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Most numerical algorithms are designed for single or double precision floating point arithmetic,
and their complexity is measured in terms of the total number of floating point operations.
The resolution of problems with high condition numbers (e.g. when approaching a singularity
or degeneracy) may require higher working precisions, in which case it is important to take
the precision into account when doing complexity analyses. In this paper, we propose a new
“ultimate complexity” model, which focuses on analyzing the cost of numerical algorithms for
“sufficiently large” precisions. As an example application we will present an ultimately softly
linear time algorithm for modular composition of univariate polynomials.

1. INTRODUCTION

The total number of floating point operations is a good measure for the complexity of numerical
algorithms that operate at a fixed working precision. However, for certain ill-conditioned prob-
lems it may be necessary to use higher working precisions. In order to analyze the complexity
to solve such problems, it is crucial to take into account the working precision as an additional
parameter.

Multiple precision algorithms are particularly important in the area of symbolic-numeric
computation. Two examples of applications are polynomial factorization and lattice reduction.
Analyzing the bit complexities of multiple precision algorithms is often challenging. Even in
the case of a simple operation such as multiplication, there has been recent progress [11]. The
complexities of other basic operations such as division, square roots, and the evaluation of ele-
mentary functions have also been widely studied; see for instance [5, 25].

For high level algorithms, sharp complexity analyses become tedious. This happens for
instance in the area of “numerical algebraic geometry” when analyzing the complexity of homo-
topy continuation methods: condition numbers are rather intricate and worst case complexity
bounds do not well reflect practical timings that can be observed with generic input data. This
motivated the introduction of new average complexity models and lead to an active new area
of research; see for instance [2, 7].

Studying the complexity of algorithms has various benefits. First, it is useful to predict prac-
tical running times of implementations. Secondly, it helps to determine which part of an algorithm
consumes most of the time. Thirdly, for algorithms that are harder to implemented, complexity
bounds are a way to estimate and compare algorithmic advances.

∗. This article has been written using GNU TEXMACS [15].
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The present paper is devoted to a new “ultimate complexity” model. It focuses on the asymp-
totic complexity of a numerical algorithm when the working precision becomes sufficiently large.
This means in particular that we are in the asymptotic regime where the working precision becomes
arbitrarily large with respect to other parameters for the algorithm, such as the degree of a poly-
nomial or the size of a matrix. The ultimate complexity model allows for rather simple and quick
analyses. In particular, it is easy to transfer algebraic complexity results over an abstract effec-
tive field 𝕂 into ultimate complexity results over the complex numbers. However, it does not
provide any information on how large the precision should be in order for the asymptotic bounds
to be observable in practice.

As a first example, let us consider the problem of multiplying two n×n matrices with floating
point entries of bit size <p. The usual cost is O(n𝜔) floating point operations, for some feasible
exponent𝜔>2 for matrix multiplication; in [24] it has been shown that one may take𝜔<2.3729.
Using the above transfer principle, this leads to an ultimate bit complexity bound of O(n𝜔 p logp),
where we used the recent result from [11] that p-bit integers can be multiplied in time O(p log p).
In practical applications, one is often interested in the case when n ≫ p, in which the bit-com-
plexity rather becomes linear in p. But this is not what the ultimate complexity model does: it
rather assumes that p≫n, and even p≫�exp∘…k× ∘exp�(n) for any k. Under this assumption, we
actually have the sharper ultimate bit complexity bound O(n2 p log p), which is proved using FFT
techniques [10].

As a second example, which will be detailed in the sequel, consider the computation of the
complex roots of a separable polynomial f of degree n over the complex numbers: once initial
approximations of the roots are known with a sufficiently large precision, the roots can be refined
in softly linear time by means of fast multi-point evaluations and Newton iterations. This implies
that the ultimate complexity is softly linear, even if a rather slow algorithm is used to compute the
initial approximations.

In sections 2 and 3, we recall basic results about ball arithmetic [13] and straight-line pro-
grams [6]. Section 4 is devoted to the new ultimate complexity model. In section 5 we illustrate
the ultimate complexity model with modular composition. Modular composition consists in com-
puting the composition of two univariate polynomials modulo a third one. For polynomials with
coefficients in a finite field, Kedlaya and Umans proved in 2008 that the theoretical complexity for
performing this task could be made arbitrarily close to linear [21, 22]. Unfortunately, beyond its
major theoretical impact, this result has not led to practically faster implementations yet; see [17].
In this paper, we explore the particular case when the ground field is the field of computable
complex numbers and improve previously known results in this special case.

2. BALL ARITHMETIC

2.1. Bit complexity
In the bit complexity model, the running time of an algorithm is analyzed in terms of the number
of bit operations that need to be performed. In this paper, we always assume that this is done on
a Turing machine with a finite and sufficiently large number of tapes [28].

Multiplication is a central operation in both models. We write I(p) for a function that bounds
the bit-cost of an algorithm which multiplies two integers of bit sizes at most p, for the usual
binary representation. The best known bound [11] for I(p) is O(p log p) = Õ(p). Here, the soft-
Oh notation f (p) = Õ(g(p)) means that f (p) = g(p) (log g(p))O(1); we refer the reader to [9,
Chapter 25, Section 7] for technical details. We make the customary assumption that I(p) / p
is non-decreasing. Notice that this assumption implies the super-additivity of I, namely I(p1) +
I(p2)⩽ I(p1+ p2) for all p1⩾0 and p2⩾0.
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2.2. Fixed point numbers
Let a be a real number, we write ⌊a⌋ for the largest integer less or equal to a and ⌊a⌉≔⌊a+ /1 2⌋ for
the closest integer to a.

Given a precision p∈ℕ, we denote by𝔻p=ℤ2−p the set of fixed point numbers with p binary
digits after the dot. This set𝔻p is clearly stable under addition and subtraction. We can also define
approximate multiplication ×p on 𝔻p using x ×p y= ⌊2p x y⌉ 2−p, so |x ×p y − x y| ⩽ 2−p−1 for all x,
y∈𝔻p.

For any fixed constant K > 0 and x, y ∈𝔻p ∩ [−K, K], we notice that x + y and x − y can be
computed in time O(p), whereas x ×p y can be computed in time I(p) + O(p). Similarly, one
may define an approximate inversion 𝜄p on 𝔻p

≠≔𝔻p∖ {0} by 𝜄p(x)= ⌊2p x−1⌉ 2−p. For any fixed
constant K>0 and x∈𝔻p

≠∩[−K,K], we may compute 𝜄p(x) in time O(I(p)).

Remark 1. In numerical algorithms, floating point arithmetic is often preferred with respect to
fixed point arithmetic. From our perspective of ultimate complexity, it is interesting to notice
that both formalisms are actually equivalent, except at zero. Indeed, it suffices to take the bit
precision large enough so that it exceeds the absolute value of the exponent of any floating point
number involved in the computation. For technical reasons, it is more convenient to use fixed
point arithmetic in this paper.

2.3. Fixed point ball arithmetic
Ball arithmetic is used for providing reliable error bounds for approximate computations. A ball
is a setℬ(c,r)={z∈ℝ:|z−c|⩽ r} with c∈ℝ and r∈ℝ⩾. From the computational point of view,
we represent such balls by their centers c and radii r. We denote by𝔹p the set of balls with centers
in 𝔻p and radii in 𝔻p

⩾. Given vectors x = (x1, …, xn) ∈ℝn and 𝒙 = (𝒙1, …, 𝒙n) = (ℬ(c1, r1), …,
ℬ(cn, rn)) ∈ 𝔹p

n we write x ∈ 𝒙 to mean x1 ∈ 𝒙1 ∧ ⋯ ∧ xn ∈ 𝒙n, and we also set rad(𝒙) ≔
max(r1,…, rn).

Let D be an open subset of ℝn. We say that 𝑫p⊆𝔹p
n is a domain lift at precision p if 𝒙 ⊆D

for all 𝒙 ∈ 𝑫p. The maximal such lift is given by 𝑫p = {𝒙 ∈ 𝔹p
n: 𝒙 ⊆ D}. Given a function f :

D→ℝm, a ball lift of f at precision p is a function 𝒇p: 𝑫p→𝔹p
m, where 𝑫p= dom 𝒇p is a domain

lift of D at precision p, that satisfies the inclusion property: for any 𝒙 = (𝒙1, …, 𝒙n) ∈ 𝑫p
n and

x=(x1,…, xn)∈ℝn, we have

x∈𝒙 ⟹ f (x)∈𝒇p(𝒙).

A ball lift 𝒇 of f is a computable sequence (𝒇p)p∈ℕ of ball lifts at every precision such that for any
sequence (𝒙p)p∈ℕ with 𝒙p∈dom𝒇p, we have

lim
p→∞

rad(𝒙p)=0 ∧ �
p∈ℕ

𝒙p≠∅ ⟹ lim
p→∞

rad(𝒇p(𝒙p))=0.

This condition implies the following:

lim
p→∞

rad(𝒙p)=0 ∧ �
p∈ℕ

𝒙p={x} ⟹ �
p∈ℕ

𝒇p(𝒙p)={ f (x)}.

We say that 𝒇 is maximal if dom𝒇p is the maximal domain lift for each p. Notice that a function f
must be continuous in order to admit a maximal ball lift.

The following formulas define maximal ball lifts ⊕p, ⊖p and ⊗p at precision p for the ring
operations +, − and ×:

ℬ(a, r)⊕pℬ(b, s) ≔ ℬ(a+b, r+ s)
ℬ(a, r)⊖pℬ(b, s) ≔ ℬ(a−b, r+ s)
ℬ(a, r)⊗pℬ(b, s) ≔ ℬ(a×p b, (|a|+ r)×p s+ |b| ×p r+21−p).
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The extra 21−p in the formula for multiplication is needed in order to counter the effect of rounding
errors that might occur in the three multiplications a×pb, (|a|+r)×ps and |b|×ps. Forℬ(a, r)∈𝔹p
with r< |a|, the following formula also defines a maximal ball lift 𝜾p at precision p for the inver-
sion:

𝜾p(ℬ(a, r)) ≔ ℬ(𝜄p(a), 𝜄p(|a|− r)− 𝜄p(|a|)+21−p).

For any fixed constant K > 0 and a, r, b, s ∈ 𝔻p ∩ [−K, K], we notice that ℬ(a, r) ⊕p ℬ(b, s),
ℬ(a, r)⊖pℬ(b, s), ℬ(a, r)⊗pℬ(b, s) and 𝜾p(ℬ(a, r)) can be computed in time O(I(p)).

Let 𝒇 be the ball lift of a function f :D→ℝm with D ⊆ℝn. Consider a second ball lift 𝒈 of
a function g:E→ℝl with f (D)⊆E⊆ℝm. Then we may define a ball lift 𝒈∘ 𝒇 of the composition
g ∘ f :D→ℝl as follows. For each precision p, we take (𝒈 ∘ 𝒇)p=𝒈p ∘ (𝒇p)|Dp, where (𝒇p)|DP is the
restriction of 𝒇p to the set Dp={𝒙∈dom𝒇p: 𝒇p(𝒙)∈dom𝒈p}.

We shall use ball arithmetic for the computation of complex functionsℂn→ℂm simply through
the consideration of real and imaginary parts. This point of view is sufficient for the asymp-
totic complexity analyses of the present paper. Of course, it would be more efficient to directly
compute with complex balls (i.e. balls with a complex center and a real radius), but this would
involve approximate square roots and ensuing technicalities.

2.4. The Lipschitz property
Assume that we are given the ball lift 𝒇 of a function f :D→ℝm with D⊆ℝn. Given a subset U⊆D
and constants 𝜆⩾0,𝜇⩾0, we say that the ball lift 𝒇 is (𝜆,𝜇)-Lipschitz on U if

∃p0∈ℕ, ∃𝜚>0, ∀p⩾ p0, ∀𝒙∈𝔹p
n,

𝒙⊆U ∧ rad(𝒙)⩽𝜚 ⟹ 𝒙∈dom𝒇p ∧ rad(𝒇p(𝒙))⩽𝜆rad(𝒙)+𝜇2−p.

For instance, the ball lifts ⊕ and ⊖ of addition and subtraction are (2, 0)-Lipschitz on ℝ2. Simi-
larly, the ball lift ⊗ of multiplication is (3𝜆, 3)-Lipschitz on U={(x, y)∈ℝ2: |x| ⩽𝜆, |y| ⩽𝜆} (by
taking 𝜚=𝜆), whereas the ball lift 𝜾 of 𝜄 is (𝜆,3)-Lipschitz on U={x∈ℝ:𝜆−1/2⩽|x|}.

Given 𝒇 and 𝜆 > 0, 𝜇 ⩾ 0 as above, we say that 𝒇 is locally (𝜆, 𝜇)-Lipschitz on U if 𝒇 is
(𝜆, 𝜇)-Lipschitz on each compact subset of U. We define 𝒇 to be 𝜆-Lipschitz (resp. locally 𝜆-
Lipschitz) on U if there exists a constant 𝜇 > 0 for which 𝒇 is (𝜆, 𝜇)-Lipschitz (resp. locally
(𝜆,𝜇)-Lipschitz). If 𝒇 is locally 𝜆-Lipschitz on U, then it is not hard to see that f is necessarily
locally Lipschitz on U, with Lipschitz constant 𝜆. That is,

∀x∈U, ∃𝜂>0, ∀a,b∈ℬ(x, 𝜂)∩U, ‖ f (b)− f (a)‖∞⩽𝜆‖b−a‖∞.

In fact, the requirement that a computable ball lift 𝒇 is 𝜆-Lipschitz implies that we have a way to
compute high quality error bounds. We finally define 𝒇 to be Lipschitz (resp. locally Lipschitz)
on U if there exists a constant 𝜆>0 for which 𝒇 is 𝜆-Lipschitz (resp. locally 𝜆-Lipschitz).

LEMMA 2. Let 𝒇 be a locally (𝜆, 𝜇)-Lipschitz ball lift of f :D→ℝm on an open set U. Let 𝒈 be
a locally (𝜆′,𝜇′)-Lipschitz ball lift of g:E→ℝl on an open set V. If f (D)⊆E and f (U)⊆V, then
𝒈∘ 𝒇 is a locally (𝜆𝜆′,𝜇𝜆′+𝜇′)-Lipschitz ball lift of g∘ f on U.

Proof. Consider a compact subset C ⊆ U. Since this implies f (C) to be a compact subset of
f (U) ⊆ V, it follows that there exists an 𝜀 > 0 such that f (C) + ℬ(0, 𝜀) ⊆ V. Let p0 ∈ ℕ,
0<𝜚<(𝜀−𝜇2−p)/𝜆 and 0<𝜚′ be such that for any p⩾ p0, 𝒙∈𝔹p

n and 𝒚∈𝔹p
m, we have

𝒙⊆C∧rad(𝒙)⩽𝜚 ⟹ 𝒙∈dom𝒇p∧rad(𝒇p(𝒙))⩽𝜆rad(𝒙)+𝜇2−p<𝜀
(𝒚⊆ f (C)+ℬ(0,𝜀))∧ rad(𝒚)⩽𝜚′ ⟹ 𝒚∈dom𝒈p∧rad(𝒈p(𝒚))⩽𝜆′ rad(𝒚)+𝜇′2−p.
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Given x ∈ 𝔹p
n with 𝒙 ⊆ C and rad(𝒙) ⩽ 𝜚, it follows that 𝒚 ≔ 𝒇p(𝒙) satisfies rad(𝒚) < 𝜀, whence

𝒚 ⊆ f (C) + ℬ(0, 𝜀). If we also assume that rad(𝒙) ⩽ (𝜚′ − 𝜇 2−p)/𝜆, then it also follows that
rad(𝒚) ⩽ 𝜚′, whence 𝒚 ∈ dom 𝒈p and rad(𝒈p(𝒚)) ⩽ 𝜆′ (𝜆 rad(𝒙) + 𝜇 2−p) + 𝜇′ 2−p=𝜆 𝜆′ rad(𝒙) +
(𝜇 𝜆′ + 𝜇′) 2−p. In other words, if 𝒙 ⊆ C and rad(𝒙) ⩽ min (𝜚, (𝜚′ − 𝜇 2−p) / 𝜆), then 𝒙 ∈
dom(𝒈p∘ 𝒇p) and rad((𝒈p∘ 𝒇p)(𝒙))⩽𝜆𝜆′rad(𝒙)+(𝜇𝜆′+𝜇′)2−p. □

3. STRAIGHT-LINE PROGRAMS

Informally speaking, a straight-line program is a sequence of programing instructions that does
not contain any loop or branching. Each instruction applies a single elementary operation to con-
stants and values stored in variables. The result of the instruction is then stored into a variable.
A detailed presentation of straight-line programs can be found in the book [6]. From the mathe-
matical point of view, a straight-line program can be regarded as a data structure that encodes of
a composition of elementary operations.

For straight-line programs over rings (and fields), elementary operations are usually the arith-
metic ones: addition, subtraction, products (and inversions). Our application to modular composi-
tion in section 5 only requires these operations. However in the present numerical context, it
is relevant to allow us for wider sets of elementary operations such as exponentials, logarithms,
trigonometric functions, etc. The following paragraphs thus formalize straight-line programs for
a wide class of numerical algorithms. We take care of definition domains and allow for changes
of evaluation domains.

A signature is a finite or countable set of function symbols ℱ together with an arity rf ∈ℕ
for each f ∈ℱ. A model for ℱ is a set K together with a function fK:Uf →K with Uf ⊆Krf for
each k∈ℱ. If K is a topological space, then Uf is required to be an open subset of Krf. Let𝒱 be
a countable and ordered set of variable symbols.

A straight-line program (SLP) Γ with signature ℱ is a sequence Γ1,…,Γℓ of instructions of
the form

Γk ≡ Xk≔ fk(Yk,1,…,Yk,rfk
),

where fk ∈ ℱ and Xk, Yk,1, …, Yk,rfk
∈ 𝒱, together with a subset 𝒪Γ ⊆ {X1, …, Xℓ} of output

variables. Variables that appear for the first time in the sequence in the right-hand side of an
instruction are called input variables. We denote by ℐΓ the set of input variables. The number ℓ
is called the length of Γ.

There exist unique sequences I1 < ⋯ < In and O1 < ⋯ < Om with ℐΓ = {I1, …, In} and
𝒪Γ = {O1, …, Om}. Given a model K of ℱ we can run Γ for inputs in K, provided that the
arguments Yk,1, …, Yk,rfk

are always in the domain of fk when executing the instruction Γk. Let
DΓ,K be the set of tuples I=(I1,…, In)∈Kn on which Γ can be run. Given I∈Kn, let ΓK(I)∈Km

denote the value of (O1, …, Om) at the end of the program. Hence Γ gives rise to a function
ΓK:DΓ,K→Km.

Now assume that (ℝ, ( fℝ)f∈ℱ) is a model for ℱ and that we are given a ball lift 𝒇 of fℝ for
each f ∈ℱ. Then𝔹p is also a model forℱ at each precision p, by taking f𝔹p=𝒇p for each f ∈ℱ.
Consequently, any SLPΓ as above gives rise to both a functionΓℝ:DΓ,ℝ→ℝm and a ball liftΓ𝔹p:
DΓ,𝔹p→𝔹p

m at each precision p. The sequence (Γ𝔹p)p thus provides us with a ball lift 𝚪 for Γℝ.

PROPOSITION 3. If the ball lift 𝒇 of fℝ is Lipschitz for each f ∈ℱ, then 𝚪 is again Lipschitz.
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Proof. For each model K of ℱ, for each variable v ∈𝒱 and each input I = (I1, …, In) ∈DΓ,K,
let vK ,k(I) denote the value of v after step k. We may regard vK ,k as a function from DΓ,K to K.
In particular, we obtain a computable sequence of functions v𝔹p,k that give rise to a ball lift 𝒗(k)

of vℝ,k. Let us show by induction over k that 𝒗(k) is Lipschitz for every v∈𝒱. This is clear for
k=0, so let k>0. If v≠Xk, then we have 𝒗(k)=𝒗(k−1); otherwise, we have

𝒗(k)=𝒇k�𝒀k,1
(k−1),…,𝒀k,rfk

(k−1)�.

In both cases, it follows from Lemma 2 that 𝒗(k) is again a Lipschitz ball lift. We conclude by
noticing that 𝚪=�𝑶1

(ℓ),…,𝑶n
(ℓ)�. □

4. COMPUTABLE NUMBERS AND ULTIMATE COMPLEXITY

A real number x ∈ℝ is said to be computable if there exists an approximation algorithm x̌ that
takes p∈ℕ on input and produces x̌(p)∈𝔻p on output with |x − x̌(p)| ⩽2−p (we say that x̌(p) is
a 2−p-approximation of x). We denote by ℝcom the field of computable real numbers.

Let T(p) be a nondecreasing function. We say that a computable real number x∈ℝcom has
ultimate complexity T(p) if it admits an approximation algorithm x̌ that computes x̌(p) in time
T(p + 𝛿) for some fixed constant 𝛿∈ℕ. The fact that we allow x̌(p) to be computed in time
T(p + 𝛿) and not T(p) is justified by the observation that the position of the “binary dot” is
somewhat arbitrary in the approximation process of a computable number.

The notion of approximation algorithm generalizes to vectors with real coefficients: given
v∈ (ℝcom)n, an approximation algorithm for v as a whole is an algorithm v̌ that takes p∈ℕ on
input and returns v̌(p) ∈𝔻p

r on output with |v̌(p)i − vi| ⩽ 2−p for i= 1,…, n. This definition natu-
rally extends to any other mathematical objects that can be encoded by vectors of real numbers:
complex numbers (by their real and complex parts), polynomials and matrices (by their vectors
of coefficients), etc. The notion of ultimate complexity also extends to any of these objects.

A ball lift 𝒇 is said to be computable if there exists an algorithm for computing 𝒇p for all p∈ℕ.
A computable ball lift 𝒇 of a function f :D→ℝm with D⊆ℝn allows us to compute the restriction
of f to D ∩ (ℝcom)n: given x ∈ D ∩ (ℝcom)n with approximation algorithm x̌, by taking 𝒙p =
ℬ(x̌(p), 2−p)∈𝔹p

n, we have ⋂p∈ℕ 𝒙p={x}, ⋂p∈ℕ 𝒇p(𝒙p)={ f (x)}, and limp→∞ rad(𝒇p(𝒙p))=0.
Let F be a nondecreasing function and assume that D is open. We say that 𝒇 has ultimate

complexity F(p) if for every compact set C ⊆D, there exist constants p0∈ℕ, 𝜚 > 0 and 𝛿 ∈ℕ
such that for any p⩾ p0 and 𝒙p∈dom𝒇p with 𝒙p⊆C and rad(𝒙p)⩽𝜚, we can compute 𝒇p(𝒙p) in time
F(p+𝛿). For instance, ⊕ and ⊖ have ultimate complexity O(p), whereas ⊗ and 𝜾 have ultimate
complexity O(I(p)).

PROPOSITION 4. Assume that 𝒇 is locally Lipschitz. If 𝒇 has ultimate complexity F(p) and x ∈
D∩(ℝcom)n has ultimate complexity T(p), then f (x) has ultimate complexity T(p)+F(p).

Proof. Let x̌ be an approximation algorithm for x of complexity T(p+𝛿), where 𝛿∈ℕ. There
exist p0∈ℕ and a compact ball C around x with C⊆dom f and such that 𝒙p=ℬ(x̌(p),2−p)∈𝔹p

n

is included in C for all p ⩾ p0. There also exists a constant 𝛿′ ∈ ℕ such that 𝒇p(𝒙p) can be
computed in time F(p + 𝛿′) for all p ⩾ p0. Since 𝒇 is locally Lipschitz, there exists yet another
constant 𝛿′′ ∈ ℕ such that rad(𝒇p(𝒙p)) ⩽ 2𝛿′′−p for p ⩾ p0. For q = p − 𝛿′′ ⩾ max (p0 − 𝛿′′, 0)
and 𝛿′′′ = max (𝛿, 𝛿′), this shows that we may compute a 2−q-approximation of f (x) in time
T(q+𝛿′′′)+F(q+𝛿′′′). □

PROPOSITION 5. Assume that 𝒇 and g are two locally Lipschitz ball lifts of f and g that can be
composed. If 𝒇 and g have respective ultimate complexities F(p) and G(p), then 𝒈∘𝒇 has ultimate
complexity F(p)+G(p).
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Proof. In a similar way as in the proof of Lemma 2, the evaluation of (𝒈∘ 𝒇)p(𝒙p) for 𝒙p∈dom𝒇p
with 𝒙p ⊆ C and rad(𝒙p) ⩽ 𝜚 boils down to the evaluation of 𝒇p at 𝒙p and the evaluation of 𝒈p
at 𝒚p≔𝒇p(𝒙p)⊆C′≔ f (C)+ℬ(0, 𝜀) with rad(𝒚p)⩽𝜚′. Modulo a further lowering of 𝜚 and 𝜚′ if
necessary, these evaluations can be done in time F(p+𝛿) and G(p+𝛿′) for suitable 𝛿, 𝛿′ ∈ℕ
and sufficiently large p. □

THEOREM 6. Assume that ℝ is a model for the function symbols ℱ, and that we are given a
computable ball lift 𝒇 of fℝ for each f ∈ℱ. For each f ∈ℱ, assume in addition that 𝒇 is locally
Lipschitz, and let Ff be a nondecreasing function such that 𝒇 has ultimate complexity Ff (p). Let
Γ=Γ1,…,Γℓ be an SLP over ℱ whose k-th instruction Γk writes Xk≔ fk(Yk,1,…,Yk,rf). Then, the
ball lift 𝚪 of Γℝ has ultimate complexity

FΓ(p) ≔ Ff1(p)+⋯+Ffℓ(p).

Proof. This is a direct consequence of Proposition 5. □

COROLLARY 7. Let Γ be an SLP of length ℓ over ℱ={0,1,+,−,×,𝜄} (where 0 and 1 are naturally
seen as constant functions of arity zero). Then, there exists a ball lift 𝚪 of Γℝ with ultimate
complexity O(I(p)ℓ).

Proof. We use the ball lifts of section 2 for each f ∈ {+, −, ×, 𝜄}: they are locally Lipschitz
and computable with ultimate complexity O(I(p)). We may thus apply the Theorem 6 to obtain
FΓ(p)=O(I(p)ℓ). □

5. APPLICATION TO MODULAR COMPOSITION

Let 𝕂 be an effective field, and let f , g, h be polynomials in 𝕂[x]. The problem of modular
composition is to compute g ∘ f modulo h. Modular composition is an important problem in
complexity theory because of its applications to polynomial factorization [20, 21, 22]. It also
occurs very naturally whenever one wishes to perform polynomial computations over 𝕂 inside
an algebraic extension of 𝕂. In addition, given two different representations 𝕂[x] / (h(x)) ≅
𝕂[x̃]/(h̃(x̃)) of an algebraic extension of𝕂, the implementation of an explicit isomorphism actu-
ally boils down to modular composition.

5.1. Algebraic complexity
Besides the bit complexity model from section 2.1, we will also need the algebraic complexity
model, in which running times are analyzed in terms of the number of operations in some abstract
ground ring or field [6, Chapter 4].

We write M:ℕ→ℝ> for a cost function such that for any effective field𝕂 and any two polyno-
mials of degree<n in𝕂[x], we can compute their product using at most M(n) arithmetic operations
in 𝕂. The fastest currently known algorithm [8] allows us to take M(n) =O(n log n log log n) =
Õ(n). As in the case of integer multiplication, we assume that M(n) /n is non-decreasing; this
again implies that M is super-additive.

Given two polynomials g, h ∈ 𝕂[x], we define g quo h and g rem h to be the quotient and
the remainder of the Euclidean division of g by h. Both the quotient and the remainder can be
computed using O(M(n)) operations in 𝕂, if g and h have degrees ⩽n. We recall that the gcd
of two polynomials of degrees at most n over 𝕂 can be computed using O(M(n) log n) opera-
tions in 𝕂 [9, Algorithm 11.4]. Given polynomials f and g1, …, gl over 𝕂 with deg f = n and
deg g1+⋯+deg gl=O(n), all the remainders f rem gi may be computed simultaneously in cost
O(M(n) log l) using a subproduct tree [9, Chapter 10]. The inverse problem, called Chinese
remaindering, can be solved with a similar cost O(M(n) log l), assuming that the gi are pairwise
coprime. The fastest known algorithms for these tasks can be found in [1, 3, 14].
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5.2. Related work
Let f , g and h be polynomials in 𝕂[x] of respective degrees <n, <n and n. The naive modular
composition algorithm takes O(n M(n)) operations in 𝕂. In 1978, Brent and Kung [4] gave an
algorithm with cost O( n√ M(n)+ n2). It uses the baby-step giant-step technique due to Paterson
and Stockmeyer [29], and even yields a sub-quadratic cost O(n𝜛 + n√ M𝕂(n)) when using fast
linear algebra; see [19, p. 185]. The constant 𝜛>1.5 is such that a n√ × n√ matrix over 𝕂 can
be multiplied with another n√ × n rectangular matrix in time O(n𝜛). The best current bound
𝜛<1.667 is due to Huang and Pan [18, Theorem 10.1].

A major breakthrough has been achieved by Kedlaya and Umans [21, 22] in the case when𝕂
is the finite field𝔽q. For any positive 𝜀>0, they showed that the composition g∘ f modulo h could
be computed with bit complexity O((n logq)1+𝜀). Unfortunately, it remains a major open problem
to turn this theoretical complexity bound into practically useful implementations.

Quite surprisingly, the existing literature on modular composition does not exploit the simple
observation that composition modulo a separable polynomial h∈𝕂[x] that splits over 𝕂 can be
reduced to the well known problems of multi-point evaluation and interpolation [9, Chapter 10].
More precisely, assume that h=(x−𝜎1)⋯(x−𝜎n) is separable, which means that gcd(h,h′)=1.
If f ,g∈𝕂[x] are of degree <n, then g∘ f modh can be computed by evaluating f at 𝜎1,…,𝜎n, by
evaluating g at f (𝜎1),…, f (𝜎n), and by interpolating the evaluations (g∘ f )(𝜎1),…,(g∘ f )(𝜎n) to
yield g∘ f modh.

Whenever 𝕂 is algebraically closed and a factorization of h is known, the latter observation
leads to a softly-optimal algorithm for composition modulo h. More generally, if the computation
of a factorization of h has a negligible or acceptable cost, then this approach leads to an efficient
method for modular composition. In this paper, we prove a precise complexity result in the case
when 𝕂 is the field of computable complex numbers. In a separate paper [16], we also consider
the case when 𝕂 is a finite field and h has composite degree; in that case, h can be factored over
suitable field extensions, and similar ideas lead to improved complexity bounds.

In the special case of power series composition (i.e. composition modulo h=xn), our approach
is similar in spirit to the analytic algorithm designed by Ritzmann [30]; see also [12]. In order
to keep the exposition as simple as possible in this paper, we only study composition modulo
separable polynomials. By handling multiplicities with Ritzmann's algorithm, we expect our algo-
rithm to extend to the general case.

5.3. Abstract modular composition in the separable case
For any field 𝕂 and n∈ℕ, we denote

𝕂[x]<n ≔ {P∈𝕂[x]:degP<n}.

In this section, 𝕂 represents an abstract algebraically closed field of constants. Let h = xn +
hn−1 xn−1+⋯+h0∈𝕂[x] be a separable monic polynomial, so h admits n pairwise distinct roots
𝜎1,…,𝜎n in 𝕂. Then we may use the following algorithm for composition modulo h:

Algorithm 1

Input. Polynomials f ,g∈𝕂[x]<n and pairwise distinct 𝜎1,…,𝜎n∈𝕂.
Output. g∘ f remh, where h=(x−𝜎1)⋯(x−𝜎n).
1. Compute v1= f (𝜎1),…,vn= f (𝜎n) using fast multi-point evaluation.
2. Compute w1=g(v1),…,wn=g(vn) using fast multi-point evaluation.
3. Retrieve 𝜚∈𝕂[x]<n with 𝜚(𝜎1)=v1,…,𝜚(𝜎n)=vn using fast interpolation.
4. Return 𝜚.
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THEOREM 8. Algorithm 1 is correct and requires O(M(n) logn) operations in 𝕂.

Proof. By construction, 𝜚(𝜎i) = (g ∘ f )(𝜎i) = (g ∘ f rem h)(𝜎i) for i = 1, …, n. Since deg 𝜚 < n
and the 𝜎i are pairwise distinct, it follows that 𝜚= g ∘ f rem h. This proves the correctness of the
algorithm. The complexity bound follows from the fact that steps 1, 2 and 3 take O(M(n) log n)
operations in 𝕂. □

We wish to apply the theorem in the case when 𝕂=ℂ. Of course, on a Turing machine, we
can only approximate complex numbers with arbitrarily high precision, and likewise for the field
operations inℂ. For given numbers x and y, approximations at precision p for x+y, x−y, x×y and
x/y (whenever y≠0) can all be computed in time O(I(p)). In view of Theorem 8, it is therefore
natural to ask whether p-bit approximations of the coefficients of g∘ f remh may be computed in
time O(I(p)M(n) logn).

In the remainder of this paper we give a positive answer to a carefully formulated version
of this question. First we will prove a complexity bound for modular composition that holds for
a fixed modulus h with known roots 𝜎1, …, 𝜎n and for sufficiently large working precisions p.
Then we will show that the assumption that the roots 𝜎1, …, 𝜎n of h are known is actually quite
harmless for ultimate complexity for the following reason: as soon as approximations for 𝜎1,…,
𝜎n are known at a sufficiently high precision, the computation of even better approximations can
be done fast using Newton's method combined with multi-point evaluation. Since we are only
interested in the complexity for “sufficiently large working precisions”, the computation of the
initial approximations of 𝜎1, …, 𝜎n can therefore be regarded as a precomputation of negligible
cost.

5.4. Ultimate modular composition for separable moduli

LEMMA 9. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈
ℂcom[x]<n, let 𝜎1, …, 𝜎n be pairwise distinct elements of ℂcom, and let h = (x − 𝜎1) ⋯ (x − 𝜎n).
Assume that ( f0, …, fn−1, g0,…,gn−1, 𝜎1, …, 𝜎n) has ultimate complexity T(n, p). Then 𝜚 =
g∘ f remh has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. The algorithm for fast multi-point evaluation of a polynomial P = ∑i=0
n−1 Pi x i ∈ 𝕂[x]<n

at 𝜉1, …, 𝜉n ∈𝕂 can be regarded as an SLP over ℱ= {0, 1, +, −, ×, 𝜄} of length O(M(n) log n)
that takes (P0, …, Pn−1, 𝜉1, …, 𝜉n) ∈ 𝕂2n on input and that produces (P(𝜉1), …, P(𝜉n)) ∈ 𝕂n on
output. Similarly, the algorithm for interpolation can be regarded as an SLP over ℱ of length
O(M(n) logn) that takes (𝜉1,…,𝜉n,v1,…,vn)∈𝕂2n on input and that produces (P0,…,Pn−1)∈𝕂n

on output with v1=P(𝜉1),…,vn=P(𝜉n). Altogether, we may regard the entire Algorithm 1 as an
SLP Γ over ℱ of length O(M(n) log n) that takes ( f0, …, fn−1, g0, …, gn−1, 𝜎0, …, 𝜎n−1) ∈𝕂3n on
input and that produces (𝜚0,…, 𝜚n−1)∈𝕂n on output with 𝜌= g ∘ f rem h=∑i=0

n−1 𝜌i x i∈𝕂[x]<n.
It follows from Corollary 7 that Γℝ admits a ball lift 𝚪 of ultimate complexity O(I(p)M(n) logn).
The conclusion now follows from Proposition 4. □

According to the above lemma, we notice that the time complexity for computing 𝜚=g∘ fremh
is T(n, p+𝛿) for some constant 𝛿 that depends on n, f , g, and the 𝜎i.

LEMMA 10. There exists a constant 𝜅>0 such that the following assertion holds. Let h∈ℂcom[x]
be separable and monic of degree n, and denote the roots of h by 𝜎=(𝜎1,…,𝜎n). If h has ultimate
complexity T(n, p), then 𝜎 has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. There are many algorithms for the certified computation of the roots of a separable com-
plex polynomial. We may use any of these algorithms as a “fall back” algorithm in the case that
we only need a 2−p-approximation of 𝜎 at a low precision p determined by h only.
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For general precisions p, we use the following strategy in order to compute a ball𝝈∈𝔹p
n with

𝜎∈𝝈 and rad(𝝈)⩽2−𝛼p for some fixed threshold /1 2<𝛼<1. For some suitable p0∈ℕ and p⩽ p0,
we use the fall back algorithm. For p > p0 and for a second fixed constant /1 2 < 𝛽 < 1, we first
compute a ball enclosure 𝝉∈𝔹q

n at the lower precision q=⌈𝛽p⌉ using a recursive application of
the method. We next compute𝝈 using a ball version of the Newton iteration, as explained below.
If this yields a ball𝝈with acceptable radius rad(𝝈)⩽2−𝛼p, then we are done. Otherwise, we resort
to our fall-back method. Such calls of the fall-back method only occur if the default threshold
precision p0 was chosen too low. Nevertheless, we will show that there exists a threshold p1 such
that the computed 𝝈 by the Newton iteration always satisfies rad(𝝈)⩽2−𝛼p for p⩾ p1.

Let us detail how we perform our ball version of the Newton iteration. Recall that 𝝉 ∈ 𝔹q
n

with 𝜎 ∈ 𝝉 and rad(𝝉) ⩽ 2−𝛼𝛽p is given. We also assume that we computed once and for all
a 2−p-approximation of h, in the form of a ball polynomial 𝒉p ∈ 𝔹p[i][x] of radius 2−p that
contains h. Now we evaluate 𝒉p and 𝒉p′ at each of the points 𝝈1, …, 𝝈n using fast multi-point
evaluation. Let us denote the results by 𝒗 = 𝒉p(𝝈) and 𝒘 = 𝒉p′(𝝈). Let 𝜏, v and w denote the
balls with radius zero and whose centers are the same as for 𝝉, 𝒗 and 𝒘. Using vector nota-
tion, the Newton iteration now becomes:

𝝈 = (𝜏⊖p𝜾p(w)⊗p v)⊕p (1⊖p𝜾p(w)⊗p𝒘)⊗p (𝝉⊖p𝜏).

If 𝜎 ∈ 𝝉, then it is well-known [23, 31] that 𝜎 ∈ 𝝈. Since rad(𝝉) ⩽ 2−𝛼𝛽p, the fact that multi-
point ball evaluation (used for 𝒉p and 𝒉p′) is locally Lipschitz implies the existence of a constant
𝛿>0 with rad(𝝂)⩽2𝛿−𝛼𝛽p and rad(𝒘)⩽2𝛿−𝛼𝛽p. Since h′(𝜎i)≠0 for i=1,…,n, there also exists
a constant 𝛿′ > 0 with 1 − 𝜾p(w) 𝒘 ⊆ ℬ�0, 2𝛿′−𝛼𝛽p�. Altogether, this means that there exists a
constant 𝛿′′> 0 with rad(𝝈)⩽ 2𝛿′′−2𝛼𝛽p. Let p1= ⌈𝛿′′/(𝛼 (2𝛽− 1))⌉. Then for any p⩾ p1, the
Newton iteration provides us with a 𝝈 with rad(𝝈)⩽2−𝛼p.

Let us now analyze the ultimate complexity C(n, p) of our algorithm. For large p ⩾ p1, the
algorithm essentially performs two multi-point evaluations of ultimate cost 𝜅′ I(p)M(n) logn for
some constant 𝜅′ that does not depend on p, and a recursive call. Consequently,

C(n, p) ⩽ 𝜅′ I(p)M(n) logn+C(n, ⌈𝛽p⌉).

We finally obtain an other constant 𝜅⩾𝜅′ such that

C(n, p) ⩽ 𝜅 I(p)M(n) logn,

by summing up the geometric progression and using the fact that I(p)/ p is nondecreasing. The
conclusion now follows from Lemma 4. □

Remark 11. A remarkable feature of the above proof is that the precision p1 at which the Newton
iteration can safely be used does not need to be known in advance. In particular, the proof does
not require any a priori knowledge about the Lipschitz constants.

THEOREM 12. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈
ℂcom[x]<n and let h∈ℂcom[x] be separable and monic of degree n. Assume that ( f ,g,h) has ulti-
mate complexity T(n, p). Then 𝜚=g∘ f remh has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. This is an immediate consequence of the combination of the two above lemmas. □

One disadvantage of ultimate complexity is that it does not provide us with any informa-
tion about the precision from which the ultimate complexity is reached. In practical applications,
the input polynomials f , g and h often admit integer or rational coefficients. In these cases, the
required bit precision is expected to be of order n (l+ n) in the worst case, where n=degh and l
is the largest bit size of the coefficients: in fact, this precision allows to compute all the complex
roots of h efficiently using algorithms from [26, 27, 32]. This precision should also be sufficient
to perform the multi-point polynomial evaluations of g and f by asymptotically fast algorithms.
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6. CONCLUSION AND FINAL REMARKS

With some more work, we expect that all above bounds of the form O(I(p) M(n) log n) can
be lowered to O(I(n p) log n). Notice that I(n p) log n = O(I(p) n log n) for p ⩾ n, when taking
I(p) =Θ(n log n). In order to prove this stronger bound using our framework, one might add an
auxiliary operation ×[n] for the product of two polynomials of degrees <n to the set of signa-
turesℱ. Polynomial products of this kind can be implemented for coefficients in𝔻p[i]with p⩾n
using Kronecker substitution. For bounded coefficients, this technique allows for the computation
of one such product in time O(I(n p)). By using Theorem 6, a standard complexity analysis should
show that multi-point evaluation and interpolation have ultimate complexity O(I(np) logn).

By Theorem 12, the actual bit complexity of modular composition is of the form T(n, p+𝛿)+
𝜅 I(p + 𝛿) M(n) log n for some value of 𝛿 that depends on f , g, h (hence of n). An interesting
problem is to get a better grip on this value 𝛿, which mainly depends on the geometric proximity
of the roots of h.

If f ,g,h belong to ℚ[x], then T(n, p)=O(n I(p)) and we may wish to bound 𝛿 as a function
of n and the maximum bit size l of the coefficients of f , g and h. This would involve bit com-
plexity results for root isolation [26, 27, 32], for multi-point evaluation, and for interpolation.
The overall complexity should then be compared with the maximal size of the output, namely
g ∘ f rem h, which is in general much larger than the input size. Here, the ultimate complexity
model therefore offers a convenient trade-off between a fine asymptotic complexity bound and a
long technical complexity analysis.
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