented languages,

we may therefore implement a series as a pointer to an abstrat \series representation

lass" Series Rep, whih is given by
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Class Series Rep(C)

' : TPS(C)

n : Integer

virtual next : Void! C

Here ' ontains the already omputed oeÆients and n their number. The order of ' is

allowed to exeed n in order to antiipate future omputations . The virtual method next

is private and should ompute the next, n-th, oeÆient of the series. The publi method

to ompute any k-th oeÆient, whih is detailed below, ensures that the oeÆients

'

0

; : : : ; '

k�1

are already available before alling next and that '

k

is updated after

alling next.

All representation lasses in this paper, like Series Rep will ontain a referene ounter,

whih is inreased eah time an instane is opied and dereased eah time a opy is

deleted. The instane is physially removed, only when the referene ounter vanishes. We

will use p := new D Rep(a

1

; : : : ; a

l

) to reate a pointer p to a onrete lass D Rep and

to all the orresponding onstrutor with arguments a

1

; : : : ; a

l

. A member or member

funtion x of D Rep will be aessed through p:x. We denote by null the symboli \null"

pointer.

Given a pointer f : Series(C) to an instane of Series Rep(C), let us now detail the

algorithm to ompute the k-th oeÆient f

k

of f . We �rst look whether k < f:n. If

so, then we return f:'

k

. Otherwise, we inrease the order of ' to k + 1 (if neessary),

ompute the oeÆients f

f:n

; : : : ; f

k

by repeatedly alling f:next(), and return f:'

k

. We

also implement an algorithm to ompute f

i���j

= f

i

+ � � � + f

j�1

z

j�i�1

: TPS(C; j � i).

This algorithm �rst omputes f

j�1

and then returns f:'

i���j

.

Example. In order to implement a onstant series, we �rst de�ne a onrete lass

Class Constant Series Rep(C) . Series Rep(C)

 : C

The symbol . stands for lass inheritane. The onstrutor for Constant Series Rep(C)

takes a onstant 

0

: C on input and sets  := 

0

. The member funtion next returns  if

n = 0 and 0 otherwise. See Setion 4.1 for another easy and detailed example.

The following easily implemented operations on series will not be spei�ed in detail:

� Conversion from TPS(C) to Series(C), where we �ll up with zero oeÆients.

� Addition and subtration +;�.

� Di�erentiation and integration

0

;

R

.

� f mul z

k

; f div z

k

multipliation and division by z

k

.

3. Zealous algorithms

3.1. Multipliation

There are several well-known algorithms to multiply two polynomials f = f

0

+ � � � +

f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

of degrees < n with oeÆients in an e�etive

ring C. The naive algorithm, based on the formula (fg)

k

=

P

i

f

i

g

k�i

, has omplexity

O(n

2

). Below, we reall DAC-, FFT- and trunated multipliation.



8 Joris van der Hoeven

In the remainder of this paper, we assume that we have �xed one and for all a

multipliation method of time omplexity M(n), suh that M(n)=n is an inreasing

funtion of n and M(O(n)) = O(M(n)).

3.1.1. DAC-multipliation

Given polynomials f = f

0

+ � � � + f

n�1

z

n�1

and g = g

0

+ � � � + g

n�1

z

n�1

, we de�ne

their lower and higher parts by f

�

= f

0

+ � � �+f

dn=2e�1

z

dn=2e�1

resp. f

�

= f

dn=2e

z

dn=2e

+

� � �+ f

n�1

z

n�1

and similarly for g. Hene, f and g deompose as

f = f

�

+ f

�

z

dn=2e

;

g = g

�

+ g

�

z

dn=2e

;

The following identity is lassial (a similar, but slightly more ompliated identity was

�rst found by Karatsuba (Karatsuba and Ofman, 1962)):

fg = f

�

g

�

+ ((f

�

+ f

�

)(g

�

+ g

�

)� f

�

g

�

� f

�

g

�

)z

dn=2e

+ f

�

g

�

z

2dn=2e

:

(3.1)

Applying this formula reursively, exept for small n < Threshold

C

(with Threshold

C

>

2), we obtain the DAC-multipliation algorithm below. Sine the multipliation of two

polynomials of degrees < n involves only three multipliations of polynomials of degrees

< dn=2e, the asymptoti time omplexity of this algorithm is O(n

log 3= log 2

).

Algorithm DAC multiply(f; g)

Input: Polynomials f = f

0

+ � � �+ f

n�1

z

n�1

and g = g

0

+ � � �+ g

n�1

z

n�1

in C[z℄.

Output: Their produt fg.

D1. [Base℄

if n < Threshold

C

then return

P

2n�2

i=0

�

P

min(n�1;i)

j=max(0;i+1�n)

f

j

g

i�j

�

z

i

D2. [Divide and onquer℄

lo := DAC multiply(f

�

; g

�

)

mid := DAC multiply(f

�

+ f

�

; g

�

+ g

�

)

hi := DAC multiply(f

�

; g

�

)

return lo+mid� z

dn=2e

+ hi� z

2dn=2e

3.1.2. FFT-multipliation

The fastest known multipliation algorithm is based on the disrete Fourier transform

(DFT). We reall that the DFT transforms a sequene of oeÆients a

0

; : : : ; a

n�1

in

C and an n-th root of unity ! in C (whih is assumed to exist) into the sequene of

evaluations of the polynomial a

0

+ a

1

z + � � � + a

n�1

z

n�1

at the n-th roots of unity

1; !; : : : ; !

n�1

. This transform has the important property that applying the DFT twie

w.r.t. ! and !

�1

= !

n�1

, we obtain n times the original sequene a

0

; : : : ; a

n�1

. Moreover,

if n is a power of two, then the DFT an be performed in almost linear time O(n logn)

by the following reursive algorithm (in pratie, when multipliation in C is fast, the

reursion should rather be transformed into a double loop):
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Algorithm DFT(a; !)

Input: An n-tuple (a

0

; : : : ; a

n�1

) and an n-th root of unity in C, where n = 2

p

;

Output: The n-tuple (â

0

; : : : ; â

n�1

) with â

j

=

P

n�1

i=0

a

i

!

ij

.

if n = 1 then return (a

0

)

(

^

b

0

; : : : ;

^

b

n=2�1

) := DFT((a

0

; a

2

; : : : ; a

n�2

); !

2

)

(̂

0

; : : : ; ̂

n=2�1

) := DFT((a

1

; a

3

; : : : ; a

n�1

); !

2

)

return (

^

b

0

+ ̂

0

; : : : ;

^

b

n=2�1

+ ̂

n=2�1

!

n=2�1

;

^

b

0

� ̂

0

; : : : ;

^

b

n=2�1

� ̂

n=2�1

!

n=2�1

)

Now assume that we want to multiply two polynomials A = a

0

+ � � �+ a

n�1

z

n�1

and

B = b

0

+ � � �+ b

n�1

z

n�1

with degAB < n = 2

p

. We �rst apply DFT to (a

0

; : : : ; a

n�1

)

resp. (b

0

; : : : ; b

n�1

) and !. Denoting by â

0

; : : : ; â

n�1

resp.

^

b

0

; : : : ;

^

b

n�1

the results, we

next apply DFT to (â

0

^

b

0

; : : : ; â

n�1

^

b

n�1

) and !

n�1

. This yields n times the sequene of

oeÆients of AB. Assuming that C is 2-divisible (i.e. we have an algorithm to divide

the multiples of two in C by two), we an �nally retrieve AB from this sequene, sine n

is a power of two.

If C does not ontain an n-th root of unity, then it is still possible to use the fast Fourier

transform, using a trik due to Sh�onhage and Strassen (Sh�onhage and Strassen, 1971).

Atually, assuming that n > FFT Threshold

C

is a suÆiently large power of two, we will

show how to multiply eÆiently in the \ylotomi polynomial ring" C[x℄=(x

n

+ 1); this

method will then be used to multiply polynomials A;B 2 C[z℄ for whih degAB < n.

Notie that x is a 2n-th root of unity in C[x℄=(x

n

+ 1).

Let n = 2

p

= md with m = 2

d(p+1)=2e

. Then any polynomial

n�1

X

i=0

a

i

x

i

in C[x℄=(x

n

+ 1) may be rewritten as a polynomial

d�1

X

j=0

 

m�1

X

i=0

a

di+j

y

i

!

x

j

:

where y = x

d

is an 2m-th root of unity. In other words, it suÆes to show how to multiply

polynomials of degrees 6 d, whose oeÆients lie in the smaller ylotomi polynomial

ring C[y℄=(y

m

+1). But we may use the DFT for this, sine C[y℄=(y

m

+1) ontains 2m-th

roots of unity and d 6 m. Notie that the DFT only involves additions and opying in C,

sine the multipliations by powers of y in C[y℄=(y

m

+1) involve only opying, additions

and subtrations. Finally, we may apply the method reursively in order to multiply

elements of C[y℄=(y

m

+ 1). This gives us the following general multipliation algorithm:

Algorithm FFT multiply(A;B)

Input: Polynomials A = a

0

+ � � � + a

n�1

x

n�1

and B = b

0

+ � � � + b

n�1

x

n�1

in

C[x℄=(x

n

+ 1), where n = 2

p

.

Output: Their produt AB.

F1. [Base℄

if n > FFT Threshold

C

then go to F2

C := DAC multiply(a

0

+ � � �+ a

n�1

z

n�1

; b

0

+ � � �+ b

n�1

z

n�1

),
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Denote C = 

0

+ � � �+ 

2n�1

z

2n�1

return (

0

� 

n

) + � � �+ (

n�1

� 

2n�1

)x

n�1

F2. [Enode℄

m := 2

b(p+1)=2

; d := n=m; y := x

d

for j := 0 to d� 1 do

A

j

:=

P

m�1

i=0

a

di+j

y

i

B

j

:=

P

m�1

i=0

b

di+j

y

i

for j := d to 2d� 1 do A

j

:= B

j

:= 0

F3. [FFT℄

! := y

m=d

; ! := !

2d�1

(

^

A

0

; : : : ;

^

A

2d�1

) := DFT((A

0

; : : : ; A

2d�1

); !)

(

^

B

0

; : : : ;

^

B

2d�1

) := DFT((B

0

; : : : ; B

2d�1

); !)

for j := 0 to 2d� 1 do

^

C

j

:= FFT multiply(

^

A

j

;

^

B

j

)

(C

0

; : : : ; C

2d�1

) := DFT((

^

C

0

; : : : ;

^

C

2d�1

); !)

F4. [Deode℄

return

C

0

+C

d

y

2d

+

C

1

+C

d+1

y

2d

x+ � � �+

C

d�1

+C

2d�1

y

2d

x

n�1

It an be shown that this algorithm has time omplexity O(n logn log logn) and spae

omplexity O(n). The algorithm is a simpli�ed version of the algorithm from (Cantor

and Kaltofen, 1991), whih also works when C is not 2-divisible (in this ase, one may

for instane ompute both 2

p

AB and 3

q

AB, using a similar, ternary FFT-multipliation

algorithm, and then apply the Chinese remainder theorem). We also refer to this paper

for proofs of the omplexity bounds.

3.1.3. Trunated multipliation

When multiplying formal power series f and g up to order n, we are usually only

interested in the �rst n oeÆients of fg. In other words, although multiplying f

0

+ � � �+

f

n�1

z

n�1

and g

0

+ � � � + g

n�1

z

n�1

as polynomials and trunating the produt does the

job, it might be possible to �nd a faster algorithm, whih does not perform superuous

omputations.

When we use the naive multipliation algorithm, we may indeed gain a fator of two

by evaluating only the produts (fg)

k

=

P

k

i=0

f

i

g

k�i

for k < n. We an also have a

trunated DAC-multipliation: �rst ompute f

�

g

�

using the usual algorithm and next

reursively ompute f

�

g

�

and f

�

g

�

modulo z

bn=2

. Finally, apply the formula

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

bn=2

℄z

dn=2e

+ [f

�

g

�

mod z

bn=2

℄z

dn=2e

:

Although this algorithm has the same asymptoti omplexity (and the same onstant

fator), we do gain for moderate values of n, sine fewer additions and subtrations

are needed. However, when using FFT-multipliation, the onstant in the asymptoti

omplexity beomes worse for this method.

During the referee proess of this paper, we have been made aware of a new algorithm

by Mulders to aelerate trunated DAC-multipliation (Mulders, 2000). His algorithm
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has an asymptoti time omplexity �D(n), where

� = 1� e

�(log 2)

2

=(log 3=2)

� 0:694;

� =

�

log 3= log 2

1� 2(1� �)

log 3= log 2

� 0:808

and D(n) stands for the time omplexity of full DAC-multipliation. The idea is to hoose

m = d�ne (instead of m = dn=2e), and to trunate f

�

= f

0���m

, f

�

= f

m���n

and similarly

for g. Then we again have

fg mod z

n

= [f

�

g

�

mod z

n

℄ + [f

�

g

�

mod z

n�m

℄z

m

+ [f

�

g

�

mod z

n�m

℄z

m

:

Although we lose a bit on the dense multipliation of f

�

with g

�

, the other two trun-

ated multipliations (for whih we reursively use the same algorithm) beome faster.

In pratie, it is reommended to take m as lose as possible to �n, while being of the

form m = a2

p

with a < FFT Threshold

C

and a; p 2 N.

3.2. Appliations of Newton's method

Many zealous algorithms for operations on formal power series are based on Newton's

method, whih doubles the number of orret oeÆients at eah iteration. The method

an in partiular be used for division, reversion, exponentiation and the resolution of

ordinary di�erential equations.

3.2.1. Newton's method

A lassial problem in numerial analysis is to �nd single roots of an equation

f(x) = 0:

If we already have an approximate root x

0

, and if the funtion f is suÆiently regu-

lar, then better approximations an be found by Newton's method, whih onsists of

performing the iteration

x

n+1

= x

n

�

f(x

n

)

f

0

(x

n

)

:

Ultimately, the number of orret digits doubles at eah iterative step, whih makes

the method extremely eÆient. It was �rst observed by Brent and Kung that the same

method an be used when x is a power series and f a funtional on the spae of power

series. In this ase, the number of orret terms of the approximate solution ultimately

doubles at eah iterative step.

3.2.2. Division

In this setion, we will give an algorithm to invert a power series f , suh that f

0

is

invertible in C; this learly yields a division algorithm too. In order to invert f , we have

to solve the equation

1

g

� f = 0:
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If g is an approximate solution whose �rst n > 0 terms are orret, then the Newton

iteration

g := g �

1

g

� f

�

1

g

2

;

whih is rewritten more onveniently as

g := g �

fg � 1

z

n

gz

n

; (3.2)

yields 2n orret terms. Indeed, if g = f

�1

+O(z

n

), then we have fg = 1+O(z

n

), whene

f(g�(fg�1)g) = 1�(fg�1)

2

= 1+O(z

2n

) and g�(fg�1)g = f

�1

(f(g�(fg�1)g)) =

f

�1

+ O(z

2n

). Furthermore, (fg � 1)g = ((fg � 1)=z

n

)gz

n

, sine the �rst n terms of

fg� 1 vanish. Using the iteration (3.2), we get the following inversion algorithm of time

omplexity O(M(n)):

Algorithm invert(f)

Input: f : TPS(C; n), suh that f

0

is invertible in C.

Output: f

�1

: TPS(C; n)

if n = 1 then return (1=f

0

)

0���1

.

m := d

n

2

e

g := invert(f

0���m

)

0���n

return g � ((((f � g) div z

m

)� g

0���n�m

)mul z

m

)

3.2.3. Exponentiation and logarithm

Assume that C is a ring whih ontains the rational numbers and that f is a power

series, suh that f

0

is invertible and log f

0

well de�ned in C. Then the inversion algorithm

also yields a straightforward way to ompute log f , sine

log f = log f

0

+

Z

f

0

f

;

where the integral is taken with integration onstant zero. Solving the equation

log g = f

using Newton's method, we also have the following algorithm for exponentiation, whih

again has time omplexity O(M(n)):

Algorithm exp(f)

Input: f : TPS(C; n), suh that exp f

0

is de�ned and invertible in C.

Output: exp f : TPS(C; n)

if n = 1 then return (exp f

0

)

0���1

.

m := d

n

2

e

g := exp(f

0���m

)

0���n

return g � (log(g)� f)� g
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3.2.4. Reversion

If we have an algorithm ompose for the omposition of power series with time om-

plexity O(C(n)) (where C(n)=n is an inreasing funtion), then Newton's method an

still be applied in order to solve the equation

f Æ g � z = 0:

This yields the following O(C(n)) reversion algorithm for f :

Algorithm revert(f)

Input: f : TPS(C; n) with f

0

= 0 and f

1

is invertible in C.

Output: f

inv

if n = 1 then return 0

0���1

if n = 2 then return (z=f

1

)

0���2

m := d

n

2

e

g := revert(f

0���m

)

0���n

N := ompose(f; g)� z

D := ompose(f

0

; g

0���n�1

)

return g � (((N div z)=D)mul z)

3.2.5. Resolution of ordinary differential equations

In this setion, we assume that C ontains the rational numbers. Let �(y

0

; : : : ; y

r

; z)

be a multivariate polynomial in C[y

0

; : : : ; y

r

; z℄. We wish to solve the ordinary di�erential

equation

�(f(z); f

0

(z); : : : ; f

(r)

(z); z) = 0; (3.3)

where we assume that the separant of � is invertible in C for the initial onditions:

��

�y

r

(f(0); : : : ; f

(r)

(0); 0) 2 C

�

: (3.4)

This ondition ensures that (3.3) admits a unique formal solution. Indeed, modulo one

di�erentiation of (3.3), we may assume without loss of generality that � is linear in y

r

:

� = �

0

(y

0

; : : : ; y

r�1

; z) + �

1

(y

0

; : : : ; y

r�1

; z)y

r

:

Now (3.4) means that �

1

(0; : : : ; 0) is invertible in C. Hene (3.3) may be solved formally

by repeated integration:

f = �

Z

r times

� � �

Z

�

0

(f; : : : ; f

(r�1)

; z)

�

1

(f; : : : ; f

(r�1)

; z)

; (3.5)

where the integration onstants are taken appropriately, so that they math the initial

onditions.

Remark. Our assumption on the initial onditions is not satis�ed in ertain ases, suh

as the linear di�erential equations

z

2

J

�

00

+ zJ

�

0

+ (z

2

� �

2

)J

�

= 0;
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satis�ed by the Bessel funtions, or equations like

z

2

f

0

+ f = z

with divergent power series solutions. Sometimes, our assumption on the initial onditions

an be satis�ed after a hange of variables of the form

f = f

0

+ f

1

z + � � �+ f

k

z

k

+ z

k

~

f; (3.6)

but, in general, Brent and Kung's method does not apply.

On the other hand, the di�erential equation an always be rewritten as a di�erential

equation in Æ = z

�

�z

. Assume that f is not a multiple solution of this equation. Then,

after a hange of variables (3.6) as above and multipliation by a suitable power of z, the

equation an be put in normal form

L(f) + zR(f) = 0; (3.7)

where L 2 C[Æ℄ is non zero and R(f) 2 C[[z℄℄[f; Æf; : : : ; Æ

r

f ℄. The linear di�erential

operator L with onstant oeÆients operates in a homogeneous way: Lz

k

= �

k

z

k

, for

ertain �

k

2 C. If the �

k

are all invertible, then (3.7) yields a way to express the k-th

oeÆient of the solution in terms of previous oeÆients. Hene, we may apply the lazy

and relaxed resolution methods, whih will be desribed later in this paper.

The repeated integral (3.5) is useful for solving (3.3) by lazy or relaxed evaluation. In

this setion we show that (3.3) an also be solved using Newton's method. For this, we

assume that we have implemented an O(M(n)) algorithm subst, whih takes a polyno-

mial 	 2 C[y

0

; : : : ; y

r

; z℄ and a trunated power series f : TPS(C; n) on input and whih

returns the �rst n terms of 	(f; : : : ; f

(r)

; z) (where we take f

n

= � � � = f

n+r�1

= 0).

Now let n > 3r and assume that f is an approximate solution (at order n) to (3.3)

with

�(f; : : : ; f

(r)

; z) = O(z

n�r

):

Then the Newton iteration onsists of replaing

f := f � ';

where ' is the unique solution to the linear di�erential equation

8

>

>

<

>

>

:

L' = g;

L =

��

�y

0

(f(z); : : : ; f

(r)

(z); z) + � � �+

��

�y

r

(f(z); : : : ; f

(r)

(z); z)

�

r

�z

r

;

g = �(f; : : : ; f

(r)

; z);

(3.8)

with '

0

= � � � = '

r�1

= 0, whih is obtained by linearlizing �. Notie that the existene

and uniqueness of ' again follows from ondition (3.4). Notie also that ' = O(z

n�r

).

Therefore,

�(f � '; : : : ; (f � ')

(r)

; z)

=

X

k

0

;::: ;k

r

(�1)

k

0

+���+k

r

k

0

! � � � k

r

!

�

k

0

+���+k

r

�

�y

k

0

0

� � ��y

k

r

r

(f; : : : ; f

(r)

; z)'

k

0

� � � ('

(r)

)

k

r

= g � L'+O(z

2n�4r

)

= O(z

2n�4r

):
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Hene, we have a better approximation for the solution to (3.3), sine n > 3r ) 2n�4r >

n � r. Consequently, when repeating the Newton iteration, the sequene of suessive

approximations tends to the unique solution to (3.3). Modulo an algorithm linear to

solve (3.8), this yields the following algorithm:

Algorithm ode(�; f; n)

Input: A polynomial � 2 C[y

0

; : : : ; y

r

; z℄, an approximation f : TPS(C; r + 1) to a

solution to (3.3), so that (3.4) is satis�ed, and an order n > r.

Output: A better approximation f : TPS(C; n) of the unique solution to (3.3), with

�(f; : : : ; f

(r)

; z) = O(z

n�r

).

O1. [Separate ases℄

m := d

n+3r

2

e

if n > m (whene n > 3r) then

if r = 0 then go to step 3

if r 6= 0 then go to step 4

O2. [Compute �rst oeÆients℄

for i := r + 1 to n� 1 do

for j := 0 to r do D

j

:= subst(

��

�y

j

; f)

0���i�r

S := D

0

� f

0

0���i�r

+ � � �+D

r�1

� f

(r)

0���i�r

+ subst(

��

�z

; f)

0���i�r

t := �S=D

r

f := f

0���i+1

+

i!

(i�r�1)!

t

i�r�1

z

i

return f

0���n

O3. [Newton iteration when r = 0℄

f := ode(�; f;m)

0���n

return f � subst(�; f)=subst(

��

�y

0

; f)

O4. [Newton iteration when r 6= 0℄

f := ode(�; f;m)

0���n

L := subst(

��

�y

0

; f) + � � �+ subst(

��

�y

r

; f)

�

r

�z

r

return f � linear(L; subst(�; f); n)

In order to solve (3.8) up till n terms, we �rst ompute a non trivial solution to the

homogeneous di�erential equation

Lh = 0:

This is done by solving the assoiated Riatti equation. More preisely, we rewrite eah

h

(k)

as h times a polynomial R

k

(

^

h; : : : ;

^

h

k�1

) in the logarithmi derivative

^

h = h

0

=h of

h. This amounts to omputing the sequene

�

R

0

= 1;

R

k+1

= y

0

R

k

+

�R

k

�y

0

y

1

+ � � �+

�R

k

�y

k�1

y

k

;

(3.9)

with R

k

2 C[[y

0

; : : : ; y

k�1

℄℄ up till order r. We now ompute the �rst n terms of

^

h by a

reursive appliation of ode with equation

R = L

0

R

0

+ � � �+ L

r

R

r

2 C[[y

0

; : : : ; y

r�1

; z℄℄
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and initial onditions

^

h

0

= � � � =

^

h

r�1

= 0. This yields the �rst n terms of a solution h

to (3.8) with h

0

= 1 after exponentiation and integration h = exp

R

^

h.

Finally, we apply the method of variation of onstants and write ' =  h. Then (3.8)

transforms into L

0

( 

0

) = g, with

L

0

j

=

r

X

i=j+1

�

i

j + 1

�

L

i

h

(i�j�1)

:

The order of L

0

is r � 1 and L

0

r�1

(0) = L

r

(0)h

0

is invertible in C. Hene, we an solve

the equation L

0

� = g by a reursive appliation of linear. Integration  =

R

� yields  .

Algorithm linear(L; g; n)

Input: A linear di�erential operator L of order r with oeÆients in TPS(C; n) and

suh that L

r

(0) is invertible in C, a trunated power series g : TPS(C; n), and

an order n > r.

Output: The �rst n terms of the unique solution to L' = g, with '

0

= � � � = '

r

= 0.

L1. [Homogeneous equation℄

Compute R

0

; : : : ; R

r

using (3.9)

R := L

0

R

0

+ � � �+ L

r

R

r

^

h := ode(R; 0; n� 1)

h := exp(

R

^

h)

L2. [Variation of onstants℄

L

0

:=

r�1

X

j=0

2

4

r

X

i=j+1

�

i

j + 1

�

(L

i

)

0���n�1

� (h

(i�j�1)

)

0���n�1

3

5

�

j

�z

j

� := linear(L

0

; g; n� 1)

return h�

R

�

As to the time omplexities of ode and linear, we observe that ode alls linear with

the same r and linear alls ode and linear with r dereased by one. Hene, the time

omplexity is exponential in r. The following time omplexity in n is easily proved by

indution over r, using thatM(n)+M(d(n+3r)=2e)+M(d(d(n+3r)=2e+3r)=2e)+ � � � =

O(M(n)).

Theorem 3.1. Let � 2 C[y

0

; : : : ; y

r

; z℄ be a multivariate polynomial and onsider the

di�erential equation (3.3) with initial onditions f(0); : : : ; f

(r)

(0) that satisfy (3.4). Then

this equation admits a unique solution f 2 C[[z℄℄ and there exists an algorithm whih

omputes the �rst n oeÆients of f in time O(M(n)). 2

Remark. The algorithm ode generalizes to the ase when � is a multivariate power

series instead of a polynomial. In this ase, we need assume that the algorithm subst

also applies to 	 = � and all its partial derivatives.
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3.3. Algebrai and holonomi power series

An algebrai funtion is a funtion f(z), whih satis�es a polynomial relation of the

form

P

d

(z)f(z)

d

+ � � �+ P

0

(z) = 0;

where P

0

; : : : ; P

d

2 C[z℄ are polynomials with P

d

6= 0. Suh funtions are speial ases of

holonomi funtions, whih are funtions f(z), that satisfy a linear di�erential equation

L

r

(z)f

(r)

(z) + � � �+ L

0

(z)f(z) = 0; (3.10)

where L

0

; : : : ; L

r

2 C[z℄ are polynomials with L

r

6= 0. An algebrai resp. holonomi

power series is an algebrai resp. holonomi funtion whih is also a power series in

C[[z℄℄.

Holonomi power series are interesting, beause their oeÆients an be omputed

sequentially in linear time and spae. Indeed, the oeÆients f

0

; f

1

; : : : of suh power

series satisfy a linear polynomial reurrene relation

Q

q

(n)f

n+q

+ � � �+Q

0

(n)f

n

= 0; (3.11)

whereQ

0

; : : : ; Q

q

are polynomials in C[n℄. Here (3.11) is derived from (3.10) by extrating

the oeÆient of z

n

from (3.10), while using the rules (zf)

n

= f

n�1

and (f

0

)

n

= nf

n+1

.

Furthermore, the lass of holonomi funtions enjoys many losure properties: it is

(algorithmially) stable under addition, multipliation, right omposition with algebrai

funtions, di�erentiation and integration, Hadamard produt, et. We refer to (Stanley,

1980; Lipshitz, 1989; Zeilberger, 1990; Stanley, 1999) for more information on this subjet.

Holonomi funtions are also available in some omputer algebra systems (Salvy and

Zimmermann, 1994).

3.4. Composition

3.4.1. Right omposition with polynomials

Let f = f

0

+ � � �+ f

p�1

z

p�1

and g = g

1

z + � � � g

q�1

z

q�1

be polynomials, onsidered as

trunated power series in TPS(C). In order to eÆiently ompute f

0���n

Æg

0���n

: TPS(C; n)

for given n, we may use a divide and onquer method based on the formula

f Æ g = f

�

Æ g + (f

�

Æ g)g

bp=2

;

in whih f

�

= f

0���bp=2

and f

�

= f

bp=2���p

denote the lower and upper parts of f .

Although all omputations will be done with trunated power series in our implemen-

tation, we will really ompute with polynomials as long as their degrees remain inferior

to n. Assuming that g

i

: TPS(C;min((q�1)i+1; n)) has been preomputed and stored in

a hashtable H for all i of the form bp=2

k

 or dp=2

k

e with k > 0, we obtain the following

algorithm:

Algorithm ompose pol(f;H; n)

Input: f : TPS(C; p), a hashtable H and an integer n;

H [i℄ ontains g

i

0���min((q�1)i+1;n)

for all i 2 bp=2

N

�

 [ dp=2

N

�

e.

Output: f

0���l

Æ g

0���l

, where l = min((p� 1)(q � 1) + 1; n).
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P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and onquer℄

l := min((p� 1)(q � 1) + 1; n)

h

�

:= ompose pol(f

0���bp=2

; H; n)

h

�

:= ompose pol(f

bp=2���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2℄)

0���l

Theorem 3.2. Let f : TPS(C; p) and g : TPS(C; q) be suh that g

0

= 0 and let n > 0.

There exists an algorithm to ompute f

0���n

Æ g

0���n

in time O(

pq

n

M(n) logn) and spae

O(n log

pq

n

).

Proof. Sine the time and spae omplexities of the algorithm are inreasing funtions

in p; q and n, we may assume without loss of generality that p; q and n are powers of

two, We may also assume that pq > n.

The preomputation of the powers of g takes a time O(log nM(n)). Denoting by

T (n; p; q) the time omplexity apart from the preomputation, we have T (n; 1; q) = O(1)

and for p > 1:

T (n; p; q) 6 2T (n;

p

2

; q) +O(M(min(pq; n))): (3.12)

This leads to the time omplexity bound:

T (n; p; q) 6 O(M(n) + 2M(n) + � � �+

pq

n

M(n) +

2pq

n

M(

n

2

) +

4pq

n

M(

n

4

) + � � �+

p

2

M(2q)) +O(p)

6 O(

pq

n

M(n)) +O(

pq

n

M(n) logn):

We need a spae O(min(q; n) +min(2q; n) + � � �+min(pq; n)) 6 O(n log q) in order to

store the powers of g. For the remaining spae S(n; p; q) needed by the algorithm, we

have S(n; 1; q) = O(1) and for p > 1:

S(n; p; q) 6 S(n;

p

2

; q) +O(min(

pq

2

; n)): (3.13)

This yields the spae omplexity bound:

S(n; p; q) 6 O(n log

pq

n

+

n

2

+ � � �+ q) +O(1)

6 O(n log

pq

n

):

2

3.4.2. Right omposition with algebrai power series

The algorithm ompose pol generalizes to the ase when g is an algebrai power

series with g

0

= 0, i.e.

P

d

g

d

+ � � �+ P

0

= 0; (3.14)

with P

0

; � � � ; P

d

2 C[z℄ and P

d

6= 0. We will denote by v the valuation of P

d

and by q the

maximum of the degrees of the P

i

plus one.

For ompleteness, we will treat the fully general ase in this setion. The presentation

may be greatly simpli�ed in the ase when v = 0 or when g is a rational fration.
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The reader who does not wish to go into tehnial details may diretly proeed with

Setion 3.4.3, whih does not rely on the material presented here.

Algebrai funtions

Instead of omputing with (trunated) polynomials, we will now ompute with (trun-

ated) algebrai funtions in C[z; g℄, whih are onveniently represented by frations

F =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

; (3.15)

where F

0

; � � � ; F

d�1

2 C[z℄ and k

F

2 N. The degree degF of F is de�ned to be degF =

max

06i<d

degF

i

+ i(q � 1). We also de�ne the multipliity �

F

of the pole P

d

in F as

�

F

= maxfijF

i

6= 0g if k

f

= 0 and �

F

= k

f

+ d� 1 otherwise.

The addition of two frations like (3.15) is done as usual: we multiply one of the

numerators with a suitable power of P

d

in order to obtain a ommon denominator

(k

F+G

= max(k

F

; k

G

)) and we add up the numerators. Notie that we have

�

deg(F +G) 6 max(degF; degG);

�

F+G

6 max(�

F

; �

G

):

(3.16)

The asymptoti ost of the addition F +G is

T

F+G

= O(dM(degF + degG+ degP

k

f

d

+ degP

k

g

d

)):

In order to multiply frations like (3.15), we �rst preompute g

d

; : : : ; g

2d�2

as fra-

tions (3.15), using (3.14):

g

i

=

(g

i

)

d�1

g

d�1

+ � � �+ (g

i

)

0

P

i�(d�1)

d

: (3.17)

Notie that deg g

i

6 i(q � 1) for all i. Now in order to ompute the produt

F �G =

F

d�1

g

d�1

+ � � �+ F

0

P

k

F

d

�

G

d�1

g

d�1

+ � � �+G

0

P

k

G

d

;

we �rst rewrite the produt as

F �G =

1

P

k

F

+k

G

d

2d�2

X

i=0

0

�

X

j

F

j

G

i�j

1

A

g

i

:

Next, we substitute g

i

by the right hand side of (3.17) for d 6 i 6 2d� 2. Notie that

�

deg(F �G) 6 degF + degG;

�

F�G

6 �

F

+ �

G

:

(3.18)

The asymptoti ost of the multipliation F �G is

T

F�G

= O(dM(degF + degG) + qd

2

(degF + degG));

sine the polynomials g

i

j

are �xed.

Let f = f

0

+ � � �+ f

p�1

z

p�1

be a polynomial. Then the bounds (3.16) and (3.18) yield

the following bounds for its right omposition f Æ g = f

0

+ � � �+ f

p�1

g

p�1

with g:

�

deg(f Æ g) 6 (p� 1)(q � 1) + 1;

�

fÆg

6 p� 1:

(3.19)

In partiular, k

fÆg

6 max(p� d; 0).
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The algorithm

In the trunated ontext, the polynomials F

i

in (3.15) are replaed by trunated

power series in TPS(C; n + k

F

v). This will enable us to extrat the �rst n oeÆients

of F , when onsidered as a power series. We will denote by Algebrai TPS(C; g) and

Algebrai TPS(C; g; n) the algebrai analogues of the lasses TPS(C) resp. TPS(C; n).

Now assume that we want to ompute the omposition of a polynomial f = f

0

+ � � �+

f

p�1

z

p�1

with the series g up till order n. Then we do the following

� We preompute g

i

: Algebrai TPS(C; g;min(i(q � 1) + 1 �max(i + 1 � d; 0)v; n))

for all i of the form bp=2

k

 or dp=2

k

e with k > 0. Reall that �

g

i
6 i for all i.

� We preompute P

i

d

: Algebrai TPS(C; g;min(i(q � 1) + 1 �max(i + 1� d; 0)v; n))

for all i of the form bp=2

k

 or dp=2

k

e with k > 0.

� We apply the analogue ompose alg of ompose pol below.

� We onvert the result in Algebrai TPS(C; g; n) bak to a trunated series in

TPS(C; n). This an be done in time O(M(N)) using fast division and the linear

reurrene relation for the oeÆients of g (see Setion 3.3).

Algorithm ompose alg(f;H; P; n)

Input: f : TPS(C; p), hashtables H;P and an integer n;

H [i℄ ontains (g

i

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�

[dp=2

N

�

e.

P [i℄ ontains (P

i

d

)

0���min(i(q�1)+1�max(i+1�d;0)v;n)

for all i 2 bp=2

N

�

[dp=2

N

�

e.

Output: h = f

0���n

Æ g 2 Algebrai TPS(C; g; l),

with l = min((p� 1)(q � 1) + 1�max(p� d; 0)v; n).

P1. [Start℄

if p = 0 then return f

0���1

P2. [Divide and onquer℄

l := min((p� 1)(q � 1) + 1�max(p� d; 0)v; n)

h

�

:= ompose alg(f

0���bp=2

; H; n)

h

�

:= ompose alg(f

bp=2���p

; H; n)

return (h

�

)

0���l

+ (h

�

? H [bp=2℄)

0���l

Remark. The hashtable P is used in the �nal addition, in order to rewrite the left hand

and right hand frations, suh that they have a ommon denominator.

Theorem 3.3. Let f : TPS(C; p), g as above and n > 0. Then there exists an algorithm

to ompute the �rst n oeÆients of f Æg in time O(qd

2

p(q�v)

n

)M(n+pv) logn) and spae

O(d(pv + n log

p(q�v)

n

)).

Proof. The proof is analogous to the proof of theorem 3.2. In this ase, using that

k

h

�

; k

h

�

; k

H[p=2℄

= O(p);

deg h

�

; degh

�

; degH [p=2℄ = O(min(pq; pv));

the main inequalities (3.12) and (3.13) beome

T (n; p; q) 6 2T (n;

p

2

; q) +O(qd

2

M(min(pq; n+ pv)));

S(n; p; q) 6 S(n;

p

2

; q) +O(dmin(pq; n+ pv)):

2
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Remark. Notie that we may take v = 0 if g is a rational funtion, sine g has to be a

power series in this ase. Consequently, the time and spae omplexity bounds beome

O(d

2

q

2

M(n) logn) resp. O(dn log q) for p = n. The omposition algorithm may also be

simpli�ed in this partiular, but important ase.

3.4.3. General omposition for divisible rings C

If C is a divisible ring, then Brent and Kung's fast algorithm (Brent and Kung, 1978)

an be used in order to ompute the omposition f Æ g of formal power series f and g

up to order n. Their method relies on deomposing g = g

�

+ g

�

= g

0���q

+ g

q���n

with

q = b

p

n= logn and using the Taylor series expansion at order r = dn=qe

f Æ g = f Æ g

�

+ (f

0

Æ g

�

)g

�

+ � � �+

1

(r�1)!

(f

(r�1)

Æ g

�

)(g

�

)

r�1

+O(z

n

):

(3.20)

Assuming that (g

0

�

)

0

is invertible in C, f

(i)

Æg

�

an then easily be omputed as a funtion

of f

(i�1)

Æ g

�

, sine

f

(i)

Æ g

�

= (f

(i�1)

Æ g

�

)

0

=g

0

�

:

Conversely, if (g

0

�

)

0

is not neessarily invertible in C, we may write

1

(i�1)!

f

(i�1)

Æ g

�

= f

i�1

+ i

�

Z

(

1

i!

f

(i)

Æ g

�

)g

0

�

�

:

This leads to the following algorithm:

Algorithm ompose(f; g)

Input: f; g 2 TPS(C; n) with g

0

= 0.

Output: f Æ g.

C1. [Polynomial Composition℄

q := b

p

n= logn

r := dn=qe

g

�

:= (g

0���q

)

0���n

g

�

:= g � g

�

Compute H [i℄ := (g

i

�

)

0���min((q�1)i+1;n)

for all i = bn=2

k

 and i = dn=2

k

e with k > 0

D := ompose pol(f

(r�1)

; H; n+ 1� r)=(r � 1)!

C2. [Taylor expansion℄

S := D

0���max(0;n+q�rq)

for i := r � 1 downto 1 do

D := (f

i�1

)

0���n+1�i

+

R

((iD)� (g

0

�

)

0���n�i

)

T := (S � (g

�

div z

q

)

0���max(0;n�iq)

)mul z

q

S := D

0���max(0;n+q�iq)

+ T

0���max(0;n+q�iq)

return S

Theorem 3.4. Let f and g be power series trunated at order n. Assuming that g

0

= 0,

there exists an algorithm to ompute the power series expansion of f Æ g up till order n

in time O(

p

n lognM(n)) and spae O(n logn).
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Proof. Step 1 takes a time O(

p

n lognM(n)) and spae O(n logn), by theorem 3.2.

Sine the loop in the seond step requires only r = O(

p

n logn) iterations, the seond

step requires a time O(

p

n lognM(n)) and spae O(n). 2

Remark. The above algorithm also applies if C is an overring of Z, suh that the equation

nx = y an be solved e�etively in C for n 2 Z

�

and y 2 C (i.e. we an test whether the

equation admits a solution and, if so, ompute it). Indeed, in this ase, we an do the

omputations in the e�etive partial quotient ring of C in whih the non zero integers

are invertible.

3.4.4. General omposition for rings C of finite harateristi

Assume now that Z an no longer be embedded in C, i.e. the anonial ring homo-

morphism Z 2 C has a non trivial kernel rZ with r > 0. Bernstein reently gave a fast

omposition algorithm for suh C (Bernstein, 1998). The idea is to onsider subsequently

the ases when r is prime, a prime power and general.

r = p is prime

We have (a+ b)

p

= a

p

+ b

p

for all a; b 2 C and g(z)

p

= g

p

0

+ g

p

1

z

p

+ g

p

2

z

2p

+ � � � = g

[p℄

(z

p

)

for power series g(z) = g

0

+ g

1

z+ g

2

z

2

+ � � � . Hene we may use the following formula to

ompute the omposition of two power series f and g:

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � � ) Æ g

[p℄

(z

p

)g

i

: (3.21)

Assuming that we have an algorithmHorner(P; h) to ompute P (h) by Horner's method

for P 2 TPS(C; n)[X ℄ and h 2 TPS(C; n), this leads to the following reursive algorithm

of time omplexity O((p= log p)M(n) logn) and linear spae omplexity (Bernstein, 1998):

Algorithm prime ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime harateristi p.

Output: f Æ g.

m := dn=pe

for i := 0 to p� 1 do

L := f

i

+ f

i+p

z + � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ g

p

1

z + � � �+ g

p

m�1

z

m�1

h

i

:= (prime ompose(L;R) Æ z

p

)

0���n

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g)

Remark. The algorithm an be optimized by using the algorithm ompose from the

previous setion for small n. Indeed, it suÆes that 1; 2; : : : ; dn=b

p

n= logne are invert-

ible in C.
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r = p

k

is a prime power

In this ase, the omposition algorithm is based on the fat that we still have Æ =

g(z)

p

� g

[p℄

(z

p

) 2 pC. Hene, (3.21) beomes

f Æ g =

p�1

X

i=0

(f

i

+ f

i+p

z + f

i+2p

z

2

+ � � � ) Æ (g

[p℄

(z

p

) + Æ)g

i

: (3.22)

This leads to the more general problem of omposing f with g+", where " is an in�nitesi-

mal formal parameter with "

k

= p"

k�1

= � � � = p

k�1

" = 0. The analogue relation of (3.22)

then again yields a reursive formula and we obtain the following algorithm of time om-

plexity O((k

3

p= log p)M(n) logn) and spae omplexity O(kn) (Bernstein, 1998):

Algorithm prime power ompose(f; g)

Input: f; g : TPS(C; n) with g

0

= 0.

We assume that C has prime power harateristi p

k

.

Output: f Æ (g + ") : TPS(C["℄=("

k

; p"

k�1

; : : : ; p

k�1

); n).

m := dn=pe

' := (g + ")

p

� (g

p

0

+ � � �+ g

p

m

z

mp

)

0���n

for i := 0 to p� 1 do

L := f

i

+ � � �+ f

i+p(m�1)

z

m�1

R := g

p

0

+ � � �+ g

p

m�1

z

m�1

 := (prime power ompose(L;R) Æ z

p

)

0���n

Write  =  

0

+  

1

"+ � � �+  

k�1

"

k�1

h

i

:= Horner( 

0

+ � � �+  

k�1

X

k�1

; '; n)

return Horner(h

0

+ � � �+ h

p�1

X

p�1

; g; n)

r = q

1

� � � q

l

is a non trivial produt of distint prime powers

This ase is a standard appliation of the Chinese remainder theorem. More preisely,

using the Chinese remainder theorem, we �rst ompute integers i

1

; : : : ; i

l

with

i

1

q

1

� � � q

l

q

1

+ � � �+ i

l

q

1

� � � q

l

q

l

= 1 mod q

1

� � � q

l

:

We next ompute the ompositions of the projetions of f and g in C=(q

j

)[[z℄℄. More

preisely, for eah j, elements in C=(q

j

) are redundantly represented by elements in C

(we do not require a zero test) and we use the previous algorithm. We thus obtain a

trunated series h

j

2 C[[z℄℄ with h

j

� g Æ f 2 q

j

C+O(z

n

). Then we have i

1

h

1

+ � � �+ i

l

h

l

is equal to f Æ g up to n terms.

Theorem 3.5. Let C be a ring of positive harateristi r > 0 and let f; g : TPS(C; n) be

suh that g

0

= 0. Then n terms of f Æ g an be omputed in time O((r= log r)M(n) logn)

and spae O(n log r).

Proof. By what preedes and sine k

3

p= log p = O(p

k

=(k log p)), the theorem holds for

prime power harateristi. In general, we have

q

1

log q

1

+ � � �+

q

l

log q

l

= O

�

r

log r

�
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and log q

1

+ � � � + log q

r

= log r, so we an perform the omposition modulo eah q

i

in the required time and spae. Gluing these partial results together using the Chinese

remainder theorem takes linear time and spae. 2

4. Relaxed multipliation

4.1. Naive relaxed multipliation

The lazy, or naive relaxed multipliation algorithm for formal power series f and g in z

just omputes the oeÆient of z

n

in fg using the onvolution sum (fg)

n

=

P

n

i=0

f

i

g

n�i

.

In order to implement this method, we de�ne the lass

Class Produt1 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The onstrutor takes two series on input whih are stored in f and g. We ompute the

n-th oeÆient of fg as follows:

Method Produt1 Series Rep(C):next()

Ation: The next oeÆient (fg)

n

.

return

P

n

i=0

f

i

g

n�i

The atual funtion for multipliation is given by

Algorithm (f : Series(C))� (g : Series(C))

Input: Two series f and g.

Output: Their produt fg.

return new Produt1 Series Rep(C)(f; g)

Obviously, the naive multipliation algorithm has O(n

2

) resp. O(n) time and spae

omplexities. The omputation of the suessive oeÆients of fg by the naive algorithm

is illustrated in Figure 1: eah box orresponds to the ontribution of a produt f

i

g

j

to the sum (fg)

i+j

=

P

i+j

k=0

f

k

g

i+j�k

. The number of the box orresponds to the stage

when this ontribution is omputed. Indeed, the naive algorithm only omputes f

i

g

j

at

the moment that (fg)

i+j

is needed, that is, at stage i+ j.

4.2. Relaxation of DAC-multipliation

The relaxed multipliation algorithm we present in this setion is based on the obser-

vation that DAC-multipliation is essentially relaxed . Hereby we mean that, if we apply

the algorithm to ompute the produt of two power series f and g with symboli oef-

�ients, then the omputed formula for (fg)

i

only depends on the oeÆients f

0

; : : : ; f

i

and g

0

; : : : ; g

i

. In order to transform this observation into an atual relaxed multiplia-

tion algorithm, the main problem is to design suitable data strutures, whih orrespond

to partial exeutions of the divide and onquer algorithm. Roughly speaking, the whole

omputation will be stored in memory, but information whih is no longer needed at a

given stage is freed again.
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Figure 1. Relaxed multipliation by the naive algorithm

4.2.1. Relaxed multipliation of polynomials

Let f = f

0

+f

1

z+� � �+f

N�1

z

N�1

and g = g

0

+g

1

z+� � �+g

N�1

z

N�1

be two polynomials

of degrees < N , represented as trunated series at order O(z

N

). In this setion, we show

how to ompute the oeÆients of their produt fg in a relaxed way. For the appliation

we have in mind, we will suppose that N is a power of two. The representation lass

whih orresponds to the relaxed omputation of fg is given by

Class DAC Rep(C) . Series Rep(C)

N : Integer

f; g : Series(C)

lo;mid; hi : DAC(C)

The pointers lo;mid and hi orrespond to the relaxed omputations of f

�

g

�

, (f

�

+f

�

)(g

�

+

g

�

) and f

�

g

�

(with f

�

= f

0���N=2

; f

�

= f

N=2���n

; g

�

= g

0���N=2

and g

�

= g

N=2���N

). The

onstrutor for DAC Rep(C) is given by

Construtor DAC Rep(C)(f; g;N)

Input: Two series
f
;
g
and an order TPS(C;

N
).

N := N , f := f , g := g

lo := mid := hi := null

' := 0

0���2N�1

The omputation of the oeÆients now goes in three stages. At the �rst stage, when

0 6 n <

N

2

, we only ompute the produt f

�

g

�

; the pointer lo beomes non null at

this stage. At the seond stage, when

n

2

6 n < N , we also start the omputations of

(f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

; the pointers mid and hi also beome non null at this stage.

At the third, and last stage, when n > N , the omputation of fg is ompleted and the

pointers lo;mid and hi are freed. For small N 6 Threshold

C

, where Threshold

C

is a

power of two, we ompute fg using the lazy multipliation algorithm.

Method DAC Rep(C):next()

Output: The next oeÆient (f

0���N

? g

0���N

)

n

.
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D0. [Small N ℄

if N > Threshold

C

then go to D1

if n < N then return

P

n

i=0

f

i

g

n�i

else return

P

N�1

i=n�(N�1)

f

i

g

n�i

D1. [First stage (n <

N

2

)℄

if n >

N

2

then go to D2

if n = 0 then lo := new DAC Rep(f; g;

N

2

)

return lo

n

D2. [Seond stage (

N

2

6 n < N)℄

if n > N then go to D3

if n =

N

2

then

mid := new DAC Rep(f + (f div z

N

2

); g + (g div z

N

2

);

N

2

)

hi := new DAC Rep(f div z

N

2

; g div z

N

2

;

N

2

)

return lo

n

+mid

n�N=2

� lo

n�N=2

� hi

n�N=2

D3. [Third stage (N 6 n)℄

if n > 2N � 1 then return 0

if n > N then return '

n

'

N ���2N�1

:= hi

0���N�1

'

N ���

3N

2

�1

+= midN

2

���N�1

� loN

2

���N�1

� hiN

2

���N�1

lo := mid := hi := null

return '

n

4.2.2. Complexity analysis

Up to some extra operations related to the storage of partial auxiliary produts, the

main ontrol struture of the relaxed DAC-multipliation algorithm is the same as in the

lassial algorithm. Hene, their respetive time omplexities only di�er up to a onstant

fator.

As to the memory storage S(N) needed by the relaxed algorithm, we laim that

S(N) 6 2S(N=2) +O(N): (4.1)

Indeed, as long as less than N=2 oeÆients of f and g are known, f

�

and g

�

are not

needed at all. As soon as N=2 oeÆients are known, f

�

and g

�

are entirely determined,

whene the omputation of f

�

g

�

is ompleted, and the result takes O(N) memory stor-

age. Furthermore, f

�

+ f

�

and g

�

+ g

�

require another O(N) memory storage, while

the omputations of (f

�

+ f

�

)(g

�

+ g

�

) and f

�

g

�

require 2S(N=2) memory storage, by

indution. From (4.1), we dedue that

S(N) = O(N logN):

4.2.3. General relaxed DAC-multipliation

Let us �nally treat the ase, when we want to ompute fg up to any order, and

not merely up to order O(z

N

). In this ase, we use the algorithm from above between

suessive powers of two. Eah time we ross a power of two, we let the old f and g play
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Figure 2. Relaxed multipliation by the divide and onquer algorithm

the rôles of f

�

and g

�

for the new f and g. More preisely, we introdue the lass

Class Produt2 Series Rep(C) . Series Rep(C)

f; g : Series(C)

h : DAC(C)

The onstrutor takes two series on input, whih are stored in f and g; h is initialized

with new DAC Rep(C)(f; g;Threshold

C

). The member funtion next is now given by

Method Produt2 Series Rep(C):next(n)

Output: The next oeÆient (fg)

n

.

if n > Threshold

C

and n 2 2

N

then h := new DAC Rep(C)(f; g; h; 2n)

return h

n

.

Here we use a seond onstrutor for DAC Rep(C) in order to extend previous ompu-

tations:

Construtor DAC Rep(C)(f; g; g;N)

Input: Series
f
;
g
;
h

�

and an order TPS(C;
N
).

N := N , f := f , g := g

lo := h

�

;mid := hi := null

' := (h

�

)

0���2N�1

; n := N=2

Clearly, the time and spae omplexities of this algorithm are again O(n

log 3= log 2

) and

O(n logn). In Figure 2, we shematially represented the omputation proess of the

suessive oeÆients of fg by the relaxed multipliation algorithm.

4.3. Fast relaxed multipliation

Although relaxed DAC-multipliation is signi�antly faster than the naive algorithm,

it still is not as fast as the fastest zealous multipliation algorithms based on the fast
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Fourier transform. In this setion, we give a fast relaxed multipliation algorithm, in

whih the fast Fourier transform may be exploited.

For eah i; j; p 2 N, let us denote

�

i;j;p

= (f

i2

p

�1

z

i2

p

�1

+ � � �+ f

(i+1)2

p

�1

z

(i+1)2

p

�1

)�

(g

j2

p

�1

z

j2

p

�1

+ � � �+ g

(j+1)2

p

�1

z

(j+1)2

p

�1

)

The fast multipliation algorithm is based on the observation that, as soon as the �rst

2

p+1

� 1 oeÆients of f and g are known, then the ontribution of �

1;1;p

to fg an be

omputed prematurely by any fast zealous multipliation algorithm. More generally, as

soon as the �rst n = k2

p

�1 oeÆients of f and g are known, with odd k > 3 and p > 1,

then we an ompute the ontributions of �

1;k�1;p

and �

k�1;1;p

.

4.3.1. Fast relaxed multipliation algorithm

The representation lass Produt3 Series Rep(C) and its onstrutor are taken to be

the same as for Produt1 Series Rep(C):

Class Produt3 Series Rep(C) . Series Rep(C)

f; g : Series(C)

The oeÆients of fg are omputed as follows:

Method Produt3 Series Rep(C):next()

Output: The next oeÆient (fg)

n

.

F1. [Enlarge '℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

F2. [Aumulate℄

k := 2(n+ 2); p := �1

while (k mod 2) = 0

k := k=2; p := p+ 1

'

k2

p

�2���(k+2)2

p

�3

+= f

2

p

�1���2

p+1

�1

? g

(k�1)2

p

�1���k2

p

�1

if k = 2 then return '

n

'

k2

p

�2���(k+2)2

p

�3

+= f

(k�1)2

p

�1���k2

p

�1

? g

2

p

�1���2

p+1

�1

return '

n

The omputation proess is shematially represented in Figure 3. From this �gure, it

is easily seen that the ontribution of eah f

i

g

j

to (fg)

i+j

is omputed exatly one and

before the oeÆient (fg)

i+j

is output. This proves the orretness of our algorithm.

4.3.2. Complexity analysis

Theorem 4.1. There exists a relaxed multipliation algorithm for formal power series f

and g with oeÆients in C, whih omputes the �rst n terms of fg in time O(M(n) logn)

and spae O(n).
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Figure 3. Fast relaxed multipliation

Proof. Sine the time omplexity of the algorithm from the previous setion is an

inreasing funtion in n, it suÆes to onsider the ase when n = 2

p

� 1 for some p > 0.

Then looking at Figure 3, we observe that the algorithm performs 2(n+1)� 3 onstant

multipliations, (n + 1) � 3 multipliations of polynomials with 2 terms,

1

2

(n + 1) � 3

multipliations of polynomials with 4 terms and so on. Hene, the overall time omplexity

is bounded by

2

p�1

X

k=0

n

2

k

M(2

k

) +O(n) = O(M(n) logn):

The spae omplexity is learly bounded by O(n). 2

4.4. Remarks and optimizations

Although the relaxed multipliation algorithms from Setions 4.2 and 4.3 are both

asymptotially faster than lazy multipliation, they both have drawbaks for ertain ap-

pliations: the relaxed DAC-multipliation algorithm is more umbersome to implement

(whene a large overhead) and it has an additional logarithmi spae overhead. On the

other hand, fast relaxed multipliation has a good spae omplexity, is asymptotially fast

and easy to implement, but the algorithm outperforms the relaxed divide and onquer

algorithm only for large values of n, espeially when multipliations in C are expensive,

so that the extra overhead needed by the divide and onquer strategy an be negleted.
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n 1 2 3 4 5 6 7 8 9 10 100 1000 10000

Naive 1 3 6 10 15 21 28 36 45 55 5050 500500 50005000

DAC 1 3 5 9 11 15 19 27 29 33 1251 52137 1844937

Fast-I 1 3 8 10 18 20 37 39 47 49 2938 103693 4458055

Fast-II 1 3 8 10 18 20 35 37 45 47 1602 27408 411963

Variant-I 1 3 5 8 14 16 22 24 33 35 1904 66515 2535836

Variant-II 1 3 5 8 14 16 22 24 33 35 1176 20311 300794

Table 3. The number of needed onstant multipliations at order n for di�erent

relaxed multipliation algorithms.

Finally, if we know beforehand that we wish to ompute only n oeÆients of a power

series, then both methods have the drawbak that they antiipate the omputation of

the next n oeÆients.

Consequently, it is interesting to searh for algorithms whih overome these problems

and we will make some suggestions in this setion. In Table 3 we have ompared the

respetive omplexities of di�erent methods, by ounting the number of onstant mul-

tipliations they use as a funtion of n. For the fast relaxed algorithm and the variant

from Setion 4.4.1 below, we onsidered both the ases in whih we use

I. DAC-multipliation.

II. A linear algorithm with M(n) = 2n� 1

for zealous multipliation.

As a onlusion, it seems that there is no overall best relaxed multipliation method.

The implementer should hoose the algorithm as a funtion of the appliation he has in

mind and in partiular as a funtion of the ost of onstant multipliations, the expansion

order n, the spae omplexity he is willing to pay, the desired degree of laziness and the

time he wishes to spend on his implementation. We refer to Setion 7 for a further

disussion of this issue.

4.4.1. An alternative fast relaxed multipliation algorithm

It is possible to slightly improve the onstant fator in the theoretial omplexity of

the algorithm from Setion 4.3.1, by using the trik (3.1) in order to ompute the ontri-

butions of �

1;k�1;p

and �

k�1;1;p

simultaneously. Unfortunately, this makes the algorithm

more omplex, sine this supposes that we have �

1;1;p

and �

k�1;k�1;p

in memory. Nev-

ertheless, working the idea out arefully leads to the slightly more eÆient algorithm

below, whih uses approximately twie as muh memory. In this algorithm, the \diago-

nal produts" �

i;i;p

are retrieved from the trunated series  .

In Figure 4 we illustrated the orresponding omputation proess. In Table 3 we om-

pared its theoretial eÆieny with the algorithm from Setion 4.3.1. However, it should

be notied that, in pratie, for ertain onstant rings C, the operands for whih we apply

the trik (3.1) usually have very di�erent sizes, so that the mean ost of multipliations

in C may be higher for the alternative algorithm.
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Class Produt4 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C)

Method Produt4 Series Rep(C):next()

Output: The next oeÆient (fg)

n

.

V1. [Enlarge ' and  ℄

Let k 2 2

N

be minimal with k > 2n.

if ℄' < k then ' := '

0���k

if ℄ < k then  :=  

0���k

V2. [Aumulate℄

 := f

n

g

n

'

2n

+= 

 

2n

+= 

if n+ 2 = 5� 2

p

(p 2 N) then aumulate(2� 2

p

� 1; 3� 2

p

� 1; 2

p

; true)

k := 2(n+ 2); p := �1

while (k mod 2) = 0 and k 6= 4

k := k=2; p := p+ 1

if p > 0 then aumulate((2k � 1)2

p�1

� 1; (2k � 2)2

p�1

� 1; 2

p�1

; true)

aumulate(2

p

� 1; (k � 1)2

p

� 1; 2

p

; false)

return '

n

Method Produt4 Series Rep(C):aumulate(i; j; k; f lag)

Input: Indies i; j; k and a ag flag.

Ation: � = f

i���i+k

g

j���j+k

+ f

j���j+k

g

i���i+k

is added to '

i+j���i+j+2k�1

.

If flag holds, then � is also added to  

i+j���i+j+2k�1

.

� := (f

i���i+k

+ f

j���j+k

) ? (g

i���i+k

+ g

i���i+k

)�  

2i���2i+2k�1

�  

2j���2j+2k�1

'

i+j���i+j+2k�1

+= �

if flag then  

i+j���i+j+2k�1

+= �

4.4.2. Trunation

Assume that we want to ompute the �rst n terms of a power series and that we know

that we do not need any more terms. Then the relaxed algorithms from the previous

setions have the disadvantage that they do more omputations than needed, sine the

omputations of the next n oeÆients are already antiipated. There are two approahes

to this problem.

In the �rst approah, we implement a lass of \trunated produt series". Suh a series

has a �eld � whih ontains the trunation order and no omputations beyond this order

are allowed and antiipated. Furthermore, suh a series ontains an additional method to

inrease the trunation order and whih antiipates part of the forthoming omputations
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Figure 4. A variant of fast relaxed multipliation

if needed. When applied to fast relaxed multipliation, we have illustrated in Figure 5

the trunated omputation at order 12.

In the seond approah, we do not have an additional method to inrease �. Instead, we

adopt the onvention that, as soon as we wish to ompute the n-th term of the produt

series, then we inrease � to n if neessary. This approah has the advantage that the user

interfae does not hange. However, one should be aware that a sequential omputation

of the �rst n terms of the produt will have the same omplexity as in the ase of naive

lazy multipliation. Therefore, if the user knows beforehand that he needs n terms, then

he should �rst ompute the last term, before retrieving the others.

We �nally notie that Mulders' algorithm for trunated DAC-multipliation, as de-

sribed at the end of Setion 3.1.3 is essentially relaxed. Consequently, a similar onstant

speed-up an be ahieved in the relaxed setting.

4.4.3. Inlining

For appliations in numerial analysis, it is interesting to onsider the ase when C

is a \ring" of oating point numbers of low, bounded preision and when the expan-

sion order is small. Then one would like to use trunated relaxed DAC-multipliation,

sine this method has a good omplexity for small orders. However, the overhead of the

method beomes muh too high in this ase, due to reursive funtion alls and memory

alloations. Nevertheless, the overhead an signi�antly be redued by \unrolling" the
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Figure 5. Trunated fast relaxed multipliation at order 13

whole proess. This means that a bu�er is alloated at the start for all premature and

temporary results and that the omputations at eah stage are performed \inline".

Let us give an example of how to do program this for order 8. In pratie, the program

should rather be generated automatially as a funtion of the (maximal) order. The

produt lass is given by

Class Produt5 Series Rep(C) . Series Rep(C)

f; g : Series(C)

 : TPS(C; 5)

The onstrutor takes the two multipliands on input and stores them in f and g. We

also set ' := 0

0���8

,  := 0

0���5

.

Method Produt5 Series Rep(C):next()

Output: The next oeÆient (fg)

n

assuming that n < 8.

I*. [Separate ases℄

if n = 0 then go to I0

.

.

.

if n = 7 then go to I7

error \n too high"

I0. return f

0

g

0

I1. '

2

:= f

1

g

1

return (f

0

+ f

1

)(g

0

+ g

1

)� '

0

� '

2
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I2.  

0

:= '

2

'

4

:= f

2

g

2

 

1

:= f

0

+ f

2

 

2

:= g

0

+ g

2

return '

2

+  

1

 

2

� '

0

� '

4

I3. '

6

:= f

3

g

3

'

5

:= (f

2

+ f

3

)(g

2

+ g

3

)� '

4

� '

6

 

3

:= f

1

+ f

3

 

4

:= f

2

+ f

4

'

4

:=  

3

 

4

�  

0

� '

6

return ( 

1

+  

3

)( 

2

+  

4

)� '

1

� '

5

I4.  

0

:= f

0

g

4

 

1

:= f

4

g

0

return '

4

+  

0

+  

1

I5.  

2

:= f

1

g

5

 

3

:= f

5

g

1

return '

5

+ (f

0

+ f

1

)(g

4

+ g

5

) + (f

4

+ f

5

)(g

0

+ g

1

)�  

0

�  

1

�  

2

�  

3

I6. return '

6

+  

2

+  

3

+ f

0

g

6

+ f

2

g

4

+ f

4

g

2

+ f

6

g

0

I7. return f

0

g

7

+ f

1

g

6

+ f

2

g

5

+ f

3

g

4

+ f

4

g

3

+ f

5

g

2

+ f

6

g

1

+ f

7

g

0

Although the size of inline programs tends to grow rapidly as a funtion of the order,

they should remain aeptable due to the fat that we only onsider small orders. In the

ase when multipliation in C is really fast with respet to addition (for instane, when

using \mahine doubles"), it is possible to adapt the strategy, so that the trik (3.1) is

only applied for 2

p

� 2

p

multipliations with suÆiently large p. Numerial experiments

by A. Norman tend to show that inline relaxed multipliation beomes more eÆient for

orders > 32.

4.5. Appliations

4.5.1. Impliit series

The main appliation of the relaxed multipliation algorithm is the eÆient expansion

of power series solutions to ertain funtional equations, mainly ordinary and partial

di�erential equations. Therefore, it is onvenient to introdue the lass Impliit Series(C),

whose instanes are pointers to the representation lass

Class Impliit Series Rep(C) . Series Rep(C)

I : TPS(C)

eq : Series(C)

Here I ontains the initial onditions (℄I in number) and eq the impliit equation whih

yields the remaining oeÆients. The onstrutor sets I := 0

0���0

and eq := null. The

n-th oeÆient is omputed as follows:
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Method Impliit Series Rep(C):next()

Output: The next, n-th oeÆient of the series.

if eq = null then error \equation not set"

if n < ℄I then return I

n

else return eq

n

Remark. We notie that in low level languages, impliit series have to be treated with

are from a memory management point of view. When using a referene ounting teh-

nique for the opying of series, one needs to reset eq to null after using the impliit series;

otherwise, yli dependenies might fool the referene ounter. In high level omputer

algebra systems this problem usually does not our, beause the garbage olletor is

suÆiently powerful to reover non used memory automatially.

4.5.2. Ordinary differential equations

The use of the lass Impliit Series(C) is well illustrated by an example. Consider the

system of ordinary di�erential equations

�

f

0

= fg;

g

0

= f + g;

with initial onditions f(0) = g(0) = 1. Then the following piee of ode omputes the

n-th oeÆient of f :

f := new Impliit Series(C)

g := new Impliit Series(C)

f:I := 1

0���1

g:I := 1

0���1

f:eq :=

R

f � g

g:eq :=

R

f + g

 := f

n

f:eq := null

g:eq := null

In a similar fashion, relaxed multipliation an for instane be used to solve systems of

algebrai di�erential equations, by rewriting the equations in integral form like in (3.5).

Although we lose a fator logn in the asymptoti omplexity with respet to Brent and

Kung's zealous algorithm, the relaxed approah has two advantages:

� We may diretly treat systems of o.d.e.'s.

� The onstant fator in the asymptoti omplexity depends linearly on the size of

the equation, when rewritten in its integral form.

As to the seond advantage, we notie that Brent and Kung's algorithm is exponential in

the order r of the equation. Therefore, our algorithm is more eÆient in pratie exept

for partiularly low orders (typially r = 1 or r = 2, but even in this ase, Tables 4 and 5

below provide interesting benhmarks).
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4.5.3. Other funtional equations

The relaxed multipliation algorithm an also be used to solve more general funtional

equations, suh as

s(z) = 1 + z

s(z)

3

+ 2s(z

3

)

3

: (4.2)

The generating funtion s(z) whih satis�es this equation enumerates the number of

stereoisomeres of alohols of the form C

n

H

2n+1

OH (P�olya, 1937). Theorem 4.1 implies

that the asymptoti omplexity to ompute the �rst n oeÆients of s(z) is O(n log

2

n),

whih is muh better than the previously best known bound O(n

2

). Many other di�er-

ential di�erene equations arising in ombinatoris and the analysis of algorithms are

similar to 4.2 (Flajolet and Sedgewik, 1996); in partiular, we mention binary splitting

algorithms and di�erential q-di�erene equations. In Setion 5, we will onsider even

more general equations.

4.5.4. Partial differential equations

Fast relaxed multipliation an also be used to solve non linear partial di�erential equa-

tions, by onsidering d-dimensional power series as power series with (d�1)-dimensional

power series as oeÆients. Consider for instane the equation

�f

�y

=

�

�f

�x

�

2

+

�

�

2

f

�x

2

�

2

;

f(x; 0) = e

x

:

We an ompute the oeÆient of x

n

y

m

in f(x; y) using the following piee of ode:

f := new Impliit Series(Series(C))

f:I := exp(x)

f:eq :=

R

y

((�

x

f)

2

+ (�

x

�

x

f)

2

)

 := (f

m

)

n

f:eq := null

Here x : Series(C),

R

y

=

R

and �

x

is implemented trivially. Now we notie that the

omputation of x

n

y

m

involves expansion of f

m

up till n + 1 terms, f

m�1

up till n +

3 terms and so on until f

0

, whih is expanded up till n + 2m + 1 terms. Using fast

relaxed multipliation in y, the omplexity of this omputation is therefore bounded by

O(M((n +m)m) logm). Atually, this almost linear theoretial omplexity is a general

situation and the following theorem is proved similarly:

Theorem 4.2. Let the lasses A

d

be de�ned indutively by

� A

0

= C.

� A

d

is the lass of power series f 2 C[z

1

; : : : ; z

d

℄, whih satisfy an algebrai di�er-

ential equation of the form

P

0

�

 

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;
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with initial onditions in A

d�1

, and suh that the separant in z

d

S

d

=

�P

�

�

r

f

�z

r

d

0

�

 

�

k

1

+���+k

d

f

�z

k

1

1

� � � z

k

d

d

!

k

1

;��� ;k

d

1

A

;

(where r is highest suh that

�

r

f

�z

r

d

ours in P ) evaluates to an invertible series in

C[[z

1

; : : : ; z

d�1

℄℄ when setting z

d

= 0.

Given a series f in A

d

and integers n

1

; : : : ; n

d

> 0, the oeÆients of z

k

1

1

� � � z

k

d

d

in f

with k

1

< n

1

; : : : ; k

n

< n

d

an be evaluated in time O(M((n

1

+ � � � + n

d

) � � � (n

d�1

+

n

d

)n

d

) log(n

1

+ � � �+ n

d

)) and spae O(n

1

� � �n

d

). 2

4.6. Benhmarks

We have implemented the zealous multipliation algorithm and several relaxed multi-

pliation algorithms in C++, using integer, rational and oating point arithmeti from

GMP (the GNU multipreision library). Our benhmarks were obtained on a PC running

under Linux, with a 166MHz AMD proessor and 64Mb of memory. In our tables, all

timings are done in seonds. We aborted the omputations after one hour; the maxi-

mal number of oeÆients whih ould be omputed in this time are shown in the last

olumns of the tables.

We ompared the following multipliation algorithms:

� Zealous: The purely zealous algorithms from Setion 3.

� Naive: The naive lazy algorithm from Setion 4.1.

� DAC: The relaxed DAC-multipliation algorithm from Setion 4.2.

� Fast: Fast relaxed multipliation from Setion 4.3.

� Variant: The variant of fast relaxed multipliation from Setion 4.4.1.

� Trunated: Fast trunated relaxed multipliation, as skethed in Setion 4.4.2.

In Table 4, we onsidered the expansion of exp(z exp z), using high preision oat-

ing point numbers, so that multipliation in C has a high, but �xed ost. Not surpris-

ingly, all relaxed algorithms do asymptotially better than lazy multipliation (exept

for DAC-multipliation, whih starts swapping for high orders). The threshold for FFT-

multipliation being high, we observe an O(n

3=2

) asymptoti omplexity. In the future,

when GMP will support FFT-multipliation, even higher gains should be ahievable (see

Setion 6.1). We also notied another advantage of fast relaxed multipliation: when

suÆient memory is not available, little time is spent on swapping, sine most of the

omputations are done on large bloks of onseutive oeÆients in memory.

In Table 5, we have omputed the expansion of exp(z exp z), using rational oeÆients.

Although the naive algorithm turns out to be the fastest in this ase, the results are

\fooled" by the fat that rational number arithmeti is not implemented optimally in

GMP. Indeed, although DAC-multipliation is used for integers, the gd-algorithm has a

quadrati omplexity... Therefore, most time is spent on omputing gd's. Notie also that

both in tables 4 and 5, the zealous algorithm is slower than the fast relaxed algorithms,

despite its better asymptoti omplexity.

In Table 6, we onsidered the expansion of the solution to equation (4.2), using integer
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Multipliation 10 20 50 100 200 500 1000 2000 1h

Zealous 0:161 0:985 7:202 27:017 92:36 361:19 1135:4 3403 2135

Naive 0:048 0:282 2:533 11:474 48:86 317:00 1283:8 1670

DAC 0:079 0:309 1:428 4:384 13:19 61:35 1887:4 1025

Fast 0:061 0:331 2:162 7:583 25:10 96:20 307:2 959 4095

Variant 0:077 0:347 1:874 5:938 18:34 67:27 193:8 494 �

Trunated 0:047 0:274 1:838 6:782 21:70 98:21 307:5 947 4408

Table 4. Time in seonds to expand exp(z exp z) at various orders, using di�erent

algorithms and 10000 bits oating point oeÆients.

Multipliation 10 20 50 100 200 500 1h

Zealous 0:052 0:187 1:294 6:916 50:09 1085:87 686

Naive 0:025 0:072 0:417 2:194 16:62 446:34 845

DAC 0:029 0:101 0:641 3:614 30:45 918:78 758

Fast 0:038 0:125 0:800 4:190 30:96 430:92 767

Variant 0:047 0:155 0:995 5:658 48:78 888:92 703

Trunated 0:026 0:082 0:485 2:308 15:52 342:05 944

Table 5. Time in seonds to expand exp(z exp z) at various orders, using di�erent

algorithms and rational oeÆients.

oeÆients modulo the prime number 1234577. In this ase, multipliation in C has a �xed

low ost. The threshold for FFT-multipliation is between 2048 and 4096 oeÆients,

whih explains a better asymptoti performane of the fast relaxed algorithms than

O(n

3=2

). Although our implementation of FFT-multipliation may still be improved, it

beomes lear that important gains are already ahieved.

In Table 7, we again onsidered the expansion of the solution to equation (4.2), but

using integer oeÆients. In this ase, the sizes of the oeÆients in C grow linearly

with the expansion order, whih explains the rapid growth of the omputation times. For

suggestions about additional speedups, we refer to Setions 6.1 and 6.3.

5. Relaxed omposition

A dependeny analysis of the omposition algorithms from Setion 3.4 shows that

they are, or are almost essentially relaxed, just like DAC-multipliation. Therefore, they

admit relaxed analogues with the same asymptoti time omplexities (when using a

relaxed multipliation algorithm). We will speify these analogues in more detail in this

setion.

Multipliation 500 1000 2000 5000 10000 20000 50000 100000 200000 1h

Naive 0:948 2:897 9:541 52:09 198:46 786:5 43312

DAC 0:992 2:603 6:860 24:70 70:24 204:4 873 2624 121561

Fast 0:863 2:101 5:407 20:93 56:25 147:4 547 1355 3370 217087

Variant 0:918 2:055 4:997 16:28 42:10 108:7 411 1014 2480 275967

Trunated 0:766 2:022 5:151 19:03 52:60 145:3 539 1392 3529 203767

Table 6. Time in seonds to ompute the number of stereoisomeres of C

n

H

2n+1

OH

modulo 1234577 for various n, using di�erent algorithms.



Relax, but don't be too lazy 39

Multipliation 10 20 50 100 200 500 1000 2000 5000 1h

Naive 0:012 0:026 0:087 0:249 0:850 5:485 32:56 297:57 4018

DAC 0:013 0:032 0:113 0:308 0:922 5:635 30:72 235:50 3583

Fast 0:015 0:037 0:131 0:375 1:185 4:853 21:33 134:54 2611 5759

Variant 0:017 0:043 0:151 0:407 1:221 5:558 29:59 215:59 3519 5119

Trunated 0:012 0:028 0:098 0:276 0:871 4:496 19:95 129:23 2295 5862

Table 7. Time in seonds to ompute the number of stereoisomeres of C

n

H

2n+1

OH for

various n, using di�erent algorithms (and integer oeÆients).

5.1. Fast relaxed omposition with polynomials

In this setion, we speify the relaxed version of the algorithm from Setion 3.4.1.

Atually, we will ompute partial ompositions f

i���i+p

Æ g using the algorithm from Se-

tion 3.4.1 and \glue" these partial omputations together into a global algorithm as we

did in Setion 4.2.3 for DAC-multipliation.

5.1.1. Partial series

For onveniene, we �rst introdue the lass

Class Partial Series Rep(C) . Series Rep(C)

eq : Series(C)

N : Integer

This lass implements series, whose �rst N oeÆients are given by eq and whose other

oeÆients vanish. Moreover, as soon as the �rst N oeÆients have been omputed, eq

is released.

More preisely, the onstrutor of Partial Series Rep(C) takes a series and an integer

on input, whih are assigned to eq and N . We also implement a funtion

partial : Series(C)� Integer! Series(C);

whih takes eq and N on input and returns new Partial Series Rep(C)(eq;N). The o-

eÆients of a partial series are omputed using the method below. The �rst line of the

program is needed for memory alloation purposes.

Method Partial Series Rep(C):next()

Output: The next oeÆient of the partial series.

if n is a power of two then ' := '

0���max(2n;℄')

if n = N then eq := null

if n > N then return 0

return eq

n

Remark. Reall that ' := '

0���max(2n;℄')

is �lled up with zeros if 2n > ℄'. In other

words, this statement is used to reserve additional memory for oeÆients of '.

5.1.2. Partial right omposition with polynomials

In what follows, p will always be a power of two and g is as in Setion 3.4.1. The

algorithm partial ompose pol below omputes the partial omposition of f

i���i+p

with
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g. We assume that the powers g; g

2

; g

4

; : : : ; g

p=2

have been omputed elsewhere and

stored in a hashtable H .

Algorithm partial ompose pol(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

suh that H [i℄ ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial ompose pol(f; i; p=2; q;H)

h

�

:= partial ompose pol(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

It is also onvenient to have the following variant of partial ompose pol in order

to extend previous omputations:

Algorithm partial ompose pol(h

�

; p; q;H)

Input: A previous partial omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right omposition of f

0���p

with g.

h

�

:= partial ompose pol(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1)

5.1.3. Right omposition with polynomials

The representation lass Compose Polynomial Rep(C) orresponds to the total ompo-

sition of f with a polynomial g:

Class Compose Polynomial Rep(C)

f; h : Series(C)

H : Hash Table(Integer; Series(C))

q : Integer

The onstrutor takes f; g : Series(C) and an integer q as arguments and initializes

f := f;H [1℄ := g; q := q and h := partial ompose pol(f; 0; 1; q;H); the other entries

of H are unde�ned at initialization.

In order to ompute the oeÆients of f Æ g, we use the partial omposition algorithm,

but we double the order p eah time when n beomes a power of two.

Method Compose Polynomial Rep(C):next()

Output: The next oeÆient (f Æ g)

n

.
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if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h := partial ompose pol(h; 2n; q;H)

return h

n

5.1.4. Complexity analysis

Theorem 5.1. There exists a relaxed right omposition algorithm for formal power se-

ries f by polynomials g, whih omputes n terms of f Æ g in time O(qM

�

(n) logn) and

spae O(nq log q).

Proof. We may assume without loss of generality that n is a power of two. Then the

estimation for the time omplexity is lear, sine we perform the same onstant operations

as in the zealous ase.

In order to determine the spae omplexity, we have to estimate the spae whih is

oupied by the instanes h

i;p

of Partial Series Rep(C), whih orrespond to the ompo-

sitions f

i���i+p

Æ g (here p is a power of two and i a multiple of p). These instanes an

be organized in a binary tree with root h

0;n

and suh that the hildren of h

i;p

are h

i;p=2

and h

i+p=2;p=2

(for p > 1).

We distinguish the following types of instanes h = h

i;p

:

I. Ative instanes: h:eq 6= null and h:n > 0.

II. Latent instanes: h:eq 6= null but h:n = 0.

III. Completed instanes: h:eq = null.

We observe that eah latent instane oupies O(1) memory spae. In total, they therefore

oupy O(n) memory spae. Eah remaining instane oupies O(min(pq; n)) memory.

Furthermore, the parent of a ompleted instane is neessarily ative, so that the om-

pleted instanes do not oupy more than twie as muh memory as the ative ones.

Now for given pjn, onsider the instanes h

0;p

; : : : ; h

n�p;p

. Eah instane h

i;p

on-

tributes to the oeÆients of f Æ g between i and i + (p � 1)(q � 1) + 1. Hene, if the

instane h

i;p

is ative at stage k, then i 6 k < i + pq. The number of suh instanes

is therefore bounded by q. Hene, the total amount of memory oupied by the ative

instanes is bounded by

O

0

�

X

pjn

qmin(n; pq)

1

A

= O(nq log q);

where we remind that n is a power of two. 2

5.2. Fast relaxed omposition with algebrai funtions

5.2.1. The lass Algebrai Series(C)

Let g be as in Setion 3.4.2. The algorithm for relaxed right omposition with polyno-

mials is easily adapted to the ase of right omposition with g, by introduing a suitable

relaxed analogue Algebrai Series(g;C) of the lass Algebrai TPS(g;C) from Setion 3.4.2.
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An instane of Algebrai Series(g;C) onsists of d series F

0

; : : : ; F

d�1

and an integer

k

F

. The following funtions are easily implemented:

� An binary powering algorithm to ompute and remember P

k

F

d

in a hashtable P

C

.

� An addition algorithm for Algebrai Series(g;C).

� A multipliation algorithm for Algebrai Series(g;C).

� The analogue of the algorithm partial from Setion 5.1.1 for Algebrai Series(g;C).

� A funtion onvert whih onverts an instane of Algebrai Series(g;C) bak to a

series in Series(C).

5.2.2. Partial right omposition

The analogues of the algorithms partial ompose alg from Setion 5.1.2 are given

by

Algorithm partial ompose alg(f; i; p; q;H)

Input: f : Series(C), integers i; p and a hashtable H ,

suh that H [i℄ ontains g

i

for i = 1; 2; 4; : : : ; p=2.

Output: The right omposition of f

i���i+p

with g.

if p = 1 then return f

i

h

�

:= partial ompose alg(f; i; p=2; q;H)

h

�

:= partial ompose alg(f; i+ p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

Algorithm partial ompose alg(h

�

; p; q;H)

Input: A previous partial omposition h

�

= f

0���p=2

Æ g and

the hashtable H with the powers of g.

Output: The right omposition of f

0���p

with g.

h

�

:= partial ompose alg(f; p=2; p=2; q;H)

h := h

�

+ ((h

�

� (H [p=2℄ div z

p=2

))mul z

p=2

)

return partial(h; (p� 1)(q � 1) + 1�max(p� d; 0)v)

5.2.3. Right omposition with algebrai funtions

The analogue of the lass Compose Polynomial Rep(C) is given by

Class Compose Algebrai Rep(g;C)

f; h : Series(C)

h

alg

: Algebrai Series(g;C)

H : Hash Table(Integer;Algebrai Series(g;C))

q : Integer

The onstrutor takes f and an integer q as arguments and initializes f := f;H [1℄ :=

g; q := q, h

alg

:= partial ompose alg(f; 0; 1; q;H) and h := onvert(h

alg

); the other

entries of H are unde�ned at initialization.
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Method Compose Algebrai Rep(g;C):next()

Output: The next oeÆient (f Æ g)

n

.

if n is a power of two then

if n > 1 then H [n℄ := H [n=2℄�H [n=2℄

h

alg

:= partial ompose alg(h

alg

; 2n; q;H)

h := onvert(h

alg

)

return h

n

The following theorem is proved in a similar way as theorem 5.1:

Theorem 5.2. Let g be as in Setion 3.4.2. There exists a relaxed right omposition

algorithm for formal power series f by g, whih omputes n terms of f Æ g in time

O(qd

2

(q � v)M

�

((1 + v)n)) and spae O(qdn(v + log(q � v)))). 2

5.3. Fast relaxed omposition when C is a divisible ring

Assume that C is a divisible ring. The representation lass Compose Rep(C) below

orresponds to the omposition of two arbitrary power series f; g : Series(C).

Class Compose Rep(C) . Series Rep(C)

f; g; h : Series(C)

The onstrutor initializes f and g with the arguments and h := null.

The \relaxation" of Brent and Kung's algorithm from Setion 3.4.3 gives rise to a

new problem: we would like to use the relaxed algorithm for right omposition with

polynomials in order to ompute fÆg

�

in (3.20). But as n inreases, the value of g

�

hanges

very often, and eah time this happens, we have to start over the relaxed omputation

of f Æ g

�

.

Therefore, we should neither hange g

�

to often, so that we make eÆient use of the

polynomial right omposition algorithm, nor too little, so that the power series expansion

of f Æ (g

�

+ g

�

) an still be done quikly. A good ompromise (from the asymptoti

omplexity point of view) is to let q = 2

p+1

be the largest power of two with p4

p�1

6 n.

Method Compose Rep(C):next()

Output: The next oeÆient of (f Æ g)

n

.

C1. [n small℄

if n = 0 then return f

0

if n = 1 then return f

1

g

1

if n = 2 then return f

2

g

2

1

+ f

1

g

2

if n = 3 then return (f

3

g

2

1

+ 2f

2

g

2

)g

1

+ f

1

g

3

C2. [Compute q and r℄

p := maxfp 2 Njp4

p�1

6 ng

if n 6= 4 and p4

p�1

6 n� 1 then return h

n

n

0

:= (p+ 1)4

p
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q := 2

p+1

r := dn

0

=qe

while r > n do q := 2q; r := dn

0

=qe

C3. [Adjust h℄

g

�

:= g

0���q

g

�

:= g � g

�

D := new Compose Polynomial Rep(f

(r�1)

; g

�

)

h := D := D=(r � 1)!

for i := r � 1 downto 1 do

D := f

i�1

+

R

((iD)� g

0

�

)

h := D + ((h� (g

�

div z

q

))mul z

q

)

return h

n

Theorem 5.3. There exists a relaxed omposition algorithm for formal power series f; g,

whih omputes n terms of f Æ g in time O(M

�

(n)

p

n logn) and spae O(n

p

n logn).

Proof. For n between two suessive hanges of q, the time and spae omplexities of

the omputation of f Æ g

�

are O(M

�

(n)

p

n logn) resp. O(n

p

n logn), by theorem 5.1.

The Taylor expansion of f Æ g ontains O(

p

n logn) terms. Hene, the omplexity of

its evaluation (whih requires only additions, derivations, multipliations and divisions,

whih are all performed in time O(M

�

(n))) is again O(M

�

(n)

p

n logn). The Taylor

expansion requires O(n

p

n logn) spae.

Now observe that q hanges at most one for n between a given number n

0

and 2n

0

.

Hene, for general values of n, the time omplexity is bounded by O(M

�

(n)

p

n logn +

M

�

(n=2)

p

(n logn)=2+ � � �+M

�

(1)) = O(M

�

(n)

p

n logn) and the spae omplexity by

O(n

p

n logn). 2

Remark. In Setion 4.4.2, we have shown how to gain a onstant fator on the time and

spae omplexities for relaxed multipliation if an a priori bound for the expansion order

has been spei�ed. A similar optimization an be arried out here: if the maximal order

is known beforehand, then we may hoose q and r as in Setion 3.4.3, thereby avoiding

ertain reomputations.

5.4. Fast relaxed omposition for rings C of finite harateristi

The formulas (3.21) and (3.22), ombined with the Chinese remainder theorem, yield

straightforward relaxed omposition algorithms when C has �nite harateristi. We will

just treat the ase when the harateristi p of C is prime; the general ase is longer, but

not essentially more diÆult.

The following funtions are easily implemented

� ompose p : Series(C)! Series(C); f 7! f Æ z

p

.

� power p : Series(C)! Series(C); f 7! f

p

0

+ f

p

1

z + f

p

2

z

2

+ � � � .

� progression p : Series(C)� Integer! Series(C); (f; i) 7! f

i

+f

i+p

z+f

i+2p

z

2

+ � � � .

Now the lass Compose Rep(C) orresponds to the omposition of f and g:
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Class Compose prime Rep(C) . Series Rep(C)

f; g; h : Series(C)

The onstrutor initializes f and g with the arguments and h := null.

Method Compose prime Rep(C):next()

Output: The next oeÆient of (f Æ g)

n

.

C1. [Easy ase℄

if n = 0 then return f

0

if n > 1 then return h

n

C2. [Set up equation℄

h := 0

for i := p� 1 downto 0 do

t := ompose p(ompose(progression p(f; i);power p(g)))

h := ((h� (g div z))mul z) + t

return h

n

Theorem 5.4. Assume that C has prime harateristi p. Then there exists a relaxed

omposition algorithm for formal power series f; g, whih omputes n terms of f Æ g in

time O((p= log p)M

�

(n) logn) and spae O((p= log p)n logn).

Proof. The time and spae omplexities T (n) resp. S(n) satisfy

T (n) = pT (n=p) +O(pM

�

(n));

S(n) = pS(n=p) +O(pn):

The omplexity bounds follow from these relation. 2

As in the zealous ase, the above algorithm an be optimized by using the lazy ver-

sion of Brent and Kung's algorithm for small values of n. For rings C of more general

harateristi, the relaxed analogues of Bernstein's result and theorem 3.5:

Theorem 5.5.

a. Assume that C has prime power harateristi p

k

. Then there exists a relaxed om-

position algorithm for formal power series f; g, whih omputes n terms of f Æ g in

time O((k

3

p= log p)M

�

(n) logn) and spae O((kp= log p)n logn).

b. Assume that C has general harateristi r. Then there exists a relaxed omposition

algorithm for formal power series f; g, whih omputes n terms of f Æ g in time

O((r= log r)M

�

(n) logn) and spae O((r= log r)n logn). 2

5.5. Appliations

5.5.1. Finite differene equations

One of the most interesting appliations of theorem 5.2 is that all linear or non linear

�nite di�erene equations at in�nity (assuming that they have been put in some normal
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form) an be solved in essentially linear spae and time. Consider for instane the equation

f(x) =

1

x

(1 + f(x+ 1) + f

0

(x)

2

); (5.1)

whih admits a unique power series solution in 1=x:

f(x) =

1

x

+

1

x

2

�

1

x

4

�

3

x

6

+O

�

1

x

7

�

Putting x = 1=z and f(x) = f(1=z) = g(z), the equation (5.1) beomes

g(z) = z

�

1 + g

�

z

1 + z

�

� z

4

g

0

(z)

2

�

: (5.2)

Using the initial ondition g(0) = 0, the �rst n terms of g(z) an be omputed in time

O(n log

3

n log logn) by theorem 5.2, when using FFT-multipliation.

5.5.2. Combinatoris

In ombinatoris, one also sometimes enounters funtional equations, whih involve

right omposition with polynomials or algebrai funtions. An example of suh an equa-

tion is

f(z) = z + f(z

2

+ z

3

):

The generating funtion f ounts the number of so alled 2-3-trees (Odlyzko, 1982). The

oeÆients an again be omputed in essentially linear time.

5.5.3. General funtional equations

Theorem 5.3 an be used to solve any kind of funtional equation involving di�eren-

tiation and omposition up till n terms in time O(n

3=2

log

5=2

n log logn). An example of

suh an equation is given by

f(z) = z + f(zf(z) + z

2

f

0

(z)) + z

4

exp(zf

00

(z)):

Notie that power series reversion is another example.

5.6. Benhmarks

Using the same onventions and multipliation algorithms as in Setion 4.6, we have

tested four omposition algorithms:

� Naive: The naive relaxed omposition algorithm, using Horner's rule.

� Brent&Kung: The relaxed version of Brent and Kung's algorithm.

� Fast: The almost linear algorithms in ase of right omposition with polynomials

or algebrai funtions.

� Bernstein: The relaxed version of Bernstein's algorithm, for oeÆient rings of har-

ateristi p > 0.

We also implemented trunated versions of these algorithms, whih were used eah time

we used trunated relaxed multipliation.
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Composition Multipliation 100 200 500 1000 2000 5000 10000 20000 1h

Naive Naive 0:537 3:213 43:80 337:1 2647:2 2216

Fast 1:113 6:187 69:15 459:5 3152:5 2093

Trunated 0:592 2:857 28:53 169:0 1022:7 3119

Brent&Kung Naive 0:561 2:065 23:68 96:4 871:1 4148

Fast 1:067 3:549 34:90 120:0 960:2 4188

Trunated 0:809 2:650 23:18 75:0 573:8 2905 5628

Fast Naive 0:406 1:448 8:21 34:2 144:9 1111 8560

Fast 0:713 2:151 8:13 25:8 83:8 499 1611 16385

Trunated 0:445 1:366 5:89 19:2 62:9 333 1070 3341 20253

Table 8. Time in seonds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer oeÆients modulo 1234577.

p Multipliation 100 200 500 1000 2000 5000 10000 20000 50000 1h

3 Naive 0:182 0:557 2:535 8:704 31:72 187:4 738 2923 22198

Fast 0:326 0:894 3:444 10:597 34:23 176:7 617 2214 25809

Trunated 0:231 0:565 1:955 5:287 14:76 56:8 162 489 3254 50000

11 Naive 0:264 0:855 4:275 15:876 60:77 370:4 1470 15668

Fast 0:431 1:400 5:901 19:281 66:00 358:4 1287 17025

Trunated 0:279 0:819 2:940 8:351 24:86 96:1 287 868 31946

37 Naive 0:483 1:678 9:988 39:336 158:56 994:5 9492

Fast 0:867 2:876 13:866 48:200 173:21 983:8 9990

Trunated 0:501 1:412 6:181 18:791 58:95 226:0 682 2132 24601

Table 9. Time in seonds to expand the solution to (5.2) at various orders, using the

relaxed version of Bernstein's algorithm and integer oeÆients modulo p.

In Table 8, we have onsidered the expansion of the solution to equation (5.2), where we

took the ring of integers modulo a large number p as our oeÆient ring. Atually, these

timings do not depend on p, whene they an be ompared to those from Table 9, where p

is a small prime number, and where we use the relaxed version of Bernstein's omposition

algorithm. In Table 10, we onsidered the same equation, using integer oeÆients.

6. Suggestions for spei� oeÆient rings

In the previous setions, we have given asymptotially fast algorithms for the manip-

ulation of formal power series over a \generi ring" C. In pratie, C is usually the ring

Composition Multipliation 10 20 50 100 200 500 1000 2000 1h

Naive Naive 0:018 0:055 0:433 3:129 24:942 456:09 618

Fast 0:024 0:104 0:979 6:495 47:541 1037:63 514

Trunated 0:018 0:066 0:547 3:307 22:258 344:23 596

Brent&Kung Naive 0:026 0:077 0:848 2:881 12:805 195:72 830

Fast 0:039 0:135 1:764 5:781 23:679 298:51 894

Trunated 0:028 0:091 1:342 4:747 18:764 220:00 800

Fast Naive 0:031 0:095 0:431 1:782 7:636 55:15 359:41 3487 2012

Fast 0:057 0:202 0:955 3:575 13:124 59:69 274:84 1722 2049

Trunated 0:033 0:116 0:572 2:206 8:439 47:24 229:90 1572 2307

Table 10. Time in seonds to expand the solution to (5.2) at various orders, using

di�erent algorithms and integer oeÆients.
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of integers, rational numbers, oating point numbers, et. or onstruted from one these,

by onsidering polynomial rings, rings of formal power series, or quotients.

On the one hand, this makes it possible to exploit the speial nature of C in order to gain

additional onstant fators on the omplexities of the relaxed algorithms. These fators

may be onsiderable, but they rely on a lever use of the FFT-transform, as explained

in Setion 6.1. In partiular, it is time onsuming to write good implementations.

On the other hand, for most of the onstant �elds used in pratie, the size of the

n-th oeÆient of a series tends to grow with n. Analogously, in numerial analysis, the

preision of the n-th oeÆient of a series tends to derease with n. Unfortunately, the

relaxed algorithms, more than the naive ones, tend to add oeÆients of di�erent sizes

resp. preisions, whih leads to a loss of eÆieny or numerial instability. This issue will

be treated in more detail in Setions 6.2 and 6.3 and some approahes will be suggested.

This setion is mainly inluded to give some hints about how to adapt the theoretial

algorithms from the previous setions to partiular, frequently used onstant rings C. Our

presentation will be informal and our suggestions have still to be tried out in pratie.

6.1. Generalizing the fast Fourier transform

In most of the atual omputer algebra systems, polynomials, vetors, matries, et.

over a base ring C are implemented in a generi way. Unfortunately, this approah makes

it hard to fully exploit the fast Fourier transformation.

Consider for instane polynomials A and B with large integer oeÆients, so that

the oeÆients are multiplied using the FFT. Then in order to ompute AB, we may

�rst transform the oeÆients of A and B, next multiply the transformed polynomials

and �nally transform bak. In this approah we only have to ompute the FFT of eah

oeÆient of A and B one, so that we gain with respet to the generi polynomial multi-

pliation algorithm. Moreover, this optimization an be used reursively for multivariate

polynomials over the integers, and eah time we inrease the number of variables, we

gain a onstant fator with respet to the generi approah.

This example shows that we have to rethink the basi arithmeti operations for the

most elementary generi omputer algebra types, in order to obtain maximal eÆieny for

large input sizes. For this purpose, let us reformulate FFT-multipliation in an abstrat

way for elements A and B in a ring C.

� We �rst have to \transform" the ring C into

b

C

A;B

.

� We next ompute the fast Fourier transforms

b

A;

b

B :

b

C

A;B

of A and B.

� We multiply

b

A and

b

B in

b

C

A;B

, yielding

b

C.

� We transform

b

C bak into the produt C of A and B.

The \transformed ring"

b

C

A;B

is depends on ertain harateristis of A and B, suh as

size or degree. In the algorithm from Setion 3.1.2, we would have

\

C[x℄=(x

n

+ 1)

A;B

=

C[y℄=(y

m

+1). The multipliation is represented shematially by the following diagram:

A;B : C

FFT

����!

b

A;

b

B :

b

C

A;B

?

?

y

�

C

?

?

y

�

b

C

A;B

AB : C

FFT

�1

 ����

b

A

b

B :

b

C

A;B
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It is not hard to see how suh an abstrat FFT-transform might be implemented for

elementary omputer algebra types suh as integers, oating point numbers, polynomials,

matries, et. However, there are three di�erent approahes in the ase of dense polyno-

mials, whih are detailed below. The hoie of the fastest approah may depend on the

system. A alibration funtion should be implemented to �nd the optimal one for a given

input size.

6.1.1. Usual multipliation with transformed oeffiients

Let C be a onstant ring for whih an abstrat FFT-transform has been implemented

and onsider the ring C[x℄ of dense polynomials over C. Given suh a polynomial A =

A

d

x

d

+ � � �+A

0

, we may transform it using

b

A =



A

d

x

d

+ � � �+



A

0

:

d

C[x℄ =

b

C[x℄

and use a generi multipliation algorithm in

b

C[x℄. Of ourse, the preise ring

b

C depends

on the sizes of the polynomials one wishes to multiply.

For small degrees, this approah yields the best results. For instane, the ost of mul-

tiplying two polynomials of degree 1 is stritly less than three onstant multipliations

(when the oeÆients have approximately the same sizes). For other small degrees n, two

polynomials an be multiplied using 2n+1 onstant operations using Toom-Cook's algo-

rithm (Toom, 1963b; Cook, 1966; Knuth, 1997). However, the overhead of this algorithm

grows rapidly, whih makes this approah less interesting for higher degrees.

6.1.2. Redution to the base ring

For rings C of harateristi zero, another approah is to take

b

A =

\

A(2

N

) :

d

C[x℄ =

b

C;

for a suÆiently large N . For example, in base 10, this orresponds to multiplying poly-

nomials as follows:

(101x+ 213)� (219x+ 173)

FFT

����! 101000212� 219000173

?

?

y

?

?

y

FFT-multiply

22119x

2

+ 64120+ 36849

FFT

�1

 ���� 22119064120036849

If A and B are polynomials of degree n, whose oeÆients are very large and of ap-

proximately the same size s, then the sizes of A(2

N

) and B(2

N

) are both approximately

(2n+1)s. Hene, AB an be omputed in roughly the same time as 2n+1 oeÆient mul-

tipliations. Moreover, ontrary to the method from the previous setion, the additional

overhead is low, even for large n.

Another advantage of the present method is that it \smoothes" the graph with the

omputation time as a funtion of the input size. Indeed, when using FFT-multipliation,

eah time that extra roots of unity are needed (i.e. when doubling the input size), a

sudden inrease in the omputation time is observed. The present method redues this

phenomenon.

Remark. Notie the interesting philosophy behind the method: usually, omplex prob-



50 Joris van der Hoeven

lems (suh as multiplying polynomials) are redued to many small simple problems (mul-

tipliation of oeÆients). Here, we rather redue the omplex problem to a huge, but

simple problem, and we make use of the fat that we have an asymptotially eÆient

method for the huge simple problem.

6.1.3. Multivariate fast Fourier transforms

Yet another method is based on the observation that, in order to multiply polynomials

in

b

C[x℄, we may use the fat that the ring

b

C already has many 2

N

-th roots of unity.

Hene, after a �rst transformation A

d

x

d

+ � � �+A

0

!



A

d

x

d

+ � � �+



A

0

as in Setion 6.1.1,

FFT-multipliation beomes interesting muh earlier than for a generi polynomial ring.

Although the multipliation sheme based on this method is slightly slower for small

degrees (for instane, we need 4 \onstant multipliations" in order to multiply two

�rst degree polynomials), the method is virtually linear from then on. Espeially when

multipliation in

b

C beomes expensive with respet to the fast Fourier transformation,

this method may be an interesting alternative for moderate degrees n.

Remark. We also suggest to use this method for integer multipliation itself. Indeed,

Sh�onhage-Strassen's algorithm (Sh�onhage and Strassen, 1971) redues the multiplia-

tion problem for integers modulo 2

2

N

+ 1 to the problem of multiplying polynomials of

degrees 6 n in Z=(2

2

n

+1)Z[x℄, where n � N=2. However, for large N (that is N ' 20 on

atual mahines), the modular multipliation step of numbers modulo 2

2

n

+ 1 beomes

far more expensive than the transformation step. For suh N , we therefore suggest to

use polynomials in Z=(2

2

n

+1)Z[x; y℄ of degrees 6 n in x and y instead, where n � N=3.

6.2. On the numerial instability of relaxed algorithms

In this setion, we study the numerial stability of the di�erent relaxed multiplia-

tion algorithms for power series with oating point oeÆients. For this purpose, it is

important two distinguish two types of appliations.

For appliations to numerial analysis, suh as the analyti ontinuation of holomorphi

funtions, the oeÆients are usually known with a high preision, that is, a preision

whih is linearly dependent on the required expansion order. This enables us to evaluate

the series lose to the origin up till a number of digits whih is linearly dependent on the

expansion order. For suh appliations, a sublinear or even a small linear preision loss

will not hange the asymptoti omplexity of the evaluation of the series up till n digits.

For other appliations, suh as the random generation of ombinatorial strutures (Fla-

jolet et al., 1994; Denise et al., 1998; Denise and Zimmermann, 1999), we are interested

in the oeÆients themselves and we require a given, small number of digits after the

deimal point. On the one hand, the fat that we want many terms using a low preision

makes this appliation vulnerable for numerial instability. On the other hand, the o-

eÆients of the series are often all positive with nie asymptoti properties in this ase.

Under additional hypotheses, we may therefore hope to estimate the preision loss.

6.2.1. Soures of numerial instability

There are two main soures of numerial instability when multiplying formal power

series. The �rst soure is \massive anellation" of oeÆients, whih indues the radius
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of onvergene of the produt to be stritly larger than those of its fators. An example

is given by

tan z � os z = sin z:

This soure is intrinsi and no partiular numerial multipliation method will be able

to avoid it.

The seond soure of numerial instability is enountered, when oeÆients of di�erent

magnitudes are added up in order to speed up the produt omputation. Consider for

instane the omputation of

P = (1:000 � 10

0

+ 1:000 � 10

�5

z)� (1:000 � 10

0

+ 1:000 � 10

�5

z)

using DAC-multipliation:

1:000 � 10

0

= (1:000 � 10

0

)� (1:000 � 10

0

)

1:000 � 10

�10

= (1:000 � 10

�5

)� (1:000 � 10

�5

)

1:000 � 10

0

= (1:000 � 10

0

+ 1:000 � 10

�5

)� (1:000 � 10

0

+ 1:000 � 10

�5

):

We obtain

P = 1:000 � 10

0

+ 0:000 � 10

0

z + 1:000 � 10

�10

z

2

:

Hene, the addition 1:000 � 10

0

+ 1:000 � 10

�5

is responsible for the preision loss.

6.2.2. Inreasing the numerial stability

In the frequent ase when we multiply onvergent power series f and g, we an often

avoid this problem by \normalizing" bloks f

i���i

0

and g

j���j

0

(with l = i

0

� i = j

0

� j)

of suessive oeÆients before multiplying them. Indeed, in the onvergent ase, the

exponents of the oeÆients f

i

; : : : ; f

i

0

�1

resp. g

j

; : : : ; g

j

0

�1

usually approximately form

an arithmeti progression, i.e. log jf

k

j � log jf

i

j+�(k� i), for some � and all i 6 k < i

0

.

Hene, by looking at these exponents, we determine the \least approximate minimal

radius of onvergene" ~r of f and g: for ertain onstants F and G we have

f

k

6 F=~r

k

(i 6 k < i

0

);

g

k

6 G=~r

k

(j 6 k < j

0

);

where the inequalities are (approximate) equalities for at least one k and l, and for at

least two k or l. Now we ompute

h

0

+ � � �+ h

2l�1

= (f

i

+ � � �+ f

i

0

�1

~r

l�1

z

l�1

)� (g

j

+ � � �+ g

j

0

�1

~r

l�1

z

l�1

)

using any fast multipliation algorithm for polynomials. Then

f

i���i

0

g

j���j

0

= h

0

+ � � �+

h

2l�1

~r

2l�1

z

2l�1

:

This way of omputing f

i���i

0

g

j���j

0

inreases the numerial stability. For instane, in the

example from the previous setion, we get ~r = 1:000 � 10

5

and

h = 1:000 � 10

0

+ 2:000 � 10

0

z + 1:000 � 10

0

z

2

;

fg = 1:000 � 10

0

+ 2:000 � 10

�5

z + 1:000 � 10

0

z

�10

:
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Remark. Considering a �nite number of oeÆients f

i���i

0

, the \approximate radius of

onvergene" of a series f may for instane be omputed in linear time, by \traversing"

the onvex envelope of the logarithms of these oeÆients and retaining the longest

segment. A slower, but more stable method is obtained by maximizing the quantity

i

0

�1

X

k=i

Cjf

k

=~r

k

j

among all C > 0 and ~r > 0 with

i

0

�1

max

k=i

Cjf

k

=~r

k

j = 1:

It would be interesting to �nd a fast and stable ompromise between these two extremes.

6.2.3. Series with positive oeffiients and error estimations

In the ase when all series we onsider have positive oeÆients, whih is frequently the

ase in ombinatoris and the analysis of algorithms, it is often possible to obtain preise

error estimations for the various relaxed algorithms for multipliation and omposition.

Let B be the number of signi�ant bits with whih we ompute. In what follows, when

approximating a real number ~x by a oating point number x =M �2

E

(with

1

2

6M < 1),

we will denote by Æ

x

the \normalized relative error" we ommit, so that

~x� Æ

x

2

E�B

6 x 6 ~x+ Æ

x

2

E�B

:

For small errors (that is Æ

x

6 2

B=2

), we then have

Æ

x+y

6 max(Æ

x

; Æ

y

) + 2; (6.1)

Æ

xy

6 Æ

x

+ Æ

y

+ 2; (6.2)

for positive oating point numbers x and y.

Naive lazy algorithms

Let us �rst onsider the ase of a system of di�erential equations, whih has been put

into integral form

0

B

�

f

1

(z)

.

.

.

f

r

(z)

1

C

A

=

Z

0

B

�

P

1

(f

1

; : : : ; f

r

)

.

.

.

P

r

(f

1

; : : : ; f

r

)

1

C

A

; (6.3)

where P

1

; : : : ; P

r

are polynomials with positive oeÆients. Then we an expand the

solutions using the lazy power series tehnique. Let f

i;n

denote the n-th oeÆient of f

i

.

Then the equations (6.1) and (6.2) yield

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+O(n); (6.4)

for eah i, sine oeÆients of the P

i

and the initial onditions f

i;0

have bounded nor-

malized relative errors. Consequently, putting E

n

= max

16i6r

Æ

f

i;n

, we have

E

n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

E

j

+O(n): (6.5)
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It follows that E

n

= O(n

2

). This shows that number of erroneous bits in f

i;n

grows only

logarithmially with n.

For funtional equations whih involve omposition, we get similar bounds. For in-

stane, if we ompute (f Æ (zg))

n

using Horner's rule:

(f Æ (zg))

n

= f

0

+ zg(f

1

+ zg(f

2

+ � � �+ zg(f

n

) � � �));

we obtain

Æ

(fÆ(zg))

n

6 max

i+j

1

+���+j

k

=n

Æ

f

i

Æ

g

j

1

+ � � �+ Æ

g

j

k

+O(n

2

):

Hene, (6.4) would now beome

Æ

f

i;n

6 max

P

n

j;k

=n�1

X

j;k

Æ

f

j;n

j;k

+O(n

2

);

and we would rather get E

n

= O(n

3

), whih still ensures a logarithmi growth of the

number of erroneous bits in the result. For the fast relaxed omposition algorithms, a

similar growth of the error an be proved, sine the symboli appliation of the algorithm

yields the n-th oeÆient of f Æ g as an expression in f

0

; : : : ; f

n

; g

1

; : : : ; g

n

and positive

rational numbers, using sums and produts only.

Fast relaxed multipliation

Let f and g be onvergent power series with positive oeÆients. Denoting by r

f

and

r

g

the onvergene radii of f and g, we de�ne

"

f

(n) =

1

n

log

2

f

n

+ log

2

r

f

;

"

g

(n) =

1

n

log

2

g

n

+ log

2

r

g

:

Let us make the \onvexity hypothesis" that the sequenes "

f

(n) and "

g

(n) are onvex or

onave for suÆiently large n (all four ombinations being possible). This is in partiular

the ase if the oeÆients f

n

and g

n

admit asymptoti equivalents in a Hardy �elds, suh

as

f

n

� C(log n)

�

n

�

r

�n

f

:

We will study the numerial stability of the fast relaxed multipliation algorithm, assum-

ing that we use the normalization proedure from Setion 6.2.2.

Let us �rst assume that r

f

= r

g

and onsider the multipliation f

i���i

0

� g

j���j

0

with

the notations from Setion 6.2.2. The onvexity hypothesis implies that the exponents

of the normalized oeÆients are dominated by O(j"

f

(i

0

)j + j"

g

(j

0

)j). Consequently, we

lose O(j"

f

(i

0

)j + j"

g

(j

0

)j) extra bits of preision in the multipliation f

i���i

0

� g

j���j

0

with

respet to the naive method. This leads to the error estimation

Æ

(fg)

n

6 max

i+j=n

Æ

f

i

+ Æ

g

j

+ 2

O(j"

f

(n)j+j"

g

(n)j)

+O(n)

for the oeÆients of the produt fg. This estimation remains valid in the ase when r

f

<

r

g

(or r

f

> r

g

), beause the extra preision loss in the multipliations is ompensated by

the exponential derease of the oeÆients of g with respet to those of f (see also the

next paragraph).

Now reonsider the system of di�erential equations (6.3). Assume that the onvexity

hypothesis is veri�ed for all series g enountered in the relaxed expansion proess and let
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"(n) be the sum of the orresponding j"

g

(n)j. Then the equations (6.4) beome

Æ

f

i;n

6 max

n

1

+���+n

r

=n�1

r

X

j=1

Æ

f

j;n

j

+ 2

"(n)

+O(n) (6.6)

and we obtain

E

n

= O(2

"(n)

+ n

2

): (6.7)

Indeed " is ultimately monotoni (by the onvexity hypothesis), so that either 2

"(n)

=

O(n), or 2

"(n)

inreases towards in�nity.

Intuitively speaking, (6.7) means that the preision loss is proportional to the asymp-

toti behavior near the most violent dominant singularity enountered in the expansion

proess. In partiular, if all these singularities are algebrai (suh as in the example (4.2)),

then the preision loss remains logarithmi. This result generalizes to the ase of more

general funtional equations, as in the ase of naive multipliation. Finally, a similar

growth of the error may be expeted in the general ase when the oeÆients are no

longer positive. Indeed, the main obstrution to suh a behavior is massive anellation

of oeÆients, whih ours only in very spei� situations.

Unequal radii of onvergene

Assume that we want to multiply two series f and g with unequal radii r

f

< r

g

of

onvergene, whih satisfy the onvexity hypothesis. Then f

n

=g

n

dereases exponentially.

We will indiate how to use this observation in order to obtain a multipliation algorithm

for f with g of time omplexity O(n).

During the expansion proess of f (resp. g), we heuristially ompute its approximate

onvergene radius ~r

f

, based on the knowledge of the �rst n oeÆients. This may for

instane be done eÆiently by updating ~r

f

, eah time that n beomes a power of two,

by applying a similar algorithm as in Setion 6.2.2 on the oeÆients f

n=2

; : : : ; f

n�1

.

Simultaneously, at eah stage n, we update a bound C

f

(resp. C

g

), suh that f

i

6 C

f

~r

�i

f

for all i < n. By the onvexity hypothesis, ~r

f

will tend to the onvergene radius r

f

of f

for large n.

When omputing the n-th oeÆient of fg (say by the naive algorithm for simpliity),

we now sum f

n�i

g

i

for i running from 0 to n, where we stop the summation proess as

soon as

X

j>i

f

n�j

g

j

6 C

f

C

g

~r

n

f

(~r

f

=~r

g

)

i

1� (~r

f

=~r

g

)

is smaller than 2

�B

(f

n

g

0

+ � � �+ f

n�(i�1)

g

i�1

). Assuming the onvexity hypothesis, the

summation proess stops for i = O(1), when n tends to in�nity. Consequently, we ob-

tain a linear time algorithm. Modulo some are, the trik may be adapted to relaxed

multipliation.

6.3. Power series in several variables

6.3.1. Representation of power series in several variables

In priniple, multivariate power series an be implemented reursively as univariate

power series with multivariate power series oeÆients. Unfortunately, this way of doing
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has two disadvantages. First, the generalized fast Fourier transformation from Setion 6.1

an not be fully exploited. Seondly, the trunation orders of the oeÆients of, say, a

bivariate power series are not neessarily onstant. For instane, given f =

P

j

f

j

z

j

2

and

f

j

=

P

i

f

j;i

z

i

1

for eah j, we may need 10 terms of f

5

and only 5 of f

10

. This may lead to

a phenomenon whih is analogous to the \preision loss" phenomenon from Setion 6.2.1:

adding numbers with di�erent orders of growth is equally harmful as adding power series

with di�erent trunation orders.

By analogy with ordinary multivariate polynomials, one may also be tempted to on-

sider sparse multivariate power series. Of ourse, most natural operations on power se-

ries like inversion or exponentiation do not preserve sparseness. Nevertheless, during

the referee proess of this paper, we beame aware of the existene of asymptotially

fast algorithms for multiplying sparse multivariate polynomials (Canny et al., 1989). In

Setion 6.3.5, we will show that these ideas also have appliations in our setting.

Multivariate power series f(z

1

; : : : ; z

d

) an be trunated in many ways. For applia-

tions in numerial analysis, we are usually interested in evaluating f . Hene, we need the

oeÆients f

n

1

;::: ;n

d

with

�

1

n

1

+ � � �+ �

d

n

d

< N;

where N is proportional to the required preision and �

1

; : : : ; �

d

> 0 depend on the

evaluation point and the domain of onvergene of f . For appliations in ombinatoris

and the analysis of algorithms, we are often interested in ertain spei� oeÆients of

f only. Nevertheless, the omputation of suh a oeÆient f

n

1

;::: ;n

d

usually amounts to

the omputation of all \previous" oeÆients f

k

1

;::: ;k

d

with k

1

6 n

1

; : : : ; k

d

6 n

d

.

We therefore suggest to implement multivariate power series by an abstrat lass

Multivariate Series(C) whose representation lass is given by

Class Multivariate Series Rep(C)

' : Multivariate TPS(C)

I : Multivariate Dense Set

virtual ompute : Array(Integer)! C

Here

� Instanes of Multivariate Dense Set are subsets of N

d

with \a dense avor": in our

ase, I will always be the initial segment of already omputed oeÆients. I.e. if

(n

1

; : : : ; n

d

) 2 I and 0 6 m

1

6 n

1

; : : : ; 0 6 m

d

6 n

d

, then (m

1

; : : : ;m

d

) 2 I .

� Instanes of Multivariate TPS(C) are \multivariate trunated power series". The

analogue of ℄' is an instane � � I of Multivariate Dense Set, alled the domain of

'. Then ' assoiates a oeÆient in C to eah element of �.

� The (private) method ompute omputes the (n

1

; : : : ; n

d

)-th oeÆient of the

series, while assuming that all previous oeÆients have already been omputed.

As in the univariate ase, the orresponding publi method makes sure that all

previous oeÆients are omputed.

Remark. As we will see in Setion 6.3.4, it is onvenient not to assume that instanes

of Multivariate Dense Set are neessarily initial segments.
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6.3.2. Trunated multipliation

The zealous multivariate trunated multipliation problem an be stated as follows:

given two multivariate trunated series f; g : Multivariate TPS(C) and a dense subset

H : Multivariate Dense Set of N

d

, how to ompute the restrition h = f �

H

g of f � g to

H eÆiently? That is, how to ompute the oeÆients (f � g)

n

, with n 2 H?

Let F and G denote the domains of f and g. The naive approah onsists of omputing

h using the formula

h =

X

(n;m)2F�

H

G

f

n

g

m

;

where

F �

H

G = f(n;m) 2 F �Gjn+m 2 Hg:

For most domains F;G and H , the time omplexity of this omputation is bounded by

O(jF �

H

Gj), where jF �

H

Gj denotes the ardinality of F �

H

G. The worst ase time

omplexity of a suÆiently lever implementation of the naive algorithm is bounded by

O(min(jF j jGj; jF j jH j; jGj jH j) + jH j):

The \fully dense" approah onsists of hanging f and g into f and g by inserting zero

terms, so that the enlarged domains F and G of f and g are bloks of the form

(a

1

� � � b

1

)� � � � � (a

d

� � � b

d

):

Here i � � � j denotes fi; : : : ; j�1g. Next, we apply an asymptotially fast dense algorithm

as desribed in Setion 6.1 for the multipliation f � g and we trunate the result.

Unfortunately, the fully dense approah is extremely ineÆient for ertain domains

F;G and H in the multivariate ase, beause the ratio

� =

jF j jGj

jF �

H

Gj

(6.8)

may beome more important than the gain we obtain by using FFT-multipliation. Con-

sider for instane the important speial ase when

F = G = H = f(n

1

; : : : ; n

d

) 2 N

d

jn

1

+ � � �+ n

d

6 Ng;

for some N > 0. Let �

d;N

denote the ratio (6.8) for given d and N . For large N , it an

be heked that �

d;N

tends to a onstant �

d

given by

�

2

= 24;

�

3

= 1080;

�

d

�

4

d

d!

2

2

p

�d

; for d!1:

Hene, even for d = 2, we lose a very important fator with respet to the naive algorithm,

for small values of N .

6.3.3. A ompromise between naive and fully dense multipliation

In this setion, we sketh a trunated multivariate multipliation algorithm, whih is a

ompromise between the naive and the fully dense algorithms from the previous setion.
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Our algorithm will never be more than a �xed small onstant fator slower than the naive

algorithm, but it will fully exploit FFT-multipliation if F;G and H are bloks.

Our algorithm will be reursive on the dimension d. We deompose the trunated series

f and g as follows:

f = fz

q

d

d

= (f

0

+ � � �+ f

k�1

z

(k�1)p

d

d

)z

q

d

d

;

g = gz

r

d

d

= (g

0

+ � � �+ g

l�1

z

(l�1)p

d

d

)z

r

d

d

;

where p

d

> 1; q

d

and r

d

will be hosen heuristially and where f and g are series in

z

1

; : : : ; z

d�1

; z

d

= z

p

d

d

, whose oeÆients are polynomials of degrees < p

d

in z

d

.

Assuming that we have omputed p

d

; q

d

and r

d

, our trunated multipliation algorithm

now onsists of the following steps, whih will be detailed below.

1. Compute f and g with domains F and G.

2. Compute the \losure" H of H .

3. Compute the trunated produt h = f �

H

g using

h

n

=

X

{+|=n

f

{

�

H

n

g

|

;

where H

n

= f(n

1

; : : : ; n

d�1

) 2 N

d�1

j(n

1

; : : : ; n

d�1

; n) 2 Hg.

4. Reover the produt h = f �

H

g from h.

Step 1 is easy. For instane, the domain of f is determined by (n

1

; : : : ; n

d�1

; n

d

) 2 F , if

and only if there exists an n

d

with p

d

n

d

6 n

d

� q

d

< p

d

n

d

+ p

d

and (n

1

; : : : ; n

d

) 2 F .

As to H , we take (n

1

; : : : ; n

d�1

; n

d

) 2 H if and only if there exists an n

d

with p

d

n

d

6

n

d

�q

d

�r

d

< p

d

n

d

+2p

d

�1 and (n

1

; : : : ; n

d

) 2 H . Indeed, the degrees of the oeÆients

of h in z

d

are stritly bounded by 2p

d

� 1 and not merely by p

d

. In order to reover

h

n

1

;::: ;n

d

, we therefore should add up (h

n

1

;::: ;n

d�1

;
n

d

)

i

and (h

n

1

;::: ;n

d�1

;
n

d

�1

)

i+p

d

, where

n

d

and 0 6 i < p

d

satisfy n

d

� q

d

� r

d

= p

d

n

d

+ i.

Let us now show how to ompute p

d

and q

d

. We assume that given p

d

, we have

an algorithm whih rapidly estimates the running time of the multipliation algorithm.

The omputation of suh an estimation will take muh time if p

d

is small and little

time when p

d

is large. The idea is now to take ompare the estimated running times

for dereasing values of p

d

and to stop the searh of an optimal p

d

as soon as smaller

values of p

d

yield larger estimated running times. More preisely, we start with p

d

=

min(spanF; spanG; spanH), where

spanS = max

(n

1

;::: ;n

d

)2S

n

d

� min

(n

1

;::: ;n

d

)2S

n

d

+ 1 > 0

Next, we derease p

d

by fators of two (p

d

:= dp

d

=2e). Finally, q

d

and r

d

are hosen suh

that spanF ; spanG and spanH are as small as possible.

6.3.4. Relaxed multipliation of multivariate power series

Let us now sketh the multivariate analogue of the fast trunated relaxed multipliation

algorithm from Setion 4.4.2. Let f and g denote the series we want to multiply and

let h their produt. We will �rst assume that we have �xed upper bounds F;G;H :

Multivariate Dense Set for the oeÆients of f; g and h that we want to ompute. These

upper bounds oinide with the domains of f:'; g:' and h:'.
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We observe that, essentially, the fast univariate relaxed algorithm from Setion 4.3.1

is based on a partition

N

2

=

a

n2N

S

n

=

a

n2N

a

�2A

n

S

n;�

; (6.9)

where the S

n;�

are square bloks of the form (i � � � i+ l)� (j � � � j + l):

S

1

= (0 � � � 1)� (0 � � � 1);

S

2

= (0 � � � 1)� (1 � � � 2)q (1 � � � 2)� (0 � � � 1);

S

3

= (0 � � � 1)� (2 � � � 3)q (2 � � � 3)� (0 � � � 1)q

(1 � � � 3)� (1 � � � 3);

S

4

= (0 � � � 1)� (3 � � � 4)q (3 � � � 4)� (0 � � � 1);

S

5

= (0 � � � 1)� (4 � � � 5)q (4 � � � 5)� (0 � � � 1)q

(1 � � � 3)� (3 � � � 5)q (3 � � � 5)� (1 � � � 3);

.

.

.

Now at the n-th stage, the algorithm onsists of omputing the ontribution

X

�2A

n

X

(i;j)2S

n;�

f

i

g

j

z

i+j

of all bloks S

n;�

to fg.

In the multivariate ase, we do a similar thing: we partition (N

d

)

2

by

(N

d

)

2

=

a

(n

1

;::: ;n

d

)2N

d

S

(n

1

;::: ;n

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

(n

1

;::: ;n

d

)

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

=

a

(n

1

;::: ;n

d

)2N

d

a

(�

1

;::: ;�

d

)2A

n

1

�����A

n

d

'(S

n

1

;�

1

� � � � � S

n

d

;�

d

);

where ' is the natural isomorphism from (N

2

)

d

onto (N

d

)

2

. Then eah S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

is the produt of two d-dimensional bloks

S

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

= B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

� C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

:

When we ask for the (n

1

; : : : ; n

d

)-th oeÆient of h, the multivariate trunated relaxed

multipliation algorithm now omputes all trunated produts

(B

(n

1

;::: ;n

d

)\F );(�

1

;::: ;�

d

)

�

H

(C

(n

1

;::: ;n

d

)\G);(�

1

;::: ;�

d

)

by the zealous algorithm from the previous setion and adds these ontributions to h:'.

Until now, we assumed that F;G and H remained �xed throughout the exeution, as

is often the ase in pratie. Sometimes however, these domains have to be inreased
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dynamially, say into

^

F ,

^

G and

^

H . Whenever this happens, it suÆes to add all produts

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

FnF )) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\G);

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F ) �

H

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\ (

^

GnG)) and

(B

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

F ) �

^

H
nH

(C

(n

1

;::: ;n

d

);(�

1

;::: ;�

d

)

\

^

G)

to h:', where (n

1

; : : : ; n

d

) runs over all already omputed oeÆients in h:I . Notie

that

^

FnF ,

^

GnG and

^

HnH are not neessarily initial segments; this explains why it is

onvenient to allow the instanes of Multivariate Dense Set to be general subsets of N

d

.

6.3.5. Fast trunated multipliation of multivariate power series

Let us again onsider the ase when we want to �nd all oeÆients h

n

1

;::: ;n

d

of a power

series h = fg in d variables with

�

1

k

1

+ � � �+ �

d

k

d

< n;

where �

1

; : : : ; �

d

> 0 and n > 0. Without loss of generality, we may assume that

minf�

1

; : : : ; �

n

g = 1 and we all

deg

�

P = maxf�

1

k

1

+ � � �+ �

d

k

d

jP

k

1

;::: ;k

d

6= 0g

the total�-degree of a polynomial P 2 C[z

1

; : : : ; z

d

℄. As we stressed before, this partiular

ase is frequently enountered when we want to evaluate multivariate power series. Our

aim is to design an algorithm whih remains fast when both d and n beome moderately

large, suh as d � 5 and n � 10. Throughout this setion, we assume that Z� C.

In (Canny et al., 1989), a fast algorithm has been given for the multipliation of sparse

multivariate polynomials. The key-ingredients of this algorithm are evaluation in prime

powers and interpolation:

Theorem 6.1. Let P (z

1

; : : : ; z

d

) = 

1

M

1

+ � � �+ 

t

M

t

be a polynomial, whih is a linear

ombination of t monomials. Let p

1

; : : : ; p

d

be distint prime numbers. Then

a. The P (p

i

1

; : : : ; p

i

d

) may be evaluated for i 2 f0; : : : ; t� 1g in time O(M(t) log t).

b. The polynomial P an be reovered from the P (p

i

1

; : : : ; p

i

d

) with i 2 f0; : : : ; t � 1g

in time O(M(t) log t).

Remark. In the theorem it is impliitly assumed that the evaluationsM

i

(p

i

1

; : : : ; p

i

d

) for

i 2 f1; : : : ; tg an be performed in time O(M(t) log t). This is usually the ase, if the

degrees of the M

i

are not to high w.r.t. t.

From the theorem it follows that if P and Q are polynomials, whih are linear ombi-

nations of monomials in �nite sets A resp. B, then the produt PQ an be omputed in

time O(M(t) log t), where t = jABj is the ardinal of the set AB of all possible produts

of elements in A with elements in B. In partiular, if t

�

n

denotes the maximal num-

ber of terms in a polynomial of total �-degree < n, then the produt of two arbitrary

polynomials P and Q an be omputed in time O(M(t

�

deg

�

PQ

) log t

�

deg

�

PQ

).

We will now simplify and generalize an algorithm from (Leerf and Shost, 2001).

Assume that we want to multiply two trunated multivariate power series f and g of
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total �-degrees < n. Multiplying these series as polynomials and trunating afterwards

has a bad omplexity, whih involves a fator 2

d

. Therefore, we rather deompose the set

S

�

n

of all monomials of total degree < n in slies

S

�

n

= S

0

q � � � q S

n�1

;

where

S

i

= S

�

i+1

nS

�

i

for eah i. This leads to the deomposition

f = f

0

+ � � �+ f

n�1

of f , where

f

i

=

X

z

k

1

1

:::z

k

d

d

2S

i

f

k

1

;::: ;k

d

z

k

1

1

: : : z

k

d

d

for eah i. We have similar deompositions for g and fg. Sine S

i

S

j

� S

i+j

q S

i+j+1

for

all i and j, we have

t

def

= jS

0

S

n

[ S

1

S

n�1

[ � � � [ S

n

S

0

j 6 jS

n�1

[ S

n

j:

Sine 1 2 f�

1

; : : : ; �

n

g, we also have jS

i

j 6 jS

j

j whenever i 6 j. Therefore, jS

0

S

i

[

S

1

S

i�1

[ � � � [ S

i

S

0

j 6 t for all i < n.

The multipliation algorithm now goes as follows:

1 Compute a

i;j

= f

i

(p

j

1

; : : : ; p

j

d

) and b

i;j

= g

i

(p

j

1

; : : : ; p

j

d

) for all i < n and j < t.

2 Denote a

j

(z) = a

0;j

+ : : :+ a

n�1;j

z

n�1

and b

j

(z) = b

0;j

+ : : :+ b

n�1;j

z

n�1

for eah

j < t. Compute the trunated power series produts 

j

(z) = a

j

(z)b

j

(z) at order n

and denote 

j

(z) = 

0;j

+ : : :+ 

n�1;j

z

n�1

for eah j < t.

3 For eah i < n, ompute polynomials (h

�

)

i

and (h

�

)

i

, whih are linear ombinations

of monomials in S

i

resp. S

i+1

, suh that 

i;j

= ((h

�

)

i

+ (h

�

)

i

)(p

j

1

; : : : ; p

j

d

) for all

j < t. Return (h

�

)

0

+ [(h

�

)

0

+ (h

�

)

1

℄ + � � �+ [(h

�

)

n�2

+ (h

�

)

n�1

℄.

The �rst step an be aomplished in time O(nM(t) log t) by theorem 6.1(a). The seond

step an be done in time O(tM(n)), by using a standard fast multipliation algorithm.

The �nal interpolation step an again be aomplished in time O(nM(t) log t) by the-

orem 6.1(b). Indeed, in this step, (h

�

)

i

+ (h

�

)

i

is atually a linear ombination of at

most t monomials in S

0

S

i

[S

1

S

i�1

[� � �[S

i

S

0

. Plaing ourselves in the non-pathologial

ase when nt = O(dt

�

n

) and n = O(t) (we reall that t

�

n

= jS

�

n

j), this leads to an

O(dM(t

�

n

) log t

�

n

) time omplexity bound for our trunated multipliation algorithm.

Remark. Atually, (Leerf and Shost, 2001) deals with the speial ase when �

1

=

� � � = �

d

= 1. Their work yields a time omplexity bound of the form O(M(t

�

n

) log

2

t

�

n

).

Notie that S

i

S

j

= S

i+j

for all i and j in this ase, whene t = jS

n�1

j.

The trunated multipliation algorithm an be adapted to the relaxed setting, if we

assume that the omputation of terms of �-degree � of the fators f and g only requires

the omputation of terms of �-degrees< � of the produt fg. This is done by generalizing

the above algorithm to the omputation of produts of the form (f

i

+: : :+f

i+l�1

)(g

j

+: : :+

g

j+l�1

). Working this out arefully leads to a trunated relaxed multipliation algorithm

of omplexity O(dM(t

�

n

) log

2

t

�

n

).
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Remark. In pratie, theorem 6.1 beomes only eÆient for very large t. Furthermore,

the evaluation in high powers of the p

j

may lead to expression growth in the oeÆient

ring C. When omputing over Z (for instane), it is therefore reommended to replae

the omputations in Z[z

1

; : : : ; z

d

℄ by omputations in a polynomial ring of the form

F

q

[x; z

1

; : : : ; z

d

℄. Here q is a not too large prime number (say q � 2

32

or q � 2

64

) and

we have rewritten the integer oeÆients of the original polynomials as polynomials in

x �

p

q=t with oeÆients in f1�dx=2e; : : : ; bx=2g. The evaluation and interpolation is

now done at points of the form (p

i

0

; : : : ; p

i

d

), for suitable p

1

; : : : ; p

d

2 F

q

suh that there

are no non-trivial identities p

k

0

0

� � � p

k

d

d

= 1 for small jk

0

j; : : : ; jk

d

j.

7. Conlusion

In this paper, we have shown that all lassial fast zealous algorithms for manipulating

formal power series admit relaxed analogues of the same asymptoti omplexity up to a

fator O(log n). Theoretially speaking, this allows us to expand power series solutions

to (partial) di�erential equations with almost linear time omplexities and solutions to

di�erential-omposition equations with an almost O(n

3=2

) omplexity.

We have also pointed out that it is hard to oneive implementations in atual omputer

algebra systems, whih adequately reet these asymptoti time omplexities. This is

mainly due to the absene of fast arithmeti in suh systems, suh as DAC- and FFT-

multipliation. An interesting, but perverse onsequene of the lak of suh arithmeti,

is that omparisons between ertain algorithms on the basis of benhmarks may be

misleading (e.g. see our remarks about Table 5).

Another diÆulty for atual implementations is that there seems not to be a best

overall relaxed multipliation algorithm (see Setion 4.4). Nevertheless, for appliations

where the expansion order is known in advane, i.e. when omputations need not be

resumed, the fast trunated relaxed algorithm (see Setions 4.4.2 and 6.3.4) often turns

out to be the fastest. In general, we expet that the best performane is obtained by a

hybrid algorithm, whih selets between di�erent expansion methods as a funtion of the

origin of the series (general, algebrai, holonomi, et.), the onstant �eld, the expansion

order and the possibility to resume omputations. Of ourse, suh a hybrid algorithm is

also the longest one to implement.

Despite the above drawbaks of the relaxed approah, our benhmarks show that for

large expansion orders, we systematially gain with respet to the lazy approah. In

ertain ases (see tables 8, 9 and 10) these gains beome very important and may exeed

a fator of 100. In the future, these fators are expeted to inrease more and more,

sine proessor speed and memory apaity tend to inrease proportionally and powerful

implementations of the FFT-transform might eventually show up. We also notie that the

relaxed algorithms tend to be faster than Brent and Kung's algorithm for exponentiation

and the resolution of di�erential equations (see Table 4).

Having summarized the advantages and disadvantages of the relaxed approah, we will

onlude this setion by a disussion of its �tness for di�erent types of appliations, with

some suggestions for those who want to implement a power series library into a omputer

algebra system, and some �nal general remarks.

7.1. Appliations

Symboli omputation.

The pertinene of the relaxed approah for general appliations in symboli omputation

depends strongly on the problem. On the one hand, multipliation of large symboli
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expressions will tend to be slow (whih favors the relaxed approah). On the other hand,

often only few terms are required (whih favors the lazy approah).

Combinatoris and the analysis of algorithms.

In ombinatoris, the analysis of algorithms and for the random generation of ombi-

natorial objets, one usually needs to expand generating funtions up to a high order.

Therefore, this is an ideal appliation for relaxed power series (Flajolet et al., 1990). In

this ontext, multivariate power series orrespond to the study of parameters in enumer-

ation problems or the analysis of a ertain algorithm (Soria, 1990).

Numerial analysis.

In numerial analysis, power series are mainly omputed in order to be evaluated. The

required number of terms usually depends linearly on the required preision of the eval-

uation. Usually, in absene of numerial instability only a few terms suÆe and on-

stant multipliations will be very eÆient. Therefore, only small speed-ups an possibly

ahieved using the relaxed approah, at the prie of massive inlining.

On the other hand, near singularities, analyti ontinuation algorithms may beome

numerially unstable and higher preisions and expansion orders might be required. The

numerial resolution of partial di�erential equations is another possible appliation of

the relaxed approah.

7.2. Suggestions for implementors

The hoie of whih algorithms to implement in a power series pakage should mainly

depend on the appliations one has in mind and the time one is willing to spend. Roughly

speaking, we would like to distinguish three hoies:

A simple quikly implemented pakage.

If you have little time and are not interested in appliations where high expansions orders

are needed (suh as ombinatoris and the analysis of algorithms), you are probably best

o� with a quikly implemented lazy power series pakage.

Boosting your simple pakage.

If you have some more time and you want to boost the performane of a lazy power series

pakage for large expansion orders, then you may replae your multipliation proedure

with the algorithm from Setion 4.3.1. You may also implement one or more relaxed

omposition algorithm from Setion 5 and a holonomi funtion pakage. On the other

hand, it seems not neessary to implement the fast zealous algorithms from Setion 3,

sine the relaxed algorithms are almost as fast and o�er the possibility of solving virtually

all funtional equations.

Developing an optimal pakage.

If you really want optimal speed and/or generiity, then we suggest �rst to implement

a pakage for really fast dense arithmeti based on the FFT-transform (as desribed

in Setion 6.1). Next, we suggest you to arefully implement hybrid relaxed trunated

multipliation and omposition algorithms, whih are both eÆient for small sizes (due

to massive inlining) and larger sizes (due to the asymptotially fast zealous arithmeti).
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7.3. Final remarks

Other infinite strutures.

In priniple, the relaxed approah may be applied to other valuation rings with fast

zealous arithmeti, suh as the p-adi numbers (Bernardin, 1998).

Generalized series and transseries.

The lazy approah also applies in the ase of power series with generalized exponents

(Salvy, 1991). In general, the relaxed approah does not lead to faster algorithms, beause

of the lak of fast arithmeti for polynomials with generalized exponents. Nevertheless,

if the exponents are grid-based (i.e. they belong to a set of the form a+ b

1

N + � � �+ b

n

N,

where a 2 R and b

1

; : : : ; b

n

2 R

+

�

), then we are essentially handling power series in several

variables, so we an gain on the omplexity. For appliations, see (Rihardson et al., 1996;

van der Hoeven, 1997a).

Computing speifi terms.

For ertain very partiular power series, it is possible to ompute given oeÆients with-

out omputing the previous ones, usually by using Lagrange's inversion formula (Brent

and Kung, 1978).

Modular arithmeti.

In omputer algebra, modular arithmeti is often used to speed up omputations with

integers. For our appliation, modular algorithms may be interesting for parallelization

purposes and in order to redue the memory requirements if we are merely interested in

a partiular oeÆient of the series. Notie that modular arithmeti enters in the general

sheme for fast arithmeti as desribed in Setion 6.1.

Parallelism.

Exept for the zealous algorithms from Setion 3, lazy and relaxed algorithms have the

disadvantage of being essentially sequential. Nevertheless, the fast relaxed multipliation

algorithm is loser to being parallel, sine the zealous multipliations might be done

in parallel modulo a proper synhronization. We also notie that it is often possible to

parallelize the ring operations for C.

Mixing zealous and relaxed multipliation.

Consider the multipliation h = f � g of two relaxed power series. Sometimes, the ar-

guments f and g do not depend on h. In this ase, a zealous algorithm may be used for

the multipliation. It an also happen that f depends on h, but not g. In this ase, it is

possible to improve the onstant fator for the relaxed multipliation by hoosing a more

appropriate partition of N

2

instead of (6.9).
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Other operations on formal power series.

Some other operation on formal power series may be onsidered, suh as

f(z) 7!

X

k>1

�(k)

k

log

1

1� f(z

k

)

;

whih orresponds to taking yles of ombinatorial strutures (Flajolet and Soria, 1991).

Other interesting operations are funtional iteration (Brent and Traub, 1980) and om-

position of multivariate power series (Brent and Kung, 1977). It seems that the relaxed

approah applies to these and other operations, although this should be heked in greater

detail.

Aknowledgment. The author expresses his thanks to D. Saunders for suggesting the

name \laid-bak power series" and he apologizes for his enthusiasm in searhing for an
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