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Until now, the area of symbolic computation has mainly focused on the manipulation
of algebraic expressions. It would be interesting to apply a similar spirit of “exact
computations” to the field of mathematical analysis.

One important step for such a project is the ability to compute with computable
complex numbers and computable analytic functions. Such computations include
effective analytic continuation, the exploration of Riemann surfaces and the study
of singularities. This paper aims at providing some first contributions in this direc-
tion, both from a theoretical point of view (such as precise definitions of computable
Riemann surfaces and computable analytic functions) and a practical one (how to
compute bounds and analytic continuations in a reasonably efficient way).

We started to implement some of the algorithms in the MMXLIB library. However,
during the implementation, it became apparent that further study was necessary,
giving rise to the present paper.
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1. INTRODUCTION

Although the field of symbolic computation has given rise to several softwares for math-
ematically correct computations with algebraic expressions, similar tools for analytic
computations are still somewhat inexistent.

Of course, a large amount of software for numerical analysis does exist, but the user
generally has to make several error estimates by hand in order to guarantee the applicability
of the method being used. There are also several systems for interval arithmetic, but
the vast majority of them works only for fixed precisions. Finally, several systems have
been developed for certified arbitrary precision computations with polynomial systems.
However, such systems cannot cope with transcendental functions or differential equations.

The first central concept of a systematic theory for certified computational analysis is
the notion of a computable real number. Such a number x € R is given by an approzimation
algorithm which takes ¢ € RY8 = Z 2% with ¢ > 0 on input and which produces an
e-approzimation © € RV for x with |# — x| <e. One defines computable complex numbers
in a similar way.

The theory of computable real numbers and functions goes back to Turing [Tur36]
and has been developed further from a theoretical point of view [Grz55, Alb80, BB85,
Wei00]. It should be noticed that computable real and complex numbers are a bit tricky to
manipulate: although they easily be added, multiplied, etc., there exists no test for deciding
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whether a computable real number is identically zero. Nevertheless, possibly incomplete
zero-tests do exist for interesting subclasses of the real numbers [Ric97, MP00, vdHO1b].
In section 2.5, we will also introduce the concept of semi-computable real numbers, which
may be useful if a zero-test is really needed.

The subject of computable real numbers also raises several practical and complexity
issues. At the ground level, one usually implements a library for the evaluation of basic
operations 4+, —, X, etc. and special functions exp, log, sin, etc. Using fast multiplication
methods like the FFT [KO63, CT65, SS71], this raises the question of how to do this in
an asymptotically efficient way [Bre76a, Bre76b, CC90, Kar91, vdH99a, vdHO01a, vdHO05D].
At an intermediate level, one needs a software interface for certified operations with arbi-
trary precision numbers. Several implementations exist [FHL+05, GPR03, Ml00, vdH99b,
vdHO6b], which are mostly based on correct rounding or interval arithmetic [Moo66, AH83,
Neu90, JKDWO01, BBHO1, Bla02]. At the top level, one may finally provide a data type
for real numbers [MM96, Miil00, Lam06, O’C05, vdH06a, vdHO6b]. Given the real number
result of a complex computation, an interesting question is to globally optimize the cost of
determining a given number of digits of the result, by automatically adjusting the precisions
for intermediate computations [vdH06a, vdHO6b].

The next major challenge for computational analysis is the efficient resolution of more
complicated problems, like differential or functional equations. In our opinion, it is impor-
tant to consider this problem in the complex domain. There are several reasons for this:

e Most explicitly stated problems admit analytic (or semi-analytic) solutions.

e The locations of the singularities of the solutions in the complex plane give impor-
tant information on the optimal step-size for numerical algorithms.

e The behaviour of the solutions near singularities gives important information on
the nature of these solutions.

e Analytic functions are very rigid in the sense that they are entirely determined by
their power series expansion at a point, using the process of analytic continuation.

This paper aims at providing a basic theoretical framework for computations with com-
putable analytic functions and effective analytic continuation. When possible, our study
is oriented to efficiency and concrete implementability.

The history of analytic continuation of solutions to complex dynamical systems goes
back to the 19-th century [BB56]. Although interval arithmetic and Taylor models have
widely been used for certified numeric integration of dynamical systems [Moo66, Loh88,
MB96, Loh01, MB04|, most implementations currently use a fixed precision [Ber98|. Some
early work on effective analytic continuation in the multiple precision context was done
in [CC90, vdH99a, vdHO01la, vdHO5b]; see also [vdHO7| for some applications. Of course,
fast arithmetic on formal power series [BK75, BK78, vdH02b| is an important ingredient
from the practical point of view. Again, the manipulation of computable analytic functions
is very tricky. For instance, even for convergent local solutions to algebraic differential
equations with rational coefficients and initial conditions, there exists no general algorithm
for determining the radius of convergence [DL89]. Of course, one also inherits the zero-test
problem from computable complex numbers.

Let us detail the structure and the main results of this paper. In section 2, we start by
recalling some basic definitions and results from the theory of computable real numbers. In
particular, we recall the concepts of left computable and right computable real numbers,
which correspond to computable lower resp. upper bounds of real numbers.
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In section 3, we introduce the concept of a computable Riemann surface. In a similar
way as computable real numbers are approximated by “digital numbers” in Z 2%, we will
approximate computable Riemann surfaces by so called “digital Riemann surfaces”, which
are easier to manipulate from an effective point of view. For instance, in section 3.2, we will
see how to identify two branches in a digital Riemann surface. However, from a conceptual
point of view, it is not always convenient to see Riemann surfaces as limits of sequences
of digital approximations. In sections 3.4 and 3.5, we will therefore discuss two equivalent
ways to represent computable Riemann surfaces. Notice that all Riemann surfaces in this
paper are above C.

The next section 4 deals with constructions of several kinds of computable Riemann
surfaces. We start with the definition of computable coverings (which can be thought of as
morphisms of computable Riemann surfaces) and the construction of the limit of a sequence
of coverings. We proceed with the definition of disjoint unions, covering products, quotients
and joins at a point. For instance, if Ry and R, are the Riemann surfaces of two analytic
functions f resp. g, then f+ g and fg are defined on the covering product Ry xRy of Ry
and Rg. In section 4.4, we consider Riemann surfaces which admit a distinguished point,
the root. This allows for the definition of a smallest “organic” Riemann surface which
contains a prescribed set of “broken line paths”. Universal covering spaces and so called
convolution products of rooted Riemann surfaces are special cases of organic Riemann
surfaces.

In section 5, we come to the main subject of computable analytic functions. In [vdHO05a),
a first definition was proposed. Roughly speaking, the idea was to see a computable analytic
function as an instance f of an abstract data type Al°™ with methods for computing

e The coefficients of f.

e A lower bound ry for the radius of convergence of f.

e An upper bound [[ f, for | f| on any disk of radius p <ry.

e The analytic continuation f,s& Al°™ of f from 0 to §, with |§] < .

This point of view is very natural from a computational point of view if we want to solve
a differential or more general functional equation, since it is often possible to locally solve
such equations. However, the computed bounds are usually not sharp, so we need some
additional global conditions in order to ensure that analytic continuation can be carried
out effectively at all points where the solutions are defined.

Now the more systematic theory of computable Riemann surfaces of this paper makes
it possible to directly define the concept of a computable analytic function on a given
computable Riemann surface. Although this makes definitions easier, one still has to show
how to construct the Riemann surface of a computable analytic function. Using the results
from section 4, we will do this for many classical operations, like +, —, X, 0, f , exp, log,
o, algebraic and differential equations, convolution products, etc. Especially in the case
of convolution products, the global knowledge of an underlying Riemann surface is very
important. What is more, we will show that it is possible to construct the Riemann surfaces
incrementally, on explicit demand by the user. Also, whereas all underlying Riemann
surfaces from [vdHO05a| were simply connected, the present theory enables us to identify
certain branches where the function takes identical values. Nevertheless, the local approach
from [vdHO5a] remains useful, because any “locally computable analytic function” induces
a natural “globally computable analytic function” (see theorem 5.7).



4 ON EFFECTIVE ANALYTIC CONTINUATION

During the implementation of some of the algorithms from [vdHO05a] in our MMXLIB
library, it turned out that bad bounds r; and £, could lead to extremely inefficient
algorithms. Therefore, it is essential to have algorithms for the efficient computation of
accurate bounds. In section 6, we will study this problem in a systematic way. Our leitmotiv
is to work with truncated power series expansions at an order n with a bound for the
remainder. On the one hand, we will study how such expansions and bounds can be com-
puted efficiently and accurately (sections 6.3 and 6.4). On the other hand, we will show how
to use them for computing the absolute value of the smallest zero of an analytic function
(section 6.1) and for computing extremal values on a compact disk (section 6.2). Several
of the ideas behind our algorithms already occur in the literature about Taylor models
and polynomial root finding. However, the context is a bit different, so our exposition may
have some interest for its own sake.

For the sake of simplicity, we have limited ourselves to the study of univariate analytic
functions. It should be possible to generalize to the multivariate case along the same
lines. The main extra difficulty we foresee is integration, because it requires an automatic
algorithm for the deformation of paths. Nevertheless, in sections 4.8 and 5.5, we study
convolution products, and a similar approach might be used for integration. Some of the
algorithms in this paper have been implemented in the MMXLIB library. However, our
implementation is still quite unstable and work is in progress to include the ideas from the
present paper.

2. COMPUTABLE REAL AND COMPLEX NUMBERS

2.1. Computable functions and relations on effective sets

We assume that the reader is familiar with basic notions of the theory of Turing machines.
We recall that a Turing machine 7' computes a function fr: N — N U {fail}, where
fr(n) = fail if the Turing machine does not halt on the input n. A function f: N - N
is said to be computable if f = fr for some Turing machine T'. A subset A of N is said
to be recursively enumerable, or shortly enumerable, if A = @& or if there exists a Turing
machine 7" with A=1im f7. We say that A is computable if both A and N\ A are enumerable.
Denoting by T the set of Turing machines, there exists a bijection x: N — T, whose inverse
encodes each Turing machine by a unique natural number.

More generally, an encoding (or effective representation) of a set A is a partial surjective
function x = x4: IN — A, which is not necessarily injective. In that case, we call A (or more
precisely the pair (4, x)) an effective set. If dom x 4 is computable or enumerable, then we
call A an abstract computable resp. enumerable set. For instance, the set of Turing machines
which halt on all inputs is an effective set, but not an abstract computable set, because
of the halting problem. If A and B are effective sets, then so is A x B, for the encoding
xaxB(p(i, 7)) = (xa(), x5(j)), where ¢: N? = N; (i, j) ~ (i + j)? +4. By induction, A" is
an effective set for each n € N. Many other classical sets, like finite sequences or trees over
an effective set admit straightforward encodings, which will not be detailed in what follows.

A function f: A— B between two effective sets A and B is said to be computable if there
exists a Turing machine T'€ T such that f(xa(i)) = xB(fr(i)) for all i € dom x 4. In that
case, each n with T'= y(n) provides an encoding for f, and we denote by F°™(A, B) the
effective set of all computable functions from A to B. A partial function f: A— B is said
to be computable if there exists a Turing machine T'€ T with f(xa(i)) = xB(fr(i)) for all

i€ X (dom f).
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Sometimes, it is convenient to allow for generalized encodings x” = x4: E— A, where F
is another encoded set. Indeed, in that case, the composition ya = x4 o xg yields an
encoding in the usual sense. For instance, X zcom(4,p) = xTo xT, where xT encodes each
function f € F™(A, B) by the Turing machine which computes it. Given a = y%(c),
we will write ¢ = @ and a = ¢é. To each object a € A, given by its encoding a = xa(n)
with n € N, we may naturally associate its representation ¢ = xg(n) in E. However,
this association does not lead to a mapping *: A — FE, since we do not necessarily have
xa(m) = xa(n) = xg(m) = xg(n). In particular, in order to implement a computable
function f: A— B via a computable function f: E— B, using f(a)= f(d), one has to make
sure that f(c1) = f(co) whenever ¢, = é.

An n-ary relation R C A" on an effective set A is said to be computable, if there
exists a computable subset R of N, with XZ}L(R) =R Ndom y4n. Equivalently, we may
require the existence of a computable function R: A™ — {0, 1} with R(a) < R(a) =1 for
all a € A™. Similarly, R C A" is enumerable, if there exists an enumerable subset R of N,
with XZ}L(R) =R Ndom x 4». This is equivalent to the existence of a computable function
R: A" — {0, 1} with R(a) < R(a) =1 for all a € A™. Here {0, 1}"* denotes the set of
increasing computable functions f:IN— {0, 1}, divided by the equivalence relation ~ with
f~gelim, 5o fn=1lim, ss0gn. Notice that {0,1}" and {0,1} are equal as sets, but not
as effective sets. A computable function R: A™ — {0, 1}" will be called an ultimate test.
Notice that the equality relation on an effective set A is not necessarily computable or
enumerable, even if A is an abstract computable set.

Since a subset B C A is also a unary relation on A, the above definition in particular
yields the notions of computable and enumerable subsets of A. We also define B to be
a sequentially enumerable subset of A if B = @ or if there exists a computable function
B:N — A with B =im B. Similarly, we say that B is sequentially computable if both B
and A \ B are sequentially enumerable. If B is sequentially enumerable and A admits
a computable equality test, then B is enumerable. If B is enumerable and A is an abstract
enumerable set, then B is sequentially enumerable. If B is sequentially computable, then A
is an abstract enumerable set.

There are several other interesting notions which deserve further study, but which will
not be used in what follows. For instance, we may define a subset B of an effective set A to
be pseudo-computable, if there exists a computable function B: A— Nt with B = {zreA:
B(x) = 400}, where N"t is defined similarly as {0, 1}"*. For instance, given a Turing
machine T € T, the set {x € N: fr(x) +# fail} is a pseudo-computable subset of N.

2.2. Computable real numbers

Let RY8 = 7 2% be the set of digital or dyadic numbers. Given an ordered ring R, we
denote R = {z € R:x > 0}, R” = {x € R: 2 > 0}, etc. Given x € R and ¢ € RY&>, we
say that ' € RY® is an e-approzimation of x if |z" — x| <e. An approximator for z is a
computable function #: Fe™(RRYe> R48) which sends ¢ € R4&> to an e-approximation
of x. If x admits such an approximator, then we call x a computable real number and
encode x by #. We denote by R?PP the set of approximators and by R“™C R the effective
set of computable real numbers. Given ¢, j € N, both the problems of testing whether
XRerr(1) = XRerr(j) resp. XReem (i) = X peom(j) are undecidable.

The usual topologies on R and R naturally induce topologies on R®™ and (IR°™)".
Given an open subset € of (R°™)", an element of F™(€, R®°™) is called a computable
real function. Notice that such a function admits a natural encoding by an element
f e Fom(Q, R?PP), where Q = {& € (R*™P)™: & = (&1, ..., ©,) € Q}. Many classical
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functions like +, —, X, exp , log , max, min are easily seen to be computable. It can
be shown (see [Grz55, Grz57, Wei00] and theorem 2.3 below) that a computable real
function is necessarily continuous. Consequently, the step and stair functions are not
computable. Intuitively speaking, this stems from the fact that the sign function cannot
be computed effectively for computable real numbers.

It is convenient to express part of the semantics of computations with computable real
numbers by providing a signature for the available operations. For instance, the class R?*PP
comes with two main functions

approx: R?PP x Rdie> _, Rdig
X: RaPP — RCOM

Similarly, the class R™ provides operations

L Q — Reom

+,—, X: JReom  [Reom  _y  Rcom

/ . Reom y Rcom,#: —y JRcom

min, max:  R®™ x R™ — [Reom™
exp, sin, cos: Reom — R™
—y JRcom

log: Reom,>

However, we take care not to provide functions for comparisons.

2.3. Left and right computable real numbers

There exist many equivalent definitions for computable real numbers and several alter-
native encodings [Wei00, Chapter 4]. A particularly interesting alternative encoding is to
define an approzimator (or two-sided approximator) of z € R to be a computable function
N— (Rdig)2; k— xp = (zk, Tx,) with

1< L <K< ST <T

and limy_, oo 2 = limy_, o T = x. This definition admits two variants: a left approximator
(resp. right approzimator) of x € R is a computable increasing (resp. decreasing) function
N— IRdig; k+— xk, with x =limg_, 0xk. A real number is said to be left computable (resp.
right computable) if it admits a left (resp. right) approximator.

Intuitively speaking, a left (resp. right) computable real number corresponds to a com-
putable lower (resp. upper) bound. Indeed, in what follows, it will frequently occur that we
can compute sharper and sharper lower or upper bounds for certain real numbers, without
being able to compute an optimal bound. We denote by R!#PP R@PP_Rlcom apd RF°™ the
left and right analogues of R*PP and R™.

Remark 2.1. The above definitions of left, right and two-sided approximators naturally
extend to the case of sequences in the set R4&={—oco} URY8U {+00} of extended digital
numbers. This leads to natural counterparts R*PP, R™, R2PP, etc.

Remark 2.2. For actual implementations, it is a good idea to let the index k of approxima-
tors k— x, correspond to the estimated cost of the computation of zj, (see also [vdHO6b]).
We also notice that left, right and two-sided approximators can be implemented by a
common class real with a method approximate, which returns a bounding interval x> x
as a function of k. In the case of left (resp. right) approximators, we would have x, = [z,
+00] (resp. = [—00, 7).
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Let © be an open subset of R™ or (R°™)™. A function f: ) — R is said to be lower
continuous (resp. upper continuous), if for every z € Q and every y’' < f(x) (resp. y' > f(z)),
there exists a neighbourhood V' of z, such that y' < f(z’) (resp. y'> f(z)) for all 2/ € V.
We have [Grz55, Grz57, Wei00|:

THEOREM 2.3. Let € be an open subset of (R°™)™. Then
a) Any f € F™(Q,R°™) is continuous.

b) Any f € Fom(Q, RI°™) is lower continuous.

c) Any f € FOm(Q,R™) is upper continuous.

Proof. We will prove (b); the other two assertions are proved in a similar way. The function
f admits an encoding f € F Com(Q, RIo™), Let o € Q with approximator

T k—xp= ((ﬁk,h TkJ), vees (ﬁk,m a‘:hn))

Let g: k— yi be a left approximator for y = f(z). Given y’ < y, there exists a ¢ € N with

yq>y'. Now the computation of yjo, ..., yq by f only depends on zq, ..., x,p for some finite
p € N. Increasing p if necessary, we may assume without loss of generality that

V =Ry, ={(v1,...,vn) € (R ™ 2 1 <01 <Tp 1,00 Zp,n <Un < Tpn} SO

Let 2’ € V, with approximator #': k + x}. For a certain p’ > p, we have R/, C V. Now
P

consider the alternative approximator #”: k +— z, of z’ with x} = z; for k < p and
T} = T}y p—p Otherwise. Then, by construction, §” = f(&"): k — yy. satisfies yi = yo, ...,
Yo =Yg We conclude that f(z') =limp— ooy = yq>y'- O

The “lower step function” o, defined by o(z) =0 if x < 0 and o(x) = 1 otherwise, is
lower computable in the sense that o € FeO™(R™ R!°™), Indeed, given #:n— (z,, Tp),
we may take § =& (£): n+— o(zy). Similarly, the function =+ |z ] is lower computable,
while 2 — [x] is upper computable. In particular, this shows that Feom(Rem, Rlcom) 5
Feom(Reom Reo™) ¢ Feom (RO R*°™). Besides the projections

left: Reom — [Rlcom
right: R™ — Rreom

typical lower computable functions on R™ are:

+: ]Rlcom x Rlcom N Rlcom
e Rlcom,} X Rlcom,} N Rlcom,}
min, max: Rlcom 5 Rlcom _,  [Rlcom
exp: Rlcom N Rlcom
lo g: Rlcom, > Rlcom
o LJ Rlcom — Rlcom
, :

Here the dot in |-] indicates the argument of the function x+— |z |. Left computable num-
bers are turned into right computable numbers and vice versa by the following operations:

. Rlcom —y [Rrcom
1/ Rlcom,> —y [Rrcom,>



8 ON EFFECTIVE ANALYTIC CONTINUATION

More generally, increasing computable real functions induce both increasing lower and
upper computable real functions, while decreasing computable real functions turn left
computable real numbers into right computable real numbers and wvice versa.

2.4. Computable complex numbers

The complexification €™ =R™[i] =R“™@ R°™i of R°™ provides a natural definition
for the set of computable complex numbers. Typical operations on C®™ include

complex, polar:  [R®™ x Reo™ — (eom
R, S: Ceom 5 Reom
abs: Ceom  _y Rcom,}
arg: com \ ]Rcom,g N (—TE, T[)com
+,—, X: Qeom o com  _y  (ycom
Ji Ceomx ot 5 Ceom
exp, sin, cos: Cceom . (Ceom
log: com \ Reom,<  _y  [Rcom,> + (—TE, K)comi

The complexification C?PP=1R?PP[i] of R?PP also provides a natural encoding for C®™ and,
setting C4& = R4e[i], the approximation function for numbers in R?PP extends to

approx: Carp x Rdie> _, Cdig

Clearly, functions like arg, log, v/, etc. can only be defined on simply connected subsets
of C. On the other hand, C®™ is effectively algebraically closed in the sense that there
exists an algorithm which takes a polynomial P € (Dcom[z]7é of degree d on input and which
returns its set of d roots in C°™.

2.5. Semi-computable numbers

For many applications, the absence of computable comparisons for computable real or
complex numbers can be a big problem. One solution to this problem is to systematically
consider all possible answers of zero tests or sign computations and to use these answers
as hypotheses during subsequent tests. For instance, if we assume that x > 2, then a sub-
sequent test 22 — z > 1 should return true.

The above approach can be formalized as follows. A system of real constraints is a pair
(z,€) = ((x1, ..., 1), (€1, ..., ) with z; € R®™ and ¢; € {—1,0,1} for i =1, ...,1. We say
that (x,€) is satisfied if sign x; =¢; for i =1, ...,1. We denote by X the set of systems of
real constraints. A semi-computable real number is encoded by a computable function
T: Sz —R®™, where S; is a finite subset of ¥ such that at least one element of Sj; is satisfied
and #(X) =2 (X’) whenever both 3 and ¥’ are satisfied. We denote by R™ the set of semi-
computable real numbers. A semi-computable function is a function f:R™— R5°™, Such
a function naturally induces a function F': IR3°™ — R5°™, Indeed, given x € R3°°™ encoded
by @: S5 — R™, we may take Sp;) = Uscg, S and F(@)(X) = f(@(2))(X),
whenever X’ € SHas))-

Example 2.4. The step function f:z+ |x] is semi-computable. Indeed, given x € R®™,
we first compute an e-approximation © € R4 of x with e <1 (e.g. e=273?) and n= |T+e].
If | —e| =mn, then we let

Sia =2 =10,0)}
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and take f(x): Sjpy = R X —n. Otherwise, we let
S = {5-1,20, 1} ={((z = n), (1)), ((z = n), (0)), ((z = n), (1))}
and take f(z): Stz — R™™ with f@)(Z_1)=n—1and f(z)(Zo) = f(z)(Z1) =n.

From a practical point of view, computations with semi-computable numbers can be
implemented using non-deterministic evaluation and we point to the similarity with the
computation with parameterized expressions [vdH97, Chapter 8|. Each branch of the non-
deterministic computation process comes with a system ¥ = ((z1, ..., x1), (€1, ..., €)) of real
constraints in 2. A constraint checker is used in order to eliminate branches for which X
is contradictory.

In many applications, the numbers 1, ...z; belong to a polynomial algebra Q[y, .., Yn]
and one may use classical algorithms from real algebraic geometry to check the consistency
of ¥ [BPRO3]. Modulo further progress in automatic proofs of identities [Ric92, Zei90,
vdHO02a|, we hope that more and more powerful constraint checkers will be constructed for
increasingly general classes of constants (like algebraic exp-log expressions in yi, ..., Yn).
This would allow for the automatic elimination of a large number of inconsistent branches.
Notice also that it is recommended to spend a roughly equivalent time in trying to prove
and disprove constraints. Of course, proving x > 0 is easy, since it suffices to find a non
zero digit of x.

As in the case of computations with parameterized expressions, many algorithms for
computable real numbers naturally generalize to semi-computable real numbers. This is
due to the fact that all numbers involved often belong to a fixed polynomial algebra
Qly1,---, Yn|, in which the Noetherianity of this algebra may be used in termination proofs.
We refer to [vdH97| for examples.

Remark 2.5. In our definition of systems of real constraints, we have considered sign
conditions on computable real numbers. The same construction may be applied to more
general types of constraints, like x; € )y, for a certain number €2y, Q9, ... of fixed subsets
of the real numbers. However, we have not yet found any practical use for such a general-
ization.

3. COMPUTABLE RIEMANN SURFACES

A classical Riemann surface (above C) is a topological space R, together with a projection
m: R — C, so that every x € R admits a neighbourhood V' for which 7|y is a homeomor-
phism of V on an open ball of C. A Riemann surface R =R II9R with border 0R =0R
is defined similarly, except that each € 9 R now admits a neighbourhood V for which
7|y is a homeomorphism of V' on a subset of € which is homeomorphic to {z € C: Rz > 0}.
A classical covering is a local homeomorphism p: R — S between two Riemann surfaces,
which commutes with the projections, i.e. mgo ¢ = wr. Throughout this paper, coverings
are not required to be surjective.

3.1. Digital Riemann surfaces

An encoding of a digital Riemann surface is a tuple R = (N, A, m,m), where A is a finite
set of nodes, \ € 2% a scale, m: A — Z[i] a projection and M C A? a symmetric adjacency
relation, such that

DR1. If amb, then 7(a) — 7w (b) € {1, —1,1, —i}.
DR2. If amb and amb’ are such that 7(b) = (b’), then b=">".
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DR3. Let ag,0,a0,1,a1,0,a1,1 be such that w(as ) =m(ago)+0+eifor d,e €{0,1} and
such that three relations among ag oMao,1, ao,0Ma1,0, ao,1Ma1,1 and aq oMai,1 hold.
Then the fourth relation holds as well.
The conditions DR2 and DR3 are illustrated in figure 3.1 below. In the case when a, b,
¢, d € A with pairwise distinct projections 7r( ), w(b), m(c) and w(d) satisfy a@bmcmdDa,
then we will also write 9% Notice that BBl 9@

Figure 3.1. Illustration of the axioms DR2 (top) and DR3 (bottom) for digital Riemann sur-
faces. When regarding the left hand sides as digital Riemann pastings, the right hand sides also
correspond to their normalizations.

Let us show how to associate a Riemann surface R in the classical sense to an
encoding R = (A, A, m, M) as above. To each z € ZZ[i], we may associate a compact
square Q. \ by

Q_z,)\ =A (Z + [Oa 1] + [07 1] 1)

We now consider the topological space

V:H Qa>

acA
where O, is a copy of Q_W(a),)\ for each a € A. Whenever a[@b, the squares Q_W(a))\ and
Qﬂ(b), » admit a common edge in C. Gluing the corresponding copies Q, and Oy together
in R according to this edge determines a new topological space
R=TR/~.

The space R is a Riemann surface with a border, whose projection on C is naturally
determined by the projections of the 9, on C. Indeed, DR2 (resp. DR3) implies that
points on the edges (resp. vertices) of the Q./~ are either in the interior of R or on its
border. The interior R of R, endowed with its natural projection on C, is a Riemann
surface in the classical sense; we call it the digital Riemann surface associated to R. It will

be convenient to write Q_C_L = Qa/ ~ an(_i denote the interior of 9, by Q.. More generally,
if BC A, then we write Q= UaeB Q, and Qg for its interior.

Example 3.1. If the mapping m: A— Z][i] is injective, then the induced projection 7: R — C
is a homeomorphism on its image. In that case, we will identify R with the subset 7(R)
of C, and call R a digital subset of C. Conversely, any \ € 2% together with a finite subset
A C 7Z[i] determines a natural digital subset R C C, encoded by R = (X, A4, Id, @) with
albea—be {1, £i}.
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Example 3.2. One of the simplest examples of a digital Riemann surface R for which 7
is mot injective is shown in figure 3.2. Formally speaking, this surface is encoded by

A =1
A = {ai0,a1,1,00,1,0-1,1,0-1,0,0—1,—1, G0,—1,a1,—1,D1,0}
m(az,y) = x+yi
w(bio) = 1
gDz, y & |2' =2+ |y = y| =1 A {az,y, azy} # {a1,0,a1,-1}
ax7y[]]b170 < Qgy=0a1,—1.

a-1,1| aop,1 | a1,1

b1,0
a—1,0 K
aio

a—1,-1/Qp,—1 | G1,—1

Figure 3.2. Example of a digital Riemann surfaces with non-trivial fibers.

Consider an encoding R = (A, A,7,m) of a digital Riemann surface R at scale \. This
encoding induces a natural “doubled encoding” R® = (\/2, A®, ¥ m®), by associating
four nodes ag 0, ao,1, a1,0, a1,1 € A" with 7rEE(a5,€) =27(a) +J +¢ito each a. Given as ¢,
af € AF | we set as -MTajs . if and only if a=a’ and 73(a§ /) — 75(as ) € {£1, £}, or
ama’ and 7(aj /) — 7(as,e) = 7(a’) — 7(a). The doubled encoding R® encodes the same
digital Riemann surface R, but at the smaller scale A\/2. By induction, it is possible to
obtain encodings at any scale A/2" with n € N.

Given a digital Riemann surface R, the above argument shows that there exists a max-
imal scale Amax € 2%, such that R admits an encoding at scale A = Apax/2" for every n € N.
Inversely, the encoding (A, A, 7, M) of R at a given scale A is essentially unique (up to
bijections A — A’). Indeed, given a € A, the center ¢, of each Q, (a € A) corresponds to
a unique point in R. Furthermore, given a,b€ A with 7(a) —7(b) € {£1, i}, we have amb
if and only if the segment [7(cy), (cp)] lifts to a segment [cq, cp] on R. If the scale A is
clear from the context, then it will be convenient to denote “the” encoding of R by (A, Ag,
TR, MRr). If R is the result of some computation, then we will denote by Az the scale of
the corresponding representation.

Remark 3.3. In practice, it is more efficient to work with a set of scaled nodes A% instead
of A. Each element of A% is a pair (a,n) with a € A, n € 2% and 7(a) € A n(Z + Z1).
A scaled node corresponds to n% nodes (a;,j)o<i j<n in A with m(a; j) =m(a)+i+ jiand
aléj; Zzij“ for all 0< 4, 7 <n — 1. For simplicity, we will directly work with nodes in A
in what follows. Nevertheless, with some additional effort, our algorithms can be adapted
to work with scaled nodes.

Let R be a digital Riemann surface, with a fixed encoding R = (N, A, 7, m). We write

Rs={¢eR:m(¢) € Cle}
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for the set of digital points on R. Such a point ¢ € R4& can be encoded by a pair = (a,z)
with a € A and z=7(() such that { € Q,NR. This encoding is unique, except when ( lies
on the border of two squares. Notice that R4 is an abstract computable set. Similarly,
we write

Reom = {¢ € R:w(() € Ceom}

for the set of computable points on R. Such a point ¢ € R™ can be encoded by a pair
¢ = (a, z) with a € A and z = 7(¢), such that the distance between ¢ and Q, is bounded
by A/2. Hence, we have ¢ € Q,, or ¢ € Q43 With alb, or ¢ € Qqp.c q) With 9@l In
particular, ¢ admits a computable open neighbourhood U, such that Ty, is a homeomor-
phism onto a rectangle 7 (i) with corners in Cdie, Notice that there exists no algorithm
for testing whether ¢ € Q, for given { € R°™ and a € A.

3.2. Digital Riemann pastings

During actual computations with digital Riemann surfaces, the conditions DR2 and DR3
are not always met a priori. In that case, we need an automatic procedure to identify
nodes when necessary. This will be the main objective of this section.

Consider a tuple R = (X, A, 7, @) as in the previous section which only satisfies DR1.
Then the construction of the previous section still yields a topological space R with
a projection m: R — C, even though R may now contain points which are not locally home-
omorphic to open subsets of C. We will call R a digital Riemann pasting with encoding R.
For instance, taking A = {a, b, ¢}, w(a) = 7(b) = w(c) + i, alc and bMc¢, we obtain
the digital Riemann pasting shown at the upper left hand side of figure 3.1.

A quotient structure on R is a pair (~1, 1), where ~1 is an equivalence relation on A
and M; 2 M an adjacency relation on A, such that

e a~b=m(a)=m(b).
o allibNa' ~1aNb ~1b=a M.

In that case, when setting 7 (a/~1) = (a) for all a € A, the tuple R /(~1,m1) = (A, A/~1,
71, M1) again encodes a digital Riemann pasting.

The intersection (~1 N ~g, M1 NM2) of two quotient structures (~1,M1) and (~q, M2) is
again a quotient structure. Moreover, if both R /(~1, M) and R /(~2, @2) encode digital
Riemann surfaces, then so does R/(~1 N ~g, M1 N M2). Consequently, (=4, M) generates
a smallest quotient structure (~*, m*) for which R* =R /(~*,m*) encodes a digital Riemann
surface. We call R” the normalization of R and the corresponding digital Riemann surface
R* the normalization of R. It can be checked that normalization commutes with the
doubling operator (R®)* = (R")®, so that that this definition indeed does not depend on
the chosen scale. Two examples of normalizations are shown in figure 3.1.

Example 3.4. Let R be a digital Riemann pasting and let ~ be an equivalence relation
on R with { ~ ¢ = 7(¢) =w(£). Given an encoding R = (A, A, 7w, M), we may define an
equivalence relation ~’ on A by a~'b=3¢ € Q4,3 € Qp, (~E. Then (R/(~',m))* encodes
a digital Riemann surface, which we will denote by R /~.

In order to compute the normalization of a digital Riemann pasting R, it is convenient
to maintain
e The map 7! which associates to each z € im 7 its preimage 7~ !(2) C A.

e The map u: A x {£1,+i} - P (A) with p(a,0)={be A:w(b) =n(a) + 4 Aamb}.
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Given a subset B C A of nodes such that 7(B) consists of a singleton z, we may then glue
all nodes in B together using

o ula,—6):=pula,—6)U{B}\ B for all 6 € {1, £i} and a € u(b,d) for some b€ B.
o w(B,8):= Upep mb,0) for all § € {+1, +i}.
o 71 Y2):=m"Y2)U{B}\B.

In order to normalize R, we now keep on doing the following operations until both DR2
and DR3 are satisfied:

e If DR2 is not satisfied, then there exist a € A and § € {£1, £i} such that u(a, 0)
contains more than one element. In that case, we glue all elements in p(a,d) together
using the above procedure.

e If DR2 is satisfied, but not DR3, then there exits an a € A and a permutation
{61, ..., 04} of {1, £i} with p(u(p(a,d1),d2),93) ={b}, but b ¢ u(a, —ds). In that
case, we add b to p(a, —d4) and a to u(b,ds).

The normalization procedure finishes, because the size of A strictly decreases for the first
operation and the number of (a,b) € A? strictly increases for the second operation.

3.3. Digital coverings and computable Riemann surfaces

A digital covering is a covering ¢: R1 — R in the classical sense between two digital
Riemann surfaces. Let ¢ be a digital covering and let Ry = (A, Ay, mp, M) and Ry =
(N, A2, m2,M2) be encodings of R; and R at the same scale A\. Then ¢ induces a mapping
F: A1 — A, which sends a € A to the unique F'(a) € Az with cp(q) = ¢(cq), Where ¢, stands
for the center of Q,. This mapping satisfies

7T20F = 71 (31)
amb = F(a)m2F(b) (a,be Ay) (3.2)

Inversely, given a mapping F': A] — Ay which satisfies (3.1) and (3.2), we obtain a covering
in the classical sense by sending ¢ € Q, N Ry to the unique point p({) € Qp(a) with
m2(F(¢)) = m1(¢). In other words, the digital covering ¢ may be encoded by the triple
¢ =(R1, R, F). We will denote by V4 the set of all digital coverings.

Example 3.5. Let R be a digital Riemann surface encoded by R = (\, A, 7, m). Consider
the equivalence relation a~b< 7(a)=7(b) on A and the projection P: A— A/~. Then the
tuple RP'= (\, APL 7Pl mP) with AP'= A/~ 7Plo P=7 and amPb< 7(a) — 7 (b) € {£1,+i}
encodes the digital complex subset 7(R) of C and m: R — m(R) is a digital covering.

Example 3.6. The definition of digital coverings naturally extends to digital Riemann
pastings. The normalization R* of a digital Riemann pasting comes with a natural digital
covering -*: R — R*; ( — (*. In particular, given an equivalence relation ~ on R with
(~E&=m(0)=mn(), we obtain a natural covering R — R /~. This generalizes the previous
example, by taking ( ~ < 7w (() =7(§). Moreover, any digital covering ¢: R — S induces
a digital covering ¢*: R* — S§* which commutes with -*.

Given digital Riemann surfaces Rg, R1,... and coverings po: Ro— R1, ¢1: R1 — Rao, ...,
we call

Ro 2% Ry L5 Ry 22 .. 3.3
0

a digital covering sequence. Such a sequence admits a natural limit

R=lmRy 2% R - = (RoIIR I --) /~, (3.4)
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where ~ is the smallest equivalence relation with ¢ ~ ¢;(() for each ¢ € R;, and R has
the natural structure of a Riemann surface. We will write (;.; for the composed covering
pj_10--0@; Ri— R; and ;. for the covering which sends ( € R; to (/~ € R. We say that
the covering sequence (3.3) is computable, if the mapping R:N — $dig x ydig: (R, ¢n)
is computable. In that case, we call R a computable Riemann surface. Notice that coverings
are not necessarily injective. This corresponds to the idea that better knowledge of the
Riemann surface of a function may lead to the detection of identical leaves.

Example 3.7. Let R CC be an open rectangle with corners in C®™ or an open disk with
center in C°™ and radius in R®™~. For each n € N, let

Ay = 277
Ap = {a€Z[i]: Qun, CR}.

By example 3.1, A\, and A,, determine a digital subset R,, of C. The limit of the sequence of
embeddings Ro— R1— ... is a computable digital Riemann surface, which is homeomorphic
to R. More generally, the limit of a computable sequence Ry — R1— --- of embeddings of
digital subsets of C is called a computable open subset of C.

Example 3.8. The example 3.2 can be adapted to turn infinitely many times around the
hole in the middle. Indeed, consider the “infinite digital Riemann surface” R, encoded by:

A =1
A = {ax,y;k:xaye{_17071}7(x7y)7/:07kez}
T(az,yk) = T+yi

Az, y;k Mgy & |2'—z|+ |y —y|=1A
((z,y)=(1,-D A" y)=(1L0) Ak =k+1)V
((x/ayl):(L*1)/\(x>y):(1a0)/\k:kl+1)\/
{(z,y), (@, y)}#{(1,0), (1, -1} Nk =k))

Given n € N, the restriction R,, of R to those a, 4 with —n <k <n determines a digital
Riemann surface R, in the usual sense. The natural inclusions determine a digital covering
sequence Ro 2% R % --- whose limit corresponds to Roo. Notice that R is isomorphic
to the universal covering space of m(R); see also section 4.7.

Let R be a fixed computable Riemann surface. We denote by

Rie = {(eR:7(¢) e Clig}
Reo™ = [¢eR:m(() € Co™}

the sets of digital and computable points on R. A digital point ¢ € RY& (and similarly for
a computable point ( € R°™) may be encoded by a partial sequence Cin> ne— G € Riig
such that (1= ©n((n) and (= @,.((p) for all n>ne. We notice that R is an abstract
enumerable set. We have natural computable mappings

m Rds 5 Cdis
T RCOm _> CCOm

As in the case of digital Riemann surfaces, each { € R™ admits a computable open
neighbourhood U, such that 7, is a homeomorphism onto a rectangle m(U¢) with corners
in Cdie,
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3.4. Atlas representation of a computable Riemann surface

Instead of using the digital representation of computable Riemann surfaces (i.e. as limits
of digital covering sequences), we may also try to mimic more classical representations of
Riemann surfaces. For instance, a computable atlas representation of a Riemann surface R
with projection 7: R — C is a tuple R = (A, U, lift,V, M), where

e A is an abstract enumerable set.

e U is a computable map which sends a € A to a computable open subset U, of C™.

o lift: (A, C™) =~ R™ is a computable partial map such that lift(a,-): Us™ — R™
is an immersion for every a € A, with w(lift(a, z)) = z for all z € U;°™". Here

ReOM = {» € Rom(z) € COm}.

e V:R™— Ais a computable function such that z € imlift(V,, -) for all z € R®™.
e An enumerable relation MC.A2 with

a M b&imlift(a, ) Nimlift(b, -) # 2.
PROPOSITION 3.9. Any computable Riemann surface admits an atlas representation.

Proof. Let R be the limit of a digital covering sequence Ry —% Ri -2 --- of digital
Riemann surfaces R,, and define

A = {(n,{a}):neN,ae€ Ag, } U
{(n,{a,b}):neN,a,be Ag,,,aldb}U

{(n,{a,b,c,d}):neN,a,b,c,de Ag,,*H5}
u : (TL,B)GAI—)Qan(B).

Given ¢ = @n.(Cn) € RO™, let (, = (a, z) € Ag, x C®™ be an encoding of ¢,. We
have already noticed that z € Qp for B={a}, B ={a, b} with amb or B ={a,b,c,d}
with 2HY. We may thus take V¢=(n,B). Conversely, given (n, B) € A, the composition of
71 Q. (B)— Qp and the restriction of @, to Qp determines an immersion lift((n, B),-)
of Qr, () into R. Finally, given pairs (i, B), (j, C) € A, we may ultimately check
whether ¢;.(Qp) N ¢;.(Qc) # @: given n € N, we check whether n > max (i, j) and
Pin(QB) N @jin(Qc) # 2. O

PROPOSITION 3.10. Any Riemann surface with a computable atlas representation can be
given the structure of a computable Riemann surface.

Proof. Let A={ag, ai,...} be an enumeration of A and {Ey, E1, ...} an enumeration of
all pairs (¢, j) with a; M a;.

Let us first assume that each U,, is a digital subset of C. Consider the disjoint
union U, IT --- IT U, , together with the smallest equivalence relation ~ for which corre-
sponding squares in Uy, and U,; are equivalent if and only if (i, j) € {Ep, ..., Ey }. Setting
Ry = (Usy 1T -+ IT U,,)/~, we obtain a natural computable digital covering sequence
Ro-2% Ri -2 ... We claim that R is isomorphic to the limit R of this sequence.

Indeed, the construction implies natural coverings v,: R,, — R which pass to the limit
¥: R — R. Inversely, im lift(a, -) naturally immerses into R, with inverse ¢». Gluing these
immersions together for all a € A, we obtain a covering & R — R with 1o & =Idg (since
every z € R%™ is contained in im lift(V., -)), proving that R~ R.
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In the general case, each U,, is the computable limit of a sequence R, o — Rn 1 — -
of immersions. We may now construct another computable atlas representation of R, by
taking A = {a0,0,a1,0, 00,1, a2,0,a1,1,00,2, ...}, Z]am. =R, j, etc. We conclude by applying the
above argument to this new computable atlas representation. ]

Remark 3.11. From the proofs of the above propositions, it becomes clear that the class
of Riemann surfaces with a computable atlas representation does not change if we require
the computable open sets U, to be of a prescribed type, like open rectangles with corners
in C%i& or open balls with centers in €™ and radii in R®™>.

3.5. Intrinsic representation of a computable Riemann surface

Let R be a classical Riemann surface above C and denote

RAE = {(eR:m(¢) e Cle};
Rem = {(eR:7(¢) € Co™}.

Given z € C and p € R” U {400}, we denote

B.p, = {z+0€C:|d|<p} B, = Bo,

3.5
B., = {z+6€C: 0| <p} B, = Bo,p 39

Given a point ( € R, let rc € R” U {+o00} be the largest radius such that there exists
an open disk By, C € for which ¢ admits an open neighbourhood ¥V C R so that the
restriction )y of 7 to V is a homeomorphism between V and B¢, Given § € C with
|0] < rs, we denote by ¢ + ¢ or (45 the unique point in V with 7({ + §) = () + 0. In
particular, the notations (3.5) naturally generalize to the case of balls B¢, , and 547 pinR,
for p<r¢ (resp. p<re).

A computable intrinsic representation of R is a tuple R = (x,dig,
such that

com com com
,+

,T ,near)

e Y is an encoding for R™.

o TEOMRM — C™ is a computable function with 7™ = 7 gcom.

o dig: N — R©™ ig a sequential enumeration of the elements of RS,
o peom Reom _ Rlcom.> jg 5 computable function with 7™ = T Reom.

o plOomRCOM 5 (Ceom ~ REOM i3 5 computable function with ¢ +°™§ = ( + § for all
¢ €R™and ¢ € Br™.

e near C (R°™)2 is an enumerable relation with

near((,§) < €€ Be -

Simplifying notations 7™ — 7, 7™ — r and (+“°™§ — ( + 9, we thus have the following
signature:

T RCOm - (Dcom

r Reom  _ ]Rlcom,>

+: RCOm X (DCOITI _\ RCOm

PROPOSITION 3.12. Any computable Riemann surface R admits a computable intrinsic
representation.

Proof. Let R be the limit of a digital covering sequence Rg —% Ry -2 ---. For R, we

take the set of encodings of points ( € R°°™ and we already have a computable mapping
m RO — o,
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Let C:n> n¢ > Gp be the encoding of a point ¢ € R™. The distance ¢, of to the border
OR,, is easily computed for each n > n¢. Since r¢, <7, <+ and limy, o07¢, = 7¢, the
sequence i+7¢, ., encodes r¢ € RI°™>_ Similarly, given § € C™ with |§| < r¢, it is easy to

compute (,+ 0 in R, for each sufficiently large n > ng. Then the sequence n = ng+— (,+ 9
encodes ¢ + 0. . _

Finally, Rdi& = 4,00;(733%) U gpl;(R(lhg) U --- yields an enumeration dig of R4, Given
¢, € € Re™ with encodings ¢:n > n¢— G, and En> ne — £y, we may ultimately check
whether near(¢, £) holds: given n € N, we test whether n > max (n¢,n¢) and &, € B¢, .. O
PROPOSITION 3.13. Let R be a Riemann surface with a computable intrinsic representa-
tion. Then R is a computable Riemann surface.

Proof. Let {(p, (1,...} be the enumeration of R4& and {Ep, F1,...} an enumeration of all
pairs (4, j) € N? such that near(¢;, ;) holds.

For each n € N, we may compute a square Qp C Br(c,) r, With corners in Z[i] pin, for
some p, € 2% such that r¢, /8 < i, < 1¢, /2. Now let R,y = (Qo1l--- 11 Q,,) /~, where ~ is
the smallest equivalence relation induced by identifying matching squares in Q; and Q;
for pairs (i, j) € {Ey, ..., En}. We claim that the limit R of the induced digital covering
sequence Ro 2% Ry 2% ... is isomorphic to R.

Indeed, we have natural coverings ¥,: R, — R for each n, which pass to the limit
W R — R. Inversely, for each n, the set BCo,rgO U - U B, r, can be immersed in
some Ry, (), where k(n) is large enough such that all pairs (4, j) with (; € B¢, ., are among
{Eo, ...; Ej(n)}- Gluing these immersions together, we this obtain an immersion 1: R =R
with 1ot =1dg, proving that R &¥R. O

3.6. Optional features of computable Riemann surfaces

Let R be a computable Riemann surface. In certain cases, we may design an algorithm
r.:RO™ — R™~ to compute the distance of a point ¢ € R°™ to the border. In that case,
we say that R is a delimited computable Riemann surface.

Remark 3.14. One might prefer to call computable Riemann surfaces in our sense lower
computable Riemann surfaces and delimited computable Riemann surfaces simply com-
putable Riemann surfaces (and similarly for computable open sets). However, in what
follows, we will mainly have to deal with computable Riemann surfaces for which we do
not have a computable distance function r.: R™ — R°™ > Therefore, we will stick to the
original definition.

Assume that R = lim Ry =% Ri —% --- and consider two points ¢, ¢/ € R®™. Even
under the assumption that 7(¢) = 7(¢’), we notice that there exists no test in order to
decide whether ¢ = ¢’. Indeed, given encodings ¢:n > ne¢ = G and in> ner— ¢, of ¢
resp. ', we do not know whether there exists an index n with ¢, = ¢,,. Nevertheless, we
naturally do have such a test in the case when the coverings ¢; are embeddings. In this case,
we say that R has computable branches. Conversely, assume that we have a conditional
equality test

= ROM X RO x {true, false} — {true,false}

where ¢ = (' returns the result of the test ( = (’, provided that we are given the answer b
to the test m({) =n((’). Equivalently, one may assume a predicate

near: R™Mx R™ — {true,false}
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such that near((, £) holds if and only if £ € B¢ ., provided that 7(¢) € Br(¢),r,- Then we
may associate a new digital Riemann surface Ry, to each Ry, by identifying all squares Q,
with a € AR, whose centers are equal (using the normalization algorithm from section 3.2).
This leads to a new representation k — (7%, &) of R, for which the induced coverings @y,
are embeddings. When using the atlas representation, R has computable branches if and
only if we have a computable test for deciding whether im lift(a, -) Nim lift(b, -) # @.

4. CONSTRUCTIONS OF COMPUTABLE RIEMANN SURFACES

4.1. Computable coverings

Consider two computable Riemann surfaces R and S. A covering &: R — S is said to be
computable if its restriction to R™ is a computable mapping R — S A digital
representation of such a covering is a triple £ = (R, S, £°9), such that R:n — (R, ©n)
represents R, S:n (S, ¥y) represents S and £5°% n — &, is a computable sequence of
digital coverings &,: Ry — Sn, such that

Ro 2% PRy B

R
& la e (4.1)
S s B
commutes and &(¢n;(€)) = ¥n.(&n(¢)) for any n € N. If each &; is an immersion, then we
call & a computable immersion (of representations). If £ is also surjective, then we call £
a computable subdivision (of representations), and R is said to be a subdivision of S.

LEMMA 4.1. Let R:nw— (R, ¢n) be the representation of a computable Riemann surface.
Then we may compute a computable subdivision S:nr—> (Sn, ¥n) of R, such that there exist
en>0 with r¢ > ey for alln € N and ¢ € Yn,(Sy).

Proof. Without loss of generality, we may assume that the R, are encoded at scales
ARy > AR, > -+ Given a digital Riemann surface 7 encoded by (A, A, 7, M), let ©57T stand
for its restriction to the subset of inner nodes a € A which admit four distinct neighbours b,
b2, b3, by € A. Taking S, = Oxrz, Oag, Rn, ¥n= ¢ns, and e, = A, the inclusion mappings
Sn — Ry determine a computable immersion of the Riemann surface & represented by
S:n (Sy, ¥n) into R. Since Az, — 0, this immersion is actually a subdivision and we
have T oni(Cn) Z TCn > Eni= AR, for all ¢, €Sy, O

LEMMA 4.2. Let R be the limit of a computable covering sequence Rg —2 Ri —% -+ and
CCR a digital Riemann surface such that C is compact. Then we may compute an n € N
and a digital Riemann surface T C R, with ¢,.(T) 2C.

Proof. The set {¢o.(Ro), ¢1.(R1),...} forms an open covering of C. Since C is compact, it
follows that there exists an k € N with ¢, (Ry) D C. Since ©k:(Ry) and C are both digital
Riemann surfaces, we may actually check whether ¢.(Ry) 2 C, and therefore compute the
first k£ for which this holds. O

PROPOSITION 4.3. Let £t R — S be a computable covering. Let R: n = (Rn, pn) and
S:n— (S, ¥n) be representations for R resp. S. Modulo subdividing R and reindexing S,
the covering & admits a computable digital representation of the form & = (7%,5, £5°9).
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Proof. By lemma 4.1, we may assume without loss of generality that there exist &, > 0
with 7¢ > ¢y, for all n € N and ¢ € ¢y, (Ry). In particular, Cp, = ¢pn;(Ry) is a compact subset
of R for all n € N. By lemma 4.2, we may compute a digital Riemann surface 7, C Sk,
with ¢, .(Tn) 2 &(Cr). We next increase k,, further until there exists a digital covering
&n: Cp = Tr,, C Sk, which commutes with £ o ¢, = )y, . 0 &,. On the one hand, the digital
coverings &,: Cp, — Tg,, whose incarnations at a suitable scale are finite in number, can
easily be computed. Using the predicate near, we also have an ultimate test for checking
whether & o ¢, = Yy, . 0 £,. Trying all values of n in parallel, we know that one of these
tests will ultimately succeed. Increasing k, still further so as to ensure that ko < k1 < ---,
this completes the construction of the digital representation of &. O

Remark 4.4. A representation R:n— (R, pn) of a computable Riemann surface is said to
be proper if there exist £, >0 with ¢ > ¢, for all n€ N and ¢ € ¢p;(R;). From the proof of

proposition 4.3, it follows that it is not necessary to subdivide R, provided that R is proper.

A computable covering sequence is a computable sequence

Ro&ngRgﬁw-- (4.2)

where each R, is a computable Riemann surface and each &,: R, = Rn+1 a computable
covering. Let R,: k (Rnks ¥n,k) be a proper representation of R, for each n. By
induction over n, and modulo reindexation of R,,, we may construct a digital representation
(R Ry 1, ke &n.i) for &g, such that we have the following commutative diagram:

Ro,0 08 Ro,1 204 Ro,2 LUt

lfo,o \Lf(u l§0,2

Ri,0 LAt Ri ol Ry, 23

151,0 lgl,l lfl,z

In particular, we obtain a new computable Riemann surface

R = limRo-% R, ...
¥1,00 O,O,RO ©2,10 1,1”..

)

= lim RO,O

We call R the limit of the computable covering sequence (4.2). This limit satisfies the
following universal property:

PROPOSITION 4.5. For every Riemann surface S and coverings oy: R, — S, there exists a
unique covering p: R =S with op, = po &,. for all n. Moreover, if S is computable and the
on are given by a computable mapping, then p is also computable and we may compute it
as a function of S and the o,. O

4.2. Disjoint unions and covering products

Let R and S be two digital Riemann surfaces which are encoded at the same scale . We
define their disjoint union RII S by

ARIS = A
Arns = ArllAs
. WR(Q) if a€ Ag
mrus(a) = {7‘(3(0,) ifac Ag

alriasb & (a,bEAR/\a[]]Rb)\/(a,bEAg/\a[]]gb)
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It is not hard to verify that this construction does not depend on A and that RILS is indeed
a digital Riemann surface. We have natural inclusions ¢t1: R - RIS and 1o: S—RIUS.
The disjoint union satisfies the following universal property:

PROPOSITION 4.6. Given any digital Riemann surface T with digital coverings &1: R— T and
£9:S— T, there exists a unique covering E=& 1 RILS — T with &=Eo011 and Ea=E o0 1o.
Moreover, £ is a digital covering which can be computed as a function of T, &1 and &. O

Similarly, we define the covering product R x S of R and S by taking

ARxS = A
Arxs = {(a,b)€ Ar x As:mr(a)=ms(b)}
Trxs(a,b) = wr(a)=ms(b)

(a,b) Mrxs (a’,b') & a@ra’ ANbDsd

We have natural digital coverings 7m1: R x S — R and ma: R x § — S which are not necessarily
surjective. The covering product does satisfy the following universal property:

PROPOSITION 4.7. Given any digital Riemann surface T with digital coverings £&1: T — R
and &: T — S, then there exists a unique covering E =& x &1 T >R xS with {y=m10¢&
and &o = mo 0 . Moreover, & is a digital covering which can be computed as a function of
T, & and &. U

Let R and S be computable Riemann surfaces represented by n— (R, ©n) resp. n—
(Sns ¥n). The disjoint union of R and S is the computable Riemann surface represented
by the sequence n — (R, II Sy, ¢n II ¥y,). The sequences n +— (11: Ry — Rp 11 S,,) and
n (t2: Sp— Ry 11 S,) determine computable immersions R -+ RIS and S - RIS and
the universal properties for R, I1S,, pass to the limit. Similarly, the covering product R x S
of R and S is the computable Riemann surfaces represented by the sequence n+— (R, x Sy,
©n X ¥p). Again, we have natural computable coverings 71: R x S— R and m3: Rx S — S
which satisfy the universal property for products.

PROPOSITION 4.8. Let R and S be computable Riemann surfaces.
a) If R and S are delimited, then so are RIIS and R x S.
b) If R and S have computable branches, then so have R11S and R x S.

Proof. All properties are easy. For instance, given ( € R x S, we have

TC:min (rwl(g)7rﬂ2(<))' D

4.3. Quotient spaces and gluing at a point

Let R = lim Ry 2% R; 2% .- be a computable Riemann surface and = C (R™)?
a sequentially enumerable relation with ( =&=-7({) =n(&). In particular, we may compute
a computable sequence k — Ej, where each Ej is a pair ((x, &) € (R2™)? such that
(©n:(Ck), ¥ny:(Cr)) is the k-th pair in the enumeration of =.

For each n € N, let ~,, be the smallest equivalence relation on R, generated by the
relations ©p,:n(Ck) ~n Vnpn (k) for ng <n and k <n. Setting S, =R, /~p, we have natural
computable coverings m,: R, — Sy, and 1, = (Tp+10 ©n)/~n: Sn—> Sn+1. Let S=R /= be
the limit of Sy Yo, S1 Y1y ... The mappings 7, induce a computable surjective covering
T=:R— 8. For every (,£ €R we have ( =& = 1-(() =7=(£). It is not hard to verify the
following universal property of S:
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PROPOSITION 4.9. Given a Riemann surface T and a covering w: R — T with ( = £ =
7(()=7(§), there exists a unique covering &: S — T with T = o mw=. Moreover, if T and 7
are computable, then so is £ and we may compute it as a function of T and 7. O

Let us now consider two computable Riemann surfaces R and §. Given ¢ € R°™ and
& € R™ with mr(¢) = ms(&), consider the relation = on R II § which is reduced to the
singleton {((,&)}. We call R¢xeS = (RILS)/= the join of R and S at ((,§). If ¢ and ¢
are not important, or clear from the context, then we also write R 4 S for R¢xe S. We
will denote the natural coverings R —+R xS and S - R xS by 61 resp. 0s.

PROPOSITION 4.10. Assume that R and S are connected. Then 61(R)N62(S) is connected.

Proof. Assume for contradiction that 61(R)N6#2(S) is not connected and let R S=UITV,
where U is the connected component of () =602(§). Then we may define an equivalence
relation ~ on R I S by (' ~' ¢ & ' = ¢ Vv 61({') = 02(¢') € U. The quotient set
T =(RIUS)/~' has a natural structure of a Riemann surface and there exists a natural
covering 7 — R x S. By the universal property of R x S, it follows that 7~ R x S, which
is impossible. O

The proposition ensures in particular that we may apply the following classical theorem:

THEOREM 4.11. (VAN KAMPEN) Let A and B be path-connected topological spaces, such
that AN B is non-empty and path connected. Denote by 11 and 1o the natural inclusions of
ANB in A resp. B. Then the homotopy group of AU B is given by

(AU B) = (m(A)xmy(B))/H,

where H is the normal subgroup of the free product mi(A)*ma(B) of m(A) and m(B)
generated by elements 11(a) ta(a™t) with a € (AN B).

COROLLARY 4.12. If R and S are simply connected computable Riemann surfaces, then so
s RxS.

4.4. Computable rooted Riemann surfaces
A broken line path is a finite sequence 6 = (81, ...,;) € C! and we write

ol =1
6] = b1++6

Intuitively speaking, d corresponds to a path 0—§; — -+ — 01 +--- + &;. We write P for the
set of broken line paths and denote by

Ppdis — {(51,...,51)6]P:51,...,5l€(ljdig}
peom = {(6y,...,0;) €P: 0y, ..., 0, € CO™}

the subsets of digital and computable paths. The empty path is denoted by €. We say that
d' is a truncation of ¢ and write 6’ <9 if 6’ = (41, ..., d;) for some i <|J|. Given two paths
§,6'€P, we write § + 06" = (01, ..., 05, 01, ..., 5|’5/|). When no confusion is possible, paths of
length 1 will be identified with numbers. If § # €, then we will also write §* for the path
((51, ceey (5|5|,1).

A Riemann surface R is said to be rooted if it admits a special element e € R called
the root of R. If R is also computable and e € R“°™, then we call R a computable rooted
Riemann surface. Unless explicitly stated otherwise, we will always assume that rooted
Riemann surfaces are connected. A root-preserving covering between two rooted Riemann
surfaces will be called a rooted covering. We denote by 3¢ the class of computable rooted
Riemann surfaces. Given R € 3¢, we have an additional method e: () — R™ in the
signature of R ™.
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Let R be a computable rooted Riemann surface. We define the path domain Pr of R
to be the set of § = (d1,...,0;) € P, so that

et+¢c — @

+(01) = (e+¢€)+01

o+ (01,0, 01) = (o4 (01,..,01-1)) + 0y

are all well-defined. We will also write eg = eg + €. The digital and computable path
domains of R are defined by

PRE = PrnPdi
PE™ = PrnPeom

We notice that IP%g is an abstract computable set with a computable equality test, whereas
P%™ is only an effective set. A broken line path 6 = (01, ..., 0;) € P naturally induces
a continuous path ¢;5 :[0,1] =R by setting

¢5,r((i+1)/n)=(01,...,6i-1,t 0i)R
for i€{0,...,i —1} and t €[0, 1]. This path is rooted in the sense that ¢5 z(0) = exr.

PRrROPOSITION 4.13. Let R and S be computable rooted Riemann surfaces. Then there
ezists at most one rooted covering 1: R —S. Such a covering is necessarily computable and
computable as a function of R and S.

Proof. Assume that there exists a covering 1: R — S. By continuity, it suffices to show how
to compute () for all ¢ € RYe. Since R is connected, there exists a path o¢c € IP%i with
¢=(0¢)r- Given (, we clalm that we may compute such a path d¢. Indeed, the set ]Pdlg is
enumerable and, given § € IPR , We may ultimately test whether dgr = (. We perform these

ultimate tests in parallel, for all § € IPR , until one of them succeeds. Since S is connected,
we have Pr CPgs, so our claim implies (¢) =9 ((d¢)r) = (d¢)s. O

PROPOSITION 4.14. Let R be a computable rooted Riemann surface and assume that P is
given the natural topology of C°IIC'II C?11---. Then

a) ]Pdlg PE™ and Pr are open subsets of PPYE, PCO™ resp. IP.

b) PE™ is a dense subset of Pr and IP%i is a dense subset of both P and IPdlg

Proof. Let us prove the proposition by induction over [ for each of the subspaces ]P%ig NncCt,
PY™N !, etc. The assertions are clear for [ =0. Assume that U;=PrNC' is open, with
U =PR™ N C! as a dense subset. We have

Uip1 =PrNCHL={§ € U; x C: [§151| < p(8")},

where p: U;—R”; 6+ r5,. Now the restriction plugem: Up— RIcom> i computable, so p is
lower continuous, by theorem 2.3. Assume that § € U;41 and let e = p(8") — [0;4-1]. Then §
admits an open neighbourhood V CU; with p(n) > |d14+1]| +¢&/2 for all n€ V. Consequently,
V' x Bs, /2 € Uiy1 is an open neighbourhood of 4. This proves that U1, U1 and

Uﬁﬁgl = dlg N C! are open subsets of P, P4 resp. P°™. In order to show that USPT is a
dense subset of V, it suffices to prove that any open ball V' C Uy intersects U1 Now
V'={0%0 €V} is an open ball of U;, which intersects U™, say in 6. Furthermore, {¢ € C:
§ +e €V} is a disk with radius 0 < p < rs,. Taking ¢ € CU8 with || < p, we thus have
d+eeVNUFT. The other density statements are proved similarly. O
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PROPOSITION 4.15. Let R be the limit of a computable covering sequence Ro—> Ri % ---.
a) If Ro, R1,... are all connected, then so is R.
b) If Ro, R1, ... are all simply connected, then so is R.

Proof. Assume that R = 11V where U and V are non-empty open sets. Then ¢,.(R,)
both intersects U and V for sufficiently large n. Consequently, R, = go,;l(u pi! go,:;l(V) is
not connected. This proves (a). As to (b), assume that Rg, R1, ... are simply connected
and consider a loop 7:[0,1] = R with 7(0) =~(1). Then im + is compact, so @.(Ry) 2 im~y
for a sufficiently large k. In a similar way as in lemma 4.2, we may find a n > k such that
the restriction of ¢y, to @r.n(Rk) is @ homeomorphism. But then gp,;;l o~ is aloop in R,
which may be contracted to a point. Composing with ¢,,., we obtain a contraction of «y
into a point. ]

PROPOSITION 4.16. Given a not necessary connected computable rooted Riemann surface
R, we may compute the connected component R® of the root.

Proof. Let R = lim Rg =% R 25 --.. Modulo taking a subsequence, we may assume
without loss of generality that R contains a point er, with ex = ¢¢.(er,). It is easy
to compute the connected component R}, of ez, = @o.n(®Rr,) in R, for each n € N. By
proposition 4.15(a), the limit of the sequence R}, yields R®. O

4.5. Organic Riemann surfaces

Assume now that we are given an enumerable set of paths A C P%€ and a computable
mapping 7: A — R°™> such that, given § € A and € € CU8, we have 6 4+ ¢ € A if and only
if |e| < rs. Reordering terms when necessary, we may assume that A is presented as an
enumeration A = {dg, 1, ...} such that 6; <d; =14 < j for all ¢, j € N. Assume that we are
also given a number zp € C™; we call (2o, A, ) an organic triple.

Let us define a computable rooted covering sequence Oy —% O —% ..., such that
0;, 0+ €€ IPdOif for all i <n and € € C¥8 with € < T(5) 0, We proceed by induction over
n € N. Denote by S, the computable ball with center 2o+ ||d,, || and radius r;,. We start with
Op=3Sp and e5,=zy. Assume that O, has been constructed. Then the path ;' necessarily
occurs before ¢; in our enumeration, whence 6;= &'+ (6;) 5, € ]P%lig, so that ¢, =(d))0, € O™
and z, =m((,) € C°™ are well-defined. Now we take

On—l—l = On ™z, Sn-i—l

with root 61(ep,) and w, = 6;. By construction, J§; + € € IP%EH for all i < n + 1 and

e € €Y with e <7y, Indeed, if i <n, then (§;+¢)o, , =01((0; +¢)o,). If i=n+1, then
(01+€)o,.1=02(2n+¢€). This completes the construction of our covering sequence. Its limit
O =0,,,A=0;, A, is called the organic Riemann surface associated to (2o, A,r). Organic
Riemann surfaces are always simply connected, by corollary 4.12 and proposition 4.15.
They satisfy two universal properties:

PROPOSITION 4.17. Given a rooted Riemann surface T with w(es) =zp and P72 A, there
exists a unique rooted covering 1: O —T. Moreover, if Tis computable, then v is computable
and computable as a function of T.

Proof. Let us show by induction over n € IN that there exists a unique rooted covering
U Onp— Tp, where

Tn= U B(5¢)T7T(5i)7 cT.

<n
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This is clear for n = 0. Assume that the assertion holds for a given n € N. There exists
a covering

C7;L+1.

On+1: Snt1 B((S”+1)T7T(5n+l)7 -

By the universal property of joins, it follows that there exists a rooted covering 4 1:
On+1— Tne1 with ¢,41 0607 =, and 1,11 0605 =0,41. We obtain ¢ by proposition 4.5
and we conclude by proposition 4.13. O

PROPOSITION 4.18. Let (z0,A,r) and (20, A’,r") be organic triples with ACA’. Then there
exists a unique rooted covering : O, A r— O Ar s, which is computable and computable
as a function of (zo, A,r) and (zo, A, r").

Proof. Notice that rs < rj for all § € A. Denote the counterparts of O, Sy, etc. in the
construction of O, a7 by Oy, S, ete. For each n € N, there exists a computable k, € N
such that &g, ..., 6, € {80, ..., 0%, }. By a similar induction as in the proof of proposition 4.17,
one shows that there exists a rooted covering ,,: O, — O;{cn for every n € N. Passing to the
limit, we obtain 2. O

Remark 4.19. If we only have a mapping r: A — R!°™> such that § + ¢ € A for any § € A
and e € C¥8 with |e| < rs, then we may still define O,a,r =03, Ar,r, where

A= {(51, ceey 5[) € A:Vi, |5z| < T(617~~~76i—1)}

is an enumerable set, which fulfills the stronger requirement that § +& € A’ if and only if
le| <rs.

4.6. Universal computable covering spaces

Let R be a computable rooted Riemann surface. The construction of organic Riemann
surfaces may in particular be applied for A = ]P%g, rs=rs, and zo=m(er). In that case, we
denote R¥ = O, A, and it can be proved that Pr:=Px. In the construction of RSL =0,,

each S, is naturally isomorphic to the ball Bs, . » 6m)m CR. By induction over n, each R,

therefore comes with a natural rooted covering by: Ri — R. Taking limits, we obtain
a natural rooted covering b: R¥ — R and it is readily verified that b(d5:) = d% for all § € P.
The universal computable covering space R* admits the following universal properties:

PROPOSITION 4.20. Given a rooted covering 7: T — R with P-=1Pg, there exists a unique
rooted covering v¥: R¥— T and 1 satisfies b=7op. If T is computable, then v is computable
and computable as a function of T.

Proof. With ,,: Rﬁ—> T» as in the proof of proposition 4.17, the universal property of joins
implies that b,, =701, for all n € N. Taking limits for n— oo, we conclude that b=7o01. O

PROPOSITION 4.21. Given a computable rooted covering v¥: R — S, there exists a unique
rooted covering V% R — SF and we have 1 obg =bsopt. Moreover, V! is computable and
computable as a function of 1.

Proof. The existence, uniqueness and computability properties of 1! follow from propo-
sition 4.18. The rooted coverings 1 obr and bgo ¥ are identical by proposition 4.13. [

PROPOSITION 4.22. Let p: R — S be a root-preserving computable covering between two
rooted computable Riemann surfaces R and S with Pr D Ps. Then any path v:[0,1] = S
with v(0) = es can be lifted uniquely to a path ¥:[0,1] - R with 7(0) = ex.
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Proof. Let e =min {r,:t€[0,1]}. Since v is uniformly continuous, we may approximate
v by a broken line path ¢ € P48 with

17 = ¢s.sll =min{[(t) — d5.5(t)|: £ €[0,1]} <&/2.

Since im ¢5.s C im v + B.o € S, we have § € ]Pdlg C ]P%g. Consequently, § lifts to a
path ¢s g on R. Since Pr 2 Ps, we also have r¢ > 1, for all ¢ € R. Consequently,
im ¢s,r + Bej2 € R, so that v lifts to the path () = ¢5 :(t) + (v(t) — ¢s,r(1)): [0,
1]—-7R. O

COROLLARY 4.23. R! is isomorphic to the universal covering space of R. O

4.7. Digital covering spaces

Let R be a rooted digital Riemann surface, encoded by R = (A, A, w, M). Assume that
o4 € A is such that e € S, - In this section, we will then show that the universal covering
space R? can be constructed in a more explicit way.

A digital path is a tuple § = (41, ..., &;) with d1,...,0; € {£1, £i}. We denote by P4 the
set of digital paths § on A, for which @4, 84+ 61,...,04+5=e4+ 01+ -+, € A. Given
d€P4, we write 64 =o4+0 € A. The set P4 comes with a natural projection m:IP 4 — Z[iJ;
d+—m(d4) and a natural adjacency relation: dmé’ if and only if 6 =6’ +¢ or §'=0 +¢ for
some € € {1, +i}.

Let P4 5, be the subset of P4 of paths of lengths <n. Then P, = (\,Pa,, 7, M) is a
Riemann pasting and we denote by Rti Pr=(A, Ati , T, ) its associated digital Riemann
surface. The root e can be lifted to a root Rt of Rti for n > 2 and the natural inclusions

in: Pn— Pn+1 induce natural rooted coverings ty: Rti — RflJrl for n > 2.

PROPOSITION 4.24. With the above notations the limit R* of Rgi)Rg& -+ 18 1S0MoT-
phic to the universal covering space R¥ of R.

Proof. In view of proposition 4.13, it suffices to prove that there exist rooted coverings
RE R and R — RE. Since ]PRu CIPr =P, we have natural rooted coverings Rrﬁl% RE.

This yields a rooted covering R — R when passing to the limit. Conversely, any path
0 € Pp: can naturally be approximated by a digital path 5 € Py, in the sense that
[¢s,R — & C.Ai.RHM = |l <3X/2, after possible reparameterization of ¢s5 r. Setting n= 6],

we then have 6 € P, C P s, which shows the existence of a rooted covering RISRE O

PROPOSITION 4.25. The mappings L, are injective.

Proof. The theoretical definition of the normalization of a Riemann pasting also applies
in the case of (A, P4, m, M) when P4 is infinite and one has §* ~ &* resp. §*m*e* for 4,
e € P4 if and only if these relations hold for a sufficiently large n with 6, € P4, . For
each a € A" there exists a digital path d, of smallest length with (8,) 4+ =a and we denote
this length by |a|. Let B, = {a € A% |a| <n} for each n €N, so that By C B; C ---. For every

a € By, the path J, induces an element a,, = (d,) Al of Al », which shows that the natural

rooted covering RBL — B, is surjective. Since Rfl is obtained by gluing a finite number of

squares to RS corollary 4.12 implies that Rﬁ is simply connected, by induction over n.

n—1

Consequently, Rﬁ is isomorphic to B, for each n, and RO - Rﬁ -+, as desired. O
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COROLLARY 4.26. Let R be a rooted digital Riemann surface and let §,0’ € PE™ be such
that ||6]|=|0"||. Then there exists an algorithm to decide whether ox and 572 are homotopic.

Proof. Since R has computable branches by proposition 4.25, we have a test for deciding
whether dp: = 57’2;1. Now this is the case if and only if ér and d% are homotopic. O

Remark 4.27. Several other algorithms can be developed in order to obtain topological
information about digital Riemann surfaces. For instance, let us sketch an algorithm to
compute generators of the homotopy group m1(R):

1. Let 6=¢, A={}, II:={}, let Z be the restriction of R to e 4.

2. Let A:=AU (6 +{x£1,£i})NPay).

3. If A= then return II.

4. Pick an element § = (91, ..., 0;) € A of minimal length | and set A:=A\{¢}.

5. If § €P4,, then go to step 3.
6. Let Z be obtained by gluing a new square above m(04) to Q(él,‘..,éz_ﬂAI

7. If there exists a §’ € P4, with 64 = 4, then set I1:=1TU{d’' + (=4, ..., —do)} and
identify 5f4f with 64 inside 7.

8. Replace Z by Z and go to step 2.

The above algorithm returns a set of digital paths II each of which elements corresponds
to a generator in m(R).

4.8. Convolution products

Let R and S be two computable Riemann surfaces with roots above 0. Organic Riemann
surfaces are also useful for the construction of a new Riemann surface R*S such that the
convolution product of analytic functions f and g on R resp. S will be defined on R«S.

A digital folding on R is a computable mapping 7: {0, ..., 1} x {0, ..., la} — R%& such
that n(j1, jo) € B n(i1,82) (i for al 0< i <ii<|nh:=U and 0<1i9 <32 < |nl2:=1le with
Jj1—i1<1and jo—io< 1. We denote by F%g the enumerable set of digital foldings on R.
We also write ]Fdlg C ]Fdlg for the subset of rooted digital foldings n with (i, -) = eg.

Given n e Fd& = qujlglg , we define n' € Fg® by

1 (i1, i2) = n(i1, |n]2) — n(iv, |nl2 — i2).

We define H to be the set of all foldings n € FY with n(0,-) =0, such that 1 and ' lift to
rooted foldings on R resp. S. We notice that H is enumerable.

Now any 7 € H induces a path 6§ = §, € P48 by &; = (i1, [) — n(iy — 1, 1), where
6] = 1 = |n|a. By construction, we have § € PRE and &' = (6, ..., 0;) = 0, € PYE Let

A C P9ig be the enumerable set of all paths which are induced by foldmgs in H. Given
d=1(01,...,01) € A, we let

rs =10 {75, Tes = 01], 7(5)5 = [01-1]s -+, (54 1 o0)s — [01], 75, } €RIO™ (4.3)
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Given ¢ € C4# with |e| <75, we claim that § +¢ € A. Indeed, let n € H be such that § =4,
and define n:{0,...,k+ 1} x {0,...,1 4+ 1} with k:=|n|; by

N (i1, i2) if i<k and 75 <!
Fieoe N 77(]43 12) ifi1=k+1 and iy <!
M02) =9 6T i <k oand da=1+ 1
nk,l)+e ifir=k+1and ia=1+1

By construction, we have '€ H and 6,y =0 +¢. In view of remark 4.19, we may now define
the convolution product of R and & by R*S = O A ;-

PROPOSITION 4.28. Let n:[0,1]2— C be a continuous function with n(0,-)=n(-,0)=0, such
that n and its mirror 0% (t1,tg) — n(t1, 1) — n(ty, 1 — t2) lift into functions ng and s on R
resp. S with nr(0,0) = ex and 15(0,0) = es. Then the path :[0,1] — C;t— n(t,1) can be
lifted to a path yr«s on RxS. In particular, given f and g on R resp. S, the convolution
product fxg can be analytically continued along ~:

(F+9) (res(t)) = /¢ £(0) 9(¢h e,
n(t,"),R

where ¢' = ns(t,1 —u), whenever ¢ =ngr(t,u).

Proof. We first observe that a digital folding n € Fdlg induces a natural continuous
mapping ¢, =:[0,1]> = R by

G r((i1+10) /1, (2 +12)/l2) = Y cq(tr) celta) n(in+ 1, ia + €2)
€1,62€4{0,1}
1—t ife=0
ce(t) = {t otherwise

Let

e= ten&)lrll]len (7“¢ r(t) 7”45,7!,3(15))'

Since 7 is uniformly continuous, we may approximate it by a digital folding 7 € F4& with
1= ¢5.cll= max [n(t) - ¢5,c(t)] <e/2.
te(0,1]?

Moreover, we may take 77 such that 7(0,-) =7(-,0)=0 and 7(|77|1,|7]2) =n(1,1). By our
choice of ¢, the foldings 7 and 7' lift to R resp. S, so that 77 € H. Moreover, the broken line
path § = 5 satisfies |5 | < T (i) for all i < |(§|, again by the choice of . Consequently,
§e IPR* s and its associated continuous path o= ¢5 © lifts to a path yr,s on RS with the
Smas(t) = €/2 for all t €0,

1] and ||y — ¢l <&/2. Consequently, ~ lifts to the path yr.s: t+ ’yR*S(t) + (Yo(t) — (1))
on RxS. O

same endpoints as yr«s. Once more by the choice of €, we have 5

The convolution product RS comes with natural computable rooted coverings
wr: R¥S — R and ws: RS — 8§, since any 1 € H in particular induces a path § €
IPdlg N IPdlg with 6; = n(, |n]2) — n(i — 1, |n]2). The following universal property fol-
lows from proposition 4.18:

PROPOSITION 4.29. Let o: R— R’ and 1:S— S’ be two computable rooted coverings. Then
there exists a unique rooted covering px1: RxS — R'*S’. This covering is computable and
can be computed as a function of ¢ and 1. Moreover, wr:o (p+x1) =wr and wsro (pxh) =
ws. O
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5. COMPUTABLE ANALYTIC FUNCTIONS

In [vdHO5al, a computable analytic function f was defined locally as a “computable germ”
with a computable method for analytic continuation. In section 5.1, we recall an improved
version of this definition. In section 5.3, we define the new concepts of globally and
incrementally computable analytic functions. These concepts allow for computations with
analytic functions on computable Riemann surfaces as studied in the previous sections.
A locally computable analytic function in the sense of section 5.1 will naturally give rise to
a globally computable analytic function on an organic Riemann surface. However, common
operations on globally analytic functions, as studied in sections 5.4 and 5.5, may give
rise to computable Riemann surfaces which are not necessarily simply connected. Our
new definition therefore has the advantage that identical branches may be detected effec-
tively in many cases.

5.1. Locally computable analytic functions

Let f= fo+ fiz+ - € CJ[z]] be a convergent power series at the origin. We will write r¢
for its radius of convergence. Given p € R~ with p <7y, we also define

Hfllpz‘lgglf(@l-

Finally, given § € B;,, we will denote by fis the analytic continuation of f along the
straightline segment [0, d], so that fis(z)= f(0+ 2) for small z.
A locally computable analytic function f is an object encoded by a quadruple

JE = (Series(f)arfa H—fﬂ> f+~)>

where
o series(f) € C™[[z]]°°™ is a computable power series.
o /€ Rlcom:> s a lower bound for 7.

o [[f].:Reo™> ~R'™ js a computable partial function, which yields an upper bound
[T 201l for every p<ry.

o fi: €™ ~ Alom js 5 computable partial function, which yields the analytic
continuation fi5 of f as a function of § € C“™ with |§] <1}

We denote by Al°™ the set of locally computable analytic functions. Given f € Alo™ we
call 4 its computable radius of convergence. Usually, ry is smaller than the genuine radius
of convergence of series( f).

Remark 5.1. We notice that the definition of the encoding f is recursive, because of
the method f. for analytic continuation. Such recursive quadruples can in their turn be
encoded by terms in a suitable A-calculus, and thereby make the definition fit into the
setting introduced in section 2.1.

Example 5.2. One important example of a locally computable analytic function is the
identity function z centered at a given ¢ € C°°™. We may implement it as a function
Id: ¢ Id, with

series(Id,) = z+¢

g, = +00
MdeTl, = [el+1p]

(Idc)+5 = Idc+6
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The constructor C™ — Al°™: ¢ ¢ can be implemented in a similar way.

Example 5.3. Basic operations on Al°™ can easily be implemented in a recursive manner.
For instance, the addition of f, g€ Al™ may be computed by taking
series(f + g) = series(f) + series(g)
Tf+g = min (Tf7rg)
”f+gﬂp = H—fﬂp+ H—gﬂp
(f+9)4s = fro+g4s

In sections 3 and 4 of [vdHO05a], algorithms were given for several other basic operations and
for the resolution of differential equations. Modulo minor modifications, these algorithms
remain valid. In particular, we have implementations for the following operations:

L Ccom  _y Alcom

2 Alcom

+,—, X: Alcom % Alcom — Alcom

/: Alcom % Alcom N Alcom
d/dz: Alcom N Alcom (5.1)

f: Alcom x (eom  _y Alcom

exp: Alcom — Alcom

lOgI Alcom x eom Alcom

In the cases of [ and log, the second argument specifies the value of the function at 0.

It is instructive to rethink the definition of A°™ in terms of signatures. First of all,
we have a class of computable power series C™[[z]]°°™ with a method for the extraction
of coeflicients

. Gcom[[z]]com X N — (Dcom
Then the class Al°™ of locally computable analytic functions is determined by the methods

series: Alcom . oom][]]com
7 Alcom N Rlcom, >
|'|"|'| - Alcom x Reom,>  _« chom,)
s Alcom x eom Alcorn

(5.2)

For the last two methods, we understand that [[ f], and fis are defined if and only if
p<rgresp. [0| <ry.

The recursive definition of Al°™ raises the question when two elements f, g € Alco™
should be considered identical. In what follows, we will use the criterion that f =g if and
only if the signature (5.2) does not allow for the distinction of f and g. In other words,
whenever 41, ..., 6 € C°™ and p € R°™~ are such that f: fro14--46, and § = gy5 446

are both defined and p <rj, we require that series( f) =series(g), ;=15 and TFN,=MaT,
We warn that we may have series( f) = series(g) for two different elements f, g € Alco™,

Remark 5.4. There are a few changes between the present definition and the definition of
computable analytic functions in [vdH05al. First of all, we have loosened the requirements
for bound computations by allowing the results of r; and £, to be only left resp. right
computable. In [vdHO5a|, we also required a few additional global consistency conditions
in our definition of computable analytic functions. The homotopy condition will no longer
be needed because of theorem 5.7 below, even though its satisfaction may speed up certain
algorithms. The continuity condition also becomes superfluous because of theorem 2.3.
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5.2. Improved bounds and default analytic continuation

Given f € Al™ we have already noticed that the computable radius of convergence Ty
of f does not necessarily coincide with its theoretical radius of convergence r¢. This raises
a problem when we want to analytically continue f, because we are not always able to
effectively continue f at all points where f is theoretically defined. By contrast, bad upper
bounds for [[ f], on compact disks only raise an efficiency problem. Indeed, we will show
now how to improve bad bounds into exact bounds.

Let us first introduce some new concepts. The path domain PP™ of f is the set of
§ € P°™ such that |J;]| STy 4oy, , fOL every i€ {1,...,|]}. Given § € PP™, we denote
f+6 = f+514+--+5, and f(0) = f4+5(0). The digital path domain of f, which is defined by
IPC}ig: PN Pdig is enumerable. Given f, g € Al°™ we say that g improves f, and we
write f C g, if series(f) = series(g), PP CP°™ and [[g4s], < [ f1s], for all § € PF™
and p<ry ;.

Assume now that we are given p, e € R°™> with p< rs and let us show how to compute

an e-approximation for M =|| f||,. Approximating r; sufficiently far, we first compute an
ReR°™ with p<R<rp. Now let B=[f]r and choose

e B—p)E p
sufficiently large such that
n ntly < i n_R <&
|fnC +fn+1( + |\B<R) R_p\z- (5.4)

Using an algorithm which will be specified in section 6.2, we next compute an (¢/2)-approx-
imation M for ||P||,, where P= fo+ -+ fn—1¢(" "% Then M is the desired e-approxima-
tion of M. We have proved:

PROPOSITION 5.5. Given f € Al™ we may compute an improvement f* € Al™ of f,
such that [ fis1p=f+sll, for all  €PP™ and |p| <1y, O

Another situation which frequently occurs is that the radius of convergence can be
improved via the process of analytic continuation and that we want to compute bounds on
larger disks, corresponding to the new radii of convergence. This problem may be reformu-
lated by introducing the class A™V™ of weak locally computable analytic functions. The
signatures of AV°™ and Al°™ are the same except that A™V™ comes with a second radius
function s.: AWIO™ 5 RO™> with s < ry; given f € AWIeom we only require computable
bounds [ £, for p < ss. We have a natural inclusion Al°™ — AWcom and the notions of
path domain and improvement naturally extend to AWcom,

Assume now that f € A¥®™ and that we want to compute a bound for [[ 7] on B,
for a given p <r;. We have an algorithm for computing a ¢, € R™~ with ¢, < sy, from

zZE B;ﬁg. Consider any computable sequence zg, 21, ... € Bp with

Zn+1 ¢ BZOthOU U B

vatzn'

Since B, is compact and the function z € Bgig»—) t- is continuous (by theorem 2.3), it follows
that there exists an € >0 with ¢, >¢ for all z € Bﬁlg. In particular, the balls B, ;. form an
open covering of B,, whence the sequence 2, 21, ... is necessarily finite. Let z be its last
term. Then

H—fﬂ;: max(ﬂ—f-f—zoﬂ [Z7 RN |-|—f+zlﬂtzl)

is a computable upper bound for || f||,. We have proved:
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PROPOSITION 5.6. Given a weak locally computable analytic function f € AV'™ we may
compute an improvement f* e AlO™ of f. O

The bound (5.4) may also be used in order to provide a default analytic continuation
method of a computable power series f € C][z]]°°™ inside a given computable radius of
convergence 'y € Rlcom.> “assuming that we have an algorithm for the computation of upper
bounds [ f1l,, (p<ry). Indeed, let 6 € C™, k€N and € € R°™~ be such that |§| <r; and
assume that we want to compute an e-approximation of ( fi5)r=f (k)(é )/k!. Now choose p,
p' € R with [0] < p< p' <1y and let M'=] fT],. Then the majoration [vdH05a, vdHO3]

/
. =
yields the majoration
(k) / k+1
f_qM/<p—>
ko 1—2z/p' ’
so that /e
N2 \ k+1
IsOnsar=r (S2)
—p

Taking n in a similar way as in (5.3), we thus have

O (A F

<

5

Let u be an (¢/2)-approximation of (Z) fo+-+ <k+z_1> fn_10""L Then u is also an
e-approximation of ( fys).

5.3. Globally and incrementally computable analytic functions

Let us now consider an analytic function f on a computable rooted Riemann surface R.
We say that f is a globally computable analytic function on R, if there exists a computable
function L p: R™ — Al°™ which maps ¢ € R°™ to a locally computable analytic function
L¢(¢):z— f({+z), such that

Ty = 7¢ (5.5)
TL(OTe = I1f+cllo (5.6)
Li(Q)+s = Lf(C+0) (5.7)

for all ¢ € R™, pe C®™><"¢and § € Br™. We denote by AR™ the set of such functions.
We also denote by A™ the set of all computable analytic functions f on some connected
computable (and computable as a function of f) rooted Riemann surface Ry. In other
words, the signature of A°™ is given by

R: A®™ — O™
A: AcOm _ Alcom

Here the projection A is required to satisfy A(f)4s=Ls(dr). The signature for A“™ can
also be given in a more intrinsic way:

series: Acom —  eom[z]]com
r: Acom  _y I_Rlcorn7 >
|| H . [Acom IRcorn,> N IRCOm,}
. AcCOm 5 (com  _\  Acom
R.: Acom _, gcom
. .
o Acom . REO™
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Notice that the method [[-]|. has been replaced by an exact method ||-||. with codomain
R™:2 in view of proposition 5.5. For the intrinsic representation, the compatibility
conditions become ry=r, P and Ry, ;=Rjy 15 where Ry ;s denotes the Riemann surface R
with its root moved by 4.

Using analytic continuation, let us now show how to improve a locally computable
analytic function f € Al°™ into a globally computable analytic function f#e Aco™,

THEOREM 5.7. There exists an algorithm which takes f € A°™ on input and produces an
improvement f*e A©™ of f on output. Given any other improvement g € A™ of f, we
have fiC g.

Proof. For the underlying Riemann surface of f¥, we take Rfu = Oo,p;,r, With rs= Tpos
for all 6 € ]leclg. By the construction of Oy p ;,r» We may compute a sequence n > B, r, of

open balls B, ., CR ;s with ¢, = (5")Rfu’ On € IP(}ig and RY&> 5, < r'f, s, such that

Rp= U Be, s

neN
Given ( € R(}(ﬁm, we may therefore compute an n with ¢ € B¢, ,, (which may depend on
the encoding ¢) and take

series(qu(C)) = series(f+5n+(ﬂ(<),||5n||)).
Given ( € (}(ﬁm, we may also compute

Squ(C) :gleaﬂzl( {rf+5n - ’C - Cn‘: Ce chrn} € Rlcom,>

Given p € R®™~> with p<s L 4(¢)» We may finally compute

”Lfﬁ(C)ﬂP:rrL%iﬂr\ll{”f—Hsnﬂ pt1¢—en]: € € Beyr, } € RFO™2,

By propositions 5.6 and 5.5, we may therefore compute ||qu(C) || , for every p € R®™> with
|p| <r¢. Since Ileciﬁg B) ]P(]lcig, proposition 4.14 and its adaptation to IP;lig imply P33 2 PP,
whence f# 3 f. The universal property of Og p ;v (proposition 4.17) implies that f iCg
for any other improvement g € A°™ of f. O

In practice, it is not very convenient to compute with global computable analytic
functions f, because we have no control over the regions where we wish to investigate f
first. An alternative formalization relies on the incremental extension of the Riemann
surface on which f is known. Consider the class A°“™ with the following signature:

R.: Aicom _y gom
A: Aicom SN Alcom
X Aicom x peom Aicom

Given f € Al°™ and § € PP N PR}, where PP = P{7%), the method X returns an

extension f = Xs5(f) of f on a Riemann surface Rj with IP%’;“ D6+ Bﬁf\’?}) s (in particular,
A+

there exists a computable rooted covering p: R y—R f)' For simplicity, it will be convenient
to assume that A(f) = A(f). For consistency, we also assume that successive calls of X
for paths 41, ..., & and 61, ..., 6{, with {61, ..., &;} C {1, ..., &/} yield extended surfaces

R = RXélO"'OXél(f) and Ry = Rxo0m0X5(f) for which there exists a rooted covering
14 1

R1— Reo. This ensures the following:
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PROPOSITION 5.8. Consider an enumeration {do, 61, ...} of PP™. Then the limit Rﬁf of
the computable rooted covering sequence Rf%RXao(f) HRXaloXao(f) — -+ does not depend
on the particular ordering of the enumeration (up to isomorphism).

COROLLARY 5.9. There exists an algorithm which takes f € A®™ on input and produces
an improvement ffe A™ of f on output. Given any other improvement g € A™ of f,
we have fiC g.

Any locally computable analytic function f € Al°°™ naturally determines an incremen-
tally computable analytic function f¢e Al™: starting with R =B A
s to Ry at the end of dr;, just like in the
construction of organic Riemann surfaces. However, as we will see in the next section, the
method X may also be used to identify identical branches in the Riemann surface of a

function.

each successive

call of X;(f) joins a ball with radius 1y

5.4. Operations on computable analytic functions

In this section, we improve the implementations of the operations (5.1) so as to identify
branches of the underlying computable Riemann surface of an analytic function f, when-
ever we know that f takes the same values on both branches. We will also consider several
other operations on computable analytic functions.

Constructors. The inclusion ¢: C°™ — Al“™ and identity z: A°°™ are easy to imple-
ment, since it suffices to take C for the Riemann surface and return Xs(f) = f for all
0 e peom,

Entire functions. Let us now consider the case of addition f+ g for f, g€ Al™ We take
Rf+g = Rf X.Rg,

where x*® stands for the rooted covering product, i.e. Ry x*R is the connected component
of the root of Ry x R4. This root is computed by applying the universal property of com-
putable covering products to the immersions of a small ball By (ey) - into neighbourhoods
of the roots of Ry and R4. As to the method X, we may simply take

Xs(f+9)=Xs(f) + Xs(g)-

The consistency condition for successive applications of X is naturally met, because of the
universal property of covering products. The cases of subtraction, multiplication, exponen-
tiation and precomposition with any other computable entire functions in several variables
can be dealt with in a similar way.

Multiplicative inverses. Assume now that we want to compute f~! for f € Al™ with
f(ef)#0. Clearly, we may take
Rt = R}:={CeRy f(¢)#0}
Xs(f71) = Xs()!

It remains to be shown that R?
show this in the case when Ry is a digital Riemann surface. Indeed,

is a computable rooted Riemann surface. It suffices to

Rp=lmRo-2% Ry = R} =lmR) 2% R 2 ...
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Now for every point ¢ € Ry above C¥8, we will show in section 6.1 how to compute a

maximal disk B¢ . on which f does not vanish. For the n-th approximation Rf of R#,

it suffices to take the union of all B¢ ., with ¢ € Z[i]/2" (starting with an n for which Rf
contains the root of Ry).

Differentiation. Given f €A™ we may take
Ry = Ry
X5(f) = Xs(f)"

Integration. Given f € A“™ and ¢ € C®™, let

¢
9(€)=1I(f,c)= / f(6)de.

Let R be the limit of a covering sequence R #0% R1 -2 .. of digital Riemann surfaces.
Given n € N, we have sketched in remark 4.27 how to compute generators i,..., y4 for the
homotopy group m1(R,) of R,. The relations 7;7;=;7; induce a computable equivalence

relation ~,, on Rfl Setting RL = Rﬁ /~n, the covering ¢, gives rise to a natural covering
ohRL— R{H—l' We take

I I
Ri(fe = UmRH-ZS R o

Xs(I(f,e)) = L(Xs(f),c)-

Logarithm. Given f € Al®™ and c € C™ with f(e)=e we may take

log (f,e)=1(f"/fc).

However, in this particular case, the integrals of f’/f over the above generators ~; are
always multiples of 21i, so they can be computed exactly. More precisely, let R}é =Ryf
be the limit of Ry -2 R —% ---. We now replace R, by er?g = Rfl/w, where ~ is the
equivalence relation defined by

(~Ee =& Nlog (f(¢)) —log (£(§))| <.
Given ¢, £ € R?, we may check whether llog (f(¢)) — log (f(&))] < m, by computing

n?

1-approximations ¢; and ¢3 of log ( f(()) resp. log (f(§)) and testing whether |¢; — f5| < 2.

The covering ¢, induces a natural covering 1% Ri® — R1%% | and we take

1 log ] log
Riog(f,c) = HmRGE L RPE S ..
Xs(log (f,c)) = log(Xs(f),c).

Solving algebraic equations. Let P;_1, ..., Py € Al°™ be such that the polynomial
P=Fi4+ P, Fi-l4... 4Py is square-free. Let

R = RPd—l X - X RPO
= limRo 2% Ry ..
Let S, be the digital Riemann surface with

>\Sn = AR
As

w(i,a) = w(a)

n
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and with an adjacency relation M defined as follows. Solving the equation P(f) = 0 at
the center ¢, of a € A, yields d solutions f, 1,..., fo, which we attach arbitrarily to the
(1,a) € As, with i€ {1,...,d}. We set (i,a)m(J,b) if amb and if the analytic continuation
of fq,; from 7(c,) to m(cp) coincides with fy, ;. This can be tested effectively, since there are
no multiple roots, whence all branches are bounded away from each other when computing
with a sufficient precision. By a similar argument, the root ez of R, may be lifted to Sy,
if f(er) has a prescribed value ¢ € C°™, and the rooted covering ¢,, may be lifted to a
rooted covering ¥,: S, — Sp+1. We now take

szlimSoﬂ)Sl ﬂ)
Denoting f =solve(P,c), we also take
X5(f) =solve(F?+ X5(Fy_1) FI= 4o+ X5(Fp), £(9)).

Integral equations. Consider an equation of the form
z
fe)=1+ [ a(rmar, (5.9
where f = (f1, ..., f4) is a vector of indeterminates, ® a polynomial in fi, ..., fq and
I €(C*™)?. Any algebraic differential equation can be rewritten in this form. In section 6.3

below, we will discuss techniques for computing the power series solution to (5.8) at the
origin, as well as bounds ry, and [[ fi]|,. Given § € C“™ with |§]| <1}, for all 7, we have

f+s(2)

) z
I+ /0 (f(1)dt + /0 B(f45(t)) dt
= 10+ [ a(fise)a (5.9)

By what has been said at the end of section 5.2, we may compute f(§) € (C°™)9. Conse-
quently, the equations (5.8) and (5.9) have the same form, and the analytic continuation
process may be used recursively, so as to yield a solution f € (A°™)". Since we do not
have any a priori knowledge about identical branches in the Riemann surfaces of the f;,
we simply solve (5.8) in Al°™ by taking fn°= (f{", ..., fi°) € (Al°®™)". Notice that the
decomposition of the integral in (5.9) may be used for more general implicit equations
involving integration, even if they are not given in normal form (5.8).

Composition. Let us first show how to compute go f € Al°™ for given f, g € A°®™ with

0) =0. Assuming by induction over |§| that § € PS2% CIP?™, we denote
g by gof f

f(8) = (f(61) = £(€)s s F(8) = f(1, 0y 01-1))
M, = [|fisll,  (pERO™, p<ryy)

and set

sup {p € R™ 1 p <y gy, AM,<r,

Kgof)rs = ‘9+f(5)}’

Tgoflp, = TAG)+s@) 1M,

In section 6.2, we will show how to compute M, € R*™, so that T(gof)s € Rlcom.> and
Tgo fl,eRe=m>.
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Assume now that f, g € Al are such that f(er,) = m(er,), so that A(go f) =
A(g) o A(f) € A™ is well-defined by what precedes. Let R(go syt Pe the canonical
Riemann surface of A(g o f), as in theorem 5.7, and let S be the subspace induced by
paths 6 € Ry for which A(f)(6) € Ry. A digital folding 1 on R, is said to be a digital
homotopy between the paths associated to 1(0,-) and n(|n|1,-) if 7(-,0) =ex, and n(-,|n|2)

is constant. The set of pairs (d, §’) € lPii(ggof) N PS8 such that A(f)(8), A(f)(¢) € IP(ghg
determine digitally homotopic paths on R is enumerable. We take R0 r=S/~, where ~

stands for digital homotopy on R,. We also take

Xs(go f)=Xap5)(g) 0o Xs(f).

Remark 5.10. With a bit more effort, the computation of the Riemann surface of go f
can be done more efficiently, by directly working with digital approximations and using
corollary 4.26.

Heuristic continuation. Assume that we are given a computable convergent power
series f at the origin. Sometimes, it is interesting to associate a function f €A™ to f by
determining r; , and M f+51l, in a heuristic way. For instance, given the first n coefficients
fo, ..y fn—1 of f, the radius of convergence may be determined heuristically, by looking
at the convex hull of (i,log|fi| + RS) in R? and considering the edge from (i, ) to (5, 3)
with ¢ < |2n/3] < j. Then

08—«
logr,~ — .
gy T—i
In order to determine [[ f1|,, it suffices to compute fo, fi p, ... until several successive
values f, p" are small with respect to max {|fo|, | f1| p, ..., | fa_1| p" '} and approximate

fr fo+--+ fu_12" L. A similar approximation may be used for the analytic continuation
to a point § with || = p. Finally, one may determine Ry by heuristically identifying
branches in Rgc where the germs of f above the same point coincide up to a given order
and at a given accuracy.

Remark 5.11. Even if one may not want to crucially depend on heuristic computations, so
as to obtain only certified answers, one may still use them as a complement to theoretically
correct computations, in order to obtain an idea about the quality of a bound or to guide
other computations. For instance, given f €A™ assume that we want to obtain a lower
bound for ry with “expected relative error” e. Then we may keep producing better and
better lower bounds 7, and heuristic bounds 7, (at expansion order n), until |ry, /7, — 1| <e.

5.5. Convolution products
Let f, g€ Al°“™ The convolution product of f and ¢ is locally defined by

(Feo))= [ f(w glz =) du (5.10)

If we want to evaluate fxg up to many digits at a small z € C°™, then we may simply
compute the Taylor series expansions of f(u) and ¢g(z — u) at u = 0 and evaluate the
primitive of f(u) g(z — u). Assuming that the series expansions of f(u) and g(z — u)
are given, this algorithm requires a time O(n? log n log log n) for the computation of
a 27 "-approximation of (fxg)(z). More generally, if § = (01, ...,d;) € P$™ is a broken-line
path with &' = (d;,...,01) € PgP™, then

(f*9)(0) = (f*Gt8++85) (01) + (fr6%G+6,4-+065) (02) + -+ (fro, 4+ +8_1%9) (1)
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Modulo the replacement of each §; by 9;/k;, ..., §;/k; for a sufficiently large k; € N7, we
may thus compute a 2~ "-approximation of (fxg)(d) using the above method, in time
O(n?lognloglogn).

In order to obtain a complete power series expansion of fxg at 0 or d, it is convenient
to consider the Borel and Laplace transforms

o . o 1 -
B:f:zjlf”’z — zjlmfnz !

L f= i fo s in!fnznﬂ
Then we have " "
fxg = B(L(f)L(g)) (5.11)
(f*9)i Z

Z [j (;)Tlfi—l gi—j- (5.12)
=1

j=

These formula allow for the efficient (and possibly relaxed) computation of the coefficients
(f*9)s, since the Borel and Laplace transforms can be computed in essentially linear time.

More precisely, let ¢ = 27" k = O(n) and h = fxg. Assume that |f;| < 1 and
lgi| < 1 for all i and that we are given e-approximations for ey fo1 of for ey fron
and e-approximations gy, ..., §r—1 of 9o, .., gk—1. Then the naive evaluation of the for-
mula (5.12) using interval arithmetic yields e-approximations o, ..., hg—1 of ho, ..., hj—1. In
order to use (5.11) and fast multiplication methods based on the FFT, one may subdivide
the multiplication of L£(f) and L(g) into squares like in relaxed multiplication method
from [vdHO2b, Figure 3|. For each square, one may then apply the scaling technique from
[vdHO2b, Section 6.2.2], so as to allow for FFT-multiplication without precision loss. This
yields an O(n? log? n log log n) algorithm for the computation of e-approximations for
f;o, e hi_1. Notice that this algorithm is relaxed.

If we want the power series expansion of fxg at a path 6 =P%™ with §e Pg™™, then
consider the formula

(fx9)(6+¢e) = (f*gretrs++8)(01) + -+ (fro,4+-+6%9)(€) (5.13)

Assuming that the §; and € are sufficiently small, we also have

(f+61+"'+6i—1*g+€+6l+“'+5i+1)(5i) = (f+61+---+6i_1*g+61+~-+6i+1)(5i +e)—
(f+51+---+5i*g+51+---+5¢+1)(6)7 (514)

for all i€ {1,...,1}. Now if §; is sufficiently small, we may compute the series expansion of
Joi 461 % G464+ +6:, at 0; as a function of the series expansion of the same function
at the origin, using a variant of [vdHO02b, Section 3.4.1]. This yields n-digit expansions for
O(n) coefficients of fxg at § in time O(n?log?nloglogn).

and [[(f*g)+s]], by induction over |§]|, in such a way that

Let us now define rz, .
€ P implies § = P™ and 6" € P, Assuming that 3= (31, .., 5)) € P20, we take
T(fxg)4s — min {Tf+57 Tg— ‘51‘7rg+61 o ’(Sl*l” o Ly ptsy T ‘51‘7rg+5’}. (5.15)

Clearly, for € € C™ with [e] <r(,
P <I(fxg),s We take

1(fx9)+slp = TN Tgtsietoallotplorl+-+

H—f+51+---+5171ﬂ gl H—gﬂ(SH—P |5l| +
Tf+slloTaTlpp (5.16)

we have 0+ € P and (6 +¢)' € P{™™. Given

+5’
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This completes the induction and the construction of fxge Al™ If f g e AS©°™ then
we have R, s = R xRy, since (5.15) reduces to (4.3). If f, g€ Al then we suspect
that R(f*g)jj = Rfﬁ*Rgﬁv

In practice, if we want to analytically continue fxg along a path § € P°™ which is
known to belong to PE?Tg)ﬁ, it can be quite expensive to “randomly” compute a part of

but we have not tried to check this in detail.

P?;’cf;)u which contains §. During the analytic continuation of fxg along J, it is therefore
recommended to progressively compute equivalent paths for (d1), (1, d2), .-, (01, -+, O5)
which avoid singularities as well as possible. These paths may then be used for the com-
putation of better bounds and in order to accelerate the computation of a part of IPE;ing)ﬁ
which contains d.

More precisely, let f, g € Pi™ and assume that 6 € $g 1s fixed. Let

h(¢) = f(C) g+s(=C).

By construction, we have § € Ry, and Ry, is the limit of a sequence Rg Ry with
ARy > AR, >---. Let n € N be fixed and consider the set P of all paths e = (e1,...,&) € IP%i

with e1,...,61 € Ar, Zli]. Given € € PR™, let

(.= / <1+i2>dg.
¢E,Rn TC

Here r¢ denotes the distance between ¢ and the border of R, and we recall that
@5,73”2 [O, 1] — Rn

stands for the continuous path on R, associated to . Using Dijkstra’s shortest path
algorithm, we may enumerate P = {e%, ¢!, ...} such that £.0 < £.1 <---. As soon as we find
an €' with

||¢5i77z§b - ¢67RBLH <AR,;

then we stop (this condition can be checked ultimately by computing a sufficiently precise
digital approximation of Rfl using the techniques from section 4.7). If Az, is small enough,
this yields a path e =&*+ (||6]| — ||€%||) which is homotopic to § on R,, and for which £, is
small. The idea is now to replace d by ¢ in the right-hand side of (5.15) resp. (5.16), if this
yields a better bound.

The above approach raises several subtle problems. First of all, the computed path
depends on the number n. When computing a k-th approximation for T(fug),s ONE POSSI-
bility is to take n=k. A second problem is that the choice of ¢ depends on R s and R, so
we no longer have A(Xs(fxg))=A(f*g). Nevertheless, it should be possible to adapt the
theory to the weaker condition that (Xgko---0 Xg1)(fxg) C (X000 X.1)(fxg) whenever
{61,...,6F Y C {el, ...,€'}, where we notice that our change can only lead to improved bounds.
Finally, if Ag, becomes small, then the shortest path algorithm may become inefficient.
One approach to this problem would be to use the shortest path at a larger scale for an
accelerated computation of the shortest path at a smaller scale. As a first approximation,
one may also try to continuously deform e as a function of §. We wish to come back to
these issues in a forthcoming paper.

6. BOUND COMPUTATIONS

For actual implementations of computable analytic functions it is very important that
bound computations (i.e. lower bounds for convergence radii and upper bounds for the
norm on compact disks) can be carried out both accurately and efficiently.



JORIS VAN DER HOEVEN 39

A first problem is to find a good balance between efficiency and accuracy: when bounds
are needed during intermediate computations, rough bounds are often sufficient and faster
to obtain. However, bad bounds may lead to pessimistic estimates and the computation
of more terms in power series expansions in order to achieve a given precision for the end-
result. Therefore, it is important that cheap bounds are also reasonably accurate.

Another point is that it is usually a good idea to use different algorithms for rough and
high precision bound computations. Indeed, only when sufficient knowledge is gathered
about the function using rough bound computations, it is usually possible to fulfill the
conditions for applying a high precision method, such as Newton’s method. Furthermore,
such asymptotically fast methods may only be more efficient when large precisions are
required, which requires the study of the trade-off between different methods.

In this section, we will present several techniques for efficient and/or accurate bound
computations. Some of the algorithms have been implemented in MMXLIB. However, the
topic of bound computations deserves a lot of further study.

6.1. Lower bounds for the smallest zero of an analytic function

Let f € Al™ with fo#0 and r = r¢. The problem of computing a lower bound for the
radius of convergence of f~! reduces to the computation of a p such that f has no zeros
on B,. We may start with the simpler problem of computing a lower bound for

s=max {s < p:Vz € Bs, f(2) # 0},

where p € R®™> with p < r has been fixed. A natural approach is to approximate the
problem by a root finding problem of complex polynomials.

More precisely, we may approximate real and complex numbers by elements of the sets I
and B of real intervals with endpoints in RY& resp. complex balls with centers in C4& and
radii in RY&> [vdHO6b]. Let M = [[ ] g for some R € R®™ with p < R <r. We start by
picking n € N, and the computation of complex ball approximations fo, fl, o fn_l € B for
fo, f1,-.-, fn—1, as well as a bound for the remainder

M n
n ntly L :—<ﬁ> .
| fr 2"+ fag12" T4+ < = /R\R
The bound 7 may be integrated into the constant coefficient fo by setting fo = fO + Bn'
Now we compute a lower bound for the norm of the smallest root of the polynomial

P(2)=fot+ fiz++ fo12" L €B[2],

using some classical numerical method and interval/ball arithmetic. The result will then
be presented as an interval § =[s,5] €1 and s yields the desired lower bound for s.

We have implemented two experimental versions of the above method for the two
numerical methods from [Car96| and a variant of [Pan96, Appendix A]. The first method
is based on repeated squaring in the ring B[z"|/P(z). However, it is cumbersome to adapt
to the case when there exist almost multiple roots. Also, we observed a lot of precision
loss in our context of certified computations with complex balls. This might be due to the
divisions. The second method is based on Graeffe transforms and rapidly provided us with
rough lower bounds for s of an acceptable quality. Let us quickly explain this method.

First of all, we recall that Graeffe’s transform sends a polynomial P(z) =P, 2"+ -+ P

of degree n with roots ai, ..., &, to another polynomial P® with roots o2, ..., 2. Such a
polynomial can be computed efficiently using FFT-squaring:
P(Z) = odd(ZQ) z+ Peven(z2);

PO(2) = Poqa(2)?2 — Poyen(2)?.
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Given a monic polynomial P(z)= 2"+ P,_1 2" !4« + Py with max (|P,_1|, ..., |Po|) =1,
we also observe that the norm of the largest root of P lies in the interval [1/n,2]. Indeed, if
|z| >2, then |(P(z) —2")/2"|=|Ppn-1/z+--+ Po/z"| <1, whence |P(z)/z"| > 0. Similarly,
if P(z)=(z—a1) (2 — ay) is such that |a;| <1/n for all 4, then |P,_;| < (?)/nlg 1 for
allie{l,...,n}.

Now let P € B[z] be a polynomial of degree n and assume that we want an upper bound
for the largest root of P with a relative accuracy € > 0. If we rather want a lower bound,
then we replace P(z)=Py+---+ P, 2" by P(z)=FPyz"+ --- + P,,. We start by making P
monic by setting P:= P/P,. We next let p €N be smallest such that |[1/n,2]'/?" —1] <&/2.
Starting with s:=1 and k:=1, we now repeat the following:

1. Compute A= [, X]:=1/max (|Py_1|, | Po_s| 2., |P|{/™) €L

2. Scale P(z):=2"(14+Po—1(A/2) +-+FPo(A/2)").

3. Replace s:= S/Al/k.

4. If k=2P, then return s [1/n,2]*[A/X , 1]/*.

5. Set P:=P® and k:=2k.
Consider the factorizations P*=(z —af) - (2 —ay) and P=(z —a1) -+ (2 — ay,), where P*
denotes the original. Then we observe that {af,...,a%} ={saf,...,sak}, each time when

we arrive at step 4. When the approximations Py, ..., P, were sufficiently precise, it follows
that we obtain an e-approximation of the largest root of P* on exit.

Remark 6.1. Notice that we simplified the method from [Pan96, Appendix A], since we
do not need Turan’s proximity test. Instead, we use a variant of bound (B.7) mentioned
in Appendix B, by rescaling at each step. Notice that FFT-multiplication leads to huge
precision loss when applied to polynomials which have not been scaled.

Remark 6.2. If there exists a unique and simple root o7 of maximal modulus, then after
a few steps, we have P~ 2" —w 2"~ ! with |w|= 1, whence a good approximation of a%k
can be read off from P. Now if P@(f)~0, then either P(—+/B)~0 or P(v/B)~0. Going
the way back up, we may thus compute a good approximation of ;. At a second stage,
this approximation may be further improved using Newton’s method.

Remark 6.3. The worst case for the above algorithm is when P admits a single root
a of multiplicity n. In that case, each iteration typically gives rise to a precision loss of
loga <n72> = O(n) binary digits, when using a fast algorithm for multiplication.

Let us now come back to the original problem of computing a lower bound for the radius
Tp-1 of convergence of f~1. Given n €N, we thus have to find an n-th lower approximation
sp € RY&2 for Ty with sg<s1 <+ and limnﬁoosn:rffl. We start by computing the n-
th lower approximation 7, of r. For p, we may now take (s,_1+7y)/2 if n >0 and ry/2
otherwise (alternatively, one may choose p as a function of a heuristic approximation of the
radius of convergence of f~!; see remark 5.11). Using the above algorithm, we may now
compute a lower bound s for r'p-1, Using an expansion of f at order n (or an order like v/n
which makes the total computation time more or less proportional to n) and e=1/(n+1).
We may then take s, =max (s,_1,s) if n>0 and so=s otherwise.

6.2. Computing extremal values on compact disks

Let f € Al°™ and p € R®™> be such that p < ry. By definition, we have a method for
computing an upper bound [[ f |+, for M =|| || ,. Since this bound may be pessimistic, we
will now show how to compute better approximations for M.
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We start by computing an R € R®™ with p < R <r¢ and picking an expansion order
n € N. If we want an e-approximation of M, then we may take n as in (5.3) and (5.4).
We next compute approximations fO, fl, o fn 1 for the first n coefficients fy, f1 p, ...,
fu_1p" ! of the series f(pz) and set P(z) = fo+ f1 2+ -+ fn_1 2" 1. We now have to
approximate

M = max{|P(2)]:|z|=1}.

Let N € 2N be a power of two larger with 10n < N =0(n) and w= e>™/N We may efficiently
approximate the vector vg= (P(1), P(w), ..., P(w¥~1)) using the FFT and compute

V' = Jlvolleo = max {[vo,ol, ..., [vo,n ~1[}-
More generally, we may efficiently approximate vy = % (P(k)(l), P(k)(w), . P(k)(wN_l))
using the FFT for small values of k. Let 6 = |[e®/N — 1| ~ n/N. Then

|P(2) = P(w")| < [P/(&)] 6 + -+ [PPD(w) P

‘(k B

for |z —w'| <4, and where [|Q||1=|Qo| + -+ |Qn—1| for polynomials Q of degree <n. In
other words,

N = VI<|oro 4t v |+ 1P 2 (6.1)

Y
We also have

) )
orlloo o7 < llwoll ENE,

where § N < 1/3. We may thus compute an approximation |M V| <V/2 using one FFT
of order O(n). More generally, for a fixed € >0, and modulo choosing a larger N =0O(n),
we may compute an approximation |M — V| <eV using one FFT of order O(n).

In practice, the above method is more powerful. Indeed, if P is a truncated power series,
then the right-hand side of (6.1) is usually of the order O(||lvg||/n) for a small kK = O(1).
Also, in the favorable but frequent case when the maximal value of |P(z)| is obtained
near a unit w’ which “clearly dominates the others” (this case typically occurs when we
approach an isolated singularity), one may consider the shifted polynomial P(w’+ z) and
apply Newton’s method near w’ in order to efficiently find high precision approximations
of M. If the upper bound for [ f1, was pessimistic, one may also directly recompute the
Taylor expansion of f, . at order n and apply Newton’s method for this series. This allows
us to use a much sharper bound for the tail of the expansion of f, ), on B,s than (5.4).
Alternatively, one may investigate the use of a steepest descent method. Notice that the
method may still be applied in the slightly less favorable case of a small number of units w?
which dominate the others.

Remark 6.4. One feature of the above method is that it can easily be applied to the
computation of approximations of

Mmin min {| f(2)]: 2 € B, };

M = max{Rf(z):z€B,}.
Indeed, it suffices to replace M and V by the corresponding M™®, M3 and ymin, j/real
The efficient computation of M™™ and M ! is interesting in order to compute upper

bounds for f~! resp. exp f on compact disks. In the case of M™™ one needs to require
that f has no roots on B, so that M™in (),

Remark 6.5. The previous remark actually generalizes to extrema of the form

M9 = |igo fllp,
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where ¢ is a more general continuous and real-valued function which can be evaluated
efficiently. However, suitable analogues of (6.1) are harder to obtain in that case.

6.3. Relaxed Taylor series and bounds for the remainders

In sections 6.1 and 6.2, an important ingredient of the algorithms is the computation of a
bound [ fn.]], for the tail f,, = fn 2"+ foit12" "1+ of the power series expansion of f
on a compact disk Bp. Until now, sharp bounds for the tail were obtained by computing a
rough bound [[ /]| g on a slightly larger disk and using Cauchy’s formula. However, if [[ f ]| r
is pessimistic, then we will have to choose n quite large in order to reduce the bound
for | f,:|. This raises the questing of finding more direct ways for bounding | f;| on B,. In
this section, we will see how to adapt the strategies of lazy and relaxed computations with
formal power series in order to directly take into account error bounds for the tails.

Notations. Given a power series f € C][z]] and k <n € N, we will denote:

fin = f0+"'+fnflzn71
fn; = fnzn+fn+1zn+1+‘“
fk;n = szk+"'+fn—1zn_1

Assuming algorithms for the computation of bounds [[ f.,, ]|, and [ fp:]l, for f., resp. fn,
on B,, we will also denote by [ fin:T o= f:n]l o+ [[ fn:] » the resulting bound for | f| on B,.
Finally, in the case when p = 1, then we will abbreviate [ f.,[l1, [ fn:]l1, etc. by [ fvnﬂ,
[ fn:]] and so on.

Relaxed power series. We recall that the technique of lazy computations with formal
power series relies on the observation that solutions to implicit equations usually can be
put into a form which expresses the n-th coefficient of a solution in terms of the previous
ones. For instance, if g =exp f with fo =0, then the formula g = [ f’ g yields a way to
compute the coefficients of g using

n—1

1 k+1
:E(f/g)nflz Z fk+1gn 1—k-

k=0

In the case of relaxed computation [vdH02b], additional tricks are used so as to accelerate
these computations using FFT-multiplication. This enables us to compute n coefficients
in time O(M (n) log n), where M (n) corresponds to the complexity of multiplication of
polynomials of degree n. The lazy and relaxed strategies have the big advantage that the
resolution of a functional equation can be done in approximately the same time as the
evaluation of the defining implicit equation.

One disadvantage of FFT-multiplication is that it increases numerical instability in the
case when the coefficients f,, do not have the same orders of magnitude. Using transfor-
mations of the kind f(z)+ f(rz), where r is the “numerical” radius of convergence of f,
it has been shown in [vdH02b, Section 6.2] how to reduce this numerical instability. In our
case, we are rather interested in the computation of e-approximations of f(z) for z € ZS_’p.

Assume that f is the solution of some implicit equation using the operations +, —, x, /,
d/dz, [ and o. Using the rules
(fOg)pz) = flpz)0yglpz) (Oe{+, - x,/})
() pz) = (f(p2)/p
(JNpz) = p[f(p2)
(fog)(pz) = f(pz)o(g(p2)/p)
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we may then construct an implicit equation for f(pz) which can be evaluated as efficiently
as f itself. Without loss of generality, we may thus assume that p = 1 and compute
¢’-approximations for the coefficients fj for an ¢’ < & which does not depend on k. If we
need n coefficients, e’ ~ ¢/n usually suffices. This trick therefore reduces the general case
to fixed point arithmetic and FFT-multiplication of degree n polynomials only accounts
for a precision loss of O(logn) digits.

Bounds for the remainders. Having computed fy, ..., fn—1, we have seen in the pre-
vious section how to compute a bound [[ f., ]| € RY&> for || f.,||. The next question is to
compute a bound [ f,,.]] € R4&2> for || f,..||. Clearly, we may take

T+ Dl = Tfall + Tgn] (6.2)
Tf Dl = [hall Mg 1+ Tl Tgn 1+ T(fin Gn)n;ll (6.3)
T Hnll = 5 Tl (6.4)

where

T(fingon)nsl Z!fk!( ni:l \m!)

l=n—k

can be computed in time O(n). One may also compute a bound [[f,.]] for || /.| using
automatic differentiation. For especially nice postcompositions, one may take:

[(folaz)nl = [falllel™ (al<1); (6.5)
[(fezP)nll = Tfrnpinl + 11l (pEN). (6.6)

For more general postcompositions with g, with go=0, g1 # 0 and ||g||<a < 1, one may use

T(fognll = M(fot-+ fam1g" Dl + [ fusTl le]™
The case of convolution products will be discussed below.

Implicit equations. Let us now show how to deal with implicit equations. We start with
the case when f = ®(f) for some expression which involves operations for which we can
compute bounds of the type (6.2-6.6). When making the hypothesis that [[ f,.]] = A for
some \ € R%™ 2 we may formally compute the bound p()\) = [®(f)..]. If p(A) <A, then
we claim that the hypothesis was correct and that we may indeed take [[ f.]| = \. Indeed,
since the formulas (6.2-6.6) are positive and real analytic, the function @: A+ (\) is real
analytic with a power series expansion which is positive at the origin. Therefore, 0, ®(0),
®(®(0)), ... forms a sequence of analytic functions on By which converges uniformly to f

and such that ||f1>£f;)\|<)\ for all . By continuity, it follows that || fy,[|<A.

In order to find the smallest fixed-point Agx of ¢, we may use the secant method:

A =0
A1 = o(Ao)
AE) — A
Akt = A+ gp( k) b (Ak-i-l*)\k)

M1 — @(Akr1) + ©(Ak) — Ak

If Ag41 < Ag for some k or if k exceeds a given threshold, then the method fails and we set
[ fn.]] =+00. Otherwise, Ay converges quadratically to Afx. As soon as |Agp4+1/ Ak — 1| <e,
for some given £ > 0, we check whether @(Xﬁx) < Xﬁx for Xﬁx =2 Ag+1 — Ak, in which case
we stop. The resulting Afix IS an approximation of Agx with relative accuracy € > 0.
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The above technique generalizes to systems f = (f1,..., fa) = ®(f) of implicit equations.
In this case, the hypothesis A= [[ f,;]] and the bound ¢(X) = [[®(f)n.]] are vectors and the
secant method becomes:

Ao = 0
Aokt1 = (o)
A2k42 = Aop+min (p1,..., pa) (A2k+1— A2k)s

where
_ ©0i(A2k) — A2k.i
Xokt1,i — il Aak+1) + ©i(Aak) — Aok i

Mg

We may also consider systems f = ®(f) such that ® is recursively built up using the
standard operations +, —, X, f , etc., together with extra operations like / and exp which
involve the recursive resolution of other systems of implicit equations. Indeed, theoretically
speaking, such a system may be rewritten as one big system g = ¥(g) of the above kind.
In practice however, we also want to preserve the lazy computation paradigm, which can
be achieved by storing the hypotheses \; = [[(gi)n;]| and the corresponding bounds A(g);
in a hash table, which is passed as a reference to the bound computation method.
Lower bounds for the radius of convergence. Let p € RH> be arbitrary. Modulo
a transformation of the type f(z)— f(z/p), the above algorithms can be used in order to
compute a possibly infinite upper bound [[ f.n;]|, for || f]|,. In particular, when applying
this method for different values of p, we obtain an algorithm for computing a lower bound
for r;. Indeed, we keep decreasing or increasing p depending on whether £ ,=o00 resp.
1 f7 ,<oo. More precisely, assuming that p € [po/00, pooo) for a starting approximation py
and og > 1, we keep setting op41 = /o and pg41:= pi Ukiil at each iteration, until we
obtain an adequate precision. When a starting approximation is not beforehand, one may
use a second iteration pj, = 2¥ resp. pj,=27" in order to obtain a reasonable value for py,
while taking o= 2.

Let us now consider the dependence of the computation of [[ f,.], for a solution to
f=®(f) as a function of p (assuming that we perform the necessary scalings for each p).
When the implicit equation was constructed using +, —, x, [ and recursive solutions to
implicit equations of the same kind, then it can be checked that

p(N)=0(p") +0(p) A+ O(N?) (6.7)

for p — 0. Consequently, the function ¢ indeed does have a fixed point for sufficiently
small p, and our algorithm yields a computable lower bound for ry. In particular, our
technique can be used as an alternative for the classical majorant method [vK75, vdHO03|.
Moreover, it easily adapts to slightly more general functional equations, which involve
composition or other operations: it suffices to check that (6.7) holds for p— 0.

Assuming that lower bounds for radii of convergence are computed as above, we claim
that R+ coincides with the largest theoretical simply connected Riemann surface R on
which f and ®(f) are defined. In order to see this, we first observe that the algorithm
for computing [[ f4s]], may theoretically be applied to arbitrary paths § € Pz and pe R~
with |p| < Ts5- Since ® was constructed using the common operations +, —, X, f, etc., we
have [[ f15/] ,=[[ f+6, whenever d;s =65 and [ f5] , depends continuously on dz and p.
Consequently, the supremum

re=sup {p>0:[[ fys]],<00, (=05} >0
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is lower continuous in ¢. Now assume for contradiction that R ;4 & R and take

CEMRNIR )\ R .

Setting € = r./2 > 0, there exists a neighbourhood U C R of ¢ with re>¢ forall £ €U.
Taking £ €U N jfﬁm with |§ — (| < e, we thus obtain ¢ € B¢ . C R p+. This contradiction
completes the proof of our claim. Notice the analogy with [vdH05a, Theorem 3|.

Composition equations. The case of implicit equations which involve compositions has
to be treated with additional care. For instance, consider an equation of the type

f:(I)(fa fogla--'a fogp)' (68)

Assuming that the equation admits a solution at the origin, its analytic continuation to ¢
requires the prior analytic continuation of f to g;, 0---0¢;,(¢) for any i1, ...,ix€{1,...,p}
and k > 1. Naive implementations may therefore lead to infinite loops.

One solution to this problem is to introduce a “freezing” operator . Given f e Alcom
the function f7 is the restriction of f to its current Riemann surface R 7 In particular,

Ccom

Tpiy5=Tor, for all 6 € PR}". Then we may replace (6.8) by

f:(b(f7f40917---7f409p)'

This approach avoids infinite loops, by handing over to the user the responsibility of
ensuring that all values f(g;, 0---0¢;.(¢)) with k > 1 are already defined. Of course, this
may be automatized by trying brutal continuations in all directions. One may also consider
delayed freezing operators —,,, which only freeze f after n postcompositions.

In the very particular case when the g; generate a finite group G for the composition
operator, we notice that (6.8) may be rewritten as a system of card G equations in the
unknowns f o g with g € G. After a local resolution at the origin, these equations do no
longer involve composition. A particularly important special case of this situation is when
k=1 and g =qz with ¢"=1.

Convolution equations. The power series expansion of the analytic continuation
(f*g)4s of a convolution product may be computed using (5.13) and (5.14). Unfortu-
nately, the translation of a power series by a small ¢ is not very convenient for relaxed
computations, which naturally occur if f and g are unknowns in a convolution equa-
tion [E85], such as

F=(1=2)"14 fof.

Nevertheless, in the equation (5.14), the functions fys5 y..45,_, and gys,4...46,,, are
known except when ¢ = 1 resp. ¢ = [. Modulo one subdivision of the path, we may also
assume without loss of generality that [ > 2. This reduces the resolution of the convolution
equation to the problem of determining the coefficients of fxg at a small § as a function
of the coefficients of f at § in a relaxed manner, assuming that the coefficients of ¢ at ¢
are already known. Now we may again write

(f+9)(0+¢2) = (frox9)(€) + (f*g1e)(9). (6.9)

The coefficients of fis%g may be computed in a relaxed manner by what precedes. The
second member may be expanded in € using

(f*91e)(0) = (Fx9)(6) + (f+g")(0) e + % (fg")(0) e+ (6.10)
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However, the evaluation of each (fxg")(d)/i! at a precision of n digits still requires a time
O(n?lognloglogn), which is not very convenient if we want to evaluate up to order i <n.
On the other hand, if the power series expansion of (f*g)(e) has convergence radius r,
then the translated expansion of (f*g)(d + ¢) still has convergence radius r — §. The idea
is now to use (6.9) and (6.10) for the computation of good bounds [[(( f*¢)+s)n:] » and not
for the expansion of (f*g)s itself, using the formulas

”(f*g)n;ﬂp = H—(f;?fkg;n)n;ﬂp7L
(T Tl Tgulp+ T Tl TgsaTl ) +

n—+1
”fn,ﬂ P H—gn;ﬂ P

1
T ) @nlly = = Tl ToS Tos

2n+1
If [0] is close to 7, then [[((f*g)+s)n;]| , may typically remain finite even for p>7 —|§]. In
that case, we have a method to analytically continue fxg beyond B;.

Remark 6.6. With the above method, in order to obtain an order n expansion of the
solution f to a convolution equation at a path 6 =(dy,...,d;), one generally needs an order
kn expansion of f at the origin, where & is more or less proportional to 1|+ --- + |0;] (it
also depends on the positions of the singularities of f). It remains an interesting question
whether the order kn can be reduced.

6.4. Improved bounds for remainders of Taylor series

Division. The error bounds computed in section 6.3 are not optimal in the case of division
1

Indeed, the fixed-point method yields

T fusll = L] Waf;ﬂ %‘Ei(;%n&m)n;ﬂ if e[ <1

+00 otherwise

The denominator 1 — [[e.,.]| is unnecessarily pessimistic: even if ||e|| exceeds 1, the func-
tion ¢ itself might be bounded away from 1. This is particularly annoying in the case when
e =e** — 1 for large values of . Indeed, when using the fixed-point method in a direct
way on this example, the computable radius of convergence of f would be O(a™!) instead
of +o0.

For this reason, it is good to treat the case of division (6.11) in an ad hoc manner.
When rewriting (6.11) in terms of f,,, we obtain the solution

_ 1+efin—fn

I 1—¢

Now we may compute a lower bound M for 1 —e=1—¢,,+ Bﬂsn;ﬂ on B; using the technique
from section 6.2. Consequently, we may take

_ [(1+efin— fin)ns]l
PRIt e L

Exponentiation. Similarly, when applying the technique from the previous section to
the case of exponentiation

f=e=[g'f, (6.12)
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we obtain a bound

|_|_fnT| _ M finT [LQ:;P jwfg,i;-rﬁg;n)n;ﬂ if ”—g;ln;-ﬂ <n+1

+o00 otherwise

Although this bound is a bit better than in the2 bound for division (roughly speaking, we
effectively “see” the part of f with |f(z)| <e®(™)), we again obtain a better ad hoc bound
by solving (6.12) in terms of f.:

fn:egf n.g - )e—g‘

Section 6.2 again yields an efficient algorithm for computing order n bounds M and M«
for |e9] and |e™Y| on Bi. We may then take

H—fnﬂ = M- M< ”(f;ng/* f,,n)n,ﬂ

Implicit equations. Let us now return to the case of a general implicit equation f=®(f)
and again consider the decomposition f = f.,, + fn,. We may rewrite each subexpression
g=V(f)of &(f)as g=g¢°+ g* fn;, where ¢° and g* are new expressions in f,, such that g*
corresponds to the “coefficient of f,,.” in W( f):

fg)o = f(go+g* fn,) fg)* =0

Composition is treated in a similar way as integration. Applying the above rules to ®( f),
we obtain

fn; = (‘I)(f) - fn;
= ((
= Eo( n7)+El(fn,)* fn;'

and compute bounds [[(fn:):n || =0 and [( fn.)n;]] as in the previous section with the above
improvement for the final division by 1 — Z;(fy;). In the case of possibly nested systems
of implicit equations f = (fi,..., fa) = P(f), subexpressions g = V(f) are decomposed as

9=9°+ 9" fu;
where g* is a vector and - stands for the vector product.

Example 6.7. Consider the implicit equation

For n > 2, we have
O(f)° = 2+ [2(f+ fu) + ()2 + f2
O(f)r = 2f°

and

O(f)°— fo=P(2)+ [2 fu;+ fr
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for the polynomial P=2z+ [z f°+ (£°)? with P,.=0. Then (6.13) is equivalent to

_P(2)+ [ 2 fu+
fui= 1—2 f° '

Dynamical systems. Instead of taking ( [ ¢)*=0 in the above case of implicit equations,
it would be nice to rather extract the linear part of ®(f) in f. Unfortunately, the resulting
linear equation in f,, is often not so easy to solve. Nevertheless, for implicit equations of
a particular shape, such a resolution may be feasible. For instance, consider the case of an
ordinary differential equation

f=J2(f), (6.14)
where ®( f) is an expression which is also a power series in f. We may then rewrite (6.14) as
foi = =2+ [(@()°+2(f)" fus)
= EO(fn;) + fEl(fn,) fn (6-15)
We next set
o(fns) = Po(2) +Bg;
1(f;) = Pi(2) + By,

for polynomials Py =0, P; of degree <n and numbers A\g and A\; which are approximated
at successive stages using the secant method. Then (6.15) admits an explicit solution

(11 [1l

Fo= of P1(2)+8Bx; ano o/ PL()+By

Now order n upper bounds for M- :Hefpl(zHBMH and M :Heffpl(zHBMH can be com-
puted using the method from section 6.2. Then we may take

H—fn,ﬂ :>‘0 M> M<-

With some more work, this method can be adapted to the case of systems of ordinary
differential equations (6.14), with f=(fi,..., fq) and ® = (Pq,..., ®4). The case when P is
polynomial can also be treated with the majorant technique [vdHO03, Section 5].

6.5. Approaches for limiting the precision loss

Computing in the jet space. Consider the solution f to some ordinary differential
equation ®(f, f’, ..., f)) =0 with given initial conditions (f(0), ..., f"~1(0)) = (A, ...,
Ar—1) at the origin. Assuming that Ao, ..., \,_1 are given by complex ball representations
BA{;,po, ey Bki_hpr—v we may in principle compute coefficients of f using complex ball
arithmetic. However, this may lead to overestimation of the error due to the fact that we
do not keep track of possible cancellations between the errors in g, ..., A1 during the
computation.

One approach to this problem is to use Taylor models [MB96, Ber98| in which we
consider A\g = A\§ + €0, ..., Ar—1 = Af_1 + &,_1 as formal parameters, with g9 € B,,, ...,
er—1€B,,_,. Instead of computing with coefficients in B, we now compute with coefficients
in the jet space

Blleo, .-y er—1]]la = {x:Z|z‘|<d ziet}
li| = 04 +ir_1
g’i — 680___6041”—11
o
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For i and j with |i+ j| > d, we take &’ €j:Bpi+j. Given x € Blfe, ..., er—1]]4, the constant
coefficient g is stored at a precision which is one or a few words higher than the precision
of the Ag.

Taylor models can be used in many variants. For instance, each of the coefficients x;
with |i|# 0 may be taken to be finite precision floating point numbers instead of balls, in
which case rounding errors are incorporated into the error of xg. If d =2, then one may
also take e’ =B el + Bpj ' (Ji|=|j|=1), which allows for the computations of bounds
for the derivatives in the parameters ;. If f is continued analytically from 0 to z, then
we also notice that the initial conditions \{, ..., \._; at z may again be taken in the jet
space Bl[eo, ..., er—1]]q for the errors ey, ..., e,—1 at 0. This is useful for the computation
of return maps and limit cycles. When the constant coefficients of such jets become less
precise than po, ..., pr_1, it may sometimes be useful to unjettify \j, ..., A._; and replace
each z=\}, by Z|i|<d ,Iigpi. We next rejettify the vector A\’ by replacing each \j,= B(A;Q)* /

Pk
by Ak = (AR)* + ¢t

Remark 6.8. The jet-space technique can also be used for studying the dependence of the
analytic continuation of f on initial conditions. For instance, return maps for limit cycles
may be computed in such a way.

Remark 6.9. Clearly, the technique of jettification is not limited to differential equations:
it applies to more general functional equations whose local expansions are determined by
the equation in terms of a finite number of initial conditions.

The wrapping effect. A well known problem with certified integration of dynamical
systems using interval methods is the wrapping effect [Moo66, Loh01, MB04|. Consider a
simple equation like

f//+f:0-

(Fy )=

at 1o, integration of the equation from ¢o to t; =to+n/4 yields Fi, = A¢,—t, Fr, with

Given an initial condition

1 1
Ato—)tl — \_/? \{E
V2 V2

Now if F}, is given by an enclosing rectangle, then left multiplication by Ay, turns this
rectangle by /4, so that we lose 1/2 bit of precision when enclosing the result by a new
rectangle.

Now a similar problem is encountered when using complex interval arithmetic in order
to compute the n-th power of 1+1i using (1+41i)"=(1+1) (1+1)"~ . Therefore, one possible
remedy is to adapt ball arithmetic to matrices and represent transition matrices such
as A¢y—¢, by balls Ay, =M + B., where M is an exact matrix and B, denotes the space of
matrices F with norm || E||<e (i.e. [|[EV| <e||V|| for all vectors V). In this representation,
taking the (naive) n-th power of the matrix A, only gives rise to a precision loss
of O(logn) bits. Although the above idea applies well to matrices whose eigenvalues are
of approximately the same order of magnitude, the error bounds may again be pessimistic
in other cases. In addition, one may therefore adapt the norms in an incremental manner
using numerical preconditioning. Equivalently, one may adapt the coordinate system as
a function of A, [Loh88, MBO4].
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We notice that the divide and conquer technique may also be used to the wrapping
effect. Indeed, in the case of linear equations, the transition matrices verify the relation

At()*)tn = Atnflﬂtn At()*)tl-

Instead of computing As,—, in the naive way, using

A150—>t1 = Atn—1—>tn ( At2—>t3 (At1—>t2 (Ato—ﬁl)))a

one may use binary splitting:

Atiﬁt]’ - Atu

it4)/2) 7t Atﬁtt(iﬂ)/u'

Even in the case when ordinary interval arithmetic is used in order to represent the matrices
Atiﬁtj, the computation of Ay, using this technique gives rise to a precision loss of only

O(logn) bits. With some more work, this technique also applies to non-linear equations.

Preservation laws. In the case when a dynamical system is subject to preservation laws
or symmetries, then one may project the bounding region for the numerical solution on
the variety of actual solutions, after each numerical integration step. In lucky cases, this
may help to further reduce overestimation and precision loss.

Acknowledgment. The author would like to thank the anonymous referees for their
careful reading an corrections.
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