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In this note, we present a variant of a probabilistic algorithm by Cuyt and Lee for the
sparse interpolation of multivariate rational functions. We also present an analogous
method for the computation of sparse gcds.

1. INTRODUCTION

Let f ∈𝕂(x1,...,xn) be a rational function over an effective field𝕂, presented as a blackbox
that can be evaluated at points in 𝕂n. The problem of sparse interpolation is to recover f
in its usual representation, as a quotient of the form

f = A
B , A= �

1⩽i⩽sA

ai𝒙𝜶i, B= �
1⩽i⩽sB

bi𝒙𝜷i,

where ai∈𝕂∖{0} and 𝜶i∈ℕn for i=1,...,sA, where bi∈𝕂∖{0} and 𝜷i∈ℕn for i=1,...,sB,
where gcd(A,B)=1, and where 𝒙 𝜸=x1

𝛾1 ⋅ ⋅ ⋅ xn
𝛾n for any 𝜸=(𝛾1, . . . ,𝛾n)∈ℕn.

Here, “sparse” means that we use a sparse representation for multivariate polyno-
mials: only the set of the non-zero terms is stored and each term is represented by a
pair made of a coefficient and an exponent vector. When using a sparse representation,
the natural complexity measures are the number of non-zero terms and the maximum
bit size of the exponents. On the contrary, a dense representation of a polynomial A∈
𝕂[x1, . . . ,xn], say of total degree d, is the vector of all its coefficients up to degree d for a
prescribed monomial ordering.

The sparse interpolation of a blackbox polynomial f has been widely studied in com-
puter algebra, and very efficient algorithms are known. In this paper, we will use this
polynomial case as a basic building block, with an abstract specification. We refer to [1, 4,
8, 9, 13, 17] for state of the art algorithms for polynomial sparse interpolation and further
historical references.

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [8].
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Our main problem here is to find an efficient reduction of the general sparse inter-
polation problem for rational functions to the special case of polynomials. We focus on
the case when the total degrees dA and dB are “modest” with respect to the total number
of terms sA+ sB. This is typically the case for applications in computer algebra. We also
recall that algorithms in this area are usually probabilistic, of Monte Carlo type; our new
algorithms are no exception. In a similar vein, we assume that the cardinality of 𝕂 is
“sufficiently large”, so that random points in 𝕂 are “generic” with high probability.

One efficient reduction from sparse rational function interpolation to sparse polyno-
mial interpolation was proposed by Cuyt and Lee [2]. Our new method is a variant of
their algorithm; through the use of projective coordinates, we are able to prove a better
complexity bound: see section 3.

Computations with rational functions are intimately related to gcd computations. In
section 4, we show that our approach also applies to gcd computations: given a blackbox
function for the computation of two sparse polynomials P and Q, we present a new com-
plexity bound for the sparse interpolation of gcd(P,Q). We also present an alternative
heuristic algorithm for the case when P and Q are given explicitly, in sparse representa-
tion.

2. PRELIMINARIES

For simplicity, all time complexities are measured in terms of the required number of
operations in 𝕂. Since our algorithms are probabilistic, we assume that a random ele-
ment in 𝕂 can be produced in unit time. Our complexity bounds are valid in several
complexity models. For definiteness, one may assume a probabilistic RAM model that
supports operations in 𝕂.

2.1. On the complexity of sparse polynomial interpolation
The algorithms in this paper all rely on a given base algorithm for the interpolation of
sparse polynomials. For a polynomial in ⩽n variables of total degree ⩽d with ⩽s terms,
given by a blackbox function f , we assume that this algorithm requiresE𝕂(n,d,s) evalua-
tions of f , as well as S𝕂(n,d,s) additional operations for the actual interpolation from the
latter values of f . We recall that this algorithm is allowed to be probabilistic, of Monte
Carlo type.

As a particular example of interest, consider the case when 𝕂=𝔽q, and let M𝕂(s)
be the cost to multiply two polynomials of degree ⩽s in 𝕂[s]. In a suitable asymptotic
region where d and n do not grow too fast, Prony's traditional probabilistic geometric
progression technique yields

E𝔽q(n,d, s) = 2 s
S𝔽q(n,d, s) = O(M𝔽q(s) log s log q).

For FFT-primes q, one may also apply the tangent Graeffe method, which yields

S𝔽q(n,d, s) = O(M𝔽q(s) log s).

We refer to [9] for a survey of recent complexity bounds for sparse polynomial interpo-
lation. In what follows, we always assume that E𝕂(n, d, s)/s and S𝕂(n, d, s)/s are non-
decreasing in s.

2 ON SPARSE INTERPOLATION OF RATIONAL FUNCTIONS AND GCDS



2.2. Genericity and random dilatations
Consider a polynomial or rational blackbox function f . We assume that a blackbox func-
tion over 𝕂 only involves field operations in 𝕂 (which includes equality testing and
branching, if needed), and that the number of these operations is uniformly bounded.

Efficient algorithms for the sparse interpolation of f typically evaluate f at a specific
sequence of points, such as a geometric progression. For the algorithms in this paper, it
is convenient to systematically make the assumption that we only evaluate f at points
(a1, . . . ,an)∈𝕂n with ak≠0 for k=1, . . . ,n. This assumption holds in particular for points
in geometric progressions.

One problem with the evaluation of a blackbox function that involves divisions is
that the evaluation may fail whenever a division by zero occurs. An evaluation point for
which this happens is colloquially called a bad point. Such bad points must be discarded
and the same holds for sequences of evaluation points that contain at least one bad point.
Of course, it would in principle suffice to choose another sequence of evaluation points.
However, in general, sufficiently generic sequences are not readily at our disposal with
high probability. This problem may be overcome using randomization, as follows.

Since our blackbox function f only involves a bounded number of field operations
in 𝕂, the set of bad evaluation points is a constructible subset of 𝕂n. We assume that this
subset is not Zariski dense. Consequently, there exists a polynomial Z∈𝕂[x1,...,xn] such
that Z(a1, . . . , an)=0 whenever (a1, . . . ,an) is a bad point. Given (a1, . . . , an)∈(𝕂∖{0})n,
the probability that a point (𝜆1, . . . , 𝜆n)∈(𝕂∖{0})n satisfies

Z(a1𝜆1, . . . ,an𝜆n)≠0
is at least

1− deg Z
|𝕂|−1,

by the Schwartz–Zippel lemma [5, Lemma 6.44], where |𝕂| denotes the cardinality of 𝕂.
Now assume that we are given a method for the sparse interpolation of any blackbox

function with the same support as f . The evaluation points for such a method form
a fixed finite subset E of (𝕂∖{0})n. If |𝕂| is sufficiently large, then it follows with high
probability that Z(a1𝜆1, . . . , an𝜆n)≠ 0 for all (a1, . . . , an)∈E, when taking (𝜆1, . . . , 𝜆n)∈
(𝕂∖{0})n at random. We may thus interpolate

f̃ (x1, . . . ,xn)≔ f (𝜆1x1, . . . ,𝜆nxn)

instead of f , with high probability. Since 𝜆1, . . . , 𝜆n are non-zero, we may next recover
the sparse interpolation of f (x1, . . . ,xn)= f̃ (𝜆1

−1x1, . . . ,𝜆n
−1xn) itself.

3. RATIONAL FUNCTIONS

This section concerns the sparse interpolation of a rational function f ∈𝕂(x1,...,xn) given
as a blackbox.

3.1. Related work
The natural idea to interpolate a univariate rational function f ∈𝕂(x) given as a blackbox
is to evaluate it at many points and then use Cauchy interpolation [5, Corollary 5.18]
in combination with the fast Euclidean algorithm [5, chapter 11]; this idea appears in
early works on the topic [14]. If the numerator and denominator of f have respective
degrees dA and dB, then the total cost decomposes into dA+dB+2 evaluations of f and

O(M𝕂(dA+dB) log(dA+dB))= Õ(dA+dB)
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operations in 𝕂 for the Cauchy interpolation. Here Õ(𝜑(n)) is the usual shorthand for
O(𝜑(n) logO(1)(𝜑(n))), as in [5].

Interpolating rational functions seems more difficult than polynomials. In high degree,
it is still a challenging problem to design efficient algorithms in terms of the sparse size
sA+sB of the function. An algorithm with exponential time complexity is known from [6].

In the multivariate case, the interpolation problem can be handled as a dense one
with respect to one of the variables and as a sparse one with respect to the other variables.
Although no general polynomial complexity bound is known in terms of the sparse size,
this approach is extremely useful in practice, as soon as one of the variables has small
degree. Roughly speaking, one proceeds as follows: for a fixed point (a1,...,an−1)we recon-
struct the univariate function f (a1, . . . ,an−1,xn) with the dense representation in xn. Then
we regard the numerator A and the denominator B as polynomials in 𝕂[x1, . . . ,xn−1][xn],
and it remains to interpolate their sparse coefficients using sufficiently many evalua-
tion points (a1, . . . ,an−1).

The difficulty with the latter interpolation is that the values of A(a1, . . . ,an−1,xn) and
B(a1, . . . , an−1, xn) are only determined up to a scalar in 𝕂. In order to compute this
scalar, a normalization assumption is necessary. For instance we may require A to be
monic in xn, which can be achieved through a random linear change of coordinates [14].
Another kind of normalization has been proposed by Cuyt and Lee [2]: they introduce
a new auxiliary variable to decompose A and B into their homogeneous components.
Their approach is sketched below. Let us finally mention [12], which addresses the spe-
cial case 𝕂=ℚ using a specific strategy.

3.2. The algorithm by Cuyt and Lee

An efficient reduction of sparse interpolation from rational functions to polynomials was
proposed by Cuyt and Lee in [2]. Their approach starts by introducing a homogenizing
variable u and

f (x1u, . . . ,xnu)= A0+A1(x1, . . . ,xn)u+ ⋅ ⋅ ⋅ +AdA(x1, . . . ,xn)udA

B0+B1(x1, . . . ,xn)u+ ⋅ ⋅ ⋅ +BdB(x1, . . . ,xn)udB
.

With high probability, they next reduce to the case when B0 is non-zero, by choosing
a random point (𝜎1, . . . ,𝜎n)∈𝕂n and performing a shift:

f̃ (x1, . . . ,xn,u) ≔ f (x1u+𝜎1, . . . ,xn u+𝜎n)

= Ã0+ Ã1(x1, . . . ,xn)u+ ⋅ ⋅ ⋅ + ÃdA(x1, . . . ,xn)udA

B̃0+ B̃1(x1, . . . ,xn)u+ ⋅ ⋅ ⋅ + B̃dB(x1, . . . ,xn)udB
.

For a fixed point (a1, . . . ,an)∈𝕂n, we may consider f̃ (a1, . . . ,an,u) as a univariate rational
function in u, which can generically be interpolated from dA+dB+2 evaluations for dif-
ferent values of u.

The first main idea from [2] is to normalize the resulting rational function in such a
way that the constant coefficient of the denominator is equal to one:

f̃ (x1, . . . ,xn,u)=
Ã0

B̃0
+ Ã1(x1, . . . ,xn)

B̃0
u+ ⋅ ⋅ ⋅ + ÃdA(x1, . . . ,xn)

B̃0
udA

1+ B̃1(x1, . . . ,xn)
B̃0

u+ ⋅ ⋅ ⋅ + B̃dB(x1, . . . ,xn)
B̃0

udB

.
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This yields blackbox functions that take a1, . . . ,an as input and produce

Ã0

B̃0
, Ã1(a1, . . . ,an)

B̃0
, . . . , ÃdA(a1, . . . ,an)

B̃0
, B̃1(a1, . . . ,an)

B̃0
, . . . , B̃dB(a1, . . . ,an)

B̃0

as output. We may now use sparse polynomial interpolation for each of these blackbox
functions and determine the sparse expressions for the above polynomials. We finally
obtain f (x1, . . . ,xn)= f̃ (x1−𝜎1, . . . ,xn−𝜎n, 1) using a simple shift.

One complication here is that shifts

(x1, . . . ,xn)↦(x1, . . . ,xn)+(𝜎1, . . . ,𝜎n)

destroy the sparsity. The second main observation by Cuyt and Lee is that this drawback
only occurs for the non-leading terms: the coefficient ÃdA (resp. B̃dB) coincides with AdA

(resp. BdB). Using this observation recursively in a clever way, it is possible to obtain the
non-leading coefficients as well, using at most

(dA+dB+2)max(E𝕂(n,dA, sA),E𝕂(n,dB, sB))

blackbox evaluations [2, section 2.2]. However, even though sparse interpolations
of shifted polynomials can be avoided, the resulting algorithm still requires evalu-
ations of shifted polynomials in their interpolated form: see the remarks at the end
of [2, section 2.2]. In fact, the focus of [2] is on minimizing the number of blackbox eval-
uations; the overall complexity of the algorithm is not analyzed in detail.

3.3. A variant based on projective coordinates
Instead of using the recursive method from [2, section 2.2] for determining the non-
leading coefficients, we propose to avoid the mere existence of such terms altogether. At
the start of our algorithm, we assume that the total degrees dA and dB of the numerator A
and the denominator B of f are known. If we are only given a rough upper bound D
on these degrees, then we may reduce to this case as follows: take a point (a1, . . . ,an)∈𝕂n

at random, and interpolate f̃ (a1, . . . , an, u) as a univariate rational function in u, from
2 (D+1) evaluations at different values of u. With high probability, dA and dB coincide
with the degrees of the numerator and denominator of f̃ (a1, . . . ,an,u).

Our key observation is the following: if A and B are homogeneous polynomials then
ÃdA=A and B̃dB=B, so Cuyt and Lee's method mostly reduces to two sparse polynomial
interpolations. Our method is therefore to force the polynomials A and B to become
homogeneous by introducing a new projective coordinate x0.

More precisely, we introduce the rational function

f̂ (x0, . . . ,xn)≔x0
dA−dB f (x1/x0, . . . ,xn/x0),

and we write

f̂ (x0, . . . ,xn)=
Â(x0, . . . ,xn)
B̂(x0, . . . ,xn)

,
where

Â(x0, . . . ,xn)≔x0
dA A(x1/x0, . . . ,xn/x0) and B̂(x0, . . . ,xn)≔x0

dB B(x1/x0, . . . ,xn/x0).

The numerator Â(x0, . . . , xn) and denominator B̂(x0, . . . , xn) of f̂ (x0, . . . , xn) are both
homogeneous and coprime. One evaluation of f̂ requires one evaluation of f plus
n+O(log |dA −dB|) operations in 𝕂.
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For some random shift (𝜎0, . . . , 𝜎n)∈𝕂n+1, we next consider

Ã(x0, . . . ,xn,u) ≔ Â(x0u+𝜎0, . . . ,xnu+𝜎n)
= Ã0+ Ã1(x0, . . . ,xn)u+ ⋅ ⋅ ⋅ + ÃdA(x0, . . . ,xn)udA,

B̃(x0, . . . ,xn,u) ≔ B̂(x0u+𝜎0, . . . ,xnu+𝜎n)
= B̃0+ B̃1(x0, . . . ,xn)u+ ⋅ ⋅ ⋅ + B̃dB(x0, . . . ,xn)udB,

f̃ (x0, . . . ,xn,u) ≔ f̂ (x0u+𝜎0, . . . ,xnu+𝜎n).

One evaluation of f̃ requires one evaluation of f̂ plus 2 (n+1) operations in 𝕂. Before
addressing the interpolation algorithm for f , let us show that Ã/B̃ is the canonical rep-
resentative of f̃ .

LEMMA 1. If B̃0≠0, then Ã and B̃ are coprime.

Proof. We consider the following weighted degree:

wdeg(x0
𝛼0 ⋅ ⋅ ⋅ xn

𝛼n ue)=𝛼0+ ⋅ ⋅ ⋅ +𝛼n− e.

For this weight, Ã and B̃ are quasi-homogeneous, whence so are their respective irre-
ducible factors and therefore their gcd, written H̃. Consequently, there exists a non-
negative integer e such that

H̃(x0, . . . ,xn,u)=ue H̃(x0u, . . . ,xn u, 1).

By construction, Ã(x0, . . . ,xn,1) and B̃(x0, . . . ,xn, 1) are coprime, whence c≔ H̃(x0, . . . ,xn, 1)
is a non-zero constant and H̃(x0, . . . ,xn,u)= cue. Since B̃0≠0, we conclude that e=0. □

THEOREM 2. Let f =A/B∈𝕂(x1, . . . , xn) be a rational blackbox function whose evaluation
requires L operations in 𝕂. Let s= sA+ sB, where sA and sB are bounds for the number of terms
of A and B. Let d=dA+dB, where dA and dB are the total degrees of A and B. Using a probabilistic
algorithm of Monte Carlo type, the sparse interpolation of f takes at most

(L+4n+ Õ(log2 d))(d+2)E𝕂(n+1,d, s)+S𝕂(n+1,d, s)+O(ns log d)

operations in 𝕂, provided that the cardinality of 𝕂 is sufficiently large.

Proof. First of all, a point (𝜎0, . . . , 𝜎n) is taken at random, so B̃0= B̂(𝜎0, . . . , 𝜎n)≠0 holds
with high probability. Let us describe a blackbox for evaluating ÃdA/B̃0 and B̃dB/ B̃0 at
a point (a0, . . . ,an):
• We perform dA+dB+2 evaluations of f̃ (a0, . . . ,an,u) for different values of u, which

give rise to at most
(L+3n+2+O(log |dA−dB|)) (dA+dB+2)=(L+3n+O(log d))(d+2)

operations in 𝕂.
• If the latter evaluations do not fail, then we perform the univariate Cauchy interpo-

lation of f̃ (a0, . . . ,an,u), which takes O(M𝕂(d) log d)=dÕ(log2 d) operations in 𝕂. If
this Cauchy interpolation fails, then the evaluation of ÃdA/B̃0 and B̃dB/B̃0 aborts.

The failure of the Cauchy interpolation of f̃ (a0, . . . , an,u) depends on the actual proce-
dure being used, but we may design it to succeed on a Zariski dense subset of points
(a0, . . . ,an) in 𝕂n+1. For instance, with the aforementioned method of [5, Corollary 5.18],
the reconstruction succeeds whenever the degrees of the reconstructed numerator and
denominator are dA and dB, respectively. This holds when R(a0, . . . ,an)≠0, where

R(x0, . . . ,xn)≔Resu(Ã(x0, . . . ,xn,u), B̃(x0, . . . ,xn,u)).
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Since B̃ is primitive as an element of 𝕂[x0, . . . ,xn][u], the gcd of Ã and B̃ in 𝕂[x0, . . . ,xn,u]
can be obtained as the primitive representative in 𝕂[x0, . . . ,xn][u] of the gcd of Ã and B̃
in 𝕂(x0, . . . ,xn)[u]; see [15, chapter IV, Theorem 2.3], for instance. Using Lemma 1, we
deduce that R is not identically zero. Consequently, the evaluation of ÃdA/B̃0 and B̃dB/B̃0
at a point (a0, . . . ,an) does not fail on a Zariski dense subset of 𝕂n+1.

In order to ensure the sparse polynomial interpolation to succeed with high prob-
ability, we appeal to the discussion from section 2.2 for the evaluations of ÃdA/B̃0 and
B̃dB/B̃0. More precisely, by taking (𝜆0,...,𝜆n)∈(𝕂∖{0})n+1 at random, we can interpolate
ÃdA(𝜆0x0, . . . , 𝜆n xn)/B̃0 and B̃dB(𝜆0x0, . . . , 𝜆n xn)/B̃0 with high probability. This random
dilatation further increases the cost of each blackbox evaluation by n+1 operations in 𝕂.

The required number of evaluation points (a0, . . . ,an) is

max(E𝕂(n+1,dA, sA),E𝕂(n+1,dB, sB))⩽E𝕂(n+1,d, s).

Once all evaluations are done, we need

S𝕂(n+1,dA, sA)+S𝕂(n+1,dB, sB)⩽S𝕂(n+1,d, s)

further operations to reconstruct the sparse representations of ÃdA(𝜆0 x0, . . . , 𝜆n xn)/ B̃0
and B̃dB(𝜆0x0, . . . , 𝜆n xn)/ B̃0. The backward dilatation to recover ÃdA(x0, . . . , xn)/B̃0 and
B̃dB(x0, . . . ,xn)/B̃0 takes

O(n(sA log dA+ sB log dB))=O(ns log d)

further operations in 𝕂.
To conclude the proof, we observe that ÃdA and B̃dB coincide with ÂdA and B̂dB. But

since Â are B̂ are homogeneous, this means that Â/B̃0 and B̂/B̃0 actually coincide with
ÃdA/B̃0 and B̃dB/B̃0. □

Remark 3. One nice aspect of Cuyt and Lee's algorithm is that the number of blackbox
evaluations can be of the order of

(O(L)+ Õ(d))E𝕂(n+1,d, s)

if the terms of A and B are more or less equally distributed over their homogeneous
components. With our method, we always pay the maximal possible overhead Θ(d)
with respect to sparse interpolation of polynomials.

4. SPARSE GCDS

Let P,Q∈𝕂[x1, . . . , xn] be polynomials that are given through a common blackbox. In
this section we show how to adapt the technique from the previous section to the com-
putation of G≔gcd(P,Q).

4.1. Related work
A classical approach for multivariate gcds relies on evaluation/interpolation for all but
one of the variables, say xn, and thus on the computation of many univariate gcds; see
for instance [5, chapter 6]. This turns out to be similar to rational function interpolation:
the univariate case is handled using dense representations and a suitable normalization
is necessary to recombine the specialized gcds.
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In general and without generic coordinates, the gcd G does not admit a natural nor-
malization. This issue has been studied in [3]. Basically one piece of their solution is to
consider P and Q as polynomials in 𝕂(x1, . . . ,xn−1)[xn] and to force G to be monic in xn.
This leads to interpolate rational functions instead of polynomials, and the technique of
the previous section may be used. But it is even more efficient to adapt our main idea for
rational functions to gcds.

The sparse gcd problem was first investigated by Zippel, who proposed a variable by
variable approach [18]. Then, subresultant polynomials turned out to be useful to avoid
rational function interpolations. For historical references we refer the reader to [3, 14].
Software implementations and a recent state of the art can be found in [11].

Let us mention that probabilistic sparse gcd algorithms may be turned into Las Vegas
type algorithms by interpolating the full Bézout relation, at the price of an increased
computational cost; see for instance [5, chapter 6]. In this paper we content ourselves
with Monte Carlo algorithms and we focus on gcd computations only.

4.2. A variant based on projective coordinates
Let P,Q∈𝕂[x1, . . . ,xn] be polynomials that are given through a common blackbox, and
assume that G≔gcd(P,Q) contains s terms. We let dP≔deg P, dQ≔deg Q, d≔deg G.
Using the technique from the previous section we first reduce to the case when P and Q
are homogeneous (without increasing their total degrees), so we let:

P̂(x0, . . . ,xn) ≔ x0
dP P(x1/x0, . . . ,xn/x0)

Q̂(x0, . . . ,xn) ≔ x0
dQ Q(x1/x0, . . . ,xn/x0)

Ĝ(x0, . . . ,xn) ≔ x0
d G(x1/x0, . . . ,xn/x0).

For (𝜎0, . . . ,𝜎n)∈𝕂n+1, we let

P̃(x0, . . . ,xn,u) ≔ P̂(x0u+𝜎0, . . . ,xnu+𝜎n)
Q̃(x0, . . . ,xn,u) ≔ Q̂(x0u+𝜎0, . . . ,xnu+𝜎n)
G̃(x0, . . . ,xn,u) ≔ Ĝ(x0u+𝜎0, . . . ,xnu+𝜎n)

= G̃0+ G̃1(x0, . . . ,xn)u+ ⋅ ⋅ ⋅ + G̃d(x0, . . . ,xn)ud.

Example 4. With n=2, P=x12, Q=x1x22, 𝜎0=⋅⋅⋅=𝜎n=0, we have P̃=x1
2u2 and Q̃=x1x22u3.

We note that G=x1, and then that G̃(x0,x1,x2,u)=x1u. However gcd(P̃, Q̃)=x1u2.

The latter example shows that we need to take care of the relationship between G̃ and
gcd(P̃, Q̃). This is the purpose of the following lemma, which extends Lemma 1.

LEMMA 5. If P̂(𝜎0, . . . , 𝜎n)≠0 or Q̂(𝜎0, . . . ,𝜎n)≠0, then G̃=gcd(P̃, Q̃).

Proof. Let H̃≔gcd(P̃, Q̃). In the proof of Lemma 1 we have shown that

H̃(x0, . . . ,xn,u)=ue H̃(x0u, . . . ,xn u, 1),

for some e∈ℕ. By construction, we have Ĝ=gcd (P̂, Q̂), so G̃ divides H̃. Conversely,
H̃(x0, . . . ,xn, 1) divides G̃(x0, . . . ,xn, 1), so there exists a non-zero constant c∈𝕂 with

G̃(x0, . . . ,xn, 1)= c H̃(x0, . . . ,xn, 1).
It follows that

G̃(x0, . . . ,xn,u)= G̃(x0u, . . . ,xnu, 1)= cH̃(x0u, . . . ,xnu, 1)= cu−e H̃(x0, . . . ,xn,u).
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Since P̂(𝜎0,...,𝜎n)≠0 or Q̂(𝜎0,...,𝜎n)≠0, we finally have G̃0=G(𝜎0,...,𝜎n)≠0, so that e=0. □

From now on we assume that P̂(𝜎0,...,𝜎n)≠0 or Q̂(𝜎0,...,𝜎n)≠0, so that P̃ or Q̃ is primi-
tive as an element in 𝕂[x0,...,xn][u]. By Lemma 5 and [15, chapter IV, Theorem 2.3], their
gcd G̃ in𝕂[x0,...,xn,u] can be obtained as the primitive representative Ẽ in𝕂[x0,...,xn][u]
of the gcd of P̃ and Q̃ in 𝕂(x0, . . . ,xn)[u]. We further observe that Ẽ(x0, . . . ,xn,0)∈𝕂∖{0},
whence

G̃(x0, . . . ,xn,u)
G̃0

= Ẽ(x0, . . . ,xn,u)
Ẽ(x0, . . . ,xn, 0)

. (1)
This allows us to obtain

G̃(x0, . . . ,xn,u)
G̃0

=1+ G̃1(x0, . . . ,xn)
G̃0

u+ ⋅ ⋅ ⋅ + G̃d(x0, . . . ,xn)
G̃0

ud

as the gcd of P̃ and Q̃ in 𝕂(x0, . . . ,xn)[u], and to recover Ĝ via

Ĝ(x0, . . . ,xn)
G̃0

= G̃d(x0, . . . ,xn)
G̃0

.

This approach yields the following complexity bound for the sparse interpolation
of Ĝ(x0, . . . ,xn)/G̃0.

THEOREM 6. Consider a blackbox function that computes the two polynomials P and Q in
𝕂[x1, . . . ,xn] using L operations in 𝕂. Let dP, dQ, and d⩽min(dP,dQ) be the respective total
degrees of P, Q, and G≔gcd (P,Q). Let D≔max (dP, dQ). Using a probabilistic algorithm
of Monte Carlo type, we may interpolate G using

(L+4n+ Õ(log2 D))(D+1)E𝕂(n+1,d, s)+S𝕂(n+1,d, s)+O(ns log d)

operations in 𝕂, provided that the cardinality of 𝕂 is sufficiently large.

Proof. We first take (𝜎0, . . . , 𝜎n) at random, so P̂(𝜎0, . . . , 𝜎n)≠0 or Q̂(𝜎0, . . . , 𝜎n)≠0 with
high probability. In order to evaluate G̃d(x0, . . . ,xn)/G̃0 at a point (a0, . . . ,an) we proceed
as follows:
• We evaluate P̃(a0, . . . , an,u) and Q̃(a0, . . . , an,u) for D+1 different values of u. The

evaluation of x0
dP, x0

dQ, x1/x0, . . . ,xn/x0 takes

n+O(log dP+log dQ)

operations in 𝕂. The evaluation of x0u+𝜎0, . . . ,xnu+𝜎n involves 2(n+1) more oper-
ations. Therefore, one evaluation of P̃ and Q̃ amounts to

L+3n+2+O(log dP+log dQ)=L+3n+O(log D)
operations in 𝕂.

• We interpolate P̃(a0, . . . ,an,u) and Q̃(a0, . . . ,an,u), and then compute

g(u)≔gcd(P̃(a0, . . . ,an,u), Q̃(a0, . . . ,an,u)).

This requires O(M𝕂(D) log D)=DÕ(log2 D) operations in 𝕂. By (1), the normaliza-
tion g(u)/g(0) coincides with G̃(a0, . . . ,an,u)/G̃0 whenever deg(P̃(a0, . . . ,an,u))=dP,
deg(Q̃(a0, . . . ,an,u))=dQ, and the subresultant coefficient of degree d of P̃(a0, . . . ,an,u)
and Q̃(a0, . . . ,an,u) is non-zero: see [5, chapter 6] or [16], for instance.
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In this way, we have built a blackbox that evaluates G̃d/G̃0 on a Zariski dense subset
of 𝕂n+1. In order to ensure that the sparse interpolation of G̃d/G̃0 succeeds with high
probability, we appeal to the discussion from section 2.2. Precisely, we take (𝜆0, . . .,𝜆n)∈
(𝕂∖{0})n+1 at random and we interpolate G̃d(𝜆0x0,...,𝜆nxn)/G̃0. This random dilatation
further increases the cost of each blackbox evaluation by n+1 operations in 𝕂.

We need E𝕂(n+1,d, s) evaluation points, together with S𝕂(n+1,d, s) further opera-
tions in 𝕂, for the sparse interpolation of G̃d/G̃0. Finally, we recover the requested gcd
of P and Q from Ĝ(x0, . . . , xn)/G̃0= G̃d(𝜆0

−1 x0, . . . , 𝜆n
−1 xn, 1)/G̃0, using O(n s log d) extra

operations in 𝕂. □

4.3. Another heuristic approach
Let us now focus on the case when P and Q are presented as sparse polynomials instead
of blackbox functions (more generally, one may consider the model from [7, section 5.3]).
The number of terms of P (resp. of Q) is written sP (resp. sQ). The above method has the
disadvantage that we need to evaluate P and Q at many shifted points that are generally
not (e.g.) in a geometric progression. Such evaluations are typically more expensive,
when using a general algorithm for multi-point evaluation, so it is better to avoid shifting
altogether in this case.

Now consider the particular case when

G(x1u, . . . ,xnu)=Gv(x1, . . . ,xn)uv+ ⋅ ⋅ ⋅ +Gd(x1, . . . ,xn)ud

and Gv contains a single term c𝒙𝜶. Then we may use an alternative normalization where
we divide by c 𝒙𝜶 instead of G0, and multiply by (x1 ⋅ ⋅ ⋅ xn)d to keep things polynomial.
For a random point (a1, . . . , an)∈(𝕂∖{0})n, we may check whether we are in this case
(with high probability) by testing whether

Gv(a1, . . . ,an)Gv(a13, . . . ,an
3)=Gv(a12, . . . ,an

2)2.

Once H≔(x1 ⋅ ⋅ ⋅ xn)d G(x1u, . . . ,xnu)/(c𝒙 𝜶) has been interpolated, we recover G as

G=𝒙 inf(𝝂P,𝝂Q)−𝝂H H,

where 𝒙 𝝂P stands for the gcd of all monomials occurring in P and similarly for 𝝂Q and 𝝂H.
With these modifications, the complexity bound of Theorem 6 becomes

(L+2n+ Õ(log2 D)) (D+1)E𝕂(n+1,d, s)+S𝕂(n+1,d, s)+O(ns log d).

The same approach can be used if Gd contains a single term c𝒙𝜶.
In the case when Gv contains several terms, we consider

G̃(x1, . . . ,xn)≔G(x1
w1u, . . . ,xn

wn u)= G̃ṽ(x1, . . . ,xn)u ṽ+ ⋅ ⋅ ⋅ + G̃d̃(x1, . . . ,xn)ud̃

for a suitable vector 𝒘=(w1, . . . ,wn)∈ℕ>0
n of weights. Whenever G̃v(x1, . . . ,xn) contains

a single term, we may use the above method to compute G̃ and then G. However, the
degree d̃ of G̃ is potentially |𝒘| times larger than the degree d of G, where |𝒘|=max(w1,...,
wn). This leads to the question how small we can take |𝒘|while ensuring that G̃w̃ contains
a single term with probability at least /1 2. We conjecture that this is the case when taking
𝒘 at random with |𝒘|⩾2d. In practice, the idea is to try a sequence of random weights
𝒘 for which |𝒘| follows a slow geometric progression.
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Let us provide some partial evidence for our conjecture. In dimension n=2, consider
the Newton polygon at (0, 0) of a polynomial of degree d made of the maximal number
of slopes p/q with p,q⩽k. For each integer k>0, let Nk be the number of slopes p/q with
p,q∈{1, . . . ,k}, gcd(p,q)=1, and max(p,q)=k. We have

N1+2N2+ ⋅ ⋅ ⋅ +dNd⩽2d.

Under this constraint, the sum N1+ ⋅ ⋅ ⋅ +Nd is maximized by considering Newton poly-
gons that first exhaust all slopes p/q for which gcd(p,q) is minimal. Now Nk⩽2k−1 for
all k. Taking m minimal with 1+2⋅3+ ⋅ ⋅ ⋅ +m (2m−1)⩾2d, it follows that

N1+ ⋅ ⋅ ⋅ +Nd⩽1+3+ ⋅ ⋅ ⋅ +(2m−1)=m2.

Now 1+2 ⋅3+ ⋅ ⋅ ⋅ +m(2m−1)⩾ /2 3m3, so m⩽(3d)1/3 and

N1+ ⋅ ⋅ ⋅ +Nd⩽(3d)2/3.

On the other hand, for any k>0, the number of rational numbers p/q∈ℚwith p,q∈{1,...,k}
is at least

k2−⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ k
2⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋

2
−⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ k

3⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋
2
− ⋅ ⋅ ⋅−⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊k

k⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋
2
⩾ ((((((((((((2− π2

6 ))))))))))))k2 ⩾ k2
3 .

Now let k=� 6� (3d)1/3+1� be the smallest integer with k2/3>2(3d)2/3. For a random
weight (w1,w2)∈{1, . . . ,k}2 with gcd(w1,w2)=1, we then conclude that G̃ṽ has a unique
term with probability at least /1 2.

As a second piece of evidence, let us show that there always exists a weight vector
𝒘∈{0, . . . ,d}n for which G̃d̃ contains a unique term. Let 𝜿 be an element of the support
supp G≔{𝝈 ∈ℕn :G𝝈≠0} of G for which r≔ 𝜅12+ ⋅ ⋅ ⋅ +𝜅n

2� is maximal. Then supp G
is included in the ball with center 𝟎 and radius r, so the tangent space to this ball at 𝜿
intersects supp G only at 𝜿. Taking 𝒘≔𝜿 to be the normal vector to this tangent space,
it follows that G̃d̃= cx1

𝜅12 ⋅ ⋅ ⋅ xn
𝜅n
2
for some c∈𝕂∖{0}.
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