
Making fast multiplication of polynomials

numerically stable
∗

Joris van der Hoeven

CNRS, Dépt. de Mathématiques (Bât. 425)
Université Paris-Sud
91405 Orsay Cedex

France
Email: joris@texmacs.org

December 9, 2008

Consider two polynomials P and Q with multiple precision floating point coeffi-
cients. Although the product P Q can in principle be computed efficiently using
FFT multiplication, this algorithm is numerically stable only if the coefficients of P

are of the same order of magnitude and similarly for Q. In this paper, we present
a new asymptotically fast multiplication algorithm which has a “better” numerically
stability. We also provide some theoretical support for what we feel to be “better”,
by introducing the concept of “relative Newton error”.

Keywords: polynomial, floating point number, multiplication, algorithm, FFT

A.M.S. subject classification: 65T50, 42-04, 68W30

1. Introduction

Let Fn,s be the set of floating point numbers with an (n − 1)-bit mantissa and an s-bit
exponent. Each non-zero number x∈Fn,s of this kind can be written as x=±mx 2ex, with

mx ∈
{

2n−1

2n ,� , 2n − 1

2n

}

ex ∈ {−2s−1,� ,−1, 0, 1,� , 2s−1}.

In what follows, s is assumed to be fixed once and for all. For the sake of simplicity, we
will not study overflows and underflows in detail and instead make the assumption that s
has been chosen large enough with respect to the input data. Consider two polynomials

P = P0 +� +Pp−1 z
p−1

Q = Q0 +� +Qq−1 z
q−1

with coefficients in Fn,s. For definiteness, we will assume P0 � 0, Pp−1 � 0, Q0 � 0 and
Qq−1� 0. In this paper, we study the problem of multiplying P and Q.

Using FFT-multiplication [CT65], the polynomials P and Q can in principle be mul-
tiplied in time O(d log dM(n)). Here M(n)=O(n logn log logn) is the complexity of n-bit
integer multiplication [SS71] and it can be assumed that M(n)/n increases with n. Alter-
natively, one may rewrite P and Q as “floating point polynomials”, with an s-bit integer
exponent and polynomials with n-bit integer coefficients as mantissas. Using Kronecker’s
method, we may then multiply P and Q in time O(M(nd)), where d=max{p, q}. If p≫ q,
then this complexity can be improved a bit further into O(M(n q) p/q) by using O(p/q)
multiplications of degrees q.

∗. This work has partially been supported by the ANR Gecko project.

1

In the case when the coefficients of P are all of the same order of magnitude, and
similarly for Q, the above algorithms are very efficient and numerically stable. In section 2,
we will give a more detailed uniform error analysis. Unfortunately, the algorithms are very
unstable if the coefficients of P or Q are not of the same order of magnitude. For instance,
taking P = Q = z + ε with ε < 2−n, the transformation of P and Q into floating point

polynomials P̃ = z ≈ P and Q̃ = z ≈ Q amounts to neglecting the coefficients P0 and Q0.
In particular, when approximating P Q ≈ P̃ Q̃, only the leading coefficient (P Q)2 of the
product will be computed with a satisfactory accuracy.

A situation which arises often in practice is that the above fast multiplication algo-
rithms can be made numerically stable using a suitable scaling

P (z) � P×λ(z)=P (λ z)

Q(z) � Q×λ(z) =Q(λ z).

For instance, in the above example when P =Q= z+ ε, we may multiply P and Q using

PQ=(P×εQ×ε)×ε−1.

This scaling method is particularly useful in the case when P and Q are truncations of
formal power series. In section 3, we will briefly explain why and we refer to [vdH02a,
Section 6.2] for a more detailed analysis.

However, fast multiplication with scaling only works in the case when the coefficients
of P×λ have similar orders of magnitude for a suitable λ. Geometrically speaking, this
means that the roots of P all lie in a “not so large” annulus around the circle of radius
λ. In practice, this condition is not always satisfied, which leaves us with the question of
designing a more general multiplication algorithm which is both asymptotically fast and
numerically stable.

In its full generality, this problem is ill-posed. For instance, in cases when cancellation
occurs, it is impossible to design an algorithm which computes all coefficients (P Q)k

with a relative error bounded by 2o(n)+o(d)−n. A simple example of this situation is the
computation of (PQ)1=0 for P =z+1, Q=z−1. Nevertheless, such cancellations can only
occur “below” the “numerical Newton polygon” of P Q: when using the naive O(d2

M(n))
multiplication algorithm, based on the convolution sums

(PQ)k =
∑

i+j=k

PiQj ,

the coefficients (PQ)k which correspond to vertices of this Newton polygon are computed
accurately, with a relative error bounded by 2logd−n. Numerical Newton polygons will be
defined and discussed in section 4. They are the natural numeric counterpart of Newton
polygons for polynomials with power series coefficients, based on the analogy between
floating point numbers and (Laurent) series, which goes back to Newton himself.

A reasonable problem is therefore to compute PQ with a similar kind of accuracy as the
naive O(d2

M(n)) multiplication algorithm does, but faster. This also leads to the question
of formalizing what can be meant by “similar kind of accuracy”. In section 5, we define
the notion of “relative Newton error” ρR

new for the computation of R≈PQ. We regard this
notion as the natural generalization of the notion of “relative error”, when numbers are
replaced by numerical polynomials. In section 9, we will state a few interesting properties
of this concept, which provide further evidence for its usefulness.

2 Making fast multiplication of polynomials numerically stable

The central part of the paper is devoted to the description of an asymptotically fast
multiplication algorithm which has a good numerical stability in terms of the relative
Newton error. The main ideas behind the algorithm are the following:

1. The product PQ is modeled by a rectangle 0� p×0� q={0,� , p−1}×{0,� q−1}
in which each pair (i, j) corresponds to the computation of PiQj.

2. Only a subregion S ⊆ 0� p × 0� q, which can be determined precisely (section 5),
contributes substantially to the product PQ. The complement can be neglected.

3. The region S can be covered by a suitable disjoint union of rectangles i� i′× j� j ′
(see sections 6 and 7).

4. The contribution of each such rectangle i� i′ × j� j ′ to P Q can be computed
efficiently using a fast multiplication algorithm with scaling (section 8).

The main result of the paper is the following:

Theorem 1. There exists an algorithm to compute a floating point approximation R≈PQ
with relative Newton error ρR

new6 2−n in time O(M(nd)), provided that log d=O(n).

2. Multiplication of pre-conditioned polynomials

Let us describe in more detail the second classical multiplication algorithm mentioned
in the introduction, when the coefficients of P are of the same order of magnitude, and
similarly for Q. We start with the determination of the maximum exponents

eP = max {eP0,� , ePp−1}
eQ = max {eQ0,� , eQq−1}

and the approximation of P 2n−eP and Q 2n−eQ by integer polynomials P̃ and Q̃ whose
coefficients have bit-sizes bounded by n. At the second step, we use Kronecker’s method

for the multiplication of P̃ and Q̃. Taking k> 2 (n+ 2) + log2 d, the product P̃ Q̃ can be

reconstructed [Kro82, Sch82] from the product of the integers P̃ (2k) and Q̃(2k). Assuming
that log2 d=O(n), these integers have sizes O(n p) and O(n q), whence can be multiplied
in time O(M(n d)). We finally obtain an approximation R of the product P Q by fitting

the coefficients of P̃ Q̃ 2eP +eQ−2n into the nearest available floating point numbers in Fp,s.

Let us now analyze the errors induced by the above scheme, where we recall our assump-
tion that no overflows or underflows occur during our computations. When computing P̃
and Q̃ by rounding to the nearest, we obtain the uniform absolute error bounds

‖P̃ −P 2n−eP ‖ 6
1
2

‖Q̃ −Q 2n−eQ‖ 6
1
2
,

where

‖P ‖=max {|P0|,� , |Pp−1|}

denotes the sup-norm of P if we consider P as a vector of coefficients. Consequently,

‖P̃ Q̃ −PQ 22n−eP −eQ‖ 6 ‖P̃ Q̃ −P Q̃ 2n−eP ‖+ ‖P Q̃ 2n−eP −PQ 22n−eP−eQ‖
6

1
2
‖Q̃‖+

1
2
‖P ‖ 2n−eP

6 2n. (1)

Joris van der Hoeven 3

On the other hand, we also have the bounds

‖PQ‖ 6 d ‖P ‖ ‖Q‖ (2)

‖PQ‖ >
1

2 d
‖P ‖ ‖Q‖. (3)

The second bound follows by considering the FFT transforms of P , Q and PQ with respect
to a 2 d-th root of unity ω. Indeed, the sup-norms of these transforms satisfy

‖FFTω(P)‖ 6 2 d ‖P ‖
‖P ‖=

1
2 d

‖FFTω−1(FFTω(P))‖ 6 ‖FFTω(P)‖,

whence

‖P ‖ ‖Q‖6 ‖FFTω(P)‖ ‖FFTω(Q)‖= ‖FFTω(PQ)‖6 2 d ‖PQ‖.

When ePQ > eP + eQ, the combination of (1) and (2) yields the (rough) bound

‖R−PQ‖6 4 d 2−n ‖PQ‖.

In the case when ePQ 6 eP + eQ, the combination of (1) and (3) leads to the same bound.
In all cases, we thus obtain a uniform relative error bound

ρR =
‖R−PQ‖
‖PQ‖ 6 2log2 d+2−n. (4)

Remark 2. We have chosen Kronecker’s method for the multiplication of integer poly-
nomials, because it is relatively straightforward to implement on top of a fast library for
integer arithmetic such as Gmp [Gra91]. Internally, such integer libraries rewrite numbers
as polynomials, say in u, and rely on FFT multiplication of these polynomials. At the price
of improving Gmp, better performance can be achieved by using a bi-variate FFT on both
u and z. In general, this yields only a constant speed-up, but in the somewhat exotic case
when log2d≫n, this method still admits a complexity O(M(nd)) instead of O(M(d logd)).

3. Multiplication with scaling

In the case when the polynomials P and Q are truncations of formal power series f and g,
the asymptotic behaviour of the coefficients is usually of the form

log2 |Pk |=αk+O(ϕ(k)), (5)

for some suitable slowly increasing function ϕ(k) = o(k). It is natural to rescale P by
considering the polynomial P×λ

P×λ(z) =P (λ z),

with λ= 2−α, since its coefficients P×λ,k =Pk 2−αk are comparable in magnitude:

log2 |P×λ,k |=O(ϕ(k)).

If Q has a similar asymptotic behaviour

log2 |Qk |=αk+O(ϕ(k)), (6)

we may then compute R≈PQ using the formula

R≈ (P×λQ×λ)×λ−1

and the algorithm from the previous section for the multiplication of P×λ and Q×λ.

4 Making fast multiplication of polynomials numerically stable

Now assume that we also have an asymptotic formula

log2 |Rk |=αk+O(ϕ(k)).

Then it can be shown that the relative error of each individual coefficient Rk is bounded by

ρRk
=

|Rk − (PQ)k |
(PQ)k

= eO(ϕ(k))+log2 d−n (7)

for all sufficiently large k. In other words, the multiplication method with scaling amounts
to a loss of O(ϕ(k)) + log2 d bits of precision. Under the assumption that n > C ϕ(d) +
2 log2 d for a sufficiently large constant C, we are thus left with at least n/2 correct
leading bits in the mantissa of each coefficient. The asymptotic behaviour of ϕ(k) is closely
related to the dominant singularities of f and g and for many interesting applications in
combinatorics or physics, one has ϕ(k) =O(log k). For more details, and the application
of this technique to the relaxed computation of formal power series, we refer to [vdH02a,
Section 6.2].

It sometimes happens that only “limsup versions”

max
l6k

log2 |Pl| = αk+O(ϕ(k))

max
l6k

log2 |Ql| = αk+O(ϕ(k))

of (5) and (6) are verified. In that case, the individual relative error estimates (7) cease to
hold, but we still have the scaled uniform bound

ρR×λ
=

‖R×λ− (PQ)×λ‖
‖(PQ)×λ‖

6 2log2 d+2−n, (8)

which is a direct consequence of the corresponding bound (4) in the previous section.
It also frequently occurs that g does not have the same radius of convergence as f ,

in which case we rather have an asymptotic form

log2 |Qk |= β k+O(ψ(k)).

Without loss of generality, we may assume that α> β. When considering the convolution
product

(PQ)k =
∑

i=0

min(k,p−1)

PiQk−i, (9)

we observe that the summands Pi Qk−i approximately form a geometric progression. In
first approximation, only the last w=n/(α− β) terms therefore contribute to the leading
n bits of the result (see figure 1). The computation of P Q can thus be reduced to the
computation of the products

PQ0�w, Pp−w� pQw� 2w, Pp−w� pQ2w� 3w,� , Pp−w� pQ⌊q/w⌋w� q,

using the notation

i� j = {i,� , j − 1}
Pi� j = Pi z

i +� +Pj z
j−1.

When computing each of these products using the scaling ×λ and a doubled precision 2 d,
the individual coefficients Rk of R≈PQ are again obtained with a relative precision of the
form O(2o(n)+logd−n). The total cost of this algorithm is O(M(w) d/w), which reduces to
O(M(n) d) for large d and fixed n. A generalization of this idea will be analyzed in more
detail in section 7.

Joris van der Hoeven 5

Pi

Qj

PiQj

Q0

Qq−1

P0 Pp−1

w

w

Figure 1. Illustration of the computation of PQ for two polynomials P and Q whose coefficients
satisfy log2 |Pk|=αk + o(k) and log2 |Qk|≈ βk + o(k) with α > β. Each square corresponds to the
contribution of the product Pi Qj to (P Q)i+j. Setting w =n/(α− β), only the terms Pi Qj in the
shaded area contribute to the n leading bits of (P Q)i+j, in first approximation.

4. Numeric Newton polygons

Roughly speaking, the algorithms from sections 2 and 3 are numerically stable when the
roots of P and Q lie in an annulus around the unit circle resp. the circle of radius λ. When
this is no longer the case, one may still try to apply the algorithm from section 3 for partial
products Pi� i′Qj� j ′, using scales λ which vary as a function of i� i′ and j� j ′.

A central concept for doing this is the numeric Newton polygon NP of P , which is
the convex hull of the half-lines (i, log2 |Pi| − R>) for all 0 6 i < p, with the convention
that log2 |0| = −∞ (see figure 2 for two examples). The numeric Newton polygon NP is
characterized by its exponent polynomial

EP =ENP
=EP ,0 +� +EP ,p−1 z

p−1

with coefficients

EP ,i =max {y: (i, y)∈NP }.

Equivalently, we may characterize NP by the first exponent EP ,0 and the slopes σP ,i =
EP ,i −EP ,i−1 with 0< i< p. Notice that σP ,1 >� > σP ,p−1.

It is easy to compute the vertices (i0, y0), � , (ij , yj), i0 < � < ij of the Newton
polynomial of P0� k by induction over k: at each step, we add (k, log2 |Pk|) at the right of
the sequence and repeatedly remove the before last pair (ij−1, yj−1) as long as it lies below
the edge from (ij−2, yj−2) to (ij , yj). Using this method, the vertices of NP , as well as the
numbers EP ,i and σP ,i, can be computed in linear time.

The scaling operation P � P×λ has a simple impact on exponent polynomials:

EP×λ
(z) =EP ,⊞log2 λ(z) =

∑

06i<p

(EP ,i + i log2λ) zi.

The norms of P and P×λ and their exponent polynomials are related by

log2 ‖P ‖ = ‖EP ‖ (10)

log2 ‖P×λ‖ = ‖EP ,⊞log2 λ‖, (11)

6 Making fast multiplication of polynomials numerically stable

since the maximum y-value of a convex hull of a set of pairs (i, y) coincides with the
maximum y-values of the points themselves.

NP NQ NP + NQ

Figure 2. Illustrations of the numeric Newton polygons of P = 2 + 8 z − 8 z2 + 1 and Q =
2− z − 2 z2 +

1

2
and the Minkowski sum of these polygons.

Recall that the Minkowski sum of the convex sets NP and NQ is defined by

NP +NQ = {(i+ i′, j+ j ′): (i, j)∈NP , (i
′, j ′)∈NQ}.

An example of a Minkowski sum is shown in figure 2. It is convenient to regard EP and EQ

as “max-plus polynomials” over the semi-algebra R ∪ {−∞} in which multiplication and
addition are replaced by addition and the operator max. These polynomials are convex in
the sense that its sequences of coefficients are convex. The exponent polynomial of NP +NQ

may then be reinterpreted as a “product” of polynomials:

ENP +NQ
= EP ⊞EQ

(EP ⊞EQ)k = max
i+j=k

EP ,i +EQ,j.

Clearly, (EP ⊞EQ)0 =EP ,0 +EQ,0, and it is easily shown that the slopes of NP +NQ are
obtained by merging the ordered lists σP ,1 > � > σP ,p−1 and σQ,1 > � > σQ,q−1. This
provides us with a linear-time algorithm for the computation of EP ⊞EQ as a function of
EP and EQ. The crucial property of NP +NQ is that it approximates NPQ well.

Proposition 3. We have ‖EPQ−EP ⊞EQ‖6 log2 d+1.

Proof. Let λ∈R>. Applying (2) and (3), we have

| log2 ‖(PQ)×λ‖− log2 ‖P×λ‖− log2 ‖Q×λ‖ |6 log2 d+1.

Using (11) and the fact that ‖EP ⊞Q‖= ‖EP ‖+ ‖EQ‖, we obtain

| ‖EPQ,⊞log2 λ‖−‖(EP ⊞EQ)⊞log2 λ‖ |6 log2 d+1.

Given arbitrary convex max-plus polynomials E and F with deg E = deg F , it therefore
suffices to show that

‖E −F ‖6m=max
σ∈R

| ‖E⊞σ‖− ‖F⊞σ‖ |.

Indeed, for 0 6 i6degE, let σ be such that ‖E⊞σ‖=Ei + i σ. Then

Fi 6 ‖F⊞σ‖− i σ6 ‖E⊞σ‖+m− i σ=Ei +m.

The relation Ei 6Fi +m is proved similarly. �

Joris van der Hoeven 7

5. Relative Newton error and truncation

It is classical that the numeric properties of a polynomial P can be greatly effected by
slightly modifying one of its coefficients. For instance, if P = 2−n z − 1, then its root can
move from 2n to +∞, when modifying its coefficient P1 by an amount as small as 2−n ‖P ‖.
Nevertheless, as we will detail in section 9, one may expect that many of the numeric
properties of P do not sensibly change if we modify a coefficient Pi by less than 2Ep,i−n.

If the coefficients Pi of P are known with absolute errors εPi
, this motivates us to

introduce the relative Newton error of P by

ρP
new=max

{

εP0

2EP ,0
,� , εPp−1

2EP ,p−1

}

.

For instance, if R is an approximation of the product PQ, then its relative Newton error
would typically be given by

ρR
new=max

{

|R0− (PQ)0|
2

E(PQ)0

,� , |Rp+q−1− (PQ)p+q−1|
2

E(PQ)p+q−1

}

.

Alternatively, we may regard ρR
new as the minimal uniform error of the approximations

R×λ≈P×λQ×λ for all possible scales λ∈R>:

ρR
new= min

λ∈R>
ρR×λ

.

In this section and the subsequent sections, we propose an efficient algorithm for computing
an approximation R≈PQ, which is numerically stable in the sense that ρR

new is small.

The first main idea behind Newton multiplication is that only part of the products PiQj

substantially contribute to P Q: the pair (i, j) and the corresponding product Pi Qj are
said to be negligible if

EP ,i +EQ,j 6 (EP ⊞EQ)i+j −n.

Indeed, when neglecting the sum of all such products in the computation of P Q, the

corresponding increase of the relative Newton error is bounded by 22log2 d+1−n. This follows
from proposition 3 and the fact that there are at most d pairs (i, j) which contribute to
a fixed coefficient (PQ)k. The left-hand picture in figure 3 illustrates a typical zone of non-
negligible contributions Pi Qj. The lower and upper limits jlo(i) and jup(i) of this zone
are increasing functions in i and can therefore be determined in linear time as a function
of EP and EQ.

A set P of pairs (i, j) is said to be negligible if each of its elements is negligible. A partial
product Pi� i′ Qj� j ′ is said to be negligible if i� i′ × j� j ′ is negligible and admissible if
there exists no proper subrectangle ı̃� ı̃ ′× ̃� ̃ ′ of i� i′× j� j ′ such that i� i′× j� j ′ \
ı̃� ı̃ ′ × ̃� ̃ ′ is negligible. Clearly, any non-negligible partial product Pi� i′ Qj� j ′ gives
rise to a unique admissible partial product Pı̃� ı̃ ′ Q̃� ̃ ′ by taking ı̃� ı̃ ′× ̃� ̃ ′ to be the

smallest subrectangle whose complement in i� i′× j� j ′ is negligible. Any subdivision

0� p× 0� q=
∐

r

ir� ir′ × jr� jr′ (12)

therefore gives rise to a new disjoint union

∐

r

ı̃r� ı̃r′ × ̃r� ̃r′ (13)

8 Making fast multiplication of polynomials numerically stable

of admissible subrectangles, whose complement in 0� p × 0� q is negligible. The second
disjoint union will be called the admissible part of the first one. The right-hand side of
figure 3 illustrates the admissible part of a so-called product subdivision (see section 7
below).

Figure 3. On the left hand side we displayed the non-negligible contributions Pi Qj to a typical
product PQ. The dark squares correspond to products Pi Qj for which EPi

+EQj
=(EP ⊞ EQ)i+j

and the light squares to products where we only have EPi
+EQj

> (EP ⊞ EQ)i+j −n. At the right
hand side, we have shown the admissible part of a product subdivision of 0� p × 0� q formed by
the thin black rectangles.

6. Fitting the Newton polygon using fewer edges

Our next task is to find a suitable subdivision (12) with admissible part (13), such that
∑

r
P ı̃r� ı̃r

′Q ̃r� ̃r
′ can be computed both efficiently and in a numerically stable way. The

second main idea behind Newton multiplication is to search for a subdivision such that
the products P ı̃r� ı̃r

′ Q ̃r� ̃r
′ can be performed using suitable scalings and such that the

rectangles ı̃r� ı̃r′ × ̃r� ̃r′ are yet reasonably large. As a first step in this construction, we
will approximate the Newton polygons of P and Q by simpler ones, merging those edges
whose slopes differ only by a small amount.

Given a slope σ∈R and a convex max-plus polynomial E, we define the σ-discrepancy
hE,σ of E by

hE,σ = ‖E⊞σ‖+ ‖−E⊞σ‖.

Then the individual exponents E⊞σ,i of E⊞σ lie in a strip of height hE,σ:

‖E⊞σ‖− hE,σ 6E⊞σ,i 6 ‖E⊞σ‖. (14)

In the particular case when σ equals the main slope of E,

σE =
EdegE −E0

degE
,

we call hE,σE
the discrepancy of E and also denote it by hE. For any σ∈R and any second

convex max-plus polynomial F , the convexity of E and F implies

hE,σ > hE (15)

hE+F > max (hE , hF) (16)

More generally, one defines the σ-discrepancy hE,σ,i� i′ of E on a range i� i′⊆0� (degE+
1) by hE,σ,i� i′ =hz−iEi� i′,σ

and similarly hE,i� i′ = hz−iEi� i′
. We have

hE,i� i′′ > hE,i� i′ +hE,i′� i′′ (17)

Joris van der Hoeven 9

for any subdivision of the range i� i′′ into i� i′ and i′� i′′.
Let us now return to the approximation of the Newton polygon EP by a new one

with fewer edges. Let κ> 0 be an arbitrary but fixed constant, such as κ= 1, and denote
δ = ⌈κ n⌉. We now construct the sequence 0 = i0<� < ik = p by taking each ir maximal
such that hEP ,ir� ir+1 6 δ (see figure 4 below). Using the convexity of EP , it is not hard to
check that this construction can be done in linear time using a single traversal of 0� p. The
edges of EP between ir and ir+1−1 are well-approximated by a single edge from (ir,EP ,ir)
to (ir+1− 1, EP ,ir+1−1). A similar sequence 0 = j0<� < jl = q is constructed for Q.

i0 i1 i2 i3

Figure 4. Illustration of the sequence 0= i0<� <ik= p for a given Newton polygon and a maximal
discrepancy δ = 1. The border of the Newton polygon corresponds to the thick black line. The
parts corresponding to the segments i0� i1 and i1� i2 fit into the indicated strips of heights 1 and
3

4
. The last part, which corresponds to the segment i2� i3 is a straight segment which fits into a

strip of height 0.

7. The product and Newton subdivisions

A first candidate for the subdivision (12) is the product subdivision:

0� p× 0� q=
∐

r,s

ir� ir+1× js� js+1, (18)

where the ir and js are as in the previous section. Figure 3 shows an example of a product
subdivision.

Lemma 4. Given k, there exist at most 2 (1/κ+ 2) rectangles in the product subdivision,

for which the admissible part contains a pair (i, j) with i+ j= k.

Proof. Assume the contrary and let ir� ir+1× js� js+1 and ir ′−1� ir ′× js′−1� js′ be the
top left and bottom right rectangles in the product subdivision, for which the admissible
parts contribute to (PQ)k. We have r ′− r > 1/κ+2 or s′− s> 1/κ+2. By symmetry, we
may assume r ′− r > 1/κ+ 2 . Now consider the convex max-plus polynomials

E = EP , ir+1 +� + EP , ir ′−1−1 z
ir ′−1−ir+1−1

F = EQ,k−ir+1 +� + EQ,k−ir ′−1+1 z
ir ′−1−ir+1−1

Using (17), we have hE = hEP ,ir+1� ir ′−1
> (1/κ) δ>n. From (15) and (16), we thus get

hE+F ,0 > hE+F >n.

10 Making fast multiplication of polynomials numerically stable

Now ‖E+F ‖ coincides with (EP ⊞EQ)k, whence there exists an index i∈ ir+1� ir ′−1 with

EP ,i +EQ,k−i =(E+F)i 6 ‖E+F ‖−hE+F ,0< (EP ⊞EQ)k −n,

which means that the pair (i, k − i) is negligible. But this is only possible if either
(ir+1, k− ir+1) or (ir ′−1− 1, k− ir ′−1 +1) is also negligible. This, in its turn, implies that
either the rectangle ir� ir+1× js� js+1 or the rectangle ir ′−1� ir ′× js′−1� js′ is negligible,
in contradiction with our hypothesis. �

Corollary 5. There are at most O(d) non-negligible rectangles in the product subdivision,

and they can be computed in linear time.

Proof. The first assertion follows from the facts that each diagonal Dk ={(i, j): i+ j=k}
with k ∈ 0� p+0� q intersects at most 2 (1/κ+2) rectangles and that there are less than
2 d such diagonals. The rectangles can be computed in time O(d), by following the lower
and upper limits jlo and jup of the zone of non-negligible pairs. �

The subdivision we are really after refines (18). More precisely, consider a non-negligible
rectangle i� i′× j� j ′ of the form ir� ir+1× js� js+1. Let

σ=σP ,i� i′ =
EP ,i′−1−EP ,i

i′− 1− i

be the slope of P on i� i′. Swapping P and Q if necessary, we may assume without loss
of generality that σ > σP ,j� j ′. We now construct the sequence j = ̂0 < � < ̂ ŝ = j ′, by
choosing each ̂ ŝ minimal such that hEQ,σ 6 δ, and subdivide

i� i′× j� j ′=∐
ŝ

i� i′× ̂ ŝ� ̂ ŝ+1. (19)

We may re-interpret figure 1 as an illustration of the non-negligible pairs inside the rect-
angle i� i′ × j� j ′, together with the subdivision (19) and its corresponding admissible
part. Performing the replacement (19) for all non-negligible rectangles ir� ir+1× js� js+1

in (18), while leaving the negligible rectangles untouched, we obtain a finer subdivision of
0� p× 0� q, which we call the Newton subdivision.

Lemma 6. Given k, there exist at most 2 (1/κ+3)2 rectangles in the Newton subdivision,

for which the admissible part contains a pair (i, j) with i+ j= k.

Proof. Consider a non-negligible rectangle i� i′ × j� j ′ = ir� ir+1 × js� js+1 in the
product subdivision. In view of lemma (4), it suffices to show that there exists at most
1/κ+3 rectangles in the admissible part of its subdivision (19) which contribute to (PQ)k.

Now assume that ̂ ∈ ̂ ŝ� ̂ ŝ+1 and ̂ ′∈ ̂ ŝ ′� ̂ ŝ ′+1 satisfy ŝ ′− ŝ > 1/κ+3 and assume
that ı̂ < ı̂ ′∈ i� i′ satisfy ı̂ + ̂ = ı̂ ′+ ̂ ′= k. Setting λ= 2σ, we then have

EP×λ,ı̂ 6 EP×λ, ı̂ ′ + δ

EQ×λ, ̂ 6 EP×λ, ̂ ′− (1/κ+1) δ6EP×λ, ̂ ′−n− δ,

whence

EP ,ı̂ +EQ,̂ 6EP , ı̂ ′ +EQ, ̂ ′−n6 (EP ⊞EQ)k −n.

This shows that the pair (ı̂ , ̂) is negligible. We conclude that the diagonal i + j = k

intersects at most 1/κ+3 admissible rectangles. �

Joris van der Hoeven 11

Corollary 7. There are at most O(d) non-negligible rectangles in the Newton subdivision,

and they can be computed in linear time.

8. Newton multiplication

We can now describe our algorithm for computing the product R ≈ P Q. We start by
the computation of the admissible part of the Newton subdivision. For each rectangle
i� i′ × j� j ′ in this admissible part, we compute its contribution to P Q as follows. By
construction, we have hEP ,σ 6 δ or hEQ,σ 6 δ for σ=σP ,i� i′ or σ=σQ,j� j ′. Setting λ=2σ,
we compute the contribution Ri� i′×j� j ′ of Pi� i′ Qj� j ′ to P Q using the multiplication
method with scaling from section 3,

Ri� i′×j� j ′≈ (Pi� i′,×λQj� j ′,×λ)×λ−1, (20)

using a precision of n + 2 δ instead of n bits. The final result R ≈ P Q is obtained by
summing all partial products Ri� i′×j� j ′ using straightforward floating point arithmetic.
This algorithm leads to the following refinement of theorem 1.

Theorem 8. There exists an algorithm of time complexity O(M(n d)), which computes

R≈PQ with relative Newton error

ρR
new6 23logd+O(1)−n. (21)

Proof. We claim that the computation of the product (20) using a precision of n+ 2 δ
bits contributes to the relative Newton error of the global product PQ by an amount which
is bounded by 23logd+O(1)−n. This clearly implies (21), since for a fixed coefficient (PQ)k

in the product, at most O(1) partial products of the form Ri� i′×j� j ′ contribute to (PQ)k.

Setting P̂ =Pi� i′, Q̂=Qj� j ′ and R̂ =Ri� i′×j� j ′, the bound (8) yields

‖R̂×λ− (P̂ Q̂)×λ‖
‖(P̂ Q̂)×λ‖

6 2log2 d+O(1)−n−2δ.

For any k= i′′+ j ′′∈ i� i′+ j� j ′, the bounds (2), (14) and proposition 3 also imply

log2 ‖(P̂ Q̂)×λ‖− log2 d 6 log2 ‖P̂×λ‖+ log2 ‖Q̂×λ‖
6 ‖EP×λ,i� i′‖+ ‖EQ×λ,j� j ′‖
6 EP×λ,i′′ +hEP ,log2 λ,i� i′ +EQ×λ,j ′′ + hEQ,log2 λ,j� j ′

6 EP×λ⊞Q×λ,k + 2 δ

6 E(PQ)×λ,k +2 δ+ log2 d+ 1.

Combining both estimates, we obtain

|R̂k − (P̂ Q̂)k|
2

E(PQ)k

=
|R̂×λ,k − (P̂ Q̂)×λ,k|

2
E(PQ)

×λ,k

6
‖R̂×λ − (P̂ Q̂)×λ‖

2
E(PQ)

×λ,k

6 2log2 d+O(1)−n−2δ ‖(P̂ Q̂)×λ‖
2

E(PQ)
×λ,k

6 23log2 d+O(1)−n.

This completes the proof of our claim.

12 Making fast multiplication of polynomials numerically stable

The proof of the complexity bound relies on lemma 6. Let
∐

r

ı̃r� ı̃r′ × ̃r� ̃r′
be the admissible part of the Newton subdivision and let K = 2 (1/κ+ 3)2. Consider the
total length

L=
∑

r

ı̃r
′ − ı̃r + ̃r

′ − ̃r

of the left borders and the lower borders of all rectangles ı̃r� ı̃r′ × ̃r� ̃r′. Since every
diagonal hits the union of these borders in at most 2K points, we have L 6 4 d K. The
total cost of all multiplications P ı̃r� ı̃r

′Q ̃r� ̃r
′ is therefore bounded by

O

(

∑

r

M((ı̃r
′ − ı̃r + ̃r

′ − ̃r)n)

)

6O(M(Ln)) 6O(M(d n)).

This completes the proof of our theorem. �

Remark 9. Theorem 1 follows from theorem 8, when applying it for the increased precision
n+ 3 log d+O(1) =O(n).

9. Properties of the relative Newton error

Now that we have an efficient multiplication which is numerically stable in terms of the
relative Newton error, it is interesting to investigate this concept a bit closer. First of all,
its name is justified by the property

ρPQ
new6 2 d (ρP

new+ ρQ
new+O(ρP

new ρQ
new)),

which follows from proposition 3. Some natural numeric quantities associated to a numeric
polynomial P are its coefficients, its roots and its evaluations at points. For our notion
of relative Newton error to be satisfactory, a small relative Newton error should therefore
imply small relative errors for the coefficients, the roots and evaluations at points.

Now the example (z + 1)(z − 1) from the introduction shows that it is impossible to
obtain good relative errors for all coefficients. Nevertheless, given a polynomial P with
a small relative Newton error ρP

new, we can at least guarantee small relative errors ρPi
6 ρP

new

for those coefficients Pi which correspond to vertices (i,EP ,i) of the Newton polygon. For
most practical purposes, we expect this to be sufficient. However, theoretically speaking,
the naive multiplication algorithm of polynomials sometimes provides better relative errors
for other coefficients. This is for instance the case when squaring a polynomial of the form
P (z) =A(z2)+B(z2) z, where B is very small compared to A.

For what follows, it will be convenient to redefine d4 degP . Let U = {u1,� , ud} ∈C

denote the set of roots of P , ordered by increasing magnitudes |u1|6� 6 |ud|. By analogy
with the power series setting, the norms |ui| roughly correspond to the slopes σP ,i of the
Newton polygon. We expect the existence of a bound

|log2 |ui|+σP ,i|6O(log2 d),

although we have not yet proved this. The worst case arises when P admits a single root
of multiplicity d.

We define the relative distance δz,z ′ between z, z ′∈C (not both zero) by

δv,w =
|z − z ′|
|z |+ |z ′| 6 1.

Joris van der Hoeven 13

and the relative distance δz,U between z and U , counted with multiplicities, by

δz,U = δz,u1� δz,ud
.

Clearly, the relative error of the evaluation of P at z increases when z approaches U . The
following proposition shows that the relative error of P (z) can be kept small as long as δz,U

is sufficiently large.

Proposition 10. The relative error of the evaluation of P at z ∈C is bounded by

ρP (z) 6
d ρP

new

δz,U
.

Proof. Modulo a suitable scaling and multiplication of P by a constant, we may assume
without loss of generality that |z |=1 and ‖P ‖=1. We claim that |P (z)|> δz,U. Indeed,

P (z)=Pd (z −u1)� (z− ud),

so, considering FFT transforms with respect to a d-th root of unity ω, we get

1 = ‖P ‖6 ‖FFTω(P)‖6 |Pd| (1 + |u1|)� (1 + |ud|) =
|P (z)|
δz,U

.

Since ‖P ‖=1, its coefficients are known with absolute errors εPi
6 ρP

new. We can therefore
evaluate P (z) with absolute error εP (z) 6 d ρP

new and relative error ρP (z) 6 εP (z)/|P (z)|. �

Let us finally consider the computation of the roots u1, � , ud in the case when P is
known with relative Newton error ρP

new. The worst case again arises when P =Pd (z−u)d

has a single root of multiplicity d. Indeed, a relative error ρ inside P0 gives rise to a relative

error ρd
√

for u, so that we cannot expect anything better than ρui
6 ρP

newd
√

for each i.

Nevertheless, given an isolated root ui and Q=P/(z −ui), we have P ′(ui) =Q(ui) and

εP (ui)≈ |Q(ui)| εui
.

Using a similar argument as in the proof of proposition 10, it follows that

ρui
6

d ρP
new

δui,U \{ui}
.

Indeed, after reduction to the case when |ui|= 1 and ‖P ‖= 1, we combine the facts that
εP (ui) 6 d ρP

new, |Q(ui)|> δui,U \{ui} and ρui
= εui

.

10. Conclusion

In this paper, we have presented a fast multiplication algorithm for polynomials over Fn,s,
which is numerically stable in a wide variety of cases. In order to capture the increased
stability in a precise theorem, we have shown the usefulness of numeric Newton polygons
and the relative Newton error. Even though our algorithm was presented in the case of
real coefficients, it is straightforward to generalize it to the complex case.

Multiplication being the most fundamental operation on polynomials, it can be hoped
that fast and numerically stable algorithms for other operations (division, g.c.d., multi-
point evaluation, etc.) can be developed along similar lines. This might for instance have
applications to polynomial root finding [Pan96]. Indeed, an operation such as the Graeffe
transform can be done both efficiently and accurately using our algorithm.

14 Making fast multiplication of polynomials numerically stable

The multiplication algorithm with scaling from [vdH02a, Section 6.2] and section 3 has
been implemented inside the Mathemagix system [vdH02b]. We have experienced it to
be very efficient for the expansion of power series. For instance, the accurate computation

of 100000 terms of ez/(1−z) with a 256-bit precision typically takes about one minute. One
reason behind this efficiency stems from the reduction to Kronecker multiplication. Indeed,
multiple precision libraries for floating point numbers, such as Mpfr [HLRZ00], involve a
lot of overhead for every single operation. We rather reduce the whole problem to one big
integer multiplication.

Only a preliminary version of Newton multiplication has been implemented so far
insideMathemagix. Although this implementation uses a simpler, but not always efficient
subdivision, it already produces encouraging results. Work is in progress to improve the
implementation and reduce its combinatorial overhead. It remains worth investigating
whether there exist other, simpler and/or more efficient subdivision schemes.

Bibliography

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297–301, 1965.

[Gra91] T. Granlund et al. GMP, the GNU multiple precision arithmetic library.
http://www.swox.com/gmp, 1991.

[HLRZ00] G. Hanrot, V. Lefèvre, K. Ryde, and P. Zimmermann. MPFR, a C library for multiple-
precision floating-point computations with exact rounding. http://www.mpfr.org, 2000.

[Kro82] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. Jour. für
die reine und ang. Math., 92:1–122, 1882.

[Pan96] Victor Y. Pan. On approximating complex polynomial zeros: Modified quadtree (Weyl’s)
construction and improved Newton’s iteration. Technical Report RR-2894, INRIA Sophia, 1996.

[Sch82] A. Schönhage. Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients. In J. Calmet, editor, EUROCAM ’82: European Computer

Algebra Conference , volume 144 of Lect. Notes Comp. Sci., pages 3–15, Marseille, France, April
1982. Springer.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing , 7:281–292,
1971.

[vdH02a] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[vdH02b] J. van der Hoeven et al. Mathemagix, 2002. http://www.mathemagix.org.

Joris van der Hoeven 15

