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Abstract

Let L € K(z)[d] be a linear differential operator, where K is the field of algebraic
numbers. A holonomic function over K is a solution f to the equation Lf = 0. We
will also assume that f admits initial conditions in K at a non-singular point z € K.

Given a broken-line path v = z ~ 2’ between z and 2/, which avoids the singu-
larities of L and with vertices in KK, we have shown in a previous paper (van der
Hoeven, 1999) how to compute n digits of the analytic continuation of f along -y
in time O(n log® nloglogn). In a second paper (van der Hoeven, 2001b), this result
was generalized to the case when 2’ is allowed to be a regular singularity, in which
case we compute the limit of f when we approach the singularity along ~.

In the present paper, we treat the remaining case when the end-point of v is an
irregular singularity. In fact, we will solve the more general problem to compute
“singular transition matrices” between non standard points above a singularity and
regular points in KK near the singularity. These non standard points correspond to
the choice of “non-singular directions” in Ecalle’s accelero-summation process.

We will show that the entries of the singular transition matrices may be approx-
imated up to n decimal digits in time O(nlog*nloglogn). As a consequence, the
entries of the Stokes matrices for L at each singularity may be approximated with
the same time complexity.
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1 Introduction
Definitions

Let K be a subfield of C. A holonomic function over K is a solution f to a lin-
ear differential equation Lf = 0, where L = 0"+ L, 10" ' +---+ Ly € K(2)[0]
is a monic linear differential operator of order r. Many classical special func-
tions, such as exp, log, sin, cos, erf, hypergeometric functions, Bessel func-
tions, the Airy function, etc. are holonomic. Moreover, the class of holo-
nomic functions is stable under many operations, such as addition, multipli-
cation, differentiation, integration and postcomposition with algebraic func-
tions. In the sequel, and unless stated otherwise, we will assume that K is the
field of algebraic numbers. We will say that f has wnitial conditions in K if
F(2) = (f(2),..., f"1(2)) € K" for a certain non-singular point z € K.

In this paper, we will be concerned with the efficient multidigit evaluation
of limits of holonomic functions at irregular singularities. For this, it will be
convenient to introduce some terminology. We say that z € C is effective, if
there exists an approzimation algorithm, which takes ¢ € @~ on input and
which returns a dyadic approximation Z € (Z +iZ)2% with |Z — 2| < . Inside
a computer, an effective complex number z is represented as an object with
a method which corresponds to its approximation algorithm (van der Hoeven,
2005b). We denote by C the set of effective complex numbers.

The time complexity of z € C*F is the time complexity of its approximation
algorithm, expressed in terms of n = —loge. If an approximation algorithm
has time complexity 7'(n), then we call it a T'(n)-approximation algorithm.
An effective number is said to be fast, if it admits an approximation algorithm
with a time complexity of the form O(nlog®™® n). We denote by C?* the set
of such numbers. A partial function f : (C*)" »— C°¥ is said to be fast if it
maps (C™")" into C™*. For instance, multiplication is fast (Schonhage and
Strassen, 1971), since two n-bit numbers can be multiplied in time M(n) =
O(nlognloglogn). Implicitly defined functions in terms of fast functions, like
division, are also fast, as a result of Newton’s method.

Whenever the coefficients of L admit singularities, then solutions f to Lf =0
are typically multivalued functions on a Riemann surface. From an effective
point of view, points on such a Riemann surface may be addressed via broken-
line paths v = z ~ 2 = zg = 2z, — --+ — z starting at the point z =
zo where we specified the initial conditions for f. Each straight-line segment
z; — z;y1 should be sufficiently short, so that the disk with center z; and
radius |z;41 — 2;| contains no singularities. Given such a path, we will denote
by f(7) the evaluation of f at the endpoint 2’ of v, as obtained via analytic
continuation.



Previous work

It was first noticed by Brent (Brent, 1976a, Section 6) that the constant e
admits an efficient O(M (n)logn)-approximation algorithm based on binary
splitting. This result was obtained by analogy with Schonhage’s fast algorithm
for radix conversion. The paper also mentions efficient algorithms for the com-
putation of more general exponentials, although this direction was not inves-
tigated in more detail, probably because even more efficient O(M (n)logn)-
algorithms were discovered shortly afterwards (Brent, 1976b).

The binary splitting algorithm was generalized to arbitrary holonomic over
@ in (Chudnovsky and Chudnovsky, 1990). It was shown there that, given
a holonomic function f over Q with initial conditions in @, and a broken-
line path v = z ~ 2’ as above with 2,2’ € Q, the number f(7y) admits an
O(M (n) log? n)-approximation algorithm. In the case when 2’ is a more gen-
eral effective number with a 7'(n)-approximation algorithm, it was also shown
that f(y) admits an O(T(n+ O(1)) + M (n) log® n)-approximation algorithm.
In particular, the restriction of a holonomic function to an open domain of C®#
is fast. By what precedes, this result is extremely interesting for the efficient
multidigit evaluation of many special functions. Special cases and a few ex-
tensions were rediscovered independently by several authors (Karatsuba, 1991,
1993, 1995, 2000; van der Hoeven, 1997, 1999; Haible and Papanikolaou, 1997).

Remark 1 An early hint to the existence of fast algorithms for the evalua-
tion of holonomic functions occurred in (Gosper and Schroeppel, 1972). Tt is
plausible that the authors had something like the binary splitting algorithm in
mind (the announced complexity is the right one up to a factor O(loglogn)),
but no details are provided.

Our first paper (van der Hoeven, 1999) on the subject contained three im-
provements with respect to (Chudnovsky and Chudnovsky, 1990). First, we
noticed the possibility to work over the algebraic numbers K instead of @Q,
which allows for the fast evaluation of constants like I'(v/2). Secondly, we im-
proved the above factor of log®n (for the evaluation in arbitrary points) to
log” nloglogn. Finally, the evaluation of f(7) depends on a certain number of
bounds, which were assumed to exist empirically in (Chudnovsky and Chud-
novsky, 1990). In (van der Hoeven, 1999), it was shown that all necessary
bounds can be computed effectively, as a function of the operator L and the
path 7. Stated otherwise, we showed that there exists an algorithm which
takes L, v and the initial conditions for f at z on input, and which computes
f(7) (as an object with a O(M (n)log® n)-approximation algorithm).

In a second paper (van der Hoeven, 2001b), we continued our studies by show-
ing how to efficiently evaluate the limit of f along a broken-line path v which



ends in a regular singular point 2’. This extension allows for the efficient eval-
uation of multiple zeta values, Bessel functions (whose initial conditions are
specified in a regular singular point) and many other interesting transcenden-
tal constants. Some special cases of this more general result were obtained
before in (Karatsuba, 1993, 1995; Haible and Papanikolaou, 1997).

A related problem to the evaluation of f at the end-point of a broken line
path ~ is the computation of “transition matrices” along . Given a path v =
z ~ 2/ from z to 2/, the “initial conditions” F(2') = (f(2'),..., f"V(2")) of
f at 2’ depend linearly on the “initial conditions” F'(z) = (f(2),..., f"Y(2))
at z. Hence, when considering F'(z) and F(z') as column vectors, there exists
a unique scalar matrix A, .., = AL, with

F(Z')= A, F(2),

which is called the transition matriz along v for L. The relation A,.,,» =
Ay, .., make transition matrices well-suited for the process of analytic
continuation. Therefore, most algorithms from (Chudnovsky and Chudnovsky,
1990; van der Hoeven, 1999) rely on the computation of transition matrices.
In (van der Hoeven, 2001b), this concept was further generalized to the case
when 7 is allowed to pass through regular singularities.

Main results

In this paper, we will be concerned with the computation of the limits of
holonomic functions in irregular singularities and, more generally, with the
computation of generalized transition matrices along paths which are allowed
to pass through irregular singularities. The algorithms are based on an effec-
tive counterpart of the accelero-summation process, as introduced by Ecalle
(Ecalle, 1987, 1992, 1993; Braaksma, 1991; Borel, 1928; Ramis, 1978). Since
this process is not completely straightforward, let us first motivate its use for
our application.

Consider a holonomic function f with an irregular singularity at the origin.
Assume that f admits a (usually divergent) asymptotic expansion f = fy +
fiz+ -+ € K][[z]] in a sector S near the origin. Assume also that we have a
bound B for |f(z)| on S. Given z; € SN K, we are interested in computing
I= fz% f(t)dt. Notice that ¢(z) = [; f(t)dt is a holonomic function, so the
computation of I is a particular instance of the problem of computing the
limit of a holonomic function in an irregular singularity.

In order to find I € (Z + iZ)2% with |I — I| < ¢, for a given ¢ € Q~,
it clearly suffices to compute (z;) with precision £/2 at a point z; with



|z1| < €/(2B). This can be done using the analytic continuation algorithm
from (Chudnovsky and Chudnovsky, 1990; van der Hoeven, 1999). However,
since the equation Lf = 0 may have other solutions g with growth rates of
the form log|g| = O(|1/z|%) at z = 0, the transition matrix between z, and
z) may contain entries of size e@((1/9)") The computation of n = O(— loge)

digits of I may therefore require a time e“(™.

The situation gets a bit better, if we want to compute J = fz% f(t)e~Vide
instead of I, where we assume that z; € R”. In that case, using a similar
method as above, we may choose z; € Q~ with z; = O(— loge). Consequently,
the computation of n = O(—loge) digits of J requires a time O(n"log®V n),
where x > 1. Although this already yields a polynomial time algorithm, we
are really interested in fast approximation algorithms.

Roughly speaking, the main result of this paper is that the computation of
an arbitrary limit of a holonomic function at an irregular singularity may be
reduced to the computation of a finite number of other, more special lim-
its. These special limits, which are similar to J above, with k = 1, will be
shown to admit fast O(M (n) log® n)-approximation algorithms. More gener-
ally, we will generalize the concept of transition matrices, so as to allow for
broken-line paths through irregular singularities. In particular, Stokes matri-
ces may be seen as such “singular transition matrices”. We will both show
that singular transition matrices may be computed as a function of L and
a singular broken-line path +, and that their entries admit O(M (n)log® n)-
approximation algorithms.

This result admits several interesting applications besides the computation of
limits of holonomic functions in singularities. For instance, we may consider
solutions f to Lf = 0 with a prescribed asymptotic behaviour in one or several
singularities and recover the function from these “singular initial conditions”
and one or more singular transition matrices. In (van der Hoeven, 2005a),
it has also been shown that the possibility to compute the entries of Stokes
matrices can be used for the numeric computation of the differential Galois
group of L. In particular, we obtained an efficient algorithm for factoring L.

Our results can be compared to the only previous work on effective resum-
mation that we are aware of (Thomann, 1995). First of all, the current paper
has the advantage that all necessary error bounds for guaranteeing a certain
precision are computed automatically. Secondly, the almost linear time com-
plexity is far better than those achieved by other numerical algorithms, like
Taylor series expansions (of complexity &~ O(n?), at best) or the Runge-Kutta
method (of complexity e?(VM).



Quick overview

Let us briefly outline the structure of this paper. In section 2, we begin with
a survey of the accelero-summation process. The idea is to give a meaning to
the evaluation of a divergent formal solution to Lf = 0 wvia a succession of
transformations. We first make the formal solution convergent at the origin by
applying a formal Borel transform. We next apply a finite number of integral
transforms called “accelerations” followed by an a Laplace transform. At the
end, we obtain an analytic solution to Lf = 0 in a sector near the origin,
which admits the divergent formal solution as its asymptotic expansion.

The material in section 3 is more or less classical. We first recall the defini-
tion of the Newton polygon of L in a singularity, as well as the relationship
between its slopes and the shape of formal solutions to Lf = 0. In particular,
the steepest slope gives us information about the maximal growth rate x of
solutions. We next study the Newton polygons of other operators related to
L, like the operators which annihilate the Borel transforms of solutions to L.

In section 4, we recall several stability properties (Stanley, 1980) for holonomic
functions and constants, as well as their effective counterparts. In particular,
we will show that the integrands involved in the accelero-summation procedure
are holonomic and how to compute vanishing operators for them. Using the
results from section 3, these operators will be seen to have the required growth
rates at infinity.

In sections 5, we show how to compute uniform bounds for the transition
matrices in suitable sectors near infinity. In section 6, these bounds will be used
for the efficient evaluation of integrals with exponential decrease. In section 7,
the different techniques are assembled into an effective and efficient accelero-
summation procedure.

None of the algorithms in this paper have been implemented yet. Nevertheless,
at least some of the algorithms should be implemented inside the standard
library of the upcoming MATHEMAGIX system (van der Hoeven et al., 2002)
and any help would be appreciated.

Notations

The following notations will frequently be used in this paper:

C Riemann surface of log

K" Subset {z € K : 00} of K, with O € {#,>, >}



Dy, @cﬂ. Open and closed disks with center ¢ and radius r

S8 o.r Closed sector {z € C: |argz — 0] < , |z| < R} at the origin
S5 R Closed sector {z € C : |argz — 0| < a, |2| > R} at infinity
lg’z Formal Borel transform w.r.t. z

L0 L0 Analytic Laplace transform w.r.t. z (for minors and majors)

Af 11, Ab . Acceleration operators (for minors and majors)

ML Multiplicative conjugation of L with el v

P,L Compositional conjugation of L with 2P

Q,L Compositional conjugation of L with wz
L o, . .

AZ Transition matrix for L along vy

The operators B,, £, LY, flz,k,, /li,k, are defined in sections 2.1 and 2.2.
The transformations M,,, P, and Q,, are introduced in sections 3.2 and 4.2.4.
Transition matrices are defined in section 4.3.

2 Reminders on the accelero-summation process

In this section we survey the process of accelero-summation, give some ex-
plicit bounds for the acceleration kernels, as well as the interpretation of the
accelero-summation process in terms of “majors”. We have aimed to keep our
survey as brief as possible. It is more elegant to develop this theory using resur-
gent functions and resurgence monomials (Ecalle, 1985; Candelberger et al.,
1993). For a more complete treatment, we refer to (Ecalle, 1987, 1992, 1993;
Braaksma, 1991; Martinet and Ramis, 1991).

2.1 The accelero-summation process

Let C[[2R7]] be the differential C-algebra of infinitesimal Puiseux series in z for
§ = 20 and consider a formal power series solution f € O = C[[2®”]][log 2]
to a linear differential equation over K(z). When applicable, the process of
accelero-summation enables to associate an analytic meaning f to f in a sector
near the origin of the Riemann surface C of log, even in the case when f
is divergent. Schematically speaking, we obtain f through a succession of
transformations:



f f
B. | LY (1)
e e e e
Azl—>22 A p_l_up

Each f; is a “resurgent function” which realizes f;(z;) = f(z) in the “convo-
lution model” with respect to the i-th “critical time” z; = %/z (with k; € Q~
and ky > --- > k,). In our case, fz is an analytic function which admits only
a finite number of singularities above C. In general, the singularities of a resur-
gent function are usually located on a finitely generated grid. Let us describe

the transformations 5, .Ag 2y, and ﬁgi in more detail.

The Borel transform We start by applying the formal Borel transform to
the series fi(z1) = f(2) = Yo, fron27 log" 21 € C[[z% ||[log z1]. This trans-
formation sends each 27 log" z; to

(Bz121 log" 21)(¢1) = (7~ IZ( ) log Ci,

where v(0) = 1/I'(0), and extends by strong linearity:

AG) =Baf)C) = Y fire(Ba 2l log" 21)(C),

e Q>
reN

The result is a formal series fi € (T C[[¢?]|[log (1] in ¢; which converges
near the origin of the Riemann surface C of the logarithm. The formal Borel
transform is a morphism of differential algebras which sends multiplication to
the convolution product, i.e. B, (fg) = (B, f) * (B.,9), and differentiation 9,
to multiplication by —(. Intuitively speaking, the Borel transform is inverse
to the Laplace transform defined below.

Accelerations Given ¢ < p, the function fz is defined near the origin of C,
can be analytically continued on the axis e¥iR> C (D and admits a growth
of the form fZ(CZ) = exp O(|¢;|¥#/*i*i+1)) at infinity. The next function f;,; is
obtained from fz by an acceleration of the form

frrGon) = (e G = [ (@K (G0 Ge)dG, (2)



where the acceleration kernel Ky, 4., is given by

~ 1 c+ooi ¢ ¢
121 —Ciz
Kki;ki-‘rl (CZ’ <Z+1) = —27ri / ) e i+125+41 i ldzz+1
c—0oQ

1 Gi
= G Kt (W) @
N 1 c+ooi ez
K,\(C) = 2—m ,/C_ooi e® ¢ AdZ. (4)

For large ¢ € R?, we will show in section 2.4 below that

IA()\(C) < Bexp(—CCI/(l_A))

for some constants B,C > 0. It follows that the acceleration f,H of f; is
well-defined for small (;;; on e?R>, where ¢ = 0;k;/k;1. The set D; C R of
directions 6 such f; admits a s1ngu1ar1ty on e”'R> is called the set of Stokes
directions at the i-th critical time. Accelerations are morphisms of differential
C-algebras which preserve the convolution product. Intuitively speaking, one

has A%, =B, oL%, where the Laplace transform LY is defined below.

The Laplace transform The last function fp is defined near the origin
of C, can be analytically continued on the axis e’iR> C C and admits at
most exponential growth at infinity. The function f is now obtained using the
analytic Laplace transform

1) = folz) = E2F) ) = [ fylGe /g, (5)

C,,EeoPiR>
For any sufficiently small z, with |arg z, — 0,| < 7/2, the value f(z) = f,(2,)
is well defined. The set D,, of Stokes directions is defined in a similar way as in
the case of accelerations. The Laplace transform is a morphism of differential
(C-algebras which is inverse to the Borel transform and sends the convolution
product to multiplication.

Given tuples k = (ky,...,k,), @ = (01, ...,0,) of critical times k; > --- > k,
in ” and directions #; € Ry := R\ Dy,...,0, € R, := R\ D,, we say
that a formal power series f € O is accelero-summable in the multi-direction
0 if the above scheme yields an analytic function f := sumgg f For any
« < kym/2, this function is defined in a sufficiently small sector near 0 of the
form Skpgp,m r- We denote the set of accelero-summable power series of this

kind by Ogg.



The set Oy, g forms a differential subring of © and the map frs florfe Or.0
is injective. If k' and @’ are obtained from k and @ by inserting a new critical
time and an arbitrary direction, then we have Op g & Oy ¢. In particular, O g
contains Oy = C{2®” }[log 2], where C{2R”} denotes the ring of convergent
infinitesimal Puiseux series. Assuming that each D; is finite modulo 27, and
setting R := R1 X+ - xR, we also denote Or g = Nger Ok, Or = Ur Orr
and Oy = Ug Og.

Let ¢ be the group of elements e with P € K[2Q"] and denote by $ =
O2z¥[€] the ring of all polynomials of the form f= Yece f.e with f, € 2K,
The notion of accelero-summation extends to elements in % instead of O.
Indeed, given § € Ogg, 0 € C, ¢ = e’1/¥?) € & we may simply take
(sumgg §27¢)(2) = (sumgg §)(2)2%¢. It can be checked that this definition is
coherent when replacing §z° by (2%§)2°~* for some k € Q. By linearity, we
thus obtain a natural differential subalgebra S 9 C $ of accelero-summable
transseries with critical times k and in the multi-direction 8. We also have
natural analogues $; and $,5 of O and O.

2.2  Majors and minors

In general, the acceleration and Laplace integrands are both singular at zero
and at infinity. Much of the remainder of this paper is directly or indirectly
concerned with the efficient integration near infinity. This leaves us with the
integration at zero. A classical trick is to replace the integrand by a so called
magor. This allows us to replace the integral from zero to a point u close
to zero by a contour integral around zero from e 2™y to u. We will rapidly
review this technique and refer to (Ecalle, 1985; Candelberger et al., 1993;
Ecalle, 1992, 1993) for details.

Consider an analytic germ f near the origin 0 of the Riemann surface C of
log. A major for f is an analytic germ f with

A ~

F(Q) = () = f(ce®™).

The minor f only depends on the class f of f modulo the set of regular germs
at 0. We call f a microfunction. Given a regular germ ¢, 0 € Q% and k € N,
the minor

F(¢) = ()¢ 10g" ¢

admits the major

10



o ©(€)¢7 Py (log () ifoeN
ﬁw(C)C”Pa,k(logC) ifo g N

for certain polynomials Py(log() = mlogkﬂg + -+ and P,i(log() =
logh¢ + - --. Mpre generally, if f is locally integrable in a sector containing

a point u near 0, then

27?1/ { C (6)

is a major for f. The class of f does not depend on the choice of w.

Given majors f; for the f; from section 2.1, we may now replace (2) and (5)
by

fir1(Gin) Z/HG' fi(C’i)Kki,kHl(CiaCz'—l—l)dCi (7)
Io(e) = (5 1)) = [ TG/ dg,, ®

where #Hy stands for the contour (see figure 1 below) which consists of #,
from e(®~2™ico to e®2™ic (for some small £ > 0), followed by Cy from el?—2™ig
around 0 to e’ic, and Hj from e’'c to efioo

Using the formula (6) in combination with (7) leads to the direct expression

firr(Gen) = (Al P Gor) = [ G B (G GG, ©)

i

of f;11 in terms of f;, where

Kkl ki1 (CZ J 6)
6 Cz—l—l

The integrals (9) and (8) further decompose into

K(Q, Giy1) = (Cz, Ciy1) = o / d¢.

fir1(Gipr) = /c(,, Ji(G) Ko (G, Gir)dG +
Lo 6 R (G Gn)dG, (10)

foen) = [ GG+ [ Fy(Ge G, (1)

Op

11



More generally, differentiating m € N times w.r.t. (;11, we obtain the following
formulas, on which we will base our effective accelero-summation algorithms:

PG = [ FGRLT (G GG+
/ fz(Cz) kl,kWI(CzaCz-l-l)dCz (12)

ame_CP/zP
oz

ame CP/ZP

fzgm)(zp) :/c fp(Cp) dép +/ fp &) ddp. (13)

In section 2.4 below, we show that, for u small enough, the kernel K (;, Cit1)
and its derivatives in (;;; have the same order of decrease at infinity as

K(Gi, Ginr)-

eiGi 00

Co,

7

Fig. 1. Tllustrations of the contours for the acceleration and Laplace integrals. At
the left, the contour for the direct integrals (2) and (5) using minors. In the middle,
the contour in the case of majors (7) and (8). At the right hand side, we use majors
for integration at 0 and minors for the integration at infinity, as in (10) and (11).

2.3 Some elementary bounds

Lemma 1 Given o € R and X > 0 with X > 2«a, we have

/xezdx 2X% X
X

Proof In the case when o < 0, we have

/ % *dx < X‘”/ e %dr = X% X < 2X% X
X

X

If & > 0, then consider the function ¢ = ¢(x) = z — alogx and its inverse
x = (t). Given X > 2, we obtain

12



00 00 o) —tdt
/ x“e"”da::/ Y (t)e tdt :/ © —dt
b o(X) o(x) 1 — 275

<2 e tdt = 2X %X,
p(X)

|

1/
Lemma 2 Givena >0, A >0, 82 A—-1and X >0 with X > (2?;2)/7
we have

o0 2
/ :C’Beiawhd.f < _Xﬂ+1—)\efaX,\ :
X a

oo A %A
/ e dr < Xe X7,
X

1/ 1/
Proof For X > (2@32) / > (2%) / , the above lemma implies

/oo xﬁe_ax,\dx _ 16+1 /00 CCﬁ+/1\—ke_acdx < iX’B—H_)‘e_aX/\_
X Ao JaxA a\
The second relation easily follows from the first one by setting 5 = 0. O

Lemma 3 Let o, 3,6, X > 0. Then

B
chon < (2 o
ge

Proof This follows from the fact that the function z%e~* admits its minimum
at = f/e. O

Lemma 4 Giwven a > 1 and X < 2«, we have

/ 1% *dr < 4e*°T(a)e ™
X

Proof By lemma 1, we have

/ % "dr < 20T e 4+ 2(2a))%e %,
X

13



since z%~* admits its maximum in x = «. Furthermore,

20" e + 2(2a)% 2 < 2(e®a®t! 4+ 2%a%)e™* < 4e** T (a)e™,

The second inequality can be checked for small o by drawing the graph and
it holds for large a because of Stirling’s formula. O

Lemma 5 Given A € (0,1), a > 1, 3> 0 and X < [2(a+1— \)/A\]Y*, we
have

a4 (6% _ﬂxk

T re Py < 4’ (S
/Xace z < de ()\)e

Proof Application of the previous lemma, after a change of variables. O

2.4  FExplicit bounds for the acceleration kernels at infinity

Lemma 6 Let A € (0,1) and ( > 0. Denote

and assume s > 14. Then

N 8s 12
K < e X’
)] V1 — A(cos a)/*

Proof Let p(z) = 2 — (2z*. We will evaluate the integral (4) using the saddle
point method. In the neighbourhood of the saddlepoint s, we have

-1 1— 1 €
(p(s+ig):)\)\ s — 25)‘52—%/0 " (s + it) (e — t)*dt,

©"(2) = —CA(1 = A)(2 — N3,

For z on [s, s +iy/s], we also have

14



wm@ﬂé(fjéqﬁ)ékﬂ—Ax2—Apk3

:< 1 )3(1—/\)(2—)\)

1—s1/2 52

Y

For |e| < /s, it follows that

. _ 1\ (I=N2=N
n _\2 3
%;@(s+th @d4<(1_84m) o

<1—)\< 1 )32
= 383/2 \1 — g 1/2 €

A
g2,

DO |

1 —
<
4s

where the last bound follows from our assumption s > 14. We infer that

1-a,

R (p(s +ie) — ¢(s)) < Te )

whence

/ VS (st o(s) g
Vs

:V??i. (14)

O 1-a,2
<‘/ e & Udr

-0

Now let w = s(cos )~/ > /5. We have

/ R /“ oP(512)—0(5) 4
—w Vs

since Ry(s + iz) admits a unique maximum at z = 0. Furthermore,

< 2w, (15)

R(C(s+iz)) > ¢|z| cos a,

for all z € R. Lemma 2 therefore implies

‘ [/w T /oo} e (5+iz) ~0(s) 4

since w* > s/ cosa > 2s*1/cosa = 2/(A(cosa). Putting the relations
(14), (15) and (16) together, we obtain

< 2wel(s —(cos)?) 9, (16)

dms n 4s < 8s
1—X  (cosa)'/* = /T = X(cosa)/r

; 1-)
[KA(Q)]e™>* <
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This completes the proof of our lemma. a

Lemma 7 Let A = k;i.1/k; and assume that arg(; = larg(iq1, argu =
arg Gi+1, 0 < |u| < |Gi11[/2 and

. N 141—)\ 2 1-A )
Gifut| > maX( N (ﬁ) A . (17)

Then

22-mm]!

o (G /ur) /=N (18)
rleos YAV~ G

‘ kl,kH_l (Cza Cz—|—1)| X

Proof We first observe that

—m! v K\(G/&Y d
kl,le(CZaCz—H) m/ (K)\(C/g) _f

2mi £ — Gipr)™ &
_ —_m' 0o f(,\(f) g
2mid Jo e ((G/EYA = Ciga)mtt €

For & > (;/u*, we also have | /€[ < |u| < |Giy1l/2, so that

m)!
2m+2ﬂ.)\<-m+1

‘ kz’kz+1 (CZ? CZ+1) | X

00 N dg
Rt (19)

Setting a = (Am)/2, the lemmas 6 and 2 now imply

o L dE 8 00 1 _1=agyei/a-n d€
/g,-/uA K)\(§)? S V1 — A(cos )1/ /Ci/u’\ Qrrem 00 £
< 16 o= 520G /u) /=N
(cos a)/2/1 — A ’

because of the assumption (17). Combining this bound with (19), we ob-
tain (18). O
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3 Differential operators and Newton polygons
3.1 Definition of the Newton polygon

Let K[2®] be the set of polynomials of the form P = P, 2% +- - -+ P, 2* with
PoyooyPyy € K#and ay > -+ > oy € Q. If | # 0, then we call v>°(P) = —a;
the valuation of P at infinity and a; = v°(P) the valuation of P at zero. If
[ = 0, then v*®°(P) = v°(P) = +o0. We write v = v*® or v = v° when it is
clear from the context whether we are working near z = co or z = 0.

Now consider a differential operator

L=L6+---+ Lo € K[zR|[6] (L, #0),

where § = z0 = z%. The support supp L of L is defined to be the set of all
pairs (i, ) € Nx Q with L; o, = (L;)a # 0. The Newton polygon (see figure 2)
of L at infinity (resp. zero) is the convex hull of

{(z,a+ey): (i,a) €supp L,0 < = <4,y > 0},
where € = —1 (resp. e = 1).
The boundary of the Newton polygon consists of two vertical halflines and
a finite number of edges. The outline of (the Newton polygon of) L is the
sequence (7, ), - - -, (41, oq) of points with 0 = 49 < --- < iy = r, such that

the j-th edge of the Newton polygon is precisely the segment which joins
(ij_l,ozj_l) to (ij,ozj). We call

_ 4 T4

05 = — -
1 — 15

J j—1

the slope of the j-th edge. From the definition of the Newton polygon as
a convex hull, it follows that

U(Lk) —_ U(Lij) 2 60’j(k —_ ’LJ)

for all k. We call k = k;, = €0y_1 the growth rate of L.
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Fig. 2. Nlustration of the Newton polygons at infinity and zero of the operator
L =6"+2226% — 2362 + (T2 — 323)0 + 1122,

3.2 Operations on differential operators

3.2.1 Multiplicative conjugation

Given L € K[2®][8] and ¢ € K[2®], we define ML to be the operator which
is obtained by substituting é + ¢ for § in L. For all f, we have

(M L)(f) =e JelzL(el ¥/7 ),

In the case when ¢ € K, we have

supp M,L C supp L + (=N, 0).

In particular, the Newton polygon of M L and L coincide, both at zero and
infinity (see figure 3). In general, only the slopes which are steeper than the
exponent of the dominant monomial of ¢ coincide.

3.2.2  Compositional conjugation

Let 7 € Q7 and consider the transformation P;, : z — 27. If z = u”, then

0 0 1 0

T J—

72— = = —y—0
0z ou™ T Ou’

so the transformation P, naturally extends to K[2®][§] by sending & to 77'4.
We have

supp P,L = {(i,7a) : (i, ) € supp L}.

18



Fig. 3. Illustration of the Newton polygons at infinity of L from figure 2 and
MM = §* + (222 4+ 8) 8 + (1222 — 23 + 24) 6% + (242% — 723 + 72 + 32) § + 2722
—102° + 14z + 16.

Consequently, if

(40, ), - - -, (41, v)

is the outline of L, then

(7;0,7'060), ceey (il,TO{l)

is the outline of P, L. In particular, kp_;, = |T|k. Of course, if 7 < 0, then we
understand that the roles of infinity and zero are interchanged. In figure 4, we
have illustrated the effect of the transformation P, on the Newton polygon.

Fig. 4. Tlustration of the Newton polygons at infinity of L from figure 2 and
PijoL = 166% + 1620° — 42%/26% + (14212 — 623/2) 6 + 112.

3.3 The Borel transform

Let us now consider the analogue of the formal Borel transform B from sec-
tion 2.1 for differential operators. It is classical that the formal Borel transform
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satisfies
B(2*0,f) = (Bf;
B(z7'f) = 0.Bf.

for f € zKK[[2]]. Rewritten in terms of the operators §, = 20, and §; = (0,
this yields

B(6.f)= (6 + 1)Bf;
B(z7'f)=(¢"6¢)BYf.

This induces a natural K-algebra morphism B : K[271][d,] — K[¢][d¢], by
setting

Each term L, ;276" of an operator L € K[z7!][d,] gives rise to a contribution

B(LZ,JZJ(SZ) = Cj(Lj,i(SZij + Ci_j_l(szijil + 04 CO)

to BL, for suitable constants ¢;_;_1,...,co € K. In particular,

supp B(Li,jzjéi) C(i—j4,7)+ (=1,0)N.

Let (ig, ), - - -, (4, ) be the outline of L at infinity and for all j, let

(o

~ J

0; = .
J

1—0']

If 0 < 0; < 1, then the j-th edge gives rise to an edge with slope 6; in the
Newton polygon of BL at zero. If o; > 1, then it gives rise to an edge with
slope &, in the Newton polygon of BL at infinity (see figure 5). In addition,
if L, contains several terms, then the Newton polygon of BL at infinity also
contains an edge with slope —1.

3.4  Formal solutions

Having chosen whether we work near infinity or near the origin, let
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fr
L

- —_— e — ——

Fig. 5. The left hand column shows the Newton polygons at infinity of the op-

erators I = 6* — 2(53 - 2%5 — 212 and PoL = %(54 - %53 - ﬁé — 214. At the

right hand side, we have drawn the Newton polygons of their Borel transforms
= _6) 54 _ 18 1143 _ 18 7 62 _6, 8
BL=(1-8)at+ (4= 2 - L)+ (6-2-5)+ (4- 8+ 5)6+1and
BPoL = (b — 52 ) 0+ (1 — o — 5 ) '+ (G + 25 ) 0+ (3 + o3 — 39) 82
+ (i +o+ 4—2) § + % at infinity (the middle column) and at zero (the right hand

column).

Y

O =K[[z**]]log 2] ;
¢ =exp K[zQ°];
$=(0z%)[¢].

Given f € 3, the set £ = {e € € : f, # 0} is called the set of exponential
parts of f, and the number k; = max{—ea : e’®) € £, P, # 0} U {0} the
growth rate of f. More generally given a subvector space V of 3, we denote

Ey ={&;: f €V} and ky = max{k;: f € V}.

The Newton polygon provides a lot of information about the structure of the
subvector space ¥V, C % of formal solutions to Lf = 0. In the sequel, we will
use the following classical consequences of the Newton polygon method:

Theorem 1 Let L € K(2)[6]* be monic, of order r and assume that K is
algebraically closed. Then the equation Lf admits a full basis of solutions in
8D, i.e. dim YV, = r. Moreover, each basis element may be chosen so as to have
a unique exponential part. O
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Theorem 2 Let oy < --- < gy be the slopes of the Newton polygon of L. Then

a) {ks: feVi}={eo,... e}
b) Ry, = RL- O

4 Holonomy
4.1 Holonomic functions in several variables

Let K be an algebraically closed subfield of C. Consider the coordinates z =
(z1,---,2,) and corresponding derivatives 8 = (01,...,0,) W.I.t. 21,..., Zn-
An analytic function f in z is said to be holonomic over K, if it satisfies
a non-trivial linear differential equation L;f = 0 with L; € KK(2)[9;] for each
i € {1,...,n}. Equivalently, we may require that K[d]f is a finitely gener-
ated module over IK(z). The second criterion implies the following classical
proposition (Stanley, 1980):

Proposition 1 Let f and g be holonomic functions in z. Then

a) Any rational function in K(2z) is holonomic.
b) f+ g is a holonomic function.
¢) fg is a holonomic function.
d) 0;f is a holonomic function for alli € {1,...,n}.
) Given a point u on the Riemann-surface R of f, the specialization f(z, =
Up) s holonomic.
f) Given algebraic functions gy, ..., g, over K(z) the composition

folg, .. gn) 20 f(a1(2),...,0n(2))

18 holonomic.

Proof The property (c) follows from the inclusion

K[d](fg) € (K[D]f)(K[D]g)

and the fact that the dimension of the right-hand side is finite over K(z). All
other properties are proved in a similar way. O

A more interesting closure property is the stability under definite integration.
Consider a holonomic function f in z and a point « on its Riemann surface
R. Let R, be the Riemann surface of the specialization f(z' = wu’), where

z' = (z1,...,2,-1) and u' = (uy,...,u,—1). Consider a path v : (0,1) - R,
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on R,, with possibly singular end-points. If v is singular at ¢ € {0, 1}, then we
assume that there exists a neighbourhood U’ of w/', such that (2',7) : (0,1) —
R is a path on R for all 2’ € U’ and lim;_,, f(2',7(t)) = 0. We now have:

Proposition 2 The integral g(2') = [, f(2', zn)d2, is a holonomic function.

Proof It suffices to show that g is holonomic in a neighbourhood of u’. Let
p=(p1,-..,pn) € N" be such that

IK[B]fQIK[8]<pf=Vect(8kf:O<k1 <Py, 0 < ky < pp).

Let f* and f~ be the specializations of f in z, at the end-point resp. starting
point of . Notice that f™ and f~ are defined in a neighbourhood of u’. Setting
9' = (01,...,0, 1), the space

R = (K[@)ep fT) + (K[8]cp f7)

is finite dimensional over IKK(2'). For each k € N™ and | € N, let

Iji = /7 2 (8% f)(2)dzn.

The differential equation for f in z, yields a finite relation

Pn
Z Z Ckmil(k',kn);Hi =0,

kn=0 1

with Cy, ; € K(2') for all k,,. Partial integration also yields a relation

1
[+1

I(k',i);l - I(k’,z'—l—l);l—l—l €ER

for every i. Combining these relations, we obtain a non-trivial relation

Ap ol g+ + A gl 0)1q € R,

where Ay o, ..., Ay, € K(2')[l]. For [ which are not a root of Ay g, we thus
obtain a recurrence relation for Iy o). Therefore, the space

I:Vect(]k;120<k1 <p1,...,0<kn_1<pn_1,kn:0,l€N)+R

is again finite dimensional over K(2'). We conclude our proof with the obser-
vation that Z is stable under 8'. a
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4.2 Computation of vanishing operators

Let us now turn our attention to the one-dimensional case. Given a monic
differential operator L € K(z)[0], we denote by H; the space of solutions to
the equation Lf = 0 at a given point. In the case of formal solutions at zero
or infinity, we will also write £, = £y, . Inversely, given a vector space V' of
formal series, analytic germs or analytic functions on some domain, we say
that L € K(z)[0] vanishes on V if LV = 0. We say that L is a vanishing
operator for V if H;, =V, in which case V is said to be closed.

Given two operators K, L € K(z)[0], we know by proposition 1 that there
exists an operator M € K(z)[0] which vanishes on ‘H g +Hy. It turns out that
the operator K B L of minimal order with this property is actually a vanishing
operator for Hx+Hy. A similar property holds for the operators KX L, L™ and
LP» of minimal orders which vanish on Vect(H M), H, resp. Vect(Hr o ¢ :
P = z), where p € N”. What is more, there exist algorithms for computing
these vanishing operators.

In this section, we will briefly recall these algorithms, and thereby give an
effective proof of lemma 8 below. The algorithms are all more or less classical,
but we could not find a reference where they are all described together. We
will also prove a slightly weaker result for the operation (6) which associates
a major to a minor.

Lemma 8 Let K, L be monic differential operators in K(2)[0] and p € N7.

a) There exists a unique monic K B L € K(z)[0] with Hxmr, = Hk + Hy.

b) There exists a unique monic K XL € K(z)[0] with Hxmr = Vect(HxHL).

c) There exists a unique monic LP € K(2)[0] with Hio = H.

d) There exists a unique monic L® € K(2)[0] with Hye, = Vect(Hp o ¢ :
P = 2).

4.2.1 Addition

We notice that K H L coincides with the least common left multiple of K
and L in the Ore ring K(z)[0]. Indeed, any common left multiple vanishes on
Hi + Hr and any operator which vanishes on H g resp. Hp right divides K
resp. L. One may thus compute K H L using any classical algorithm for the
computation of least common left multiples, such as the Euclidean algorithm.
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4.2.2  Multiplication

Given formal solutions F' and G to KF = 0 and LG = 0, the product F'G
and its successive derivatives F'G + FG', F"G + 2F'G' + FG", etc. may all
be reduced using the relations K F = LG = 0. In other words, (FG)*) € V =
Bicrjcs K(z) FOGY, for all k, where r and s denote the orders of K resp.
L. Consequently, there exists a K(z)-linear relation among FG, ..., (FG)®
in V. By linear algebra, we may compute the monic operator M of smallest
order with M(FG) = 0 in V. Using an adaptation of the proof of (Hendriks
and Singer, 1999, Lemma 6.8), we will show that M = K X L.

Let fi,..., fr and g1,..., g5 be fundamental systems of solutions to Kf =0
resp. Lg = 0 at a non-singular point, considered as elements of the field IC
of convergent Laurent series at this point. Let Cy,...,C, and D,..., D, be
formal indeterminates. Then the substitutions

FOsOfP 4 w09 (i<r)
G Dyg? + -+ D (j <)

S

yield an isomorphism

0:A=K[F,...,FrV.@G,..., G Y= B=K[Cy,...,C,,Dy,...,Dy].

Now consider a monic operator N € K(z)[0] of smaller order than M. Using
the relations KF' = LG = 0, we may rewrite N(F'G) as a non-zero element
of YV C A. It follows that ¢(N(FG)) # 0. Consequently, there exist constants
Cly-es Crydy, ... ds € K with o(N(FQG))(c1y.-.,¢p,d1,...,ds) # 0. Setting
f=cafi+---+cfrand g =dyg) + - - -+ dsgs, we infer that N(fg) # 0, so N
is not a vanishing operator of Vect(HHy). This shows that M is indeed the
differential operator of lowest order which vanishes on Vect(HxHr).

The proof that Vect(Hx#Hy) is closed is based on differential Galois the-
ory (van der Put and Singer, 2003): when computing the solutions to op-
erators in IK(z)[0] in a suitable Picard-Vessiot or D-algebraic closure K, any
differential automorphism of K over K(z) leaves both Hx and Hp, whence
Vect(Hi#H ), invariant. But, given a finite dimensionalsubvector space V of K
which is invariant under any differential automorphism, we may explicitly con-
struct an operator Q € K(z)[0] with Hq = V, e.g. (van der Hoeven, 2005a,
Proposition 21(b)). This shows that Vect(HxH ) is closed.

4.2.3  Duifferentiation

If L(1) = 0, then L is right divisible by 0, so we must have L = LT9. Oth-
erwise, the least common multiple of L and 0 in K(z)[0] has order r + 1, so
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there exist operators A of order 1 and B of order » and with AL = B0. These
operators may again be computed using a modified version of the Euclidean
algorithm. Since dimH o = dimHy and BH, = 0, we have L™ = B.

4.2.4  Ramification

In order to compute the operator L, it is more convenient to work with the
derivation ¢ instead of 0. It is easy to see that this changes the definitions
operators K B L, K X L, L™ and L®» only up to a multiple by a power of z.

Given a primitive p-th root of unity w € K, let 9, L be the operator with
(QuL)i(z) = L;(wz) for all i. Then we have (Q,L)(f o (wz)) = L(f) o (wz)
for all f, whence f o (wz) is a root of Q,L if and only if f is a root of
L. By what precedes, it follows that 2 = LH Q,L H ---8 Q »1 L satisfies
Ho = Hr +Hp o (wz) + -+ + Hy o (wP™12). Furthermore, Q,Q = € implies
that €; € KK(2?) for all 5. Consequently, P, ,,{2 € K(2)[6] and we conclude that
Ler = Pl/pQ.

4.2.5 Majors

Consider the operation M which associates
f=Mf= 27r1/ E—¢ g
to f . We have

M = (MY + = (

—u ¢

f(w) f(0)>
2mi
MchH=cMi o [ Fley

Given a relation Lf = 0 for f, where L € K[¢][0] has order 7, we thus obtain
a relation

P(C)
¢r(C—u)r

for some polynomial P with transcendental coefficients. Setting

Lf=

L= 0%t (7(¢ —u)" L], (20)
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it follows that Lf = 0. By theorem 2, we notice that the growth rate of L at
zero or infinity is the same as the growth rate of L at zero resp. infinity, since
Oe is stable under differentiation and integration without constant term, for
each ¢ € €.

4.2.6 Applications
Lemma 8 admits several useful consequences for what follows.

Corollary 1 If the coefficients of K and L are analytic on an open or closed
subset U of C, then the same thing holds for the coefficients of KL, KX L
and L.

Proof Given functions hy,...,h,, let Wy, 5, denote their Wronskian. If

hi,...,h, is a basis of the solution space Hy, of a monic operator L € K(z)[d],
then we recall that the operator L is determined in terms of hq, ..., h, by the
formula
Wihi,n
Lf = D=t 21
Whl: ahr ( )
In particular, if hq, ..., h, are analytic on U, then so are the coefficients of L,
as is seen by expanding the right-hand side of (21). It now suffices to apply
this observation to K H L, K X L and LY. |

Corollary 2 Let K, L € K(¢)[d] be monic and p € N*. Then
0,) SKEQL:(SKUEL.

b) Exmr = ExEr.

C) gLIII = SL-

d) SLEIp = gll//p.

Proof This follows directly from the lemma together with theorem 2. a

4.8  Transition matrices

4.3.1 Classical transition matrices

Consider a monic differential operator L = 0" + L,_10" ' + --+- + L, whose
coefficients are analytic function on a Riemann surface R. Given a point z € R
it is well known that there exists a unique canonical fundamental system
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= (s 1)
of analytic solutions to Lf = 0 at z with the property that fJ@ = 0;,; for all

1, . Since L is linear, an arbitrary solution f to Lf = 0 is uniquely determined
by the vector

Fri(z)

of its initial conditions at z by

f=FF(2). (22)
More generally, given a path z ~» 2z’ on R from z to another point 2z, the
values of the analytic continuations of f, ..., "~ along the path also linearly
depend on F(z). Consequently, there exists a unique scalar matrix A,..,, =

F(Z') = A s F(2). (23)

We call AL, the transition matriz for L along the path z ~ 2. Dually, we
have

o= A, (24)

because of (22). Also, if 2’ ~» 2" is a second path, then

Azwz’wz” = Az’~~>z” Azwz’ (25)

and in particular

Ay, =A7! (26)

z ozl

4.8.2  Singular transition matrices

The notion of transition matrices can be generalized to allow for paths which
pass through regular or irregular singularities of the operator L. In order to
do this, we start by generalizing the idea of a canonical fundamental system
of formal solutions f* in the singularity z.
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In the case when the coefficients of L are in IK(z), then theorem 1 tells us that
there exists a fundamental system of solutions at z = 0. This result is refined
in (van der Hoeven, 2001a), where we show how to compute a canonical basis
fo,- -+, fr_1 of so called “complex transseries” solutions, which is uniquely
characterized by suitable asymptotic properties. In particular,

e Each f; is of the form f; = ¢;2%¢; with ¢; € O, 0; € K and ¢; € €.
e Whenever ¢; = ¢; and o; € 0 + Z for i # j, then ¢; ()10, o; = 0-

Notice that there are other definitions of “canonical” systems of solutions (van
Hoeij, 1997), which share the property that they can be computed effectively
in terms of the operator L.

Given a notion of a “canonical system of formal solutions at a singularity 2", we
obtain a dual notion of “initial conditions at z” for arbitrary formal solutions,
via the relation (22). Now assume in addition that, for a suitable sectorial
neighbourhood 4 C R of z, we are able to associate a genuine analytic function
p(f) to any formal solution f at z. Then either (23) or (24) yields a definition
for the transition matrix along a straight-line from z to z’. In general, the
association p : f — p(f) depends on one or several parameters, like the non-
singular directions in the accelero-summation procedure. We will now show
how to encode these parameters in a suitable generalization of a broken-line
path.

Assume from now on that L € K(z)[0]. We define a singular broken-line path
as being a path zp — z; — - -+ — 2z, where each z; is either

e A non singular point o; in K.

e A regular singular point o; € K with a direction # (and we denote z; =
(0i)s)-

e An irregular singular point o; € K with critical times k and directions 6
(and we denote z; = (0i)r). Furthermore, we assume that 7, € S},
(where 7, (¢) = f7(0; +¢) for € with |arge — k,0,| < 7/2), | arg(ci+1 —
0;) — kp0,| < m/2.

Moreover, for each 7 < [, the open ball with center o; and radius |o; 1 — 03] is
assumed to contain no other singularities than o;. If the o; are all non singular
or regular singular, then we call zy — 2; — - -+ — 2; a reqular singular broken-
line path.

Now given an irregular singular point o € K, such that f, € 5} o for critical
times k and directions 8, we define the transition matrix
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sumyg f7,0(2) ---  sumgg f7. 4(2)
Aak,g—m = 9

Sumk,e(f_ia’o)(T—l)(z) Sumk,o(fig’r_l)(r—l)(z)

for any z with | arg(z — o) — k,0,| < 7/2 and such that z is sufficiently close to
0. For regular singular points o € K, a similar definition was given in (van der
Hoeven, 2001b).

In view of (25) and (26), we may extend this definition to arbitrary singular
broken-line paths. In particular, it can be checked that the Stokes matrices
for L are all of the form

— _ -1
Eo—,k,o,e' - AUk,9_>0'+5_)0'k,gl - Aok e/—)0'+5A0'k,B—>0'+5'

Notice that this definition does not depend on the choice of . In a similar
way as in (van der Hoeven, 2001b), it is also possible to construct a suitable
extension R of R with “irregular singular points”, in such a way that singular
broken-line paths may be lifted to R. However, such an extension will not be
needed in what follows.

4.3.83 Transition matrices for the multivariate case

It is well known that the theory of Grobner bases generalizes to partial differen-
tial operators in the ring K(z1, . . ., 2,)[01, - - . , O,]. Consider a zero-dimensional
system of such operators given by a Grébner basis L = (L1, ..., L,). Let K be
the set of tuples (k1, ..., k), such that I; < kq, ..., 1, < k, holds for no leading
monomial &% - - -9 of one of the L;. We may enumerate K = {kq,...,k,_1},
with ky < --- < k,_; for a fixed total ordering < on the monoid N".

Given a non-singular point z € C" for L, there again exists a unique canonical
fundamental system

=5 1m)

of analytic solutions to Lf = 0 at z with the property that 8% f; = ¢, ; for
all 7, j. Also, an arbitrary solution f to Lf = 0 is uniquely determined by the
vector
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" f(z)
F(z)= :
&1 f(2)

of its initial conditions at z by f = f*F(z). Consequently, the definitions and
properties (23-26) naturally generalize to the multidimensional paths z ~ 2’
which avoid the singularities of L.

4.4 Holonomic constants

Recall that D, and @c,r stand for the open and closed disks of center ¢ and
radius . A constant « in C is said to be holonomic over KK if there exists
a linear differential operator L = 0" + L, _10"' + --- + Ly € K(2)[9] and
a vector of initial conditions v € K", such that the L; are defined on 750,1 and
o = f(1), where f is the unique solution to Lf = 0 with f®(0) = v, for
i < n. We denote by K"! the set of holonomic constants over K.

Proposition 3

a) K" is a subring of C.

b) Let L be a linear differential operator of order n in K(z)[0]. Then Al €
Mat, (K™Y for any non singular broken-line path v with end-points in K.

¢) Let L = (Ly,...,Ls) be a Grébner basis for a zero-dimensional system of
differential operators in K(2z)[8]. Then for any non singular broken-line
path v with end-points in K", we have Af;‘ € Mat, (K").

Proof Consider holonomic constants o = f(1) and 8 = g(1), where f and ¢
are solutions to K f = 0 and Lg = 0 with initial conditions in K™ resp. K" and
where the coefficients of K and L are defined on Dy ;. By the corollary 1, the
coefficients of K X L are again defined on Dy; and a3 = h(1), where h is the
unique solution with initial conditions h(®(0) = ¥!_, (g) f9(0)g=9(0) € K
for i < mn. A similar argument shows the stability of IK"! under addition.

As to (b), we first observe that the transition matrix Ag_,; along the straight-
line path from 0 to 1 has holonomic entries, provided that the coefficients
of L are defined on Dy ;. Indeed, by corollary 1, the coefficients of the monic

operators L™ with solution spaces ”H(Li) are defined on 750’1. Using a transfor-
mation z — (14— A)z + A with A € K and p € K, it follows that A,_,, has
holonomic entries whenever the L; are defined on the closed disk @A,I u—x- Now
any broken-line path « is homotopic to a broken-line path A\; — - -+ — X; such
that the L; are defined on the closed disks ’D)\M Aj41—A;|- From (a), we therefore
conclude that A, = Ay,_, 5, -+~ A, 51, has holonomic entries.
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As to the last property, we first notice that the function f(wu+twv) is holonomic
in t for any fixed v and v in K". In a similar way as above, it follows that
the multivariate transition matrix from section 4.3.3 along a straight-line path
u — v has entries in K for sufficiently close © and v in K". Since any non
singular broken-line path is homotopic to the finite composition of straight-line
paths of this kind, we conclude by the multivariate analogue of (25) and (a).

O

A number « in C is said to be a singular holonomic constant over K if there
exists a linear differential operator L = 0" + L, 10" ' + --- + Ly € K(2)[0]
and a vector of initial conditions v € K", such that the L; are defined on
Dy, and o = lim,,; f(z), where f is the unique solution to Lf = 0 with
f@(0) = vy for i < n. We understand that the limit z — 1 is taken on the
straight-line path from 0 to 1. If L is regular singular at 1, then we call «
a reqular singular holonomic constant over IK. We denote by K" the class of
singular holonomic constants over K and by IKK™°! the class of regular singular
holonomic constants over K.

Proposition 4

a) K™ is a subring of C.

b) K=" is a subring of C.

c¢) Let L be a linear differential operator of order n in K(z)[0]. Then A, €
Mat,, (K™°) for any reqular singular broken-line path ~ as in section 4.3.2.

d) Let L be a linear differential operator of order n in IK(z)[0]. Then A, €
Mat,, (K5t for any singular broken-line path v as in section 4.3.2.

Proof Properties (a) and (b) are proved in a similar way as above. In view
of (25), it suffices to prove (c¢) and (d) in the cases of paths of the form
09 — 0+ z or/and org — 0 + 2. The first case is treated in a similar way as
above, so let us focus on the second case. Without loss of generality we may
assume that o = 0.

Now, as will be shown in detail in section 7.3, the matrix Ag, ,,, can be
expressed as a product of matrices whose entries are either in IK™!, or of the
form

eifi oo o
/b' @,j(@)K,Ei,,ZM (Gis @iy1)dG, (27)
or
ei@poo
L @ e @), (28)

P
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where a;41,0;,2p € K, m € N and ¢;; is holonomic with initial conditions
in K. Moreover, b; may be chosen as large as desired. By the results from
section 4.2, the integrands are all holonomic, with initial conditions in !
at b;. Modulo a suitable change of variables of the form (; = 1_55’ we may
therefore reinterpret (27) resp. (28) as the limit in 1 of a holonomic function
1 on Dy ; with initial conditions in K™ at 0.

We still have to prove that this limit can be rewritten as the limit of a holo-
nomic function on Dy ; with initial conditions in K at 0. Now given the equa-

tion L1y = 0 for 9, let fo,..., fr—1 be the fundamental system of solutions for
L at 0, so that

¥ =290 fo+ -+ (0)f
Since 1(0), . .., ¥ D(0) are in K™ we have 1@ (0) = lim,_,, g;(2) for suit-

able holonomic functions g; on Dy ; with initial conditions in K at 0 and
regular singularities at 1. Now

lim (2) = lim(fogo + -+~ + fr-19,-1)(2),

z—1

where fogo+ -+ fr_19r—1 is a holonomic function on Dy ; with initial condi-
tions in K at the origin. O

5 Bounds for the transition matrices
5.1 Integral formula for transition matrices
Consider a linear differential operator

L=0+4+L,_10 '+ -+ 1L,
whose coefficients are analytic functions on an open or closed subset R of C.
We will give an explicit formula for the transition matrix A, = Ag along

a path v in R.

Let us first rewrite the equation Lf = 0 as a first order system and give an
alternative characterization for the transition matrix. Let
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0 0 1
—Ly =Ly -+ =Ly s

Then the differential equation

® = M (29)

admits a unique solution ® with ®({) = I. Given a path { ~ (' in R, it is
not hard to see that A, coincides with the analytic continuation of ® along

¢~ ¢

Given an analytic function f on R, we will denote by [, f the unique analytic
function on R given by

!

(1)@= [ reue

Then the system (29) with our initial condition admits a natural solution

A®¢=@+AM+AMAM+~>@) (30)

We will show below that this “integral series” indeed converges when ( ~ (’
is a straight-line path. In fact, using a similar technique, one can show that
the formula is valid in general, but we will not need that in what follows.

5.2 Majorants

Let C(R,C) and C(R,R?) denote the spaces of continuous C-valued resp.
RZ-valued functions on R. Given matrices A and B of the same sizes and
with coefficients in C(R, C) resp. C(R,R?), we say that A is majored by B,
and we write A < B, if

1A4i(Q)] < By (€)

for all 4, j. Given majorations A < B and A < B, we clearly have majorations
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A+
A

B (31)

A4B+
A< BB (32)

Y/ANV/AN

Assuming that every point in R can be reached by a straight-line path starting
at ¢, we also have

real
/ Ad / B, (33)
¢ ¢

where

( [ B) €)= [ B+ %E)d&

Assume now that M is bounded on R. Then there exist constants

Bos---y Br—1 20 (34)
with
01 0
M<B=
00 1
Bo Br -+ Broa

and we may assume without loss of generality that B admits pairwise distinct
eigenvalues. From the rules (31), (32) and (33), it follows that

real real real
Agr < <I+/< B+/( B[ B+--->(g’).

The right-hand side of this majoration can be rewritten as V(| — (|), where
¥ is the unique solution on R? to the equation

' = BV,

such that ¥(0) = I. Now let U and D be matrices with
B=U"'DU,
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where

This shows in particular that (30) converges when ( ~» (' is a straight-line
path, since it suffices to replace R by a compact convex subset which contains
a neighbourhood of ¢ — ('

5.3 Bounds for the transition matrices

Given an operator L with coefficients in IK(¢®) which are bounded at infinity,
it is not hard to explicitly compute a sector ng’a,R with a < 7/2 on which
the L; have no poles and a majorating matrix B with coefficients in K. The
aperture o may chosen as close to m/2 as desired. Then the results from the
previous section yield:

Theorem 3 There exists an algorithm which, given an operator

L= + L1844 Ly € K((®)[8]

with L; = O(1) for all i at infinity, computes a sector nga’ r and constants
K, )\ e R” with

Al < Ketd¢

for all straight-line path inside nga, R-

More generally, given an operator L € K((®)[d] of growth rate £ > 0, the
operator L = Py, L has growth rate one and we have

36



L _ AL
Ao = Do

for all straight-line paths ¢ — ¢’ whose image under ¢ +— (* is homotopic to
the straight-line path ¢* — ({')*. Moreover, after replacing § by (0 in L and
dividing by a suitable power of {, we observe that L fulfills the conditions of
theorem 3. We thus obtain:

Theorem 4 There exists an algorithm which, given an operator

L=0 +L,_10" '+ + Ly € K(¢®)[I]
with growth rate k > 0 at infinity, computes a sector Sg’fa,R and constants
K, A e R” with

1Al < KM =<
for all straight-line path inside nga, R-

Remark 2 In fact, the hypothesis that ¢ ~» (' is a straight-line path is not
really necessary in theorem 3. With some more work, one may actually consider
sectors of C at infinity with aperture larger than 7/2. In theorem 4, this allows
you to impose the aperture of a to be as large as desired.

6 Effective integral transforms

Consider an operator

L=1Ld +-+ Lo € K[C][0]

with growth rate £ > 0 at infinity. Let nga, r be a sector of aperture a < /2
such that L, does not vanish on Sg5, ; and such that we have a bound

Ao < KM= (35)

for all ¢, (" € 8§, . Let

sin o
p=

1—sina

so that the ball centered at (R + p)e' with radius p is just contained in ng’a, R
(see figure 6), and let v € N2Z be a fixed constant of small bit-size, with
l<v<pu=1+p/(R+p).
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/"i/ ZX

Fig. 6. The sector ng’a, r and the associated constants R, 6, « and p.

6.1  Uniformly fast approximation of transition matrices

Let ¢, (" € R?e with [('| > |¢| > R+pand ¢ > 0. Assuming that e, (, (", ¢ €
K, we may now use the algorithm approx below in order to approximate A¢_,¢
at precision €. The computation of A := Ay + --- 4+ Ap_1(¢" = ¢)* ! is done
using the binary splitting algorithm from (Chudnovsky and Chudnovsky, 1990;
van der Hoeven, 1999).

Algorithm approx((,(’,¢)

Input: (,(’,e € K as above

Output: a matrix A with ||[A — Ao <&
if |¢'| < v|¢| then

Let k € N be minimal with Ke)‘(“”_l)m”% < £, where g = K;:\_C\C'

Consider the expansion A¢ycys = Ag + Ayt + Agt? + - - -
Compute A := Ag 4+ A (¢ =) + -+ Ap_1(¢" — ¢)* ! at precision £/2
Return A
else
Let M, := KeM¢"™ 0"
Compute A; := approx((, v(,e/(2M,))
Compute A, := approx(v(, ', e/(2||Aq]]))
Return A,A;

Theorem 5

a) The algorithm approx is correct.

b) Let n = max(|('|*,—loge) and let s be the sum of the bit-sizes of ¢
and {'. Then the running time of the algorithm is uniformly bounded by
O(M (n)log® n(logn + s)).
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Proof The correctness of the algorithm in the “single-step case” when |{’| <
v|(| follows from (35) and Cauchy’s formula, since

1A = Ao | <Y 1A = ¢

i>k
<3 KeNwor—cri¢ ¢
ik gl

k
— g _B
1-p5

In the “multi-step case” when || > v|(|, we have

[Aveser Acue — DA || < | Auese (Acsue — A+ [(Avese — Ag) Ay
< Ma||Acsue = Al + Ao — Aol Al

and the result follows by induction.

As to the complexity analysis, let [ be minimal such that |[¢|v! > |¢’| and
denote

Ga=¢"

Then the recursive application of the algorithm gives rise to [ single-step cases
for each A¢;_s¢;., with ¢ < 1. We have [ = O(log|(’|) = O(logn) and claim that
the precision ¢; at which we approximate each A¢,_,,, satisfies ¢; > ¢/(2'M),
where M = KeM¢"—¢"1,

Indeed, using induction over [, this is clear in the case when [ = 1. In
the multi-step case, we have My < M and ||A]] < M, = KeMNwO™=¢l,
Hence, Ay, is approximated at precision £/(2Ms) > €/(2'M). The induc-
tion hypothesis also implies that each A¢,_,¢,,, is approximated at precision
g; > &' /(25 M), where &' = ¢/(2M;) and M' = Ke*¢" 0"l We conclude
that g; > &'/(2"'M') = ¢/(2'M, M) = ¢/ (2'M).

Having proved our claim, let us now estimate the cost of each single-step
approximation of A¢_,,, at precision ¢; > &/(2'M). Since 0 < f < (v —
1)/u < 1, the minimal £ satisfies

(=108 (gry7e=nre))
8\ St DG

O
O(—1loge) + O(l) + O(log M) + O(|G|")
O(n).

k
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Furthermore, the entries of A are O(n)-digit numbers, since

ACi—>Ci+1 < KeM=¢

and the size of ¢; is bounded by O(s) + O(i) = O(s + logn). By a similar
argument as in the start of section 4.1 of (van der Hoeven, 1999), it follows
that the g;-approximation of A is computed in time O(M (n)logn(logn + s))
using binary splitting. Since [ = O(logn), the overall running time is therefore
bounded by O(M (n)log® n(logn + s)). O

6.2 Fast approximation of integral transforms

Consider a second differential operator Q € K[(][d] with growth rate x at
infinity. Let f be a solution to Q2f = 0 with initial conditions in KK at a point
¢ € K with arg( = 0 and |(| > R + p. Assume that f satisfies a bound

)] < K'eVE" (36)

on [(,e?o0], where K/, X' > 0. Our aim is to compute

o= " feae.

Now the primitive

@)= “ re)ae

satisfies the equation (‘Q)(‘f) = 0, where the operator ‘Q := (M_1Q)d €
K[(][6] has growth rate x at infinity. Moreover, ' f admits initial conditions in
K at C.

Assuming that we chose L = ‘(2 and that the bound (35) holds for the transi-
tion matrices associated to L, we may now use the following simple algorithm
for the approximation of ®.

Algorithm integral_approx(e)

Input: ¢ € K~

Output: an approximation ® for ® with |® — ®| < ¢

Let I be the vector of initial conditions for ‘f at ¢, so that ‘f(¢") = AZ, . T
Take ¢' € K with arg ¢’ = 6 such that | [ K'e ¥""dt] < £/2

Return approx(¢,’,e/(2||1]|))I
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In the case when k > 1, we notice that

!

S 11K S K Ii oo K’ 1 KI 1Xs ali?
/ Ke *"dt = / e Mt < / e Nt = —e AT
T e Ktl—1/K kK KN

for all T > 1, so we may take

I¢'| = max (lround C/max(log(?fi'l/(/f/\’s)), 0), 1) , (37)

where Iround(z) is the largest number in 22{0,...,23% — 1} below z. In the
case when k < 1, we may use lemma 3 to replace the bound (36) by a bound
of the form

|f(£)| < K/ef/\’|§|"’" < KII|£|171/nef/\”|§\”’

with 0 < M < \. Then

/°° Kle V" dt < /OO K" me= X" g1 < °° ge—,\"tdt _ K" o= N'T"
T T T K KA
and we may take
. log(2K" /(k\'€)), 0
¢'| = Iround \/ max(log X,/ (=X"€)),0) (38)

For both formulas (37) and (38), we have |('| = O({/—loge). Applying theo-
rem 5, it follows that

Theorem 6 The algorithm integral_approx is correct and its running time
is bounded by O(M (n)log®n), where n = —loge. O

7 Effective accelero-summation

Let us now show how to put the results from the previous sections together
into an accelero-summation algorithm for holonomic functions. Let feD
be a formal solution with initial conditions in K at the origin to the equation
Lf =0with L € K[z][0]. We will first show how to determine the critical times
ki > .-+ >k, in (3~ and the Stokes directions at each critical time. Having
fixed 6, € Ry :=R\Dy,...,0, € R, := R\ D, we next detail the effective
acceleration-procedure and show how to efficiently evaluate f = sumgg fin
a sector close to the origin.
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7.1 Setting up the framework

Normalization Without loss of generality, we may assume that the valua-
tion of f at zero is larger than the degree d of L in z. Indeed, it suffices to
replace f by fz" and L by M,,L for a sufficiently large n.

Critical times Let 0; < --- < 0, be the non-horizontal slopes of the Newton
polygon of L at the origin. We take k; = 1/0y,...,k, = 1/0,, so the critical
times are z; = 2%,..., %, = 2°7. For example, in figure 5, the critical times
are z; = 1/z and 2z, = 2.

Equations for fz and f; For each critical time z;, let us show how to
compute vanishing operators for ﬁ and f;. Let a,b € N# be relatively prime
with k; = a/b. Since b < d, we notice that the valuation of f; in z; = 0 is
larger than one.

(1) We first compute L= € K[z][d] and P, L= € K[z][d]. We may reinterpret
P, L= as an operator in K[z][d] and notice that (P,L=)(f;) = 0.

(2) Let n be minimal, such that z;"P,L® € K[z;'][§]. We compute the
Borel transform L; = B(z"P,L®) € K[¢][6]. Since v%=0(f;) > 1, we
formally have L;f; = 0. In fact, since the accelero-summation process
preserves differentially algebraic relations, we will also have Lifi=o.

(3) Compute L; with L;f; = 0 using the procedure from section 4.2.5.

Singular directions For our accelero-summation process to work, it will
suffice to avoid the non-zero singularities of the operator L; at each critical
time z;. In other words, denoting by #; the order of L;, we take D; = {argu :
u € K#, Lz (u) = 0}.

Growth rates of I; and I; Given a critical time z;, let us now study the
growth rates of L; and L; at zero and infinity. By corollary 2, and with a, b as
above, the slopes of the Newton polygon of P,L® are o1k; = ki/ky, ..., 0,k =
ki/ky. By section 3.3 and formula (20), it follows that the non-horizontal slopes
of the Newton polygons of L; and L; at the origin are

kR
ki — k; kiog — ki

In particular, if 7 = 1, then L; is regular singular at 0 and (van der Ho.even,
2001b) shows how to compute the values of f; in the neighbourhood of 0. We

42



also infer that the non-horizontal slopes of the Newton polygon of L; and L,
at infinity are

kR
kiv1 — k; kp — ki

and possibly —1. In particular, if 7 < p, then the growth rate of L; at infinity

. i . Vai b4
is krkkm' In view of theorem 4, we may thus apply Akiyki+1 to f; (see below

for further details). Also, if i = p, then the growth rate of L; at infinity is zero
or one and theorem 4 shows that we are allowed to apply [,22 to fp.

The acceleration kernels Given a critical time z; with ¢ < p and A =
k;ii1/k;, consider the acceleration kernel

| —1 “ K i,Ki C;f
o) =g [ 7
/ crioe fu ef7CY e
'
e 0 &—Giy1

The choices of (;;; and u will be detailgd in the next section. In order to
compute (13), we need an equation for K in (;, of growth rate 1/(1 — \) =
ki/(k; — k;+1) at infinity. Setting

dé,

(p 27”/ § Cz-l—l 5
we have

et — 1

"(t) = ¢ t) — ————

whence (t¢' — (iy1te)" = u(ty’ — (ir1ty)' and

Qo =t" — ((Gip1 +u)t — 2)¢" + (uGiy1t — (2G4 + )¢’ + ulisr1 f =0

By looking at the Newton polygon, we observe that (2 has growth rate 1 at
t = oo. Now

1 c+ioo G
Kkz ki1 (Cza Cz+1) /c QD( ) U dt

27‘(’1 ico

1/,\ 1 L/ abit
2m (=) M)eSitd, (39)
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for a suitable contour C. Applying a suitable ramification, followed by M _; /5
and Q_; to €, we obtain a vanishing operator A4; for (—t)'/*~1p((=t)/*),
with growth rate 1/A at infinity. Although (39) is not really a Borel transform
(at t = 00), it does satisfy the formal properties of a Borel transform. In other
words, A; = BP_, A, is a vanishing operator for K with respect to ¢;, of growth
rate 1/(1 — \) at (; = oo.

Equations for the integrands We finally need equations for the integrands
of (12) and (13). If ¢ < p, then we have shown above how to construct a van-
ishing operator A; for Ky, 4, , at infinity. In section 4.2.3, we have also shown

how to construct a vanishing operator (A4;)®" for each K ,gn,zm It follows that
Zim = (A;)"" R L; and éi,m = (A;)T" KL, are vanishing operators for the first
and second integrands in (12). Moreover, the operator (4;)™" X L; has growth
rate k;/(k; — ki1) at infinity, by lemma 8. Similarly, Zpm = (6 +2,)2" K L,
and =y, = (6 + 2, )" ® L, are vanishing operators for the first and second
integrands in (13), and (6 + 2, ')™" ® L, has growth rate 1 at infinity.

7.2 Calibration

Assume now that 6, € R,...,0, € R, are fixed non singular directions with
e ... e ¢ K. In order to approximate f(z) for z close to 0, we first have
to precompute a certain number of parameters for the acceleration process,
which do not depend on the precision of the desired approximation for f(z).
In particular, we will compute a suitable sector Sgeom near the origin, such
that the effective accelero-summation procedure will work for every z € Sgeom-
Besides Sgeom, for each critical time z;, we precompute

e The operators I:,-, f;i, éi,m and éi’m from the previous section, for m < 7; :=
order(L;) if i < p and m < r := order(L) if i = p.

The starting point a; € K for Cy, and Hy. in (12) resp. (13). If ¢ > 1, then
we will require that arga; = k; 16; 1/k;.

A sector S; = 85°,,. . near infinity as in section 6.

The point b; = R;e% /(1 — sin ;) € K, which corresponds to the center of
the ball in figure 6.

A point u;, 1 above K such that Ki(Ci, Giy1) = “i+1KZ~(Q, Git1), for i < p.

Let us show more precisely how to do this.

Computing a; If w is the smallest non-zero singularity of L1, then we may
take a, arbitrarily with |a;| < w. By construction, L, is (at worst) regular sin-
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gular at 0, whence so is Ly, as we see from (20). From (van der Hoeven, 2001b),

it therefore follows that f™ (a;) admits an O(M (n)log? n)-approximation al-
gorithm for each m € N.

Computing S;, a;y; and u;;  Given i < p, and setting £ = k;/(k; — kit1),
we use theorem 4 to compute a sector SP™ = Spr apre gere and constants K, A
with S

IIA,?LQII < KM€ < geNer]

for all straight-line paths £ — (; in §7*°. By lemmas 7 and 3, we may compute
a subsector S; = §5°,. r. € S and small a;;; and u;y; with arga;; =

arg u; 11 = k;0;/kiy1, such that we have a bound

R s (G )| S K (X< =)
for all m < 741 and all (; € S;. We notice that lv{ki,km(-, a;+1) is regular sin-
gular at the origin (for the same reason as L; above) with initial conditions in

K. By (van der Hoeven, 2001b), we thus have O(M (n) log® n)-approximation

algorithms for K,ﬁj’j,gm(g, ;1) for any ¢ € K# and m e N.

Computing S, and Sgeom By theorem 4, we may also compute a sector
Sy = 85’;’ oB*e REr and constants K, A with

||A§f>cp|| < Keo€ < KMol
for all straight-line paths £ — ¢, in 8. Choosing Rgeom sufficiently small and
Ry, sufficiently large, we obtain a subsector S, = 57, r C SP™ with

(e S/#)(m)| < K'e NG|

_ &0 .
forallm < r, ( €S, and 2z, € Sgeom = Sap,ag%m Ryeom” with Qgeom as close to
5 as desired.

7.8 Approzimation of f(z)

Foreachi € {1,...,p} and j < 7, let ¢; ; be the unique solution to Iv/i(gbi,j) =0
(

with gbz-zl)(ai) = 6, m for all m < 7. Using the analytic continuation algorithm
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from (van der Hoeven, 1999), we may efficiently evaluate all derivatives of ¢; ;
and its minor ¢;; at any non-singular point above K. For each j < r, we
also denote by ¢; the unique solution to Ly; = 0 with (pjm)(zr) = 0, for all
m <.

Given i < p and m < 71, there now exist O(M (n)log® n)-approximation
algorithms for the integrals.

Azl,m,j = /C 901,] (Cz) k kz+1 (Cza az—l—l)dCz )
A?m,j = /z sz,y (Cz) k kz+1 (Cz; az—l—l)dgz ;
z m,j _/ QDZ,J CZ) (Cla al+1)d<z

’L

Indeed, the first two integrals can be approximated using the algorithm from
(van der Hoeven, 1999), applied to the operators 83,,,1 and Bézm The last
one is computed using the algorithm integral_approx. Notice that the path
in the second integral consists of a circular arc composed with a straight-line
segment, of constant argument. We regard the numbers

+ A3

2,M,J

+A?

1,m,J

= [, PR (G )G+ / Bis(GRLT, (G ain)dG

Ai,m,y

zm]

as the entries of a matrix

Aioo 0 Ajost
A = ) )

Ai,?’H_l—l,O e Ai,h.,_l—l,fi—l

By construction, we thus have

10; . . _ “ “
Ak,-,km (QOi,o SOi,ry-1) - (%‘H,o <Pz'+1,fi+11) A (40)

Similarly, if i = p, then there exist O(M (n)log® n)-approximation algorithms
for

J— 5. (. —Cp/2p) (M) N —Cp/2p (M) .
Am,J _/C (PZ,J(CZ)(G ) de +/7"§Lp SOz,J(Cz)(e ) dé,

bp
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and these numbers again form the entries of a matrix A. By construction, we
have

Z:ep (@p,o @p,ﬁal) = (<P0 S0r1> A. (41)

Now we already observed that the algorithms from (van der Hoeven, 2001b)
provide O(M (n) log” n)-approximation algorithms for the entries of the vector

fi(ar)

B
I

vfflfl) (al)

From (40) and (41), it follows that

fo(%)
AAp,1 st A]_(VD]_ == :

fggFl) (2p)

and the entries of this vector admit O(M (n)log® n)-approximation algorithms.

7.4  Main results

Summarizing the results from the previous sections, we have proved:

Theorem 7

a) There exists an algorithm which takes L € K[z][0] with an irreqular sin-
gularity at z = 0 on wnput and which computes the critical times z; =
Wz,...,2p = ®/z for L, together with the sets of singular directions
Dy, ..., D, modulo 2. In addition, given o < kym/2, 6, € R\ Dy,...,0, €
R\ D, with e, el .. €% ¢ K, the algorithm computes a sector S,gp
with n € Q~ to be used below.

b) There exists an algorithm which takes the following data on input:

0}),06,7]

o L, b,...,0, and n as above,

e A formal solution f € O to Lf = 0 (determined by initial conditions
in K);

28y o, above K, meN ande € Q.
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Setting f = sumgg f, the algorithm computes © € K with |f™(z) —
0| < e. Moreover, setting n = —loge, this computation takes a time
O(M (n)log® n).

Corollary 3 Singular holonomic constants in K admit O(M (n)log® n)-
approximation algorithms.

The theorem 7 in particular applies to the fast approximation of singular
transition matrices from section 4.3.2. Indeed, let f; = ¢;2%¢; with ¢; € O,
0; € K and ¢; € € be one of the canonical solutions to Lf = 0 at the origin.
Then ¢; may be accelero-summed by theorem 7 and z°“¢; may be evaluated
at points above K using fast exponentiation and logarithms. We thus obtain:

Corollary 4 There exists an algorithm which takes the following data on in-
put:

o An operator L € K][z][d].
o A singular broken-line path -y.
e A precision ¢ € Q.

The algorithm computes a matriz A with entries in K and ||A — ALl < e.
Moreover, setting n = —loge, the algorithm takes a time O(M(n)log®n). O

We have summarized the complexities of efficient evaluation algorithms for
holonomic functions in table 1 below. In the rightmost column, the complex-
ity bound for divergent series follows from corollary 4, when composing the
transition matrix between zero and a point Z € K close to z with the non
singular transition matrix from Z to z.

series of type | evaluation in z € K | evaluation in general z

o (gﬁz” O(M(n)logn) O(M(n)lognloglogn)

Yomeo fn2™ O(M (n)log?n) O(M (n)log® nloglogn)
Y o falnl)zn | O(M(n) logn) O(M (n) log® n)

Table 1

Summary of the complexities of evaluation of different types of holonomic series. We
assume that k € Q~ and that the f, satisfy |f,| < Ka" for certain K,a > 0. For
the series in the last row, we assume that “evaluation” is done using an appropriate
accelero-summation scheme. For the rightmost column, we do not count the cost of
the approximation of the constant z itself.

Remark 3 Although we did not mention the O(M(n)lognloglogn) com-
plexity bound for entire series in (van der Hoeven, 1999), the complexity anal-
ysis of algorithm C is easily adapted to this case, since
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Uog?znj_l M n(2* + logn)
2t logy(n/27)

1=0

[logyn]—1 i
2'+1
= Y M (M) + O(M(nlognloglogn))
i=[log, log n] 2 10g2 (n/QZ)

[logyn|—1 m
= Y M (7Z> + O(M(nlognloglogn))
i=[log, log n| 10g2 (TL/2 )

=0O(M(nlognloglogn)) = O(M(n)lognloglogn).

In particular, the computation of exponentials (and logarithms) using this
(and Newton’s) method is only a factor of O(loglogn) less efficient as the
best known algorithm based on Landen’s transform (Brent, 1976b).

Remark 4 In (van der Hoeven, 1999), we assumed that K is an algebraic
number field (i.e. a finite dimensional field extension of Q) rather than the
field Q8 of all algebraic numbers over @. Of course, both point of views are
equivalent, since given a finite number of algebraic numbers 1, ..., z; € Q¥8,
there exists an algebraic number field K with z,,..., 2, € K.

It is convenient to work w.r.t. a fixed algebraic number field K in order to have
an algorithm for fast multiplication. For instance, given a basis xy,...,z; of
K, we may assume without loss of generality that

2wy = a’wy + -+ almy, (0 € 7) (42)

after multiplication of the z; by suitable integers. Then we represent elements
of K as non-simplified fractions (pyz1 + - -+ + prk)/q, where py,....,px € Z
and ¢ € N~. In this representation, and using (42), we see that two fractions
of size n can be multiplied in time O(M (n)).

Remark 5 In the case when K is a subfield of C*® which is not contained in
the field Q8 of algebraic numbers, the algorithms from this paper and (van der
Hoeven, 1999, 2001b) still apply, except that the complexity bounds have to be
adjusted. Let us make this more precise, by using the idea from (Chudnovsky
and Chudnovsky, 1990) for the computation of Taylor series coefficients of
holonomic functions. We first observe that the efficient evaluation of holonomic
functions essentially boils down to the efficient evaluation of matrix products

M-y - - - Mo,

where M}, is a matrix with entries in K[k| (in the regular singular case, one
also has a finite number of exceptional values of k£ for which M} is explicitly
given and with entries in K). Even if K ¢ Q%8 then we may still compute
the matrix products
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My = Myyy—1--- My,

using dichotomy

M, 41, = Myyay0, My,

as polynomials in K|[k] of degree O(l). This requires a time O(M (nl)logl),
when working with a precision of n digits. Assuming for simplicity that m
is a perfect square, and taking [ = /m, we next use an efficient evalu-
ation algorithm (Moenck and Borodin, 1972; Borodin and Moenck, 1974)
for the substitution of ¥ = {0,(,...,m — I} in Mj,. This requires a time
O(M (ny/m)log(m)). We finally compute

MO;m = Mm—c MO;l

in time O(M (n)\/m). Assuming that logn =< logm, this yields an algorithm
for the n-digit evaluation of M., of complexity O(M (ny/mlogm)). In table 1,
the complexities in the three different rows should therefore be replaced by
O(M (n?/?)y/Togn), O(M(n*?)logn) resp. O(M(n3/?)1og® n). Indeed, for the
first two cases, we have m = O(n/logn) resp. m = O(n). In the last case, we
have the usual O(logn) overhead. Notice that there is no need to distinguish
between the columns.

8 Conclusion

This last paper in a series (van der Hoeven, 1999, 2001b) on the efficient
evaluation of holonomic functions deals with the most difficult case of limit
computations in irregular singularities, where the formal solutions are gener-
ally divergent. We have not only shown how to compute such limits and so
called singular transition matrices in terms of the equation and broken-line
paths, but we have also shown that the resulting constants are comprised in
the very special class C™* of complex numbers whose digits can be computed
extremely fast.

Since it is quite remarkable for a number to belong to C®* an interesting
question is whether there are any other “interesting constants” in C* which
cannot be obtained using the currently available systematic techniques: the
resolution of implicit equations using Newton’s method and the evaluation of
holonomic functions, including their “evaluation” in singular points.

Because of the emphasis in this paper on fast approximation algorithms, we
have not yet investigated in detail the most efficient algorithms for obtaining
approximations with limited precision. Indeed, given an initial operator L €
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K[z][0] of order r and degree d in z, ramification, the Borel transform and
the multiplication with the acceleration kernel lead to vanishing operators
of far larger (although polynomial) size O((dr)?). If only limited precision
is required, one may prefer to use a naive O(n?)-algorithm for computing
the integral transforms, but which avoids the computation of large vanishing
operators. In some cases, one may also use summation up to the least term,
as sketched in the appendix below.

In this paper, we have restricted ourselves to the very special context of holo-
nomic functions, even though Ecalle’s accelero-summation process has a far
larger scope. Of course, the results in our paper are easily generalized to the
case of more general algebraically closed subfields K of C, except that we only
get O(n21og®Y n)-approximation algorithms. Nevertheless, following (Ecalle,
1987; Braaksma, 1991, 1992), it should also be possible to give algorithms for
the accelero-summation of solutions to non-linear differential equations.

A Summation up to the least term

Let L € K(z)[6] and let f be a solution to Lf = 0 with a formal power
series expansion f = fo+ fiz+---. It is well known (Poincaré, 1886) that the
truncated sum

(sumy f)(2) = fo+ -+ fnz"

up to the term fy 2z for which | fy 2" | is minimal usually provides an exponen-
tially good approximation for f(z). Even though such truncations do not allow
for the computation of an arbitrarily good approximation of the value f(z) for
fixed z, it is well adapted to the situation in which only a limited precision is
required. Indeed, in order to compute (sumy f)(z), we may directly apply the
binary splitting algorithm from (Chudnovsky and Chudnovsky, 1990; van der
Hoeven, 1999).

In this appendix, we will sketch how summation up to the least term can
be made more precise using the accelero-summation process. We start from
a formal solution f = fy+ ---+ filog'z € O to Lf = 0. Given N € N, we
define

§(z) = (sumy f)(2) = >y (fi)nz"log’ 2.
0<i<l 0<n<N

Our aim is to compute an explicit bound for §(z) — (sumg g f)(2) for a suitable
non singular multi-direction 8. Modulo a change of variables z — wz, we may
take 8 = 0.
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Consider a critical time z;. If 7 = 1, then le fis convergent at the origin, so
we may compute a bound of the form

(@ — f)(GQ)] < BN (A1)

on an interval (0, ¢;] at the origin, using (van der Hoeven, 2001b). For i > p,
we assume by induction that we have a bound

(6= )@ < BN (@ oD TT)) ()

on a sector (0, ¢;] at the origin and for sufficiently large N > N;. Using (van der
Hoeven, 2001b) a second time, we may also compute bounds for the coefficients
of f; as a polynomial in log ;. At each critical time z;, this leads to further
bounds

N pkin—1 L (k1 V)

G:(G)| < BY(CHN (! , A.
for ¢; € [CZ', OO)
Assuming that ¢ < p, we now have
[(Gis1 = fir1)(Ge)| < I+ Lo + I
I, = /C ﬁi(Cz’)f(k,-,kM(Q,Ci+1)dCz' ;
I, = /OZ@(Q‘) - f(Ci))Kki,km(Ci,Cz'+1)d§z' ;
13: ~/c f.'i(gi)f{ki,ki.m (C’L’CZ-i—l)dCZ .
We may further decompose
5<h+k+k,
L= BN L | R (6.6
1 T'(k1N)
—dewﬂl————; A4
1 <z+1 F(kH—lN) ( )
= oy HIN [ ot kz,km(@,cm)dcz :
% )
Ik, N) -
N 7, 1 3 ) .
=B, Cz F(kZN) ‘/0 ( ZC )Kk k¢+1(€za€z+1)dcz )

92



if © > 1 and similarly with Is =0 if s = 1.

By lemmas 6 and 5, we may compute ¢, Njt1, Ai1, Aip and A; 3 with

0 L N_1p T'(k;N) — it
kiN—1 i N kit
- K. k. i Cir1)dG| < Aji——<A; —A;3C ,

/Ci G kz,k,+1(C Gig1)dC ’lf(ki 1N)Amexp( 3Gia1 )

for ;41 € (0,¢,,,] and N > N;11. Using (A.3), we thus get

['(k.N) Bil

I+ I < AuAlp(BO! + B(O)" ) s exp(—AuaGid ™). (A5)

Using the techniques from section 7, we may also compute a bound

C'ki/kH—l

‘fz(Cz” < Az‘,4eAi’5 i ;

for ¢; € [ci, 00). Using lemma 6 and (A.5), we may thus compute c;11, Aig,
Ai,7 and Ai,S with

w L)

L+ I+ I+ I < A,-,GAMm exp(—AigCh ), (A.6)
i+1

for (11 € (0,¢;51) and N > N;; 1. Combining (A.4) and (A.6), we may there-
fore compute B;;; and C;;; such that (A.2) recursively holds at stage i + 1.

In the case when ¢ = p, similar computations yield constants B, C, D, Ngeom
and a small sector S = Sy o g with aperture a < 7/(2k,), such that

(9 = £)(2)| < BCYT (k1 N) (|2|N + exp(—=Dlz| /%)) . (A.7)

for all z € S and all N > Ngeom. The optimal N = N, for which this bound
is minimal satisfies

Nope ~ k7 (C2]) /5.

We thus have

_(Clz)-1/k
(g — f)(2)| < Ble €7,

for some explicitly computable B’. This completes the proof of the following:
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Theorem 8 There exists an algorithm which takes on input

e A differential operator L € K(2)[d] with an irregular singularity at z =0;
e The critical times k and non singular directions @ with k;0; = k;116;.1 for
all 7,

and which computes B,C, R, o > 0 and Ngeom € N, such that the bound

|(sumy f — sump g f)(2)] < BCVT(ksN) (|2 + exp(=D]z| /"))

holds for any z € Sy,0,,a,r and N 2 Ngeom. In particular, for some computable
constant ng and precisions € = e~ " with

n < (Clz) ™" —ng (A.8)

we may compute an e-approrimation of (sumyg g f) (2) for z € KN Sk 0,,0,r in
time O(M (n)log®n), where the complexity bound is uniform in z.
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