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In this paper, we present a probabilistic algorithm to multiply two sparse polynomials
almost as efficiently as two dense univariate polynomials with a result of approxi-
mately the same size. The algorithm depends on unproven heuristics that will be made
precise.

1. INTRODUCTION
Let P,Q∈ℤ[x1, . . . , xn] be polynomials that are represented in the usual way as linear
combinations of power products. The problem of sparse polynomial multiplication is to
compute the product R=PQ in a way that is as efficient as possible in terms of the total
bitsize of P, Q, and R (and where we use a similar sparse representation for R as for P
and Q).

For pedagogical reasons, we mainly restrict our attention to polynomials with integer
coefficients. Together with polynomials with rational coefficients, this is indeed the most
important case for practical implementations inside computer algebra systems. Never-
theless, it is not hard to adapt our techniques to coefficients in more general rings (some
indications to that effect are given in section 5.2). Still for pedagogical reasons, we will
carry out our complexity analysis in the RAM model [11]. We expect our algorithms to
adapt to the Turing model [13], but more work will be needed to prove this and some of
the constant factors might deteriorate.

For polynomials of modest size, naive algorithms are often most efficient. We refer
to [3, 6, 10, 19, 28, 32, 33, 37] for implementation techniques that are efficient in practice.
Various types of faster algorithms have been proposed for polynomials with special sup-
ports [16, 18, 23, 35].

Asymptotically fast methods for polynomials of large sizes usually rely on sparse
interpolation. The seminal paper by Ben Or and Tiwari [4] triggered the development of
many fast algorithms for the sparse interpolation of polynomial blackbox functions [1,
5, 9, 20, 24, 25, 26, 27, 29, 34]. In this framework, the unknown polynomial R is given
through a blackbox functions that can be evaluated at points in suitable extensions of the
coefficient ring. We refer to [36] for a nice survey on sparse interpolation and other algo-
rithms to compute with sparse polynomials. The present paper grew out of our recent
preprint [21] with Grégoire Lecerf on this topic; the idea to “exploit colliding terms” in
section 6.6 forms the starting point of our work.

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [22].
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The most efficient algorithms for sparse interpolation are mostly probabilistic. Here
we note that it is usually easy to check that the result is correct with high probability: just
evaluate both the blackbox function and its supposed interpolation at a random point
and verify that both evaluations coincide. In this paper, all algorithms will be proba-
bilistic, which is suitable for the practical purposes that we are interested in. The running
times of our algorithms also rely on suitable heuristics that we will make precise.

Although the multiplication problem for sparse polynomials does not directly fit into
the usual blackbox model, it does benefit from the techniques that have been developed
for sparse interpolation. Practical algorithms along these lines have appeared in [8, 12,
19, 31]. Most algorithms operate in two phases: we first need to determine the exponents
of the product R and then its coefficients. The first phase is typically more expensive
when the coefficients of R are small, but it becomes cheap for large coefficients, due to
the fact that we may first reduce P,Q,R modulo a suitable prime. It is also customary
to distinguish between the supersparse case in which the total degree of R is allowed to
become huge and the normally sparse case in which the total degree remains small. In
this paper, we mainly focus on the second problem, which is most important for practical
applications.

In order to describe the complexity results, let us introduce some notations. Given
a polynomial P∈ℤ[x1, . . . ,xn], we will write dP for its total degree, tP for its number of
terms, sP for the number of powers xi

e that occur in its representation, and |P| for the
maximal absolute of a coefficient. For instance, if P=3 x1

2 x2 − 20 x2 x3 x4+ x4
4, then we

have dP=4, tP=3, sP=6, and |P|=20. For our multiplication problem R=PQ, the degree
d≔dR=dP+dQ of the result is easily determined, but we usually only assume a bound
T⩾ tR with T=O(tR) for its number of terms.

It is interesting to keep track of the dependency of our running times on logarithmic
factors in certain parameters, but it is also convenient to ignore less important loga-
rithmic and sublogarithmic factors. We do this by introducing the notation

f =O♭(g) ⟺ f =O(g (log (sP sQ sR |P| |Q| |R|))o(1)(log (dn))O(1)).

We also wish to compare the cost of our algorithms with the cost of multiplying dense
univariate polynomials of approximately the same size. Given integers N,r>1, we there-
fore also introduce the following two complexities:

• MN(r) stands for the cost of multiplying two non-zero polynomials inℤ[u]/(ur−1)
under the assumption that the product R satisfies |R|⩽N.

• MN′ (r) stands for the cost of multiplying two polynomials in (ℤ/Nℤ)[u]/(ur−1).
We make the customary assumption that MN(r)/r and MN′ (r)/r are non-decreasing as
functions in r. By [14], one may take MN(r)=O(r log N log(r log N)). If r=O(N), then
one also has MN′ (r)=O(MN(r)), using Kronecker substitution [11].

One traditional approach for sparse polynomial multiplication is to evaluate P, Q,
and R at 2T points in a geometric progression �p1

k,p2
k, . . . ,pn

k� modulo a sufficiently large
prime number Π≍Tpn

d, where pi stands for the i-th prime number. In combination with
the tangent Graeffe method [21, sections 5 and 7.2], this approach allows the exponents
of R to be computed in time

O♭(MΠ′ (T) logΠ). (1)

The coefficients can be recovered using fast Vandermonde system solving, in time

O♭(MN′ (t) log t), (2)
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where N = 2 t |P| |Q| > 2 |R| − 1. In our case when d is small, we usually have log Π=
O♭(log T), in which case (1) simplifies into O♭(T (log T)3). The dependence of the com-
plexity on d can be reduced using techniques from [26], among others.

The main results of this paper are two faster probabilistic algorithms. The shorter
running times rely on two heuristics HE and HC that will be detailed in section 4. For
any 𝜏>𝜏crit, we show (Theorem 6) that the exponents of R can be computed in time

6𝜏MΠ′ (T)+O♭((sP+ sQ+ sR) logΠ+(tP+ tQ) logN+ tRn), (3)

where N=T2 |P| |Q| and Π≍Tpn
d is prime. This algorithm is probabilistic of Monte Carlo

type. Based on numerical evidence in section 3, we conjecture that 𝜏crit≈0.407265. We
also show (Theorem 4) that the coefficients may be computed in expected time

3𝜏MN(tR)+O♭((sP+ sQ+ sR) log tR+(tP+ tQ+ tR) logN), (4)

using a probabilistic algorithm of Las Vegas type. In practice, when d is small and n
not too large with respect to log T, the corrective terms in (3) are negligible and the
cost reduces to (6 𝜏 + o(1))MΠ′ (T). Similarly, the cost (4) usually simplifies to (3 𝜏 +
o(1))MN(tR). If we also have Π=o(N), then this means that the cost of the entire sparse
multiplication becomes (3 𝜏 + o(1))MN(t). Here we note that MN(t) also corresponds
to the time needed to multiply two dense polynomials in ℤ[x], provided that the pro-
duct R satisfies degR< t and t |R|<N.

The proof of these bounds relies on the evaluation of R at three points of the form
(u𝜆1,. .. ,u𝜆n) in algebras of the form ℤ[u]/(ur−1), where r=⌊𝜏 t⌋. If 𝜏 is sufficiently large
(namely 𝜏>𝜏crit for some critical value) and we already know the exponents of R, then
we show how to recover the coefficients with high probability. One interesting feature of
our algorithm is that three evaluations are sufficient with high probability. A logarithmic
number of evaluations is necessary when using the more obvious iterative approach
for which every additional evaluation allows us to compute a constant fraction of the
unknown coefficients (with high probability). Our algorithm is first explained with an
example in section 2 and then in general in section 4.1. The probabilistic analysis is done
in section 3. In section 4.2, we extend our approach to the computation of the expo-
nents, using three additional evaluations. The last section 5 is devoted to variants and
extensions of our approach, and further remarks.

The present paper works out an idea that was first mentioned in [21, section 6.6], in
the context of general sparse interpolation. The application to polynomial multiplication
is particularly suitable because of the low amortized cost of blackbox evaluations. The
idea of using evaluations in (small) cyclic algebras has been used before in [2, 9, 31], but
with a less optimal complexity. This approach also seems close to binning techniques
that have recently been applied to compute sparse Fourier transforms [15, 30]; we plan
to investigate this parallel in future work.

2. A GAME OF MYSTERY BALLS

Consider two sparse polynomials

P = xy5+3xy6z−2x8y10+x10y14z3

Q = 2+yz+3x2y4z3.
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(x,y,z)=(u,u,u)

1 u u2 u3 u4

◯8
◯6 ◯9 ◯5 ◯10

◯4 ◯1 ◯3 ◯7 ◯2
4 5 5 3 1

(x,y,z)=(1,u, 1)

1 u u2 u3 u4

◯10

◯9
◯3 ◯8 ◯5
◯2 ◯7 ◯6 ◯1 ◯4
8 7 3 1 −1

(x,y,z)=(1,1,u)

1 u u2 u3 u4

◯8
◯10 ◯7 ◯5 ◯3
◯9 ◯1 ◯6 ◯4 ◯2
−2 8 3 −1 10

◯8 ◯9 ◯5
◯4 ◯1 ◯3 ◯10

1 5 5 −4 0

◯10

◯9 ◯8 ◯5
◯3 ◯1 ◯4
7 0 0 1 −1

◯10 ◯8 ◯5
◯9 ◯1 ◯4 ◯3
−2 1 0 −1 9

◯8 ◯9
◯4 ◯1 ◯5
1 5 −4 0 0

◯8 ◯5
◯9 ◯1 ◯4
2 0 0 1 −1

◯8 ◯5
◯9 ◯1 ◯4
2 1 0 −1 0

◯8
◯4 ◯1
1 3 0 0 0

◯8
◯1 ◯4

0 0 0 1 3

◯8
◯1 ◯4

0 1 0 3 0

◯8
−2 0 0 0 0

◯8
0 0 0 −2 0

◯8
0 2 0 0 0

Figure 1. Playing the game of mystery balls. At every round, we remove the balls that ended up in
a private box for at least one of the three throws.

Their product R=PQ is given by

R = 3x12y18z6+x10y15z4+9x3y10z4+3x3y9z3−4x10y14z3+
3xy7z2+7xy6z−2x8y11z+2xy5−4x8y10.

Assume that the monomials x12 y8 z6, x10 y15 z4, . . . of R are known, but not the corre-
sponding coefficients. Our aim is to determine R through its evaluations at “points” of
the form (x,y,z)=(u𝛼,u𝛽,u𝛾) in ℤ[u]/(ur−1) for suitable 𝛼,𝛽,𝛾∈ℕ and lengths r. These
evaluations are obtained by evaluating P and Q at the same points and multiplying the
results in ℤ[u]/(ur −1). In what follows, we will use three evaluation points.

Let us show how to turn the problem of computing the coefficients of R into a “game
of mystery balls”. At the start of the game, we have one numbered ball for each term of R:

R = 3x12y18z6
◯1

+x10y15z4
◯2

+9x3y10z4
◯3

+3x3y9z3
◯4

+(−4)x10y14z3
◯5

+

3xy7z2
◯6

+7xy6z
◯7

+(−2)x8y11z
◯8

+2xy5�
◯9

+(−4)x8y10
◯10

.

For each ball, say ◯1 , the corresponding “mystery coefficient” 3 needs to be determined
(it might be hidden inside the ball), whereas the corresponding exponents 12, 18, 6 are
known (and stored in a table or painted on the ball). In fact, our game has three identical
sets of balls, one for each of the three evaluation points. For each of these evaluation
points, we also have a set of r boxes, labeled by 1,u,u2, . . . ,ur−1.
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Now consider the evaluation of R at a point as above, say at (x,y, z)=(u,u,u) in the
ring ℤ[u]/(u5−1). Then each term 𝜅xa yb zc evaluates to a term 𝜅ue with e∈{0,1, 2, 3, 4}
and e= a+ b+ c modulo 5. In our game, we throw the corresponding ball into the box
that is labeled by ue. For instance, our first ball ◯1 evaluates to 3u and goes into the box
labeled by u. Our second ball ◯2 evaluates to 1u4 and goes into the box labeled by u4.
Continuing this way, we obtain the upper left distribution in Figure 1. Now the complete
evaluation of R at (x,y,z)=(u,u,u) in ℤ[u]/(u5−1) gives

R(u,u,u) = 4+5u+5u2+3u3+u4 (mod u5−1).

For each box, this means that we also know the sum of all coefficients hidden in the balls
in that box. Indeed, in our example, the first box u0 contains three balls ◯4 , ◯6 , and ◯8 ,
with coefficients 3, 3, and −2 that sum up to 4. In Figure 1, we indicated these sums below
the boxes. In round one of our game, we actually took our chances three times, by using
the three evaluation points (u,u,u), (1,u, 1), and (1, 1,u) in ℤ[u]/(u5−1), and throwing
our balls accordingly. This corresponds to the top row in Figure 1.

Now we play our game as follows. If, in a certain round, a ball ends up alone in its
box (we will also say that the ball has a private box), then the number below it coincides
with the secret coefficient inside. At that point, we may remove the ball, as well as its
copies from the two other throws, and update the numbers below accordingly. In round
one of our running example, ball ◯2 ends up in a box of its own for our first throw.
Similarly, the balls ◯6 and ◯7 both have private boxes for the second throw. Ball ◯6 also
has a private box for the third throw. Removing the balls ◯2 , ◯6 , and ◯7 from the game,
we obtain the second row in Figure 1. We also updated the numbers below the boxes: for
every box, the number below it still coincides with the sum of the mystery coefficients
inside the balls inside that box. Now that the balls ◯2 , ◯6 , and ◯7 have been removed, we
observe that balls ◯3 and ◯10 have private boxes in their turn. We may thus determine
their mystery coefficients and remove them from the game as well. This brings us to
round three of our game and the third row in Figure 1. Going on like this, we win our
game when all balls eventually get removed. We lose whenever there exists a round in
which there are still some balls left, but all non-empty boxes contain at least two balls. In
our example, we win after five rounds.

Remark 1. When implementing a computer program to play the game, we maintain
a table that associates to each ball its exponents and the three boxes where it ended up
for the three throws. Conversely, for each box, we maintain a linked list with all balls
inside that box. We finally maintain a list with balls inside a private box, and which are
about to be removed. In this way, the total amount of work that needs to be done in each
round remains proportional to the number of balls that are removed instead of the total
number of boxes.

Remark 2. Playing our game in several “rounds” is convenient for the probabilistic
analysis in section 3 below. But the order in which balls in private boxes are removed
actually does not matter, as long as we remove all balls in private boxes. Assume for
instance that we win our game and that we replay it by removing balls in another order.
Assume for contradiction that a ball B does not get removed in our modified game and
choose B in such a way that the round i in which it gets removed in the original game
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is minimal. Then we observe that all balls that were removed before round i in the orig-
inal game also get removed in the modified version, eventually. When this happens,
B is in a private box for one of the throws: a contradiction.

3. ON OUR PROBABILITY OF WINNING THE GAME

Have we been lucky in our example with 3 throws of 10 balls in 5 boxes? For the proba-
bilistic analysis in this section, we will assume that our throws are random and indepen-
dent. We will do our analysis for three throws, because this is best, although a similar
analysis could be carried out for other numbers of throws. From now on, we will assume
that we have t balls and r=𝜏 t boxes.

The experiment of throwing t balls in r boxes has widely been studied in the literature
about hash tables [7, Chapter 9]. For a fixed ball, the probability that all other t−1 balls
end up in another box is given by

p1=�1− 1
r�

t−1
=e(t−1)log�1− 1

𝜏t�=e− 1
𝜏+O�1

t�=e− 1
𝜏 +O�1t�.

More generally, for any fixed k⩾1, the probability that k−1 other balls end up in the same
box and all the others in other boxes is given by

pk = �t−1
k−1�

1
rk−1 �1− 1

r�
t−k

= tk−1+O(tk−2)
(k−1)! ⋅ 1

𝜏 k−1 tk−1 �e
− 1
𝜏 +O�1t ��

= e− 1
𝜏

(k−1)!𝜏 k−1 +O�1t�.

Stated otherwise, we may expect with high probability that approximately p1 t balls end
up in a private box, approximately p2 t balls inside a box with one other ball, and so on.

This shows how we can expect our balls to be distributed in the first round of our
game and at the limit when t gets large. Assume more generally that we know the distri-
bution (pi,k)k∈ℕ in round i and let us show how to determine the distribution (pi+1,k)k∈ℕ
for the next round. More precisely, assume that pi,k (t+O(1)) is the expected number of
balls in a box with k balls in round i, where we start with

p1,k=
e− 1

𝜏

(k−1)!𝜏 k−1 .

Setting

𝜎i=pi,1+pi,2+ ⋅ ⋅ ⋅,

we notice that 1=𝜎1>𝜎2>𝜎3> ⋅ ⋅ ⋅, where (𝜎i+1−𝜎i) t stands for the expected number of
balls that are removed during round i.
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pi,k k=1 2 3 4 5 6 7 𝜎i

i=1 0.13534 0.27067 0.27067 0.18045 0.09022 0.03609 0.01203 1.00000
2 0.06643 0.25063 0.18738 0.09340 0.03491 0.01044 0.00260 0.64646
3 0.04567 0.21741 0.13085 0.05251 0.01580 0.00380 0.00076 0.46696
4 0.03690 0.18019 0.08828 0.02883 0.00706 0.00138 0.00023 0.34292
5 0.03234 0.13952 0.05443 0.01416 0.00276 0.00043 0.00006 0.24371
6 0.02869 0.09578 0.02811 0.00550 0.00081 0.00009 0.00001 0.15899
7 0.02330 0.05240 0.01033 0.00136 0.00013 0.00001 0.00000 0.08752
8 0.01428 0.01823 0.00193 0.00014 0.00001 0.00000 0.00000 0.03459
9 0.00442 0.00249 0.00009 0.00000 0.00000 0.00000 0.00000 0.00700

10 0.00030 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00035
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 1. The probability distributions (pi,k)k∈ℕ in rounds i=1, . . . , 11 for 𝜏=1/2.

Now let us focus on the first throw in round i (the two other throws behave similarly,
since they follow the same probability distribution). There are pi,1 t balls that are in a pri-
vate box for this throw. For each of the remaining balls, the probability 𝜋i that it ended
up in a private box for at least one of the two other throws is

𝜋i=�2− pi,1
𝜎i

� pi,1
𝜎i

.

The probability that a box with k⩾2 balls becomes one with j balls in the next round is
therefore given by

𝜆j,k=�k
j�𝜋i

k− j (1−𝜋i)j.
For all j⩾1, this yields

pi+1, j= �
k⩾max(2, j)

j
k 𝜆j,k pi,k.

If 𝜎i tends to zero for large i and t gets large, then we win our game with high probability.
If 𝜎i tends to a limit ℓ∈(0,1), then we will probably lose and end up with approximately
ℓ t balls that can't be removed (for each of the three throws).

We have not yet been able to fully describe the asymptotic behavior of the distribution
(pi,k)k∈ℕ for i→∞, which follows a non-linear dynamics. Nevertheless, it is easy to com-
pute reliable approximations for the coefficients pi,k using interval or ball arithmetic [17];
for this purpose, it suffices to replace each coefficient pi,k in the tail of the distribution
(i.e. for large k) by the interval [0, p1,k]. Tables 1, 2, and 3 show some numerical data
that we computed in this way (the error in the numbers being at most 0.5 ⋅ 10−5). Our
numerical experiments indicate that the “phase change” between winning and losing
occurs at a critical value 𝜏crit with

0.407264<𝜏crit<0.407265.

Table 1 shows what happens for 𝜏=1/2: until the seventh round, a bit less than half of
the balls get removed at every round. After round eight, the remaining balls are removed
at an accelerated rate. For 𝜏=1/3, the distributions (pi,k)k∈ℕ numerically tend to a non-
zero limit distribution (p∞,k)k∈ℕ with 𝜎∞≔ p∞,1+ p∞,2+ ⋅ ⋅ ⋅ ≈ 0.78350. In Table 3, we
show some of the distributions in round ten, for 𝜏 near the critical point 𝜏crit. We also
computed an approximation of the limit distribution at the critical point itself.
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pi,k k=1 2 3 4 5 6 7 𝜎i

i=1 0.04979 0.14936 0.22404 0.22404 0.16803 0.10082 0.05041 1.00000
2 0.01520 0.16294 0.22068 0.19925 0.13493 0.07310 0.03300 0.85795
3 0.00579 0.16683 0.21802 0.18994 0.12410 0.06487 0.02826 0.81315
4 0.00238 0.16826 0.21676 0.18616 0.11991 0.06179 0.02584 0.79590
5 0.00101 0.16883 0.21620 0.18457 0.11818 0.06053 0.02584 0.78878
6 0.00043 0.16907 0.21596 0.18389 0.11744 0.06000 0.02555 0.78577
7 0.00019 0.16918 0.21585 0.18360 0.11713 0.05978 0.02542 0.78448
8 0.00008 0.16922 0.21581 0.18347 0.11699 0.05968 0.02535 0.78392
9 0.00003 0.16924 0.21579 0.18342 0.11693 0.05964 0.02535 0.78368

10 0.00001 0.16925 0.21578 0.18340 0.11691 0.05962 0.02534 0.78358
11 0.00001 0.16925 0.21577 0.18339 0.11690 0.05961 0.02533 0.78353
12 0.00000 0.16925 0.21577 0.18338 0.11690 0.05961 0.02533 0.78351

Table 2. The probability distributions (pi,k)k∈ℕ in rounds i=1, . . . , 11 for 𝜏=1/3.

p10,k k=1 2 3 4 5 6 7 𝜎10
𝜏=0.333 0.00001 0.16892 0.21573 0.18368 0.11729 0.05992 0.02551 0.78447
𝜏=0.400 0.00190 0.20779 0.16840 0.09099 0.03687 0.01195 0.00323 0.52207
𝜏=0.405 0.00258 0.20592 0.15856 0.08140 0.03134 0.00965 0.00248 0.49260
𝜏=0.407 0.00290 0.20479 0.15429 0.07750 0.02919 0.00880 0.00221 0.48027
𝜏=0.410 0.00346 0.20266 0.14752 0.07159 0.02606 0.00759 0.00184 0.46118
𝜏=0.420 0.00601 0.19090 0.12180 0.05181 0.01653 0.00422 0.00090 0.39235
𝜏=0.450 0.01841 0.09767 0.03137 0.00672 0.00108 0.00014 0.00001 0.15541
𝜏=0.500 0.00030 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00035

p10000,k, 𝜏crit 0.00000 0.18338 0.11551 0.04851 0.01528 0.00385 0.00081 0.36751

Table 3. The probability distributions (p10,k)k∈ℕ in round 10 for various 𝜏 as well as an approximation
of the limit distribution for 𝜏=𝜏crit, by taking the distribution in round 10000 for 𝜏≈0.407264≈𝜏crit.

For 𝜏<𝜏crit, we note that reliable numerical computations can be turned into an actual
proof that we lose with high probability. Indeed, assume that 𝜀≔ pi,1= o(1) gets very
small for some i, whereas 𝜎i

−1=O(1) remains bounded (for instance, in Table 2, we have
pi,1<10−5 and 𝜎i=0.78351 for i=12). Then 𝜋i=(2+O(𝜀)) 𝜀

𝜎i
=O(𝜀) also gets very small

and

pi+1,1 = �
k⩾2

𝜋i
k−1(1−𝜋i)pi,k

= pi,2𝜋i+O(𝜀2)

= 2 pi,2
𝜎i

𝜀+O(𝜀2)

pi+1,k = pi,k+O(𝜀), k⩾2.

If 2pi,2 happens to be 𝜈 times smaller than 𝜎i for some fixed 𝜈>1 (for instance, in Table 2,
we actually have 4 pi,2<𝜎i for i=12), then a standard contracting ball type argument
can be used to prove that pi′,1 decreases to zero with geometric speed for i′⩾ i, while 𝜎i′
remains bounded away from zero.
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Ni,k k=1 2 3 4 5 6 7 Σi

i=1 13438 27132 27027 18072 9075 3516 1260 100000
2 6577 25344 18576 9360 3575 990 259 64793
3 4524 22004 13149 5196 1535 354 84 46854
4 3649 18310 8904 2808 665 156 14 34506
5 3247 14190 5406 1464 295 24 0 24626
6 2849 9892 2823 556 65 6 0 16191
7 2327 5522 1071 124 15 0 0 9059
8 1501 1946 225 12 5 0 0 3689
9 487 256 18 0 0 0 0 761

10 34 6 0 0 0 0 0 40
11 0 0 0 0 0 0 0 0

Table 4. Carrying out a random simulation of our game for t=100000 and 𝜏= /1 2. The table shows
the number Ni,k of balls that are in a box with k balls in round i (for the first throw). The last column
also shows the sum Σi=Ni,1+Ni,2+ ⋅ ⋅ ⋅.

Conversely, given 𝜏 >𝜏crit, it seems harder to prove in a similar way that we win.
Nevertheless, for any 𝜀 > 0, reliable computations easily allow us to determine some
round i with 𝜎i < 𝜀. For instance, for 𝜏 = /1 2 and 𝜀 = 10−5, we may take i= 11. This is
good enough for practical purposes: for t=10000≪ 𝜀−1, it means that we indeed win
with high probability. Here we also note that a large number of rounds are generally
necessary to win when 𝜏 approaches the critical value 𝜏crit. For instance, for 𝜏 =0.42,
we need to wait until round i=29 to get 𝜎i<10−5. Nevertheless, after a certain number
of rounds, it seems that 𝜎i always converges to zero with superlinear speed.

In Table 4, we conclude with the result of a computer simulation in which we played
our game with t=100000 and 𝜏= /1 2. As one can see, the results are close to the theoret-
ically expected ones from Table 1.

Remark 3. Our game of mystery balls readily generalizes to different numbers of throws
and different numbers of boxes for each throw. However, if our aim is to take the total
number of boxes as small as possible, then computer experiments suggest that using
three throws with the same number of boxes is optimal. For simplicity, we therefore
restricted ourselves to this case, although it should be easy to extend our analysis to
a more general setting.

4. MULTIPLYING SPARSE POLYNOMIALS

Let us now turn to the general problem of multiplying sparse polynomials. We will focus
on the multiplication R=P Q of integer polynomials P,Q∈ℤ[x1, . . . ,xn] in at least two
variables. We define d to be the total degree of R and assume that we have a bound T for
the number of terms of R.

As explained in the introduction, we proceed in two phases: we first determine the
exponents of the unknown product R. This part is probabilistic of Monte Carlo type,
where we tolerate a rate of failure 𝜀>0 that is fixed in advance. In the second phase, we
determine the unknown coefficients, using a probabilistic algorithm of Las Vegas type.
In this section, we start with the second phase, which has already been explained on an
example in section 2.
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Algorithm 1
Input: P,Q∈ℤ[x1, . . . ,xn] and e1, . . . , et∈ℕn with PQ∈ℤxe1+ ⋅ ⋅ ⋅ +ℤxet

Output: the product PQ, with high probability (Las Vegas)
Assume: n⩾2 and t⩾6
1. For a fixed 𝜏>𝜏crit, let r≔⌊𝜏 t⌋.

2. Let 𝜆1,𝜆2,𝜆3∈{0,...,r−1}n be random vectors that are pairwise non-collinear modulo r.

3. Compute Pi=P(u𝜆i,1, . . . ,u𝜆i,n) and Qi=Q(u𝜆i,1, . . . ,u𝜆i,n) in ℤ[u]/(ur −1), for i=1,2,3.

4. Multiply Ri≔Pi Qi in ℤ[u]/(ur −1), for i=1,2,3.

5. Let J≔{1, . . . , t}.

6. While there exist i∈{1,2,3} and j∈ J with 𝜆i ⋅ ej≠𝜆i ⋅ ej′ for all j′∈ J∖{j}, do

a. Let cj be the coefficient of u𝜆i⋅ej in Ri.

b. For i′∈{1,2, 3}, replace Ri≔Ri − cj u𝜆i′⋅ej.

c. Replace J≔ J∖{j}.

7. Return c1xe1+ ⋅ ⋅ ⋅ + ct xet if J=∅ and “failed” otherwise.

4.1. Determination of the coefficients
Assume that our product R=P Q has t terms, so that R= c1 xe1+ ⋅ ⋅ ⋅ + ct xet for certain
c1,...,ct∈ℤ and e1,...,et∈ℕn, where xei=x1

ei,1 ⋅⋅⋅xn
ei,n for i=1,...,t. It is obvious how to gener-

alize the algorithm from section 2 to this case: for some fixed 𝜏>𝜏crit, we distribute “our
t balls” over r=⌊𝜏 t⌋ boxes, through the evaluation of R at three points (u𝜆i,1, . . . ,u𝜆i,n) in
ℤ[u]/(ur −1) for i=1,2,3 and 𝜆1, 𝜆2, 𝜆3∈ℤn. The vectors 𝜆1, 𝜆2, 𝜆3 are essentially chosen
at random, but it is convenient to take them pairwise non-collinear modulo r, so as to
avoid any “useless throws”. We assume the following heuristic:

HE. For random vectors 𝜆1, 𝜆2, 𝜆3 as above each of the three throws randomly distrib-
utes the balls over the boxes, and the three distributions are independent.

We then play our game of mystery balls as usual, which yields the coefficients c1, . . . ,ct if
we win and only a subset of these coefficients if we lose. In view of Remark 2, this leads
to Algorithm 1.

THEOREM 4. Assume heuristic HE. Let 𝜏>𝜏crit with 𝜏⩽1 and N= tR
2 |P| |Q|. Then Algorithm 1

is correct and runs in time

3𝜏MN(tR)+O♭((sP+ sQ+ sR) log tR+(tP+ tQ+ tR) logN).

Proof. The correctness of the algorithm has been explained in section 2. As to the running
time, we first note that none of the integer coefficients encountered during our computa-
tion exceeds N in absolute value. Now steps 1 and 2 have negligible cost and the running
time for the remaining steps is as follows:

• In step 3, for every term cxe in P or Q and every i∈{1,2, 3}, we first have to com-
pute 𝜆i ⋅ e=𝜆i,1 e1+ ⋅ ⋅ ⋅ +𝜆i,n en modulo r. Since we only have to accumulate 𝜆i, j ej
when ei≠0, this can be done in time O♭((sP+ sQ) log r). We next have to add the
coefficients of all terms that end up in the same box, which amounts to O(tP+ tQ)
additions of cost O((tP+ tQ) logN).
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• In step 4, we do three multiplications of cost MN(r) each. Since MN(r)/r is non-
decreasing, the cost of these multiplications is bounded by 3𝜏MN(tR).

• In steps 5 and 6, we play our game of mystery balls, where J stands for the set
of ball that are still in play. Whenever ball j ends up in a private box for throw
number i, we have to determine where this ball landed for the other throws, by
computing 𝜆i′ ⋅ ej modulo r for i′≠ i. We then have to update the numbers below
the corresponding boxes, which corresponds to setting Ri≔Ri −cju𝜆i′⋅ej in step 6b.
Since this eventually has to be done for each of the t balls, step 6 takes O(sR log r+
tR logN) bit-operations, using a similar analysis as for step 3.

Let us finally investigate bookkeeping costs that are implicit in our description of the
algorithm. Above all, we have to maintain the linked lists with balls inside each box (see
Remark 1). This can be done in time

O((((((((((((((�k⩾1
kp1,k T))))))))))))))=O(((((((((((((((((((�k⩾1

k
(k−1)!𝜏 k−1 e

−1/𝜏T)))))))))))))))))))=O(T).

The other implicit costs to maintain various tables are also bounded by O(T). □

4.2. Determination of the exponents
In [21], we surveyed several strategies for computing the exponents of the product R.
Most of the approaches from sections 4, 6, and 7 of that paper can be adapted to the
present setting. We will focus on a probabilistic strategy that we expect to be one of the
most efficient ones for practical purposes (a few variants will be discussed in section 5).

For i=1,2,... , let pi be the i-th prime number and let B=pn
d. We let Π be a fixed prime

number with Π⩾BT/𝜀 (for practical implementations, we may also take Π to be a pro-
duct of prime numbers that fit into machine words, and use multi-modular arithmetic to
compute modulo Π). For some fixed 𝜏>𝜏crit, we again use r=⌊𝜏T⌋ boxes, and evaluate
P,Q,R over the ring (ℤ/Πℤ)[u]/(ur −1). This time, we use six evaluation points of the
form (u𝜆i,1, . . . ,u𝜆i,n) and (p1u𝜆i,1, . . . ,pnu𝜆i,n) for i=1,2,3, where the 𝜆1,𝜆2,𝜆3 are chosen at
random and pairwise non-collinear modulo r.

Now consider a term c x1
k1 ⋅ ⋅ ⋅ xn

kn of R. Its evaluation at (u𝜆i,1, . . . ,u𝜆i,n) is c ue, where
e=𝜆i,1 k1+ ⋅ ⋅ ⋅ +𝜆i,n kn modulo r. Meanwhile, its evaluation at (p1u𝜆i,1, . . . ,pn u𝜆i,n) is c̃ ue

with c̃=p1
k1 ⋅ ⋅ ⋅ pn

kn c. If there is no other term that evaluates to an expression of the form
c′ue at (u𝜆i,1,...,u𝜆i,n), then the same holds for the evaluation at (p1u𝜆i,1,...,pnu𝜆i,n). Conse-
quently, the unique representative q∈{0,...,Π−1} of the quotient c̃/c in ℤ/Πℤ coincides
with p1

k1 ⋅ ⋅ ⋅ pn
kn (the quotient is well defined with high probability). From this, we can

determine the exponents k1,...,kn by factoring q. As additional safeguards, we also check
that q⩽B, that all prime factors of q are in {p1, . . . , pn}, and that e=𝜆i,1 k1+ ⋅ ⋅ ⋅ +𝜆i,n kn
modulo r.

Conversely, assume that there are at least two terms of R that evaluate to an expression
of the form c′ue at (u𝜆i,1,...,u𝜆i,n). Let c and c̃ now be the coefficients of ue in R(u𝜆i,1,...,u𝜆i,n)
and R(p1u𝜆i,1,...,pnu𝜆i,n). Then the quotient c̃/c is essentially a random element in ℤ/Πℤ
(see the heuristic HC below for more details), so its unique representative in {0,...,Π−1}
is higher than B with probability 1− 𝜀/T. This allows our algorithm to detect that we
are dealing with colliding terms; for the O(T) quotients that we need to consider the
probability of failure becomes 1− (1−𝜀/T)O(T)=O(𝜀).
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Algorithm 2
Input: P,Q∈ℤ[x1, . . . ,xn] and a bound T⩾ tPQ
Output: the exponents of the product PQ, with high probability (Monte Carlo)
Assume: n⩾2 and t⩾6

1. For a fixed 𝜏>𝜏crit, let r≔⌊𝜏 t⌋, B≔pn
d, and Π⩾⌈BT/𝜀⌉ prime.

2. Let 𝜆1,𝜆2,𝜆3∈{0,...,r−1}n be random vectors that are pairwise non-collinear modulo r.

3. Compute the reductions P̄, Q̄∈(ℤ/Πℤ)[x1, . . . ,xn] of P,Q modulo Π.

4. Let v1, . . . ,vn be random invertible elements in ℤ/Πℤ.
Replace P̄≔ P̄(v1x1, . . . ,pn xn) and Q̄≔ Q̄(v1x1, . . . ,pn xn).
Compute P̃≔ P̄(p1x1, . . . ,pn xn) and Q̃≔ Q̄(p1x1, . . . ,pn xn) in (ℤ/Πℤ)[x1, . . . ,xn].

5. Compute the evaluations P̄i, Q̄i, P̃i, Q̃i of P̄, Q̄, P̃, Q̃ at (u𝜆i,1, . . . ,u𝜆i,n) for i=1,2,3.

6. Multiply R̄i≔ P̄i Q̄i and R̃i≔ P̃i Q̃i in ℤ[u]/(ur −1), for i=1,2,3.

7. Let Ω≔{(i, e)∈{1,2,3}×{1, . . . , r} : R̄i,e≠0} and E≔∅.
For all (i, e)∈Ω, compute the preimage qi,e∈{0, . . . ,Π−1} of R̃i,e/R̄i,e.
For all (i, e)∈Ω, try factoring qi,e=p1

k1 ⋅ ⋅ ⋅ pn
kn whenever qi,e⩽B.

8. While there exist (i, e)∈Ω with qi,e=p1
k1 ⋅ ⋅ ⋅ pn

kn, k1+ ⋅ ⋅ ⋅ +kn⩽d, and k ⋅ 𝜆i= e, do

a. Let c and c̃ be the coefficients of u𝜆i⋅k in R̄i and R̃i.

b. For i′∈{1,2, 3}, replace R̄i≔ R̄i − cu𝜆i′⋅k and R̃i≔ R̃i − c̃ u𝜆i′⋅k.

c. Also update qi′,e′≔ R̃i,e′/R̄i,e′ and its factorization if R̄i,e′≠0 for e′=𝜆i′ ⋅k.

d. Replace Ω≔Ω∖{(i′, 𝜆i′ ⋅k) : i′=1,2,3} and E≔E∪{k}.

9. Return E if Ω=∅ and “failed” otherwise.

Using the above technique, the three additional evaluations at (p1u𝜆i,1,...,pnu𝜆i,n)i=1,2,3,
allow us to determine which balls end up in a private box in our game of mystery
balls. Moreover, since we can determine the corresponding exponents, we can also find
where these balls landed for the two other throws. This allows us to play our game
modulo minor modifications. Besides maintaining the numbers below the boxes for the
first three throws, we also maintain the corresponding numbers for the evaluations at
(p1u𝜆i,1, . . . ,pn u𝜆i,n)i=1,2,3. For every round of the game, the same technique then allows
us to determine which balls have private boxes, and iterate.

In our probabilistic analysis, it is important that the quotients c̃/c are essentially
random elements in ℤ/Πℤ in case of collisions. This assumption might fail when the
coefficients of P and Q are special (e.g. either zero or one). Nevertheless, it becomes
plausible after a change of variables xi ↦ vi xi, i=1, . . . , n, where v1, . . . , vn are random
invertible elements in ℤ/Πℤ. Let us formulate this as our second heuristic:

HE. For random vectors 𝜆1, 𝜆2, 𝜆3 and after a random change of variables xi↦vi xi (i=
1,...,n), the quotients c̃/c as above are uniformly distributed over ℤ/Πℤ, and the
distributions for different quotients are independent.

Algorithm 2 summarizes our method, while incorporating the random change of vari-
ables.
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LEMMA 5. Given a number q∈{0, . . . ,Π−1} with distinct prime factors, it takes

O♭(n+ s logΠ)

bit operations to determine the existence of a prime factorization q=p1
k1 ⋅⋅⋅pn

kn with k1+⋅⋅⋅+kn⩽d,
and to compute it in case there is.

Proof. We first determine the indices k with kj≠0 using a divide and conquer technique.
At the top level, we start with the remainder g of the division of q by p1 ⋅ ⋅ ⋅ pn. We next
compute g1=gcd(g,p1 ⋅ ⋅ ⋅ p⌊n/2⌋) and g2=gcd(g,p⌊n/2⌋+1 ⋅ ⋅ ⋅ pn). If g1≠1, then we go on
with the computation of g1,1=gcd (g1, p1 ⋅ ⋅ ⋅ p⌊n/4⌋) and g1,2=gcd (g1, p⌊n/4⌋+1 ⋅ ⋅ ⋅ p⌊n/2⌋),
and similarly for g2. We repeat this dichotomic process until we have found all prime
factors of q. For each of the s prime factors pj of q, we next compute pj

kj=gcd�q,pj
d� and

kj=log pj
kj/log pj. The total running time of this algorithm is bounded by O(n log3 n+

s logΠlog logΠ)=O♭(n+ s logΠ). □

THEOREM 6. Assume the heuristics HE and HC. Let 𝜏 >𝜏crit with 𝜏 ⩽1, N =T2 |P| |Q|, and
Π≍pn

d T. Then Algorithm 2 is correct and runs in time

6𝜏MΠ′ (T)+O♭((sP+ sQ+ sR) logΠ+(tP+ tQ) logN+ tRn).

Proof. We have already explained why our algorithm returns the correct answer with
probability 1− O(𝜀). The complexity analysis for steps 5, 6 and 8b is similar as the one
for Algorithm 1. The running time for the other steps is as follows:

• The reductions of P and Q modulo Π can be computed in time O♭((tP+ tQ) logN),
in step 3.

• In step 4, we have to compute pi
e modulo Π for every power xi

e occurring in the
representation of P or Q. Using binary powering, such a power can be computed
in time O♭(log d logΠ)=O♭(logΠ). The total cost of this step is therefore bounded
by O♭((sP+ sQ) logΠ).

• In steps 7 and 8c, we have already shown that one factorization can be done in
time O♭(n+ s log Π). Altogether, the cost of these steps is therefore bounded by
O♭(tRn+ sR logΠ). □

5. VARIANTS AND FURTHER EXPERIMENTS

5.1. Supersparse polynomials
In section 4.2, we have described an efficient algorithm for the case when the total degree d
is small. This indeed holds for most practical applications, but it attractive to also study
the case when our polynomials are “truly sparse” with potentially large exponents. This
is already interesting for univariate polynomials, a case that we also did not consider
so far. Modulo the technique of Kronecker substitution [21, Section 7.1], it actually suf-
fices to consider the univariate case. For simplicity, let us restrict ourselves to this case.
When pn

d gets moderately large, it can also be interesting to consider the incremental
approach from [20] and [21, Section 7.3].
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One first observation in the univariate case is that we can no longer take the same
number of boxes r for our three throws. Next best is to take ri=2⌈𝜏 t/2⌉+ i boxes for our
i-th throw, where i=1, 2, 3. By construction this ensures that r1, r2, and r3 are pairwise
coprime. If the exponents of R are large, then it is also reasonable to assume that our
heuristic HE still holds.

For the efficient determination of the exponents, let Π⩾ d T/𝜀. As before, we may
take Π to be prime or a product of prime numbers that fit into machine words. Fol-
lowing Huang [26], we now evaluate both R̄= P̄ Q̄ and x R̄′ = x (P̄′ Q̄+ P̄ Q̄′) at u in
(ℤ/Πℤ)[u]/(uri −1) for i=1,2,3. Any term cxe of R̄ then gives rise to a term c̃ xe of x R̄′
with c̃=ec, so we can directly read off e from the quotient c̃/c. Modulo the above changes,
this allows us to proceed as in Algorithm 2. One may prove in a similar way as before
that the bit complexity of determining the exponents in this way is bounded by

9𝜏MΠ′ (T)+O♭((sP+ sQ+ sR) log tR+(tP+ tQ+ tR) log (ΠN)).

The computation of the coefficients can be done in time

3𝜏MN(tR)+O♭((sP+ sQ+ sR) log tR+(tP+ tQ+ tR) logN).

5.2. Other rings of coefficients
Rational coefficients. Using the combination of modular reduction and rational number
reconstruction [11, Chapter 5], the new algorithms generalize in a standard way to poly-
nomials with rational coefficients.

Complex numbers. Given a fixed working precision p, it is also possible to use coeffi-
cients inℂ, while using a fixed point number representation. Provided that all coefficients
have the same order of magnitude, the floating point case can be reduced to this case.
Indeed, the reductions modulo ur − 1 are remarkably stable from a numerical point of
view, and we may use FFT-multiplication in ℂ[u]/(ur − 1). Algorithm 2 can also be
adapted, provided that 2p≫⌈BT/𝜀⌉.

Finite fields. Our algorithms adapt in a straightforward way to coefficients in a finite
field of sufficiently large characteristic. If the characteristic is moderately large (e.g. of
the size of a machine word), then one may keep Π small in Algorithm 2 by using the
incremental technique from [20] and [21, Section 7.3]. Over finite fields 𝔽q of small char-
acteristic, one needs to use other techniques from [21].

Instead of taking our three additional evaluation points of the form (p1u𝜆i,1,...,pnu𝜆i,n),
we may for instance take them of the form �𝜔u𝜆i,1,𝜔d+1u𝜆i,2,...,𝜔(d+1)n−1

u𝜆i,n�, where𝜔 is a
primitive root of unity of large smooth order (this may force us to work over an extension
field; alternatively, one may use the aforementioned incremental technique and roots
𝜔 of lower orders). Thanks to the smoothness assumption, discrete logarithms of powers
of 𝜔 can be computed efficiently using Pohlig–Hellman's algorithm. This allows us to
recover exponents k1⩽d,...,kn⩽d from quotients of the form c̃/c=𝜔k1+k2(d+1)+⋅ ⋅ ⋅+kn(d+1)n−1.

General rings. Finally, it is possible to use coefficients in a general ring 𝔸, in which
case complexities are measured in terms of the number of operations in 𝔸. For rings of
sufficiently large characteristic, one may directly adapt the algorithms from section 4.
For rings of small characteristic, it is possible to generalize the techniques from the finite
field case.
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5.3. Other operations
The techniques from this paper can also be used for general purpose sparse interpola-
tion. In that case the polynomial R∈𝔸[x1, . . . ,xn] is given through an arbitrary blackbox
function that can be evaluated at points in 𝔸-algebras over some ring 𝔸. This problem
was studied in detail in [21]. In section 6, we investigated in particular how to replace
expensive evaluations in cyclic 𝔸-algebras of the form 𝔸[x]/(xr − 1) by cheaper eval-
uations at suitable r-th roots of unity in 𝔸 or a small extension of 𝔸. The main new
techniques from this paper were also anticipated in section 6.6.

The algorithms from this paper become competitive with the geometric sequence
approach if the blackbox function is particularly cheap to evaluate. Typically, the cost L
of one evaluation should be L=O((log tR)2) or L=O((log tR)3), depending on the specific
variant of the geometric sequence approach that we use.

Technically speaking, it is interesting to note that the problem from this paper actu-
ally does not fit into this framework. Indeed, if P and Q are sparse polynomial that are
represented in their standard expanded form, then the evaluation of R=PQ at a single
point requires L=O(sP+sQ+1) operations in 𝔸, and we typically have L=Θ� tR� �. This
is due to the fact that the standard blackbox model does not take into account possible
speed-ups if we evaluate our function at many points in geometric progression or at u in
a cyclic algebra 𝔸[u]/(ur −1).

Both in theory and for practical applications, it would be better to extend the blackbox
model by allowing for polynomials R of the form

R= f (x1, . . . ,xn,U1(x1, . . . ,xn), . . . ,Um(x1, . . . ,xn)),

where f ∈𝔸[x1, . . . , xn, y1, . . . , ym] is a blackbox function and U1, . . . ,Um∈𝔸[x1, . . . , xn]
are sparse polynomials in their usual expanded representation. Within this model, the
techniques from this paper should become efficient for many other useful operations on
sparse polynomials, such as the computation of gcds or determinants of matrices whose
entries are large sparse polynomials.

5.4. Special types of support
The heuristic HE plays an important role in our complexity analysis. It is an interesting
question whether it is satisfied for polynomials R whose support is highly regular and
not random at all. A particularly important case is when P,Q and R are dense polyno-
mials in n variables of total degrees dP, dQ and d= dR= dP+ dQ. Such polynomials are
often considered to be sparse, due to the fact that R contains about n! times less terms
than a fully dense polynomial of degree d in each variable.

If R is bivariate or trivariate and of very high degree, then it has been shown in [16]
that R can be computed in approximately the same time as the product of two dense
univariate polynomials which has the same number of terms as R. An algorithm for
arbitrary dimensions n has been presented in [23], whose cost is approximately 3−2/n
times larger than the cost of a univariate product of the same size. The problem has also
been studied in [18, 19] and it is often used as a benchmark [12, 32].

What about the techniques from this paper? We first note that the exponents of R are
known, so we can directly focus on the computation of the coefficients. In case that we
need to do several product computations for the same n and d, we can also spend some
time on computing a small 𝜏 and vectors 𝜆1, 𝜆2, 𝜆3∈ℤn for which we know beforehand
that we will win our game of mystery balls. For our simulations, we found it useful to
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chose each 𝜆i among a dozen random vectors in a way that minimizes the sum of the
squares of the number of balls in the boxes (this sum equals 22 for the first throw in
Figure 1).

For various n, d, and 𝜏, we played our game several times for different triples of
vectors (𝜆1, 𝜆2, 𝜆3). The critical value for 𝜏 for this specific type of support seems to be
close to 1.14. In Table 5 below, we report several cases for which we managed to win
for this value of 𝜏. This proves that optimal polynomial multiplication algorithms for
supports of this type are almost as efficient as dense univariate polynomial products of
the same size.

n 2 2 2 3 3 3 4 4 5 7 10
d 100 250 1000 25 50 100 20 40 20 15 10
t 5151 31626 501501 3276 23426 176853 10626 135751 53130 170544 184756
𝜏 1.14 1.14 1.14 1.14 1.14 1.14 1.11 1.14 1.14 1.17 1.20

Table 5. The particular case when our sparse polynomials P,Q,R are dense polynomials in n vari-
ables of given total degrees dP, dQ and d=dR=dP+dQ. The table shows values of 𝜏 for which it is
possible to win the game of mystery balls for suitable evaluation points (we do not claim these
values to be optimal).
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